2012年中考数学模拟试题(三)
2012年全新中考数学模拟三答案
答案一、选择题(本题共8个小题,每小题4分,共32分)二、填空题(本题共16分,每小题4分)(2分)三、解答题(本题共25分,每小题5分)13.14.15. 证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D. 在△ABE与△CDF中,∴△ABE≌△CDF. ∴AE=CF .16.解:由得所以,原式17.解:(1)∵在直线上,∴当时,.…1分(2)解是…………………3分(3)直线也经过点∵点在直线上,∴.……………………4分把代入,得.∴直线也经过点.…………………………………………………5分四、解答题(本题共10分,每小题 5分)18.解:连结OC,OD,过点O作OE⊥CD于点E.……………………………………1分∵OE⊥CD,∴CE=DE=5,∴OE==5, ……………………………………………………2分∵∠OED=90°,DE=,∴∠DOE=30°, ∠DOC=60°.∴ (cm 2) …………3分S △OCD =21·OE ·CD= 25 (cm 2) ……………………………………………………4分 ∴S 阴影= S 扇形-S △OCD = (350π-25) cm 2∴阴影部分的面积为(350π-25) cm 2. ……………………………………………………5分 说明:不答不扣分.19.(1)证明:连接OD .∵OA=OD ,. ∵AD 平分∠CAM ,,. ∴DO ∥MN ., ∴DE ⊥OD . ∵D 在⊙O 上,是⊙O 的切线. (2)解:,,,. 连接.是⊙O 的直径,.,... ∴(cm ). ⊙O 的半径是7.5cm .(说明:用三角函数求AC 长时,得出tan ∠DAC =2时,可给4分.) 五、解答题(本题共6分) 20.(1)200; (2)(人).画图正确. 3分 (3)C 所占圆心角度数. 4分(4)(名) 5分∴估计该区初中生中大约有17000名学生学习态度达标. 6分六、解答题(本题共9分,21小题 5分,22小题4分)21.解:(1)设型台灯购进盏,型台灯购进盏.根据题意,得解得:(2)设购进B种台灯m盏. 根据题意,得解得,答:型台灯购进30盏,型台灯购进20盏;要使销售这批台灯的总利润不少于1400元,至少需购进B种台灯27盏 .22.解:(1)所画的点在上且不是的中点和的端点.(如图(2))……………2分(2)画点关于的对称点,延长交于点,点为所求(不写文字说明不扣分).(说明:画出的点大约是四边形的半等角点,而无对称的画图痕迹,给1分)七、解答题(共22分,其中23题7分、24题8分,25题7分)23.解:(1)△=∵方程有两个不相等的实数根, ∴.∵,∴m的取值范围是.(2)证明:令得,. .∴,. ∴抛物线与x轴的交点坐标为(),(), ∴无论m取何值,抛物线总过定点().(3)∵是整数∴只需是整数. ∵是整数,且, ∴.当时,抛物线为.把它的图象向右平移3个单位长度,得到的抛物线解析式为24.解:(1)由抛物线C1:得顶点P的坐标为(2,5)∵点A(-1,0)在抛物线C1上∴.………………2分(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G.. ∵点P、M关于点A成中心对称,∴PM过点A,且PA=MA.. ∴△PAH≌△MAG.. ∴MG=PH=5,AG=AH=3.∴顶点M的坐标为(,5). ∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到∴抛物线C3的表达式.(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到∴顶点N、P关于点Q成中心对称.由(2)得点N的纵坐标为5. 设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R. ∵旋转中心Q在x轴上, ∴EF=AB=2AH=6.∴EG=3,点E坐标为(,0),H坐标为(2,0),R坐标为(m,-5).根据勾股定理,得①当∠PNE=90º时,PN2+ NE2=PE2,解得m=,∴N点坐标为(,5)②当∠PEN=90º时,PE2+ NE2=PN2,解得m=,∴N点坐标为(,5).③∵PN>NR=10>NE,∴∠NPE≠90º………7分综上所得,当N点坐标为(,5)或(,5)时,以点P、N、E为顶点的三角形是直角三角形.…………………………………………………………………………………8分说明:点N的坐标都求正确给8分,不讨论③不扣分.25.解:(1)如图①AH=AB………………………..1分(2)数量关系成立.如图②,延长CB至E,使BE=DN∵ABCD是正方形∴AB=AD,∠D=∠ABE=90°∴Rt△AEB≌Rt△AND………………………………3分∴AE=AN,∠EAB=∠NAD∴∠EAM=∠NAM=45°∵AM=AM∴△AEM≌△ANM ∵AB、AH是△AEM和△ANM对应边上的高,∴AB=AH (5)(3)如图③分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND∴BM=2,DN=3,∠B=∠D=∠BAD=90°分别延长BM和DN交于点C,得正方形ABCE.由(2)可知,AH=AB=BC=CD=AD.设AH=x,则MC=, NC=图②在Rt⊿MCN中,由勾股定理,得∴………………………6分解得.(不符合题意,舍去)∴AH=6.……………………………………………7分。
详细版2012中考数学模拟试题.doc
2012中考数学模拟试题(共150分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共3 0分)每小题均有四个选项,其中只有一项符合题目要求。
)1. 4的平方根是( ) (A)±16 (B)16(C )±2 (D)22.如图所示的几何体的俯视图是( )3. 在函数12y x -自变量x 的取值范围是( ) (A)12x ≤(B) 12x < (C) 12x ≥(D) 12x > 4. 近年来,随着交通网络的不断完善,我市近郊游持续升温。
据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为( ) (A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是( ) (A )2x x x += (B) 2x x x ⋅=(C)235()x x = (D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根,则下列关于判别式 24n mk-的判断正确的是( )(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥7.如图,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD=58°, 则∠BCD=( ) (A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示,则下列判断正确的是( ) (A)0m > (B)0n < (C)0mn < (D)0m n ->BCD E ABCDE309. 为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是( ) (A)6小时、6小时(B) 6小时、4小时(C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm ,若点0到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是( ) (A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题,共120分)二、填空题:(本大题共8个小题,每小题4分,共32分) 11. 分解因式:.221x x ++=________________。
2012年九中三模数学试卷及答案
A BC D 第4题图2012年初三年级模拟考试数学试卷本卷满分:120分 考试时间:120分钟一 选择题(本大题共12小题,1~6题每小题2分,7~12题每小题3分,共30分) 1. 2-的3倍是 ( ) A.5- B.1 C 、6 D 、6-2.计算a 3·a 4的结果是 ( ) A .a 5 B .a 7 C .a 8 D .a 123. 如图, 点A 、B 、C 在⊙O 上, 若∠C =40︒, 则∠AOB 的度数为 ( )A .20︒B .40︒C .80︒D .100︒第3题图4.如图:矩形ABCD 的对角线AC =10,BC =8,则图中五个小矩形的周长之和为 ( )A .14B .16C .20D .284-2a +4b 5.已知a -2b =-2,值是则的 ( ) A .0 B.2 C.4 D.86.如图,平行四边形ABCD 中,CE AB ⊥,E 为垂足.若125A =∠,则BCE =∠ A.55B.35C.25D.307.某市环保检测中心网站公布的2012年3月31日的PM2.5研究性检测部分数据如下表:时间0:004:008:0012:0016:0020:00PM2.5(mg/m 3) 0.027 0.035 0.032 0.014 0.016 0.032 则该日这6个时刻的PM2.5的众数和中位数分别是 ( )A. 0.032, 0.0295B. 0.026, 0.0295C. 0.026, 0.032D. 0.032, 0.027CBAOA E BCD6题图y 1y x2O -1 y 248.如图,在△ABC 中,∠C =90︒, 点D 在CB 上,DE ⊥AB 于E ,若DE=2, CA=4,则DBAB的值为 ( )A .41B .31C .12D .329. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( ) A.203525-=x x B.x x 352025=-C.203525+=x x D.xx 352025=+ 10.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是 ( )A .1 3B .512C .112D .1 211.根据图象,判断下列说法错误的是( )A .函数2y 的最大值等于4B .当x >2 时, 1y >2yC .当-1<x <3时,2y >1yD .当x 为-1或2时,1y = 2y12.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( ) A . B . C . D .ED C BAE PC’A DBCO5yxO5yxOxy5O5y x2012年初三年级模拟考试数学试卷答题纸二 填空题(每题3分,共18分) 13. 分解因式:x 3 - 4x = .14. 如果一个正多边形的一个外角是60°,那么这个正多边形的边数是 .15. 不等式组 ⎪⎩⎪⎨⎧〉-〉+010121x x 的解集为 .16.已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =____ __. 17.、某计算装置有一数据入口A 和运算结果输出口B ,下表是小明输入的一些数据和经该装置后输出的相应数据结果:A 0.5 1 1.5 3 …B6321…根据计算装置的计算规律,若输入的数是x ,输出的数是y , 则y 与x 之间的函数关系式为___________.18.在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第2012次到达的顶点是 . 三 解答题19.(1)(本题满分8分) 计算:已知a = -2,1-=b ,求2221a b a ab --+÷1a 的值.A输 入 B 输 出A D C B电视机月销量扇形统计图第一个月15% 第二个月30%第三个月 25%第四个月图①20.(本题满分8分)在平面直角坐标系中,△ABC 的顶点坐标分别是 A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1) E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.21. (本题满分8分)某商店在四个月的试销期内,只销售A ,B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图①和如图②. (1)第四个月销量占总销量的百分比是 ; (2)在图②中补全表示B 品牌电视机月销量的折线; (3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同, 请你结合折线的走势进行简要分析,判断该商店应经销 哪个品牌的电视机.时间/月10 20 30 50 40 60 图②销量/台 第一 第二 第三 第四 电视机月销量折线统计图A 品牌B 品牌80 7022.(本题满分8分)某厂家新开发一种摩托车如图所示,它的大灯A 射出的光线AB 、AC 与地面MN 的夹角分别为8°和10°,大灯A 与地面距离1 m .(1)该车大灯照亮地面的宽度BC 约是多少m ?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s ,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km /h 的速度驾驶该车,突然遇到危险情况,立即刹车直到摩托车停止,在这过程中刹车距离是314m ,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:2548sin ≈ ,718tan ≈ ,50910sin ≈ ,28510tan ≈ )23.(本题满分9分)已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ; (2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.M B C N ADCB AEMMEABCD24.(本题满分9分)今年4月18日,我国铁路第六次大提速,在甲、乙两城市之间开通了动车组高速列车.已知每隔1h有一列速度相同的动车组列车从甲城开往乙城.如图所示,OA是第一列动车组列车离开甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象.请根据图中信息,解答下列问题:(1)点B的横坐标0.5的意义是普通快车发车时间比第一列动车组列车发车时间 h,点B的纵坐标300的意义是。
中考数学模拟试卷(三)(含解析)-人教版初中九年级全册数学试题
2016年某某省某某市思源实验学校中考数学模拟试卷(三)一、选择题.(本大题满分42分,每小题3分)1.2016的倒数是()A.B.﹣C.2016 D.﹣20162.计算a2•a3,正确结果是()A.a5B.a6C.a8D.a93.数据3,﹣1,0,2,﹣1的中位数是()A.﹣1 B.0 C.2 D.34.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105×105×106×1055.若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9 B.12 C.9或12 D.106.如图中几何体的主视图是()A.B.C.D.7.若分式的值为0,则x的值为()A.﹣2 B.2 C.4 D.2和﹣28.如图,点D、E分别在AB、AC上,且DE∥BC,∠A=30°,∠B=100°,则∠AED的度数是()A.30° B.100°C.130°D.50°9.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为()A.3 B.5 C.6 D.810.在如图的正方形网格中,sin∠AOB的值为()A.B.2 C.D.11.在平面直角坐标系中,点P(2,5)与点Q关于x轴对称,则点Q的坐标是()A.(﹣2,5)B.(2,﹣5)C.(﹣2,﹣5)D.(5,2)12.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,则恰好选中甲、乙两位同学打第一场比赛的概率是()A.B.C.D.13.已知菱形ABCD的两条对角线AC、BD的长分别为6和8,则边长CD的长为()A.6 B.8 C.14 D.514.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m 的取值X围是()A.m<﹣3 B.m<0 C.m>﹣3 D.m>0二、填空题.(本大题满分16分,每小题4分)15.分解因式:2x2﹣8=.16.不等式4+2x>0的解集是.17.如图,AC=BC,∠ACD=120°,则∠A的度数为.18.如图,在梯形ABCD中,AB∥DC,DE∥CB,梯形的周长为28,△ADE周长为20,则DC=.三、解答题.(本大题满分62分)19.(1)计算:|﹣3|﹣(﹣2)3×2﹣2+(﹣2)2(2)化简:(+)÷.20.“五•一”黄金周期间,某某市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费144万元,其中一日游每人收费400元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?21.学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将图甲中“B”部分的图形补充完整;(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?22.已知如图,从20米高的甲楼A望乙楼顶C处的仰角是30°,望乙楼底D处的俯角是45°,求乙楼的高度(精确到0.1米,≈1.414,≈1.732).23.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.24.如图,直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,抛物线y=﹣x2+bx+c 过A、B两点.(1)求直线和抛物线的解析式;(2)设N(x、y)是(1)所得抛物线上的一个动点,过点N作直线MN垂直x轴交直线AB 于点M,若点N在第一象限内.试问:线段MN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.2016年某某省某某市思源实验学校中考数学模拟试卷(三)参考答案与试题解析一、选择题.(本大题满分42分,每小题3分)1.2016的倒数是()A.B.﹣C.2016 D.﹣2016【考点】倒数.【分析】直接利用倒数的定义分析得出答案.【解答】解:∵2016×=1,∴2016的倒数是,故选A.2.计算a2•a3,正确结果是()A.a5B.a6C.a8D.a9【考点】同底数幂的乘法.【分析】根据同底数幂的乘法进行计算即可.【解答】解:a2•a3=a2+3=a5,故选A.3.数据3,﹣1,0,2,﹣1的中位数是()A.﹣1 B.0 C.2 D.3【考点】中位数.【分析】先把数据按从小到大排列:﹣1,﹣1,0,2,3共有5个数,最中间一个数为0,根据中位数的定义求解.【解答】解:把数据按从小到大排列:﹣1,﹣1,0,2,3共有5个数,最中间一个数为0,所以这组数据的中位数为0.故选B.4.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105×105×106×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×106.故选:C.5.若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9 B.12 C.9或12 D.10【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为2和5两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当5为底时,其它两边都为2,∵2+2<5,∴不能构成三角形,故舍去,当5为腰时,其它两边为2和5,5、5、2可以构成三角形,周长为12.故选B.6.如图中几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】几何体的主视图是从正面看所得到的图形即可.【解答】解:从正面看从左往右正方形的个数依次为2,1.故选D.7.若分式的值为0,则x的值为()A.﹣2 B.2 C.4 D.2和﹣2【考点】分式的值为零的条件.【分析】根据分式值为0的条件:分子=0且分母≠0,求得x的值即可.【解答】解:∵分式的值为0,∴x2﹣4=0且x+2≠0,∴x=2,故选B.8.如图,点D、E分别在AB、AC上,且DE∥BC,∠A=30°,∠B=100°,则∠AED的度数是()A.30° B.100°C.130°D.50°【考点】平行线的性质;三角形内角和定理.【分析】根据平行线的性质得出∠ADE=∠B=100°,根据三角形内角和定理求出即可.【解答】解:∵DE∥BC,∠B=100°,∴∠ADE=∠B=100°,∵∠A=30°,∴∠AED=180°﹣∠A﹣∠ADE=50°,故选D.9.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为()A.3 B.5 C.6 D.8【考点】垂径定理.【分析】根据垂径定理求出AB,根据三角形的面积公式求出即可.【解答】解:∵CD为⊙O的直径,弦AB⊥CD,AE=3,∴AB=2AE=6,∴△ACB的面积为×AB×CE=×6×2=6,故选C.10.在如图的正方形网格中,sin∠AOB的值为()A.B.2 C.D.【考点】锐角三角函数的定义;勾股定理.【分析】找出以∠AOB为内角的直角三角形,根据正弦函数的定义,即直角三角形中∠AOB 的对边与斜边的比,就可以求出.【解答】解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=,∴sin∠AOB=,故选:D.11.在平面直角坐标系中,点P(2,5)与点Q关于x轴对称,则点Q的坐标是()A.(﹣2,5)B.(2,﹣5)C.(﹣2,﹣5)D.(5,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点P(2,5)关于x轴对称的点的坐标.【解答】解:∵点P(2,5)与点Q关于x轴对称,∴点Q的坐标是(2,﹣5).故选:B.12.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,则恰好选中甲、乙两位同学打第一场比赛的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:列表得:甲乙丙丁/ 甲、乙甲、丙甲、丁甲乙乙、甲/ 乙、丙乙、丁丙丙、甲丙、乙/ 丙、丁丁丁、甲丁、乙丁、丙/∴所有等可能性的结果有12种,其中恰好选中甲、乙两位同学的结果有2种,∴恰好选中甲、乙两位同学的概率为:=,故选A.13.已知菱形ABCD的两条对角线AC、BD的长分别为6和8,则边长CD的长为()A.6 B.8 C.14 D.5【考点】菱形的性质.【分析】根据菱形的对角线互相垂直平分,求出两对角线的一半的长度,再利用勾股定理列式计算即可得解.【解答】解:如图,设对角线AC、BD相交于点O,∵AC=6,BD=8,∴DO=4,CO=3,∵菱形的对角线互相垂直,∴CD==5,故选D.14.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m 的取值X围是()A.m<﹣3 B.m<0 C.m>﹣3 D.m>0【考点】反比例函数的性质.【分析】根据函数图象的性质得到关于k的不等式m+3>0,通过解该不等式来求m的值.【解答】解:∵函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,∴m+3>0,解得 m>﹣3.故选:C.二、填空题.(本大题满分16分,每小题4分)15.分解因式:2x2﹣8= 2(x+2)(x﹣2).【考点】因式分解-提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).16.不等式4+2x>0的解集是x>﹣2 .【考点】解一元一次不等式.【分析】先移项,再把x的系数化为1即可.【解答】解:移项得,2x>﹣4,把x的系数化为1得,x>﹣2.故答案为:x>﹣2.17.如图,AC=BC,∠ACD=120°,则∠A的度数为60°.【考点】等腰三角形的性质.【分析】首先根据外角的度数求得其邻补角的度数,然后得到等边三角形,从而求得其内角的度数.【解答】解:∵∠ACD=120°,∴∠ACB=60°,∵AC=BC,∴△ABC为等边三角形,∴∠A=60°,故答案为:60°.18.如图,在梯形ABCD中,AB∥DC,DE∥CB,梯形的周长为28,△ADE周长为20,则DC= 4 .【考点】梯形;平行四边形的判定与性质.【分析】首先证明四边形DCBE为平行四边形,再根据平行四边形的性质和已知数据即可求出DC的长.【解答】解:∵DE∥CB,AB∥DC,∴四边形DCBE为平行四边形,∴DC=EB,DE=BC,∵梯形ABCD的周长=AE+BE+AD+CD=28,∴梯形的周长﹣△ADE周长═AE+BE+AD+CD﹣AD﹣AE﹣DE=BE+CD=2CD=8,∴DC=4,故答案为:4.三、解答题.(本大题满分62分)19.(1)计算:|﹣3|﹣(﹣2)3×2﹣2+(﹣2)2(2)化简:(+)÷.【考点】实数的运算;分式的混合运算;负整数指数幂.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用乘方的意义及负指数幂法则计算,最后一项利用二次根式的性质计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=3+8×+12=3+2+12=17;(2)原式=•=.20.“五•一”黄金周期间,某某市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费144万元,其中一日游每人收费400元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?【考点】二元一次方程组的应用.【分析】设该旅行社接待的一日游和三日游旅客各为x人和y人,根据等量关系建立方程,求解即可.【解答】解:设该旅行社接待的一日游和三日游旅客各为x人和y人.依题意得:,解得:,答:该旅行社接待的一日游和三日游旅客各为600人和1000人.21.学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将图甲中“B”部分的图形补充完整;(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据C小组的频数和其所占的百分比求得总人数即可;(2)用调查的人数乘以B小组所占的百分比即可求得B组的频数;(3)用总人数乘以不满意人数所占的百分比即可.【解答】解:(1)由条形统计图知:C小组的频数为40,由扇形统计图知:C小组所占的百分比为20%,故调查的总人数为:40÷20%=200人;(2)B小组的人数为:200×50%=100人,(3)1000×(1﹣50%﹣25%﹣20%)=50人,故该校对教学感到不满意的人数有50人.22.已知如图,从20米高的甲楼A望乙楼顶C处的仰角是30°,望乙楼底D处的俯角是45°,求乙楼的高度(精确到0.1米,≈1.414,≈1.732).【考点】解直角三角形的应用-仰角俯角问题.【分析】本题是一个直角梯形的问题,可以通过点A作AE⊥CD于点E,把求CD的问题转化求CE的长.首先在Rt△ADE中求得AE的长,进而可在Rt△ACE中,利用三角函数求出CE 的长.【解答】解:过点A作AE⊥CD,垂足为E,∵AB⊥BD,CD⊥BD,∴四边形ABDE是矩形,∴DE=AB=20米,在Rt△ADE中,∠DAE=45°,DE=20米,∴AE=20米,在Rt△ACE中,CE=AE•tan30°=米,∴CD=CE+ED=+20=20(+1)≈31.5(米),答:乙楼的高度约为31.5米.23.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【解答】证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.24.如图,直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,抛物线y=﹣x2+bx+c 过A、B两点.(1)求直线和抛物线的解析式;(2)设N(x、y)是(1)所得抛物线上的一个动点,过点N作直线MN垂直x轴交直线AB 于点M,若点N在第一象限内.试问:线段MN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.【考点】二次函数综合题.【分析】(1)由直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,抛物线y=﹣x2+bx+c过A、B两点,利用待定系数法即可求得直线和抛物线的解析式;(2)假设x=t时,线段MN的长度是否存在最大值,可得M(t,﹣t+2),N(t,﹣t2+t+2),则可得MN=(﹣t2+t+2)﹣(﹣t+2)=﹣t2+4t=﹣(t﹣2)2+4,然后由二次函数的最值问题,求得答案;(3)根据平行四边形的性质求解即可求得答案.【解答】解:(1)∵直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,∴,解得:.∴直线为:y=﹣x+2,…将x=0,y=2代入y=﹣x2+bx+c得:c=2,…将x=4,y=0代入y=﹣x2+bx+2,得:0=﹣16+4b+2,解得:b=,∴抛物线的解析式为:y=﹣x2+x+2;…(2)存在.假设x=t时,线段MN的长度是否存在最大值,由题意易得:M(t,﹣t+2),N(t,﹣t2+t+2),…∴MN=(﹣t2+t+2)﹣(﹣t+2)=﹣t2+4t=﹣(t﹣2)2+4,…∴当t=2时,MN有最大值4;…6 分(3)由题意可知,D的可能位置有如图三种情形.…当D在y轴上时,设D的坐标为(0,a)由AD=MN得|a﹣2|=4,解得a1=6,a2=﹣2,∴D为(0,6)或D(0,﹣2);…当D不在y轴上时,由图可知D为D1N与D2M的交点,∵直线D1N的解析式为:y=﹣x+6,直线D2M的解析式为:y=x﹣2,由两方程联立解得D为(4,4).…综上可得:所求的D为(0,6),(0,﹣2)或(4,4).。
2012数学中考模拟试卷(3)
戴家场中学2012年中考数学模拟试卷(3)一. 选择题(每小题3分,共30分)1.-13的倒数为( )A .13B .3C .-13D .-32.下列运算正确的是( )A .(a 3)2=a 9B .a 2+a 3=a 5C .a 6÷a 2=a 3D .a 3·a 4=a 73.人体最小的细胞是血小板.5 000 000个血小板紧密排成一直线长约1m ,则1个血小板 的直径用科学计数法表示为( )A .5×106 mB .5×107 mC .2×10-7 m D .2×10-6 m . 4.已知四边形的对角线互相垂直,则顺次连接该四边形各边中点所得的四边形是( ) A .梯形 B .矩形 C .菱形 D .正方形 5.若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有( ) A .7桶 B .8桶 C .9桶 D .10桶6.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论:①c =2; ②b 2-4ac >0; ③2a +b =0; ④a -b +c <0.其中正确的为( )A .①②③B .①②④C .①②D .③④7.在一个不透明的口袋中,装有4个红球和3个白球,它们除颜色外完全相同,从口袋中任意摸出一个球,摸到红球的概率是 A .47 B .37 C .31 D .148.如图,AB 是⊙O 的弦,OC 是⊙O 的半径,OC ⊥AB 于点D ,若 AB=8, OD=3,则⊙O 的半径等于A .4B .5C .8D .10 9.若抛物线22y x x m =-+的最低点的纵坐标为n ,则m-n 的值是 A .-1 B .0 C .1 D .2xy O22 (第6题)(第5题)主视图左视图俯视图10.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点 (点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y , 则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C .D .二.填空题(每小题3分,共24分)11.反比例函数y =kx 的图象经过点A (-1,2)、B (-2,n ),则n =12. 如果一个正多边形的一个外角是60°,那么这个正多边形的边数是 . 13. 分解因式:39a a -= . 14.计算a 22a-8a 3 (a >0)= . 15.如图,△ABC 中,AC =BC ,把△ABC 沿AC 翻折,点B 落在点D 处,连接BD ,若∠ACB =100°,则∠CBD = °16.如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,若AD =3,BC =7,BD =6,则梯形ABCD 面积为 .17.边长为a 、b 的矩形,它的周长为16,面积为8,则a 2+b 2= .18.在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第10次到达的顶点是 ,跳动第2012次到达的顶点是 .(第18题)E PC’A DBCO5yxO5y xOxy 5O5y xA DCBB A C(第15题)ABCD (第16题)二. 解答题(7大题,66分)19(7分)解不等式1312523-+≥-x x ,并把解集表示在数轴上.20.(8分)如图,一张矩形纸片ABCD 中,AD >AB .将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落到BC 边上的点D ′,折痕AE 交DC 于点E .(1)试用尺规在图中作出点D ′和折痕AE (不写作法,保留作图痕迹);(2)连接DD ′、A D ′、E D ′,则当∠E D ′C = °时,△A D ′D 为等边三角形; (3)若AD =5,AB =4,求ED 的长.21.(8分)图①表示的是戴家场某商场2012年前四个月中两个月的商品销售额的情况,图②表示的是商场家电部各月销售额占商场当月销售总额的百分比情况,观察图①、图②解答下列问题:(第20题)(1,请你求出商场四月份的销售额;(2)若商场前四个月的商品销售总额一共是500万元,请你根据这一信息将图①中的统计图补充完整;(3)小明观察图②后认为,商场家电部四月份的销售额比三月份减少了,你同意他的看法吗?请你说明理由.22.(9分) 已知△ABC 内接于⊙O ,AC 是⊙O 的直径,D 是AB ︵的中点.过点D 作CB 的 垂线,分别交CB 、CA 延长线于点F 、E .(1)判断直线EF 与⊙O 的位置关系,并说明理由; (2)若CF =6,∠ACB =60°,求阴影部分的面积.23.(10分)已知:关于x 的方程()()01342=---+m x m x 有两个不相等的实数根.(1)求m 的取值范围;(2)抛物线C :()()1342-+---=m x m x y 与x 轴交于A 、B 两点.若1-≤m 且直图① 图② 月份销售额(万元)戴家场某商场2012年前四个月商品销售额统计图 (第22题)ECABDO F线1l :12--=x my 经过点A ,求抛物线C 的函数解析式; (3)在(2)的条件下,直线1l :12--=x my 绕着点A 旋转得到直线2l :b kx y +=,设直线2l 与y 轴交于点D ,与抛物线C 交于点M (M 不与点A 重合),当23≤AD MA 时,求k 的取值范围.24.(本小题满分12分)某块实验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x ≤40和x ≥40时y 与x 之间的关系式; (2)如果这些农作物每天的需水量大于或等于4000千克时需要进行人工灌溉,那么应从第几天开始进行人工灌溉?25.(12分)已知二次函数)34()22(22-+++-=m m x m x y 中,m 为不小于0的整数,它的图像与x 轴交于点A 和点B ,点A 在原点左边,点B 在原点右边. (1)求这个二次函数的解析式;(2)点C 是抛物线与y 轴的交点,已知AD=AC (D 在线段AB 上),有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度移动,同时,另一动点Q 从点C 出发,以某一速度沿线段CB 移动,经过t 秒的移动,线段PQ 被CD 垂直平分,求t 的值; (3)在(2)的情况下,求四边形ACQD 的面积.。
2012年数学中考模拟试题(3)及答案
2012年中考数学模拟试题(3)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1.3的倒数是( )A .-3B .3C .13D .13-2.计算232(3)x x ⋅-的结果是( )A .56x - B .56x C .62x - D .62x3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法确定 4.使分式24x x -有意义的x 的取值范围是( )A .x =2B .x ≠2C .x =-2D .x ≠-2 5.不等式组2030x x ->-<⎧⎨⎩的解集是( )A .x>2B .x<3C .2<x<3D .无解6.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( ) A .80° B .50° C .40°D .20°7.如图,是有几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是( )A .3B .4C .5D .68.观察市统计局公布的“十五”时期某市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是( )A .2003年农村居民人均收入低于2002年B .农村居民人均收入比上年增长率低于9%的有2年C .农村居民人均收入最多时2004年D .农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加9.免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的耨中土特产进行加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:春节期间,这三种不同的包装的土特产都销售了1200千克,那么本次销售中,这三种包装的土特产获得利润最大是( )A .甲B .乙C .丙D .不能确定10.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为x 来确定点P (x ,y ),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118B .112C .19D .16二、填空题:(本大题10个小题,每小题3分,共30分)在每小题中,请将答案直接填在题后的横线上.11.某市某天的最高气温是17℃,最低气温是5℃,那么当天的最大温差是____________℃. 12.分解因式:x 2-4=____________.13.如图,已知直线12l l ∥,∠1=40°,那么∠2=____________度. 14.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为____________.15.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为____________立方米.16.如图,已知函数y =ax+b 和y =kx 的图象交于点P, 则根据图象可得,关于y ax b y kx=+=⎧⎨⎩的二元一次方程组的解是____________.17.如图所示,A 、B 是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.18.按一定的规律排列的一列数依次为:111111,,,,,2310152635……,按此规律排列下去,这列数中的第7个数是____________.19.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (20,53-),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是____________.20.如图,△ABC 内接于⊙O ,∠A 所对弧的度数为120°.∠ABC 、∠ACB 的角平分线分别交于AC 、AB 于点D 、E ,CE 、BD 相交于点F .以下四个结论:①1cos 2BFE ∠=;②BC =BD ;③EF =FD ;④BF =2DF .其中结论一定正确的序号数是____________.三、解答题:(本大题6个小题,共60分)下列各题解答时必须给出必要的演算过程或推理步骤.21.( 5分)计算:12tan 601)--︒++22由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为30°的山坡前进1500米到B ,再次测得山顶D 的仰角为60°,求山高CD .23.(10分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有____________套,B型玩具有____________套,C型玩具有____________套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为____________,每人每小时能组装C型玩具____________套.24.(10分)农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的情况下,Ⅱ号稻谷单位面积的产量比Ⅰ号稻谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号稻谷高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.⑴当Ⅱ号稻谷的国家收购价是多少时,在田间管理、土质和面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷的收益相同?⑵去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家收购价不变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?25.(10分)如图,在梯形ABCD中,AB∥DC,∠BCD=90°,且AB=1,BC=2,tan∠ADC =2.⑴求证:DC=BC;⑵E是梯形内的一点,F是梯形外的一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;⑶在⑵的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.26.(10分)机械加工需用油进行润滑以减小摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲乙两个车间都组织了人员为减少实际油耗量进行攻关.⑴甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍为60%,问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克? ⑵乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1千克,用油的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备的润滑用油量是多少千克?用油的重复利用率是多少?四、解答题:(本大题2个小题,共20分)下列各题解答时必须给出必要的演算过程或推理步骤.27.(10分)如图28-1所示,一张三角形纸片ABC ,∠ACB =90°,AC =8,BC =6.沿斜边AB 的中线CD 把这张纸片剪成1122AC D BC D ∆∆和两个三角形(如图28-2所示).将纸片11AC D ∆沿直线2D B(AB )方向平移(点12A D D B ,,,始终在同一直线上),当点1D 与点B 重合时,停止平移.在平移的过程中,112C D BC 与交于点E ,1AC 与222C D BC 、分别交于点F 、P .⑴当11AC D ∆平移到如图28-3所示位置时,猜想12D E D F 与的数量关系,并证明你的猜想; ⑵设平移距离21D D 为x ,1122AC D BC D ∆∆和重复部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;⑶对于⑵中的结论是否存在这样的x ,使得重复部分面积等于原△ABC 纸片面积的14?若存在,请求出x 的值;若不存在,请说明理由.28.(10分)已知:m 、n 是方程2650x x -+=的两个实数根,且m<n ,抛物线2y x bx c=-++的图像经过点A(m ,0)、B(0,n). (1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a-- (3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.参考答案一、选择题:(每小题4分,共40分)1—5 C A A B C 6—10 D B D C B 二、填空题:(每小题3分,共30分)11.12或-12均可 12.(x+2)(x -2) 13.40 14.2π或6.28均可15.4310⨯ 16.42x y =-=-⎧⎨⎩17.如图, 18.150或15819.12y x=-20.①③三、解答题: 21.(1)32;(2)12x y ==⎧⎨⎩22.解:过点B 作CD 、AC 的垂线,垂足分别为E 、F ∵∠BAC =30°,AB =1500米∴BF =EC =750米 AF = 设FC =x 米 ∵∠DBE =60°,∴DE 米又∵∠DAC =45°,∴AC =CD 即:= 得x =750∴CD =米 答:山高CD 为米. 23.(每空2分)(1)132,48,60;(2)4,6. 24.(1)由题意,得 1.62120%=-(元);(2分) (2)设卖给国家的Ⅰ号稻谷x 千克,(3分)根据题意,得x(1-20%)×2.2=1.6x+1040.(6分) 解得,x =6500(千克)(7分)x+(1-20%)x =1.8x =11700(千克)(9分) 答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同;(2)小王去年卖给国家的稻谷共为11700千克.(10分)25.(1)过A 作DC 的垂线AM 交DC 于M , 则AM =BC =2.(1分) 又tan ∠ADC =2,所以212DM ==.(2分)因为MC =AB =1,所以DC =DM+MC =2,即DC =BC .(3分) (2)等腰直角三角形.(4分)证明:因为DE =DF ,∠EDC =∠FBC ,DC =BC . 所以,△DEC ≌△BFC (5分)所以,CE =CF ,∠ECD =∠BCF . 所以,∠ECF =∠BCF+∠BCE =∠ECD+∠BCE =∠BCD =90° 即△ECF 是等腰直角三角形.(6分)(3)设BE =k ,则CE =CF =2k,所以EF =.(7分)因为∠BEC =135°,又∠CEF =45°,所以∠BEF =90°.(8分) 所以3BF k ==(9分)所以1sin 33BFE k k ∠==.(10分)26.(1)由题意,得70×(1-60%)=70×40%=28(千克)(2分) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克,(3分)由题意,得x ×[1-(90-x)×1.6%-60%]=12(6分) 整理,得x 2-65x -750=0 解得:x 1=75,x 2=-10(舍去)(8分) (90-75)×1.6%+60%=84%(9分) 答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克,用油的重复利用率是84%.(10分)27.(1)12D E D F =.(1分) 因为1122C D C D ∥,所以12C AFD ∠=∠.又因为∠ACB =90°,CD 是斜边上的中线, 所以,DC =DA =DB ,即11222C D C D B D AD ===所以,1C A ∠=∠,所以2AFD A ∠=∠(2分) 所以,22AD D F =.同理:11BD D E =. 又因为12AD BD =,所以21AD BD =.所以12D E D F =.(3分) (2)因为在Rt △ABC 中,AC =8,BC =6,所以由勾股定理,得AB =10. 即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x == 在22BC D ∆中,2C 到2BD 的距离就是△ABC 的AB 边上的高,为245.设1BED ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x-=. 所以24(5)25x h -=.121112(5)225BED S BD h x ∆⨯⨯=-=.(5分)又因为1290C C ∠+∠=︒,所以290FPC ∠=︒.又因为2C B ∠=∠,43sin ,cos 55B B ==.所以234,55PC x PF x ==,22216225FC P S PC PF x ∆⨯==而2212221126(5)22525BC D BED FC P ABC y S S S S x x ∆∆∆∆=--=---所以21824(05)255y x x x =-+≤≤.(8分)存在.当14ABC y S ∆=时,即218246255x x -+= 整理,得2320250x x -+=.解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原△ABC 面积的14.(10分)28.(1)解方程2650x x -+=,得125,1x x ==(1分)由m<n ,有m =1,n =5 所以点A 、B 的坐标分别为A (1,0),B (0,5).(2分) 将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++.得105b c c -++==⎧⎨⎩解这个方程组,得45b c =-=⎧⎨⎩所以,抛物线的解析式为245y x x =--+(3分)(2)由245y x x =--+,令y =0,得2450x x --+= 解这个方程,得125,1x x =-=所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9).(4分) 过D 作x 轴的垂线交x 轴于M . 则1279(52)22DMC S ∆=⨯⨯-=12(95)142MDBO S =⨯⨯+=梯形,1255522BOC S ∆=⨯⨯=(5分) 所以,2725141522BCD DMC BOC MDBO S S S S ∆∆∆=+-=+-=梯形.(6分)(3)设P 点的坐标为(a ,0)因为线段BC 过B 、C 两点,所以BC 所在的值线方程为y =x+5. 那么,PH 与直线BC 的交点坐标为E(a ,a+5),(7分)PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.(8分)由题意,得①32EH EP=,即23(45)(5)(5)2a a a a--+-+=+解这个方程,得32a=-或5a=-(舍去)(9分)②23EH EP=,即22(45)(5)(5)3a a a a--+-+=+解这个方程,得23a=-或5a=-(舍去)P点的坐标为3(,0)2-或2(,0)3-.(10分)。
2012年中考数学适应性模拟试题三
2012年中考数学适应性模拟试题三(考试时间120分钟满分120分)一、填空题(共8道题,每小题3分,共24分) 1、8的相反数是________。
2、因式分解:3244x x x -+==____________________________。
3、函数y =中自变量x 的取值范围是_________________________。
4、设函数2y x =与1y x =-的图象的交战坐标为(a ,b ),则11a b-的值为__________.5、如图,已知正方形ABCD 的边长为12cm ,E 为CD 边上一点,DE =5cm .以点A 为中心,将△ADE 按顺时针方向旋转得△ABF ,则点E 所经过的路径长为 cm .6、已知关于x 的一次函数n mx y +=的图象如图所示,则2||m m n --可 化简为_________________.7、如图,在平面直角坐标系中有一正方形AOBC,反比例函数过正方形AOBC 对角线的交点,半径为(4-的圆内切于△ABC ,则k 的值为________。
8、如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y =x 的图象被⊙P 割的弦AB的长为a 的值是________。
二、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,共24分) 9、下列运算正确的是( )A 、 532a a a =+ B 、 ()4222-=-a aC 、 22232a a a -=- D 、 ()()2112-=-+a a a10、如图,在直角三角形ABC 中(∠C =900),放置边长分别3,4,x 的三个正方形,则x 的值为( )A 、 5B 、 6C 、7D 、 1211、某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,FED CAk y x=下列说法正确的是( ) A 、平均数为30B 、众数为29C 、中位数为31D 、极差为512、下面四个几何体中,俯视图为四边形的是( )13、如图,直径为10的⊙A 山经过点C(0,5)和点0(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ) A 、12 B 、34 C 、 32D 、45 14、小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A 、60512601015-=+x x B 、 60512601015+=-x xC 、60512601015-=-x xD 、 5121015-=+xx15、如图,Rt ⊿ABC 中AB=3,BC=4,∠B=90°,点B 、C 在两坐标轴上滑动。
2012年中考数学模拟试题三及答案
2012年中考模拟题一、选择题(下列各题的备选答案中只有一个答案是正确的将正确答案的序号填在题后的括号内每小题3分共24分)1.sin30°的值为( )A .21B .23C .33D .22 2. △ABC 中,∠A =50°,∠B =60°,则∠C =( )A .50° B60° c70° D .80° 3.如图直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等则可供选择的地址有( )A .一处B .两处C .3处.D .四处.4.点P (-2,1)关于x 轴对称的点的坐标( )A (-2,-1)B (2,-1)5 若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为 ( )A .1 B . 2 C .3 D .4 6.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明 掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A. 118 B.112 C.19 D.167.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )A .B .C .D .8.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。
三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。
在此案中能肯定的作案对象是( )A .嫌疑犯AB .嫌疑犯BC .嫌疑犯CD .嫌疑犯A 和C二、填空题(每小题3分,共24分)9.据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为______千克.10.用一个半径为6㎝的半圆围成一个圆锥的侧面,则这个圆锥的侧面积为 ㎝2.(结果保留π)11.△ABC 中,AB =6,AC =4,∠A =45°,则△ABC 的面积为 .12.若一次函数的图象经过反比例函数4y x=-图象上的两点(1,m )和(n ,2),则这个一次函数的解析式是 . 13. 某品牌的牛奶由于质量问题,在市场上受到严重冲击,该乳业公司为了挽回市场,加大了产品质量的管理力度,并采取了“买二赠一”的促销手段,一袋鲜奶售价1.4元,一箱牛奶18袋,如果要买一箱牛奶,应该付款 元.14.通过平移把点A(2,-3)移到点A ’(4,-2),按同样的平移方式,点B(3,1)移到点B ′, 则点B ′的坐标是 ________2 1 315.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
2012年中考数学模拟试题(含答案)
2012年中考数学模拟试题考试时间:120分钟,满分150分一、选择题(每题2分,共30分)1、如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-a B.a>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a2、如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=4cm2,则阴影面积等于()A.2cm2B.1cm2C.1/2cm2D.1/4cm2第2题第3题3、如图,矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于().4、一元二次方程,中,c<0.该方程的解的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能确定5、如图,△ABC中,AB、AC边上的高CE、BD相交于P点,图中所有的相似三角形共有()A.4对B.5对C.6对D.7对6、等边△A1B1C1内接于等边△ABC的内切圆,则的值为()A. B. C. D.7、当45°<<90°时,下列各式中正确的是()A.tan>cos>sinB.sin>cos>tanC.tan>sin>cosD.cos>sin>tan8、如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=(x>0)的图象上,则点E的坐标是()A.(,)B.()C.(,)D.()第8题第9题9、已知一次函数的图象如图所示,当时,的取值范围是()A. B. C. D.10、在同一坐标系中一次函数和二次函数的图象可能为()11、若,,三点都在函数的图象上,则的大小关系是()A. B. C. D.12、如图,小亮在操场上玩,一段时间内沿的路径匀速散步,能近似刻画小亮到出发点的距离与时间之间关系的函数图象是()13、如图,正三角形内接于圆,动点在圆周的劣弧上,且不与重合,则等于()A. B. C. D.第13题第14题第15题14、如图,一次函数图象经过点,且与正比例函数的图象交于点,则该一次函数的表达式为()A. B. C. D.15、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.cmB.4cmC.cmD.3cm二、填空题(每题3分,共36分)16、已知,则的值为___________.17、如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为___________.第17题第18题18、如图,在中,.将其绕点顺时针旋转一周,则分别以为半径的圆形成一圆环.则该圆环的面积为__________.19、已知关于x的不等式(1-a)x>2的解集为,则a的取值范围是__________.20、方程有实数根,则锐角的取值范围是______.21、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是__________.第21题第22题22、如图,一张长方形纸片ABCD,其长AD=a,宽AB=b(a>b),在BC边上选取一点M,将ABM沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD的对称中心,则a/b的值是_____________.23、已知二次函数的部分图象如图所示,则关于的一元二次方程的解为___________.第23题第24题24、如图所示的抛物线是二次函数的图象,那么的值是___________.25、在平面直角坐标系中,直线向上平移1个单位长度得到直线.直线与反比例函数的图象的一个交点为,则的值等于__________.26、如图,要使输出值大于100,则输入的最小正整数是____________.27、有5张写有数字的卡片(如左图所示),它们的背面都相同,现将它们背面朝上(如右图所示),从中翻开任意一张是数字2的概率为_________.三、解答题(每题5分,共20分)28、已知y=的定义域为R ,求实数a 的取值范围.29、计算:0.25×⎝⎛⎭⎫12-2+(3.14-π)0-2sin60°.30、先化简,再求值:⎝⎛⎭⎫a a -1-1÷a a2-2a +1,其中a = 2.31、解不等式组:()②①⎪⎩⎪⎨⎧-+≤+321234xxxx四、综合题(共64分)32、(本题满分9分)“便民”水泥代销点销售某种水泥,每吨进价为250元.如果每吨销售价定为290元时,平均每天可售出16吨.(1)若代销点采取降价促销的方式,试建立每吨的销售利润(元)与每吨降价(元)之间的函数关系式.(2)若每吨售价每降低5元,则平均每天能多售出4吨.问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元.DEA M NCB如图,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角,且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.(1)求证:△ACE≌△DCB;(2)请你判断△ACM与△DPM的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC 上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.(1)求梯形ABCD的面积;(2)求四边形MEFN面积的最大值.(3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由.35、(本题满分10分)如图,⊙O经过点B、D、E,BD是⊙O的直径,∠C=90°,BE平分∠ABC.(1)试证明直线AC是⊙O的切线;(2)当AE=4,AD=2时,求⊙O的半径及BC的长.(第35题)已知:如图,直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+bx(a<0)的顶点在直线AC上.(1)求A、C两点的坐标;(2)求出抛物线的函数关系式;(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;(4)若E为⊙B优弧上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3,若存在,试求出点M的坐标;若不存在,试说明理由.如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.答案选择题答案:D答案:B答案:D答案:B答案:C答案:A答案:C答案:A答案:C答案:A答案:A答案:C答案:B答案:A答案:A二、填空题16、答案:-3.17、答案:-1,0,1,218、答案:19、答案:a>120、答案:0°<≤30°.21、答案:22、答案:23、答案:,24、答案:-125、答案:226、答案:2127. 答案:三、解答题28、确定a的取值范围,使之对任意实数x都有ax2+4ax+3≠0.解:当a=0时,ax2+4ax+3=3≠0对任意x∈R都成立;当a≠0时,要使二次三项式ax2+4ax+3对任意实数x恒不为零,必须满足:其判别式,于是,0<a <.综上,.29. 原式=14×4+1-2×32(4分)=2- 3.(8分)30. 原式=a -a +1a -1·-a (3分)=a -1a .(6分)当a =2时,原式=2-12=2-22.(8分)31.解:由 ① 得 23≤-x x , 1-≥x由 ② 得 ()x x 213 - ,323 x x -, 3 x∴ 31 x ≤-四、综合题32.(1)依题意,得……………………………………3分 (2)依题意,得………………………………………… 4分 解得…………………………………………1分…………………………………………1分答:每吨水泥的实际售价应定为元时,每天的销售利润平均可达720元. 1分34. (1)连接OE.[来源:学科网ZXXK]∵BE是∠ABC的平分线,∴∠1=∠2.∵OE=OB,∴∠1=∠3.∴∠2=∠3.∴O E∥AC.又∠C=90°,∴ ∠AEO =90°.[来源:学科网]∴ AC 是⊙O 的切线.(6分)(2)设⊙O 的半径为r ,在Rt △AEO 中,由勾股定理可得OA2=OE2+AE2.∵ AE =4,AD =2,∴ (2+r)2=r2+42.∴ r =3.∵ OE ∥AC ,∴ AO AB =OE BC .∴ 2+32+6=3BC. ∴ BC =245.(10分)35 .① A(-6,0),C(0,6) ………………………………………………………2分② …………………………………………………………………3分 ③相切,BD=6 ………………………………………………………………………3分 ④存在这样的点M ,M()或() ……………3分36 .解:(1)在矩形OABC 中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5 ……………………………… 3分(2)连结O ′D在矩形OABC 中,OC=AB ,∠OCB=∠ABC=90°,CE=BE=∴ △OCE ≌△ABE ∴EA=EO ∴∠1=∠2在⊙O ′中, ∵ O ′O= O ′D ∴∠1=∠3∴∠3=∠2 ∴O ′D ∥AE ,∵DF ⊥AE ∴ DF ⊥O ′D又∵点D 在⊙O ′上,O ′D 为⊙O ′的半径 ,∴DF 为⊙O ′切线. ……………………………………………………………………4分(3)不同意.理由如下:①当AO=AP 时,以点A 为圆心,以AO 为半径画弧交BC 于P1和P4两点过P1点作P1H ⊥OA 于点H ,P1H=OC=3,∵AP1=OA=5∴AH=4, ∴OH=1 求得点P1(1,3) 同理可得:P4(9,3) ……………3分 ②当OA=OP 时,同上可求得:P2(4,3),P3(4,3) …………………………2分因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形. ……………………1分。
2012年中考数学模拟试题三
2012年全新中考数学模拟试题三(120分钟)一、选择题(本题共8个小题,每小题4分,共32分) 在下列各题的四个备选答案中,只有一个是正确的.1.-3的相反数是A .3B .-3C .3±D .31- 2.温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出,2010年,再解决人口的安全饮水问题。
将60 000 000 A .6106⨯ B .7106⨯ C .8106⨯????D .61060⨯??那么∠ 的度数是A .121??????????B .61??????????C .4131??.若反比例函数ky x =的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象在A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限8.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆, 45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直 线与⊙O 有公共点, 设x OP =,则x 的取值范围是A .-1≤x ≤1B .2-≤x ≤2C .0≤x ≤2D .x >2二、填空题(本题共16分,每小题4分)9.在函数23-=x y 中,自变量x 的取值范围是 .P AO B第8题 俯视左 视 主 视 第4题第1021F B A C D E 10.如图,CD AB ⊥于E ,若60B ∠=,则A ∠= 度.11.分解因式:=+-a 8a 8a 223 .12.如图,45AOB ∠=,过OA 上到点O 的距离分别为1357911,,,,,,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为1234S S S S ,,,,.=1S=n S ????????????????.??.计算:︒+⎪⎭⎫⎝⎛--+--30tan 33120102310.22125=---x x??.已知0342=+-x x ,求)x 1(21x 2+--)(的值.17.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P .(1)求b 的值;(2)不解关于y x ,的方程组 请你直接写出它的解; O x y P 第17题 1l 2l第12题(3)直线3l :y nx m =+是否也经过点P ?请说明理由.四、解答题(本题共10分,每小题 5分)18.如图,有一块半圆形钢板,直径AB=20cm ,计划将此钢板切割成下底为AB 的等腰梯形,上底CD的端点在圆周上,且CD=10cm .求图中阴影部分的面积.19. 已知,如图,直线MN 交⊙O 于A,B 两点,AC 是直径, AD 平分∠CAM 交⊙O 于D ,过D 作DE ⊥MN 于E .(1)求证:DE 是⊙O 的切线;(2)若6DE =cm ,3AE =cm ,求⊙O 的半径.五、解答题(本题共6分)20.初中生对待学习的态度一直是教育工作者关注的问题之一. 为此,某区教委对该区部分学校的八年级学生对待学习的态度 进行了一次抽样调查(把学习态度分为三个层级,A 级:对学 习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴 趣),并将调查结果绘制成图①和图②的统计图(不完整). 请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了 名学生;(2)将图①补充完整; 第18(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该区近20000名初中生中大约有多少名学生学习态度达标(达标包括A级和B级)?六、解答题(本题共9分,21小题 5分,22小题4分)21.解应用题:某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.A型B型类型价格进价(元/盏)4065标价(元/盏)60100(1)这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?22.如图(1),凸四边形ABCD,如果点P满足∠=∠=,∠=∠=,且BPC CPDβAPD APBα则称点P为四边形ABCD的一个半等角点.(1)在图(2)正方形ABCD内画一个半等角点P,且满足αβ≠;(2)在图(3)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法).七、解答题(共22分,其中23题7分、24题8分,25题7分) 23.已知:关于x的一元二次方程0-x+m(m为实-xm(2=1-)2()1数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,求证:无论m取何值,抛物线1=xxmy总过x轴上的一个固定点;-m(+)1)2-(2-(3)若m是整数,且关于x的一元二次方程0+-xmxm-)21()1(2=-有两个不相等的整数根,把抛物线1m=xx-my向右平)1)2((2-+-移3个单位长度,求平移后的解析式.24.如图,已知抛物线C1:5)2y的顶点为P,与x轴相=xa(2--交于A、B两点(点A在点B的左边),点A的横坐标是1-.(1)求p点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向左平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点A成中心对称时,求C3的解析式k-(;=2)y+ahx(3)如图(2),点Q是x轴负半轴上一动点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、E为顶点的三角形是直角三角形时,求顶点N的坐标.25.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由.如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)。
河北省2012年中考数学模拟试卷(三)及答案
2012年河北省初中学业考试模拟试题三数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题纸密封线内的项目填写清楚.3.第Ⅰ卷、第Ⅱ卷每小题做出答案后,必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.一、选择题:(本题12小题,1-6每小题2分,7-12每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1、9的算术平方根是 ( ) A. 3B. 2±C. -3D. 812、如图,几何体的俯视图是 ( )3、下列运算正确的是( )A.236(2)8a a -=- B .3362a a a += C .632a a a ÷= D .3332a a a ⋅=4、2011年第一季度.我省固定资产投资完成475.6亿元.这个数据用科学记数法可表示为( )A .947.5610⨯元 B .110.475610⨯元 C .104.75610⨯元 D. 94.75610⨯元 5、下列QQ 标识图形中既是轴对称图形又是中心对称图形的是 ( )① ② ③ ④ ⑤ ⑥ A 、①③⑤ B 、③④⑤ C 、②⑥ D 、④⑤⑥ 6、一个正多边形,它的每一个外角都等于45°,则该正多边形是( ) A .正六边形 B .正七边形 C .正八边形 D .正九边形7、某校九年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛。
小兰已经知道了自已的成绩,她想知道自已能否进入决赛,还需要知道这11名同学成绩的 ( )A 、中位数B 、众数C 、平均数D 、不能确定 8、当1<a <2时,代数式︱a -2︱+︱1-a ︱的值是 ( ) A 、-1 B 、1 C 、3 D 、-39、已知:力F 所作的功是15焦(功=力×物体在力的方向上通过的距离),则力F 与物体在力的方向上通过的距离S 之间的函数关系图象大致是下图中( ) 10、如图,四边形ABCD 中,对角线AC ⊥BD ,且AC=8,BD=4,各边中点分别为A 1、B 1、C 1、D 1,顺次连接得到四边形A 1B 1C 1D 1,再取各边中点A 2、B 2、C 2、D 2,顺次连接得到四边形A 2B 2C 2D 2,……,依此类推,这样得到四边形A n B n C n D n ,则四边形A n B n C n D n 的面积为( )。
2012年中考数学模拟试题及答案详解
2012年中考数学模拟试题及答案详解注意事项:1.本试卷共8页,三大题,满分120分,考试时间120分钟.2. 第Ⅰ卷上选择题和填空题在第Ⅱ卷的答题栏上答题,在第Ⅰ卷上答题无效.第Ⅰ卷一、选择题(每小题3 分,共24分)1.下列计算中,正确的是A.2x+3y=5xyB.x·x4=x4C.x8÷x2=x4D.(x2y)3=x6y32.如图是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是3.平面直角坐标系中,某点在第二象限且它的横坐标、纵坐标之和为2,则该点的坐标是A.(-1,2) B.(-1,3)C.(4,-2) D.(0,2)4.如图,有反比例函数,的图象和一个圆,则图中阴影部分的面积是A. B.2C.4 D.条件不足,无法求5.正比例函数的图象经过第二、四象限,若同时满足方程,则此方程的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.当五个数从小到大排列后,其中位数是4,如果这组数据唯一的众数是6,那么这5个数可能的最大和是( )A.21 B.22 C.23 D.247.如图,在△ABC中,AC=,则AB等于A.4 B.5C.6 D.78. A是半径为5的⊙O内的一点,且OA=3,则过点A且长小于10的整数弦的条数是A.1条B.2条C.3条D.4条二、填空题(每空3分,共18分)9.分解因式2x2-4xy +2y2= .10.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= .第10题图第11题图第13题图11.如图是由8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,尉蚂蚁停留在黑色瓷砖上的概率是 .12.关于x的分式方程有增根x=-2,则k的值是 . 13.如图,B是线段AC的中点,过点C的直线l与AC成600的角,在直线上取一点P,使∠APB=300,则满足条件的点P有 个.14.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3),B(4,-1).若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=____时,四边形ABDC的周长最短.请把第Ⅰ卷选择题答案填在下面相对应的位置上题号12345678答案9. ;10. ; 11. ;12. ;13. ; 14. .第Ⅱ卷三、解答题:15.(5分)计算:16.(5分)17.(5分)先化简,再求值:,其中(tan45°-cos30°)18.( 6分)用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形。
成都市中考数学模拟试题(3)(解析版)
成都市中考数学模拟试题(3)A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是()A.2 B.﹣1 C.﹣3 D.﹣4【答案】D【解析】(﹣1)+(﹣3)=﹣4.故选:D.2.(3分)八个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【答案】C【解析】从正面看,共有三列,每列的小正方形个数分别为2、1、2,故选:C.3.(3分)据央视网消息,全国广大共产党员积极响应党中央号召,踊跃捐款,表达对新冠肺炎疫情防控工作的支持.据统计,截至2020年3月26日,全国已有7901万多名党员自愿捐款,共捐款82.6亿元.82.6亿用科学记数法可表示为()A.0.826×1010B.8.26×109C.8.26×108D.82.6×108【答案】B【解析】82.6亿=8 260 000 000=8.26×109,故选:B.4.(3分)将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A.(﹣1,﹣1)B.(﹣1,3)C.(5,﹣1)D.(5,3)【答案】B【解析】将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(﹣1,3).故选:B.5.(3分)一块含有45°的直角三角板和直尺如图放置,若∠1=55°,则∠2的度数是()A.30°B.35°C.40°D.45°【答案】B【解析】如图,延长ME,交CD于点F,∵AB∥CD,∠1=55°,∴∠MFC=∠1=55°,在Rt△NEF中,∠NEF=90°,∴∠3=90°﹣∠MFC=35°,∴∠2=∠3=35°,故选:B.6.(3分)下列计算正确的是()A.(a﹣b)(﹣a﹣b)=a2﹣b2B.2a3+3a3=5a6C.6x3y2÷3x=2x2y2D.(﹣2x2)3=﹣6x6【答案】C【解析】(a﹣b)(﹣a﹣b)=b2﹣a2,故选项A错误;2a3+3a3=5a3,故选项B错误;6x3y2÷3x=2x2y2,故选项C正确;(﹣2x2)3=﹣8x6,故选项D错误;故选:C.7.(3分)方程=的解为()A.﹣2 B.﹣1 C.1 D.2【答案】A【解析】方程两边都乘以2x(x﹣2),得:2x=x﹣2,移项,得:2x﹣x=﹣2,合并同类项,得:x=﹣2.经检验,x=﹣2是原方程的根.所以,原方程的根为x=﹣2.故选:A.8.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如图所示,则这些运动员成绩的中位数为()A.160 B.165 C.170 D.175【答案】B【解析】把这些数从小到大排列,中位数是第8个数,则这些运动员成绩的中位数为165cm.故选:B.9.(3分)如图,⊙O是正六边形ABCDEF的外接圆,P是弧AB上一点,则∠CPD的度数是()A.30°B.40°C.45°D.60°【答案】A【解析】连接OC,OD,∵六边形ABCDEF是正六边形,∴∠COD==60°,∴∠CPD=COD=30°,故选:A.10.(3分)抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①b=2a;②4a+2b+c>0;③若n>m>0,则x=1+m时的函数值小于x=1﹣n时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个【答案】C【解析】∵抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,故①错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∵抛物线开口向下,∴当x=2时,y>0,∴4a+2b+c>0,故②正确;∵抛物线开口向下,对称轴为直线x=1,∴横坐标是1﹣n的点的对称点的横坐标为1+n,∵若n>m>0,∴1+n>1+m,∴x=1+m时的函数值大于x=1﹣n时的函数值,故③错误;∵b=﹣2a,∴抛物线为y=ax2﹣2ax+c,∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a+4a+c=0,即8a+c=0,∴c=﹣8a,∴﹣=4,∵点(﹣2,0)的对称点是(4,0),∴点(﹣,0)一定在此抛物线上,故④正确,故选:C.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x﹣3和1﹣4x互为相反数,则x的值是________.【答案】﹣1.【解析】∵2x﹣3和1﹣4x互为相反数,∴2x﹣3+1﹣4x=0,解得:x=﹣1.12.(4分)一个等腰三角形一腰上的高与另一腰的夹角为36°,则此三角形顶角度数为________.【答案】54°或126°【解析】当△ABC是锐角三角形时,∠ACD=36°,∠ADC=90°,∴∠A=54°,当△ABC是钝角三角形时,∴∠ACD=36°,∠ADC=90°,∴∠BAC=∠ADC+∠ACD=126°13.(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是________.【答案】0<k<2.【解析】∵一次函数y=(k﹣2)x+k的图象经过第一、二、四象限,∴k﹣2<0且k>0;∴0<k<2,14.(4分)如图,在▱ABCD中,CD=2,∠B=60°,BE:EC=2:1,依据尺规作图的痕迹,则▱ABCD的面积为________.【答案】3.【解析】如图,过点A作AH⊥BC于H,由作图可知,EF垂直平分线段AB∴EA=EB,∵∠B=60°,∴△ABE是等边三角形,∴AB=BE=AE,∵四边形ABCD是平行四边形,∴AB=CD=2,∴BE=AB=2,∵AH⊥BE,∴BH=EH=1,∴AH===,∵BE:EC=2:1,∴EC=1,BC=BE+EC=3,∴平行四边形ABCD的面积=BC•AH=3,三.解答题(共6小题,满分54分)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.【答案】见解析【解析】(1)原式=2+1﹣2×+﹣1=2+1﹣+﹣1=2;(2)由①得:x>2.5,由②得:x≤4,则不等式组的解集为2.5<x≤4.16.(6分)先化简,再求值:(+)÷,其中m=9.【答案】见解析【解析】原式=×=,当m=9时,原式==.17.(8分)新学期,某校开设了“防疫宣传”“心理疏导”等课程,为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B 级为良好,C级为及格,D级为不及格.将测试结果绘制了两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是________名;(2)扇形统计图中表示A级的扇形圆心角α的度数是________,并把条形统计图补充完整;(3)该校八年级共有学生400名,如果全部参加这次测试,估计优秀的人数为多少?【答案】见解析【解析】(1)本次抽样测试的学生人数是:12÷30%=40(名),故答案为:40;(2)扇形统计图中表示A级的扇形圆心角α的度数是:360°×=54°,故答案为:54°,C级的人数为:40×35%=14,补充完整的条形统计图如右图所示;(3)400×=60(人),即优秀的有60人.18.(8分)如图,某办公楼AB的右边有一建筑物CD,在建设物CD离地面2米高的点E处观测办公楼顶A点,测得的仰角∠AEM=22°,在离建设物CD25米远的F点观测办公楼顶A点,测得的仰角∠AFB=45°(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:)【答案】见解析【解析】(1)如图,过点E作EM⊥AB于点M,设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,,则,解得:x=20.即办公楼的高20m;(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE===48,即A、E之间的距离约为48m.19.(10分)如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为________;(3)点P是x轴上一点,当S△P AC=S△AOB时,请直接写出点P的坐标为________.【答案】见解析【解析】(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=得8=,解得k=16,∴反比例函数的解析式为y=;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2, 故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=S△AOB=×30=24,∴2S△AOP=24,∴2××y A=24,即2×OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).20.(10分)如图,过点P作P A,PB,分别与以OA为半径的半圆切于A,B,延长AO交切线PB于点C,交半圆与于点D.(1)若PC=5,AC=4,求BC的长;(2)设DC:AD=1:2,求的值.【答案】见解析【解析】(1)∵P A,PB是⊙O的切线∴P A=PB,∠P AC=90°∴AP==3∴PB=AP=3∴BC=PC﹣PB=2(2)连接OB,∵CD:AD=1:2,AD=2OD∴CD=OD=OB∴CO=2OB∵PB是⊙O切线∴OB⊥PC∴∠OBC=90°=∠P AC,且∠C=∠C∴△OBC∽△P AC∴∴PC=2P A,∴=B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)估算:≈________.(结果精确到1)【答案】7.【解析】≈7;22.(4分)设x1、x2是方程x2+mx﹣5=0的两个根,且x1+x2﹣x1x2=1,则m=________.【答案】4.【解析】∵x1、x2是方程x2+mx﹣5=0的两个根,∴x1+x2=﹣m,x1x2=﹣5.∵x1+x2﹣x1x2=1,即﹣m﹣(﹣5)=1,∴m=4.23.(4分)一个密码箱的密码,每个位数上的数都是从0到9的自然数,若要使不知道密码的一次就拨对密码的概率小于,则密码的位数至少需要________位.【答案】3.【解析】因为取一位数时一次就拨对密码的概率为,取两位数时一次就拨对密码的概率为,取三位数时一次就拨对密码的概率为,故密码的位数至少需要3位.24.(4分)如图,在边长为2的菱形ABCD中,∠ABC=60°,将△BCD沿直线BD平移得到△B′C′D′,连接AC′、AD′,则AC′+AD′的最小值为________.【答案】2.【解析】如图,连接BC',连接直线CC',∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵将△BCD沿直线BD平移得到△B′C′D′,∴AB∥C'D',AB=C'D',∴四边形ABC'D'是平行四边形,∴AD'=BC',∴AC′+AD′=AC'+BC',∵点C′在过点C且平行于BD的定直线CC'上,∴作点B关于定直线CC'的对称点E,连接AE,连接BE交CC'于H,则AE的长度即为AC′+AD′的最小值,在Rt△BHC中,∠BCH=∠DBC=30°,AD=2,∴∠CBH=60°,BH=EH=BC=1,∴BE=2,∴BE=AB,∵∠ABE=∠EBB′+∠DBA=90°+30°=120°,∴∠E=∠BAE=30°,∴AE=2×AB=2.25.(4分)如图,在平面直角坐标系中,A(3,0),B(0,4),C(2,0),D(0,1),连接AD、BC交于点E,则三角形ABE的面积为________.【答案】.【解析】连接OE,如图,∵A(3,0),B(0,4),C(2,0),D(0,1),∴AO=3,OB=4,OC=2,OD=1,设E(m,n),∵S△OAD=,∴S△OAD=S△OED+S△OAE=;∵S△OCB==4,∴S△OEB+S△OEC=2m+n=4;解方程组得,,∴S△BEA=S△BCA﹣S△AEC==.二.解答题(共3小题,满分30分)26.(8分)某汽车清洗店,清洗一辆汽车定价20元时每天能清洗45辆,定价25元时每天能清洗30辆,假设清洗汽车辆数y(辆)与定价x(元)(x取整数)是一次函数关系(清洗每辆汽车成本忽略不计).(1)求y与x之间的函数表达式;(2)若清洗一辆汽车定价不低于15元且不超过50元,且该汽车清洗店每天需支付电费、水和员工工资共计200元,问:定价为多少时,该汽车清洗店每天获利最大?最大获利多少?【答案】见解析【解析】(1)设y与x的一次函数式为y=kx+b,由题意可知:,解得:,∴y与x之间的函数表达式为y=﹣3x+105;(2)设汽车美容店每天获利润为w元,由题意得:w=xy﹣200=x(﹣3x+105)﹣200=﹣3(x﹣17.5)2+718.75,∵15≤x≤50,且x为整数,∴当x=17或18时,w最大=718(元).∴定价为17元或18元时,该汽车清洗店每天获利最大,最大获利是718元.27.(10分)【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:=;【结论应用】(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D重合,若AB=2,BC=3.求折痕EF的长;【拓展运用】(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.【答案】见解析【解析】(1):如图①,过点A作AP∥EF,交BC于P,过点B作BQ∥GH,交CD于Q,BQ交AP于T.∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BGHQ都是平行四边形, ∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠BAT+∠ABT=90°.∵四边形ABCD是矩形,∴∠ABP=∠C=90°,AD=BC,∴∠ABT+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP∽△BCQ,∴=,∴=.(2)如图②中,连接BD.∵四边形ABCD是矩形,∴∠C=90°,AB=CD=2,∴BD===,∵D,B关于EF对称,∴BD⊥EF,∴=,∴=,∴EF=.(3)如图③中,过点F作FH⊥EG于H,过点P作PJ⊥BF于J.∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=3,∠A=90°,∴=,∴DG=,∴AG===1,由翻折可知:ED=EG,设ED=EG=x,在Rt△AEG中,∵EG2=AE2+AG2,∴x2=AG2+AE2,∴x2=(3﹣x)2+1,∴x=,∴DE=EG=,∵FH⊥EG,∴∠FHG=∠HGP=∠GPF=90°,∴四边形HGPF是矩形,∴FH=PG=CD=2,∴EH===,∴GH=FP=CF=EG﹣EH=﹣=1,∵PF∥EG,EA∥FB,∴∠AEG=∠IPF,∵∠A=∠FJP=90°,∴△AEG∽△JFP,∴==,∴==,∴FJ=,PJ=,∴BJ=BC﹣FJ﹣CF=3﹣﹣1=,在Rt△BJP中,BP===.解法二:作PH垂直AB于H,证△AEG∽△HGP,求出GH,HP,然后在直角三角形BPH,勾股定理求出BP.28.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)直接写出抛物线的解析式为:________;(2)点D为第一象限内抛物线上的一动点,作DE⊥x轴于点E,交BC于点F,过点F作BC的垂线与抛物线的对称轴和y轴分别交于点G,H,设点D的横坐标为m.①求DF+HF的最大值;②连接EG,若∠GEH=45°,求m的值.【答案】见解析【解析】(1)将点A(﹣1,0),B(3,0)代入抛物线y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2+2x+3.故答案为:y=﹣x2+2x+3;(2)①当x=0时,y=﹣x2+2x+3=3,∴点C(0,3),又∵B(3,0),∴直线BC的解析式为:y=﹣x+3,∵OB=OC=3,∴∠OBC=∠OCB=45°,作FK⊥y轴于点K,又∵FH⊥BC,∴∠KFH=∠KHF=45°,∴FH=KF=OE,∴DF+HF=DE﹣EF+OE=(﹣m2+2m+3)﹣(﹣m+3)+m=﹣m2+(3+)m,由题意有0<m<3,且0<﹣=<3,﹣1<0,∴当m=时,DF+HF取最大值,DF+HF的最大值为:﹣+(3+)×=;②作GM⊥y轴于点M,记直线FH与x轴交于点N,∵FK⊥y轴,DE⊥x轴,∠KFH=45°,∴∠EFH=∠ENF=45°,∴EF=EN,∵∠KHF=∠ONH=45°,∴OH=ON,∵y=﹣x2+2x+3的对称轴为直线x=1,∴MG=1,∵HG=MG=,∵∠GEH=45°,∴∠GEH=∠EFH,又∠EHF=∠GHE,∴△EHG∽△FHE,∴HE:HG=HF:HE, ∴HE2=HG•HF=×m=2m,在Rt△OEH中,OH=ON=|OE﹣EN|=|OE﹣EF|=|m﹣(﹣m+3)|=|2m﹣3|,OE=m,∴HE2=OE2+OH2=m2+(2m﹣3)2=5m2﹣12m+9,∴5m2﹣12m+9=2m, 解得:m=1或.。
2012年九年级数学中考模拟试题
2012年九年级中考第三次模拟考试数学参考答案一、选择题(共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案BABDCABCBB二、填空题(共6小题,每小题5分,共30分)题号 11 1213 14 1516答案x(x+2)23 428000(1+x)2=1200014三、解答题(本题有8小题,共80分) 17.(本题10分)解:(1)解:原式= 3-4+1 ………………3分= 0 …………………2分(2)原式31)3)(3(6-+-+=x x x …………………1分)3)(3(36-+-+=x x x )3)(3(3-++=x x x …………………2分31-=x …………………2分18.(本题6分)证明:由□ABCD 得AB∥CD∴∠CDF=∠F,∠CBF=∠C 又∵E 为BC 的中点∴△DEC≌△FEB …………………3分 ∴DC=FB由□ABCD 得AB=CD ∵DC=FB,AB=CD …………………2分 ∴AB=BF …………………1分(注:用三角形相似证明正确的,参照此方法相应给分)19.(本题8分) (1)BC=13,tanB=23……………………4分 (2)① 图略 ……………………2分② 2:1 ……………………2分DCFB A EF 'FyxAP OB(1)25%,90° ……………………4分 (2)补全条形图 ……………………2分 (3)活动时间不少于5天的人数约是:20000×(30%+25%+20%)=15000(人). ……………………4分21.(本题10分)证明:(1)连接OC∵AC 平分∠DAB ∴∠DAC=∠CAO∵AO=CO∴∠CAO =∠ACO ∴∠DAC =∠ACO∴OC ∥AD …………………3分又∵CD ⊥AD∴CD ⊥OC∴CD 为⊙O 的切线 ………………2分 (2)∵OB=BE=1∴OC=1,OE=2,AE=3 …………………1分 ∵OC ∥AD∴△EOC ∽△EAD …………………1分∴AE OE AD OC =,即321=AD …………………2分 ∴AD=23…………………1分22.(本题10分)解:(1)由抛物线F :322+-=x x y ,得 11222=⨯--=-a b , 214)2(3144422=⨯--⨯⨯=-a b ac …………………2分 ∴顶点P 的坐标是(1,2),B 的坐标是(1,0). …………2分 (2)设抛物线' F 的解析式为''2c x b x y ++= …………1分 把A(0,3),B(1,0)代入上式,得⎩⎨⎧=++=0''13'c b c ,解得 ⎩⎨⎧=-=3'4'c b …………………2分∴抛物线' F 的解析式为342+-=x x y ……………1分(3)13- …………………2分BCO EA DH GEK DACB P 解:(1)设应安排x 天进行精加工,y 天进行粗加工根据题意得: ⎩⎨⎧x +y =12,5x +15y =140.…………………2分解得⎩⎨⎧x =4,y =8.…………………2分答:应安排4天进行精加工,8天进行粗加工. …………………1分 (2)①精加工a 吨,则粗加工(140-a )吨,根据题意,得 W=2000a +1000(140-a ) …………………2分 =1000a +140000 …………………1分②∵要求在不超过10天的时间内将所有蔬菜加工完 ∴151405a a -+≤10, 解得a ≤5 …………………1分 ∴0<a ≤5又∵在一次函数W=1000a +140000中,k=1000>0 ∴W 随a 的增大而增大 …………………1分∴当a =5时,W max =1000×5+140000=145000 …………………1分 ∴精加工天数为5÷5=1粗加工天数为(140-5)÷15=9∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元. …………1分(注:0<a ≤5没有写出不扣分)24.(本题14分)解:(1)在Rt △APK 和Rt △ABC 中 cos ∠BAC=54==AP AK AB AC ∴AK=m 54…………………1分 ∴当0≤m ≤2.5时,DK=2-m 54…………………1分当2.5<m ≤5时,DK=m 54-2 …………………1分(2)∵PK ⊥AC ,∠C=Rt ∠ ∴PK ∥BC ∥AE ∴△DPK ∽△EDA∴DADKDE DP = ………………………1分 ∵EP=DP∴21=DA DK ,即DK=21AD=1 ∴2-m 54=1,解得 45=m …………………2分(3)四边形AEBC 的面积S 不变,且S=9 ………………1分理由如下:分别过D 、E 作DG ⊥AB ,EH ⊥AB ,G 、H 为垂足 ∴∠DGP=∠EHP=Rt ∠ 又∵∠GPD=∠HPE ,DP=EP ∴△DGP ≌△EHP∴DG=EH …………………………1分∵sin ∠BAC=53==AD DG AB BC ∴EH=DG=53×2=56……………………1分∴S 四边形AEBC =S △ABC +S △ABE =21×3×4+21×5×56=9 …………………1分(4)7131013 1 04321====m m m m ,,,…………………4分。
2012年中考模拟试卷3(数学)
新世纪教育网精选资料版权全部@新世纪教育网2012 年中考模拟试卷3( 数学 )请同学们注意:1、本试卷分试题卷和答题卷两部分,满分为120 分,考试时间为100 分钟;2、全部答案都一定写在答题卷标定的地点上,务必题号对应。
一、认真选一选( 此题有 10个小题,每题3分,共30分)下边每题给出的四个选项中,只有一个是正确的.注意能够用多种不一样的方法来选取正确答案 .1.假如 3 是 a-3 的相反数,那么 a 的值是()(原创)(A)0(B)3(C)6(D)-62.以下图形中,中心对称图形有()(改编)A.1 个B.2 个C.3 个D.4 个3.以下运算正确的选项是()(原创 )A . ( x-y) 2=x2-y2B .x2+y2=x2y2C.x2y+xy2=x3y3D.x2÷x4=x-24.以下图象中,以方程2x y 2 的解为坐标的点构成的图象是()(改编) 5.以下说法不正确的是()(改编)...A.“翻开电视机,正在播世界杯足球赛”是不确立事件。
1B.“掷一枚硬币正面向上的概率是 2 ”表示每投掷硬币2次就有1次正面向上。
C.一组数据2,3, 4, 4,5, 6 的众数和中位数都是4。
D.甲组数据的方差S 甲2= 0.24 ,乙组数据的方差S甲2= 0.03 ,则乙组数据比甲组数据稳定。
k ( k 0) ,在每个象限内y跟着x的增大而增大,点P(a-1,2)6.已知反比率函数y在 个反比率函数上,a 的 能够是()( 原 )A .0B .1C .2D .37.如 是一个由多个同样小正方体堆 而成的几何体的俯 , 中所示数字 地点小正方体的个数, 个几何体的左 是()(改 )12 13 2A .B .C .D .8.如 , 1 的等 △ ABC 的 AB 上一点 P ,作 PE ⊥AC 于 E ,Q BC 延 上一点,当 PA = CQ ,PQ 交 AC 于 D , DE 的 ( )(原 )A .1B .1C .2D .不可以确立第 8 题323ky9.如 ,点 P ( 3a , a )是反比率函y = x ( k > 0)与⊙ O 的一个交点, P中暗影部分的面10π , 反比率函数的分析式 ( )(改 ) OxA . y =3B . y =10C. y =12D. y = 27xx第 9 题xx10.已知抛物=ax 2+ + ( a ≠ 0) 点 ( - 1, 0) ,且 点在第一象限.有以下三个ybx c:① a < 0;② a + b + c > 0;③- b2a > 0.此中正确的 有( )(改 )A .只有①B .①②C .①③D .①②③二、 真填一填( 本 有 6个小 , 每小 4 分 , 共 24 分 )要注意 真看清 目的条件和要填写的内容 , 尽量完好地填写答案 .11. 保 水 源,某社区新建了雨水重生工程,重生水利用量达58600 立方米 / 年。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第6题) 主视方向 2012年中考数学模拟试题(三)
题号 一 二 三 四 五 六 七 八 总分 得分
(考试时间120分钟,试卷满分150分)
一、选择题(本大题共8小题,每小题3分,共24分)
1. 在实数32-
,
2,π,sin300,9,tan150
中,有理数有( )
A .1个
B .2个
C .3个
D .4个
2. 下面是一位同学做的四道题: ①633a a a =+;②6
3
3
2)(y x xy =;③6
32x x x =⋅;④
a a a -=÷-2)(. 其中做对的一道题是( )
A.①
B.②
C.③
D.④
3. 某篮球队队员共16人,每人投篮6次,下图为其投进球数的次数分配表。
若此队投进球数的中位数是2.5,则众数为 ( )
A . 2
B .3
C . 4
D . 6 4. 已知:如图,∠A0B 的两边 0A 、0B 均为平面反光镜,∠A0B=40.若平行于OB 的光线经点Q 反射到P ,则∠QPB=( )
A 、60° B、80° C、100 ° D、120° 5. 从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好能配成一个圆锥体的是( )
A .
B .
C .
D .
6. 如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,
那么他所画的三视图中的俯视图应该是( )
A .两个相交的圆
B .两个内切的圆
C .两个外切的圆
D .两个外离的圆
7. 下列命题 ① 若样本数据3、6、a 、4、2的平均数是4,则其方差为2 ②了解一批袋装食品是否含有防腐剂适宜采用普查方式 ③ 对角线互相垂直的四边形是菱形 ④ 若抛物线y =(3x -1)2
+k 上有点(2,y 1)、(2,y 2)、(5-,y 3),则y 3>y 2>y 1,正确命题的个数为( )
A .1个
B .2个
C .3个
D .4个
得分
投进球数 0 1 2 3 4 5 6 次数(人)
2
2
a
b
3
2
1
O
O 120°
O
90° O O 135°
O O R
Q
P
B
A O
第16题图
A B C D D A B C E F 第14题图 第15题图 第13题图 8.如图所示,在矩形ABCD 中,垂直于对角线BD 的直线l ,从点B 开始沿着线段BD 匀速平移到D .设直线l 被矩形所截线段EF 的长度为y ,运动时间为t ,则y 关于t 的函数的大致图象是( )
二、 填空题(本大题共8小题,每小题3分,共24分)
9.函数y=
a
x 21
-,当x=2时没有意义,则a=__________.
10. 纳米(nm)是一种长度度量单位,lnm=0.000000001 m ,用科学记数法表示0.3011
nm=___________m(保留两个有效数字). 11. 若m 为正实数,且13m m -
=,221
m m
-则= 12. 将抛物线y=x 2-2x 向上平移3个单位,再向右平移4个单位等到的抛物线是_________. 13. 正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90 后,B 点的坐标为 .
14. 如图,AB ⊥BC ,AB=BC=2cm ,弧OA 与弧OC 关于点O 中心对称,则AB 、BC 、弧CO 、弧OA 所围成的面积是 cm 2。
15. 如图,在等腰梯形纸片ABCD 中,︒=∠120A ,现将这张纸片对折一次,使上下底重合一起,若不重合部分的总面积等于
2
3
,2=AD ,则折痕EF 的长等于 . 16.如图,点P 在双曲线y =k x
(x >0)上,以P 为圆心的⊙P 与两坐标轴都相切,点E 为y 轴负半轴上的一点,过点P 作PF ⊥PE 交x 轴于点F ,若OF -OE =6,则k 的值是 .
得分
A .
O
y
t
B .
O
y
t
C .
O
y
t
D .
O
y
t
(第8题)
三、 (17题6分,18题8分,共14分)
17.先化简,再求值:(4ab 3
-8a 2b 2
)÷(—4ab )--(2a +b )(2a -b ),其中a =2,b =1.
18.解方程:()()
31112x x x x -=--+
四、 (每小题10分,共20分)
19. 有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x 2
-1,3。
将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.
(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解); (2)试求抽取的两张卡片结果能组成分式..的概率.
得分
得分
x+1
x 2
-1
3
20.当太阳光线与地面成60o 角时,在坡度为i =1∶2的斜坡上的一棵树AB 落在坡面上的影子AC 长为5m ,落在水平面上的影子CD 长为52m ,求这棵树的高度.
五、 (每小题10分,共20分)
21. 某车站在春运期间为改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t (以下简称购票用时,单位为分钟).下面是这次调查统计分析得到的频率分布表和频率分布直方图。
解答下列问题: (1)这次抽样的样本容量是多少
(2)在表中填写缺失的数据并这补全频率分布直方图; (3)旅客购票用时的平均数可能落在哪一小组?
(4)若每增加一个购票窗口可以使平均购票用时降低5分钟,要使平均购票用时不超过10分钟,那么请你估计最少需增加几个窗口?
分组
频数 频率 一组 0≤t <5 0 0 二组 5≤t <10 10 0.10
三组 10≤t <15 10 四组 15≤t <20 0.50 五组 20≤t <25 30 0.30
合计
100
1
得分
(第21题图)
A
B
C D 20 10 0
15 5
25 购票用时(分)
频率
组距
22. 为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.
(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?
(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这l228台汽车用户共补贴了多少万元?
六、(23题10分,24题12分,共22分)
23. 如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O 上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.
求证:DC=BC;
得分
24.某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:
(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?
(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?
25. 已知在△ABC 和△DBE 中,AB =AC ,DB =DE ,且∠BAC =∠BDE .
(1)如图1,若∠BAC =∠BDE =60°,则线段CE 与AD 之间的数量关系是 ; (2)如图2,若∠BAC =∠BDE =120°,且点D 在线段AB 上,则线段CE 与AD 之 间的数量关系是__________________;
(3)如图3,若∠BAC =∠BDE =α,请你探究线段CE 与AD 之间的数量关系(用含α的式子表示),并证明你的结论.
A C D
B E
图1
B
A
C
D
E
图3
E B A
C
D 图2
26. 在平面直角坐标系xoy 中,已知二次函数)0(22
≠+-=a c ax ax y 的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,且过点(2,3).A(-1,0) (1)求此二次函数的表达式;
(2)点K 是抛物线上C 关于对称轴的对称点,点G 抛物线上的动点,在x 轴上是否存在点
F ,使A 、K 、F 、
G 这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F 点坐标;如果不存在,请说明理由
(3)若抛物线的顶点为D,连接C D 、CB ,①说明DC ⊥BC, ②问抛物线上是否存在点P,使得 ∠PBC+∠BDC =90°. 若存在,求出点P 的坐标;若不存在,请说明理由;
o
y x
C
B
A。