水力学第三章 第二节

合集下载

水力学课件 第三章_水动力学基础

水力学课件 第三章_水动力学基础
(1) 渐变流过水断面近似为平面;
(2) 恒定渐变流 过水断面上,动水压强近似 地按静水压强分布。
z p C
取过水断面上任意两相邻流线 间的微小液柱。轴向受力分析:
1) 表面力
液柱上、下底面 的动水压力 pdω与(p+dp)dω
液柱侧面
的动水压力及摩擦力趋于零;
液柱底面的 摩擦力,与液柱垂直。
2) 质量力 自重分力:γdωdn cosα 惯性力:恒定渐变流条件下略去不计。
用欧拉法描述液体运动时,液体运动质点的加速度是当地加速 度与迁移加速度之和。
当地加速度: 固定点速度随时间的变化,
第一项:
ux
/ t,u y
/ t,uz
/ t
迁移加速度:等号右边括号内项反映了在同一时刻因地 点变更而形成的加速度。
§3—2 欧拉法的若干基本概念
1. 迹线和流线 迹线则是同一质点在一个时段内运动的轨迹线。
活学活用
பைடு நூலகம்
恒定渐变流中,同一过水断面上的动水压强近似按地静水压强分布 恒定均匀流中,同一过水断面上的动水压强精确地按静水压强分布
对恒定均匀流, z p C
同一过水断面上:
对于断面AB
pA
zA
pB
zB
C1
pA ? pB ?
对于断面CD
pC
zC
pD
zD
C2
pC ? pD ?
pA
zA
pB
zB
pC
zC
C
pA ? pB ? pC ?
§3—3 恒定总流的连续性方程
考虑到: (1)在恒定流条件下,元流的形状与位置不随时间改变; (2)不可能有液体经元流侧面流进或流出; (3)液流为连续介质,元流内部不存在空隙。

《水力学》第三章 液流型态及水头损失.

《水力学》第三章  液流型态及水头损失.
形式的液流:均匀流与非均匀流。
均 匀 流
均匀流时,无局部水头损失 8
非均匀 流
非均匀渐变流时,局部水头损失可忽略不计; 非均匀急变流时,两种水头损失都有。
9
3-3 均匀流沿程水头损失与切应力的关系
在管道或明渠均匀流中,任意取出一段总流来分析
,作用在该总流段上有下列各力。
一、压力
1-1断面 FP1 Ap1
2
局部水头损失(hj) :发生在流动状态 急剧变化的急变流中的水头损失。是主要由 流体微团的碰撞、流体中的涡流等造成的损 失。
3
液流产生水头损失的两个条件
(1) 液体具有粘滞性。 (2) 由于固体边界的影响,液流内部质点之间
产生相对运动。 液体具有粘滞性是主要的,起决定性作用。
4
液流的总水头损失hw
hw hf hj
式中:hf 代表该流段中各分段的沿程水头损
失的总和;
hj 代表该流段中各种局部水头损失的
总和。
5
3-2 液流边界几何条件对水头损失的影响
一、液流边界横向轮廓的形状和大小对水头损失 的影响
可用过水断面的水力要素来表征,如过水断面的面积 A、湿周及力半径R等。
湿周: 液流过水断面与固体边界接触的周界线。
对浅宽明渠:
R h y
0 R
h
在宽浅的明渠均匀流中,过水
断面上的切应力也是按直线分
布的。水面上的切应力为零,离
渠底为y处的切应力为
13
hf

l
A
0 g

l R
0 g
由实验研究或量纲分析知: 0


8

2
由此得
hf

水力学课件:3第三章 水动力学基础

水力学课件:3第三章 水动力学基础

第三章 水动力学基础
§4 恒定总流的能量方程
4 恒定总流的能量方程
恒定总流的能量方程
z1
p1
1V12
2g
z2
p2
2V22
2g
hw
1
Z1 1
0
Yangzhou Univ
V 2 总水头h线w
2g
测压管水头线
2
2 Z2
0
位压 流 置强 速 水水 水 头头 头
测总 压水 管头 水 头
H1 H 2hw
Yangzhou Univ
流线图
《水力学》
第三章 水动力学基础
§2 欧拉法的若干基本概念
2.2 过水断面 过水断面是指与水流运动方向成正交的横断面
过水断面的水力要素——影响水流运动的物理指标 例如:断面几何形状、过水断面面积、湿周和水力半径等
Yangzhou Univ
《水力学》
第三章 水动力学基础
2
水流总是从水头大处流 向水头小处;
水流总是从单位机械能大 处流向单位机械能小处
2
水力坡度Z2 J——单位长度流程上的水头损失
0
J dhw dH
dL dL
《水力学》
第三章 水动力学基础
§4 恒定总流的能量方程
4 恒定总流的能量方程
方程的应用条件:
z1
p1
1V12
2g
z2
p2
2V22
2g
hw
水流必需是恒定流;
在所选取的两个过水断面上,水流应符合渐变流的条件, 但所取的两个断面之间,水流可以不是渐变流;
流程中途没有能量H输入或输出。否则,修正方程式:
z1
p1
1V12

水力学第三章

水力学第三章
1 z1
h
p2 z1 2 h p
p
O
O
第六节 实际液体恒定总流的动量方程
动量定理:所有外力合力的冲量等于动量的变化。
1
1'
2
2'
1
dA1 1
1' u1
1'
1
1'
元流 总流
2
2'
u2
dA2
2
2'
2' 2
d K d( m u) F dt
元流:d K dm u 2 dm u1 dm(u 2 u1) dQdt (u 2 u1)
Q流入=Q流出
2
u2 dA2
A2
第三节 恒定元流的能量方程
一、理想液体恒定元流的能量方程 1、恒定流动;2、液体不可压缩;3、两个断面间不存在奇点;4、理想液体 牛顿第二定律
1断面受压力: pdA
1
2断面受压力: (p+dp)dA pdA
液体所受重力:dG
z
O
ds
dG
沿流线方向运用牛顿第二定律: F ma
Z+p/γ≈ C(常数)
急变流的特点:
1、过水断面是曲面;
2、同一过水断面上动水压强不服从静水压强分布的规律;
Z+p/γ≠ C(常数)
第二节 恒定流连续性方程
恒定元流的连续性方程 1、恒定流动;2、液体为不
可压缩液体;3、两个计算断 面之间不存在奇点。 根据质量守恒原理,单位时 间内流入1-2断面的流量,要 等于流出的流量。
pdA ( p dp)dA dG cos dM du
dt
dM dAds
dG dAds
cos dz

第3章-给水排水管网水力学基础

第3章-给水排水管网水力学基础

13.16gD0.13 λ= 1.852 0.148 Cw q 式中 q-流量,m3 / s Cw-海曾-威廉粗糙系数
hf= l 1.852 4.87 Cw D
3.柯尔勃洛克-怀特公式 .柯尔勃洛克-
适用:各种紊流, 适用:各种紊流,是适应性和计算精度最高的公式
10.67q
1.852
C e C=- .71lg 17 + 14.8R 3.53 Re 2.51 e 或 = −2 lg + λ 3.7D Re λ 1
管渠沿程水头损失用谢才公式 v = C Ri
i=
v2 C2R
h f = il =
v2 C 2R
l
(m)
圆管满流,沿程水头损失也可以用达西公式表示: 圆管满流,沿程水头损失也可以用达西公式表示:
l v2 hf = λ D 2g 式中 λ-沿程阻力系数,λ= C2 8g
(m)
C、λ与水流流态有关,一般采用经 与水流流态有关, 验公式或半经验公式计算。常用: 验公式或半经验公式计算。常用:
1 2 Ao = πD 4
D Ro = 4
1 2 qo = Ao Ro / 3 I 1/ 2 nM
1 2 / 3 1/ 2 vo = Ro I nM
h h h 2(1 − 2 ) (1 − ) R D D D =− 1 =f1 (h ) D h Ro −1 cos (1 − 2 ) D A 1 h 2 h h h −1 = cos (1 − 2 ) − (1 − 2 ) (1 − )=f 2 (h ) D Ao π D π D D D q A R ( = qo Ao Ro
0.00107v 2 l D1.3 hf = 0.000912v 2 0.867 0.3 1 + l 1.3 v D

水力学_第三章

水力学_第三章
或:
dQ u1dA u2 dA2 常数 1
(元流的连续性方程)
§3-3 一维恒定总流的连续性方程
总流流量等于元流流量之和,故总流的连续性方 程为:
dQ
A1
u1dA u2 dA2 1
A2
引入断面平均流速: Q 1 A1 2 A2 对于理想液体或实际液体都适用。 注意:当流量有流进或流出时,可以写成: Q
§3-2 描述液体运动的概念
§3-2 描述液体运动的概念
一、恒定流与非恒定流
恒定流:流场中所有空间点上一切运动要素都不 随时间改变。即: u x u y u z p 非恒定流:只要有一个运动要素随时间改变。 二、加速度及其表示方法 质点的加速度由两部分组成: 迁移加速度(位移加速度):流动过程中质点由 于位移而发生流速变化而产生的加速度。 当地加速度(时间加速度):由于时间过程,使 空间点上的流速发生变化而产生加速度。
§3-2 描述液体运动的概念
同理:
ay
duy dt

u y t
ux
u y x
uy
u y y
uz
u y z
duz u z u z u z u z az ux uy uz dt t x y z
第一项为当地加速度,后三项为迁移加速度。
三、流线和迹线
过水断面A 过水断面为平面
过水断面A
过水断面为曲面
从总流中任取一个微小流束,过水
A
1
断面为dA ,其上的流速为u ,则微小流 束通过的流量为 dQ udA
2
u dQ
dA
1
Q dQ udA
Q A
2
§3-2 描述液体运动的概念

13高职高专水力学第三章液体运动的基本原理

13高职高专水力学第三章液体运动的基本原理

学院
教师授课教案
课程名称:水力学20年至20年第二学期第七次课
授课教师:授课日期:20年3 月17日
学院
教师授课教案
课程名称:水力学20年至20年第二学期第八次课
授课教师:授课日期:20年3 月18日
,m =ρV Q =t V
1111V Q t ρ=,122222m V Q t ρρ==
2、动能、压强势能、位置势能及转化
二、微小流束的能量方程
学院
教师授课教案
课程名称:水力学20年至20年第二学期第九次课
授课教师:授课日期:20年3 月24日
学院
教师授课教案
课程名称:水力学20年至20年第二学期第十次课
授课教师:授课日期:20年3 月25日
学院
教师授课教案
课程名称:水力学20年至20年第二学期第十一次课
授课教师:授课日期:20年3 月31日。

北航水力学第三章—流体运动学

北航水力学第三章—流体运动学
第三章 流体运动学
自然界和工程实际中,流体大多数处于流动状态,流体 的流动性是流体在存在状态上与固体的最基本区别。
本章介绍研究流体运动的两种方式;以及相应的运动要素表达;迹线流线 等概念;连续性方程;有旋运动与无旋运动;环量与涡量概念
第三章 流体运动学
第一节 描述流体运动的方法
描述流体运动形态和方式:拉格朗日法和欧拉法
三元流:流动参数是三个空间坐标函数, ux ux (x, y, z,t) uy uy (x, y, z,t) uz uz (x, y, z,t)
实际流动一般都是三元流动。 三元流分析时分析起来十分复杂,一般我们设法将其简化为二元流或一元 流。简化过程中要引进修正系数,修正系数可通过实验方法来确定。
ux uy uz 0 x y z

uz (ux uy ) 2(x y)
z
x y
积分得

uz z
dz

2(x

y)dz
得 uz 2(x y)z c 其中,c可为某一常数,也可以是与 z 无关的某一函数 f (x, y)
所以 uz 2(x y)z f (x, y)
(3)
ux 2ln(xy)
uy


3y x
uz 4
(4) ux x2 z2 5 uy y2 z2 3
解: (1)
ux uy uz 2 11 0 x y z
满足
(2)
ux uy uz 2x y 2 y 0
x y z
三维定常流:流动参数是三个空间坐标函数,与时间无关
ux ux (x, y, z) uy uy (x, y, z) uz uz (x, y, z)

水力学-第3章流体运动学 - 发

水力学-第3章流体运动学 - 发
【解】由于 uz=0,所以是二维流动,其流线方程微分为
dx dy ux (x, y, z,t) uy (x, y, z,t)
将两个分速度代入流线微分方程(上式),得到
dx dy ky kx
xdx ydy 0 积分 x2 y2 c
即流线簇是以坐标原点为圆心的同心圆。
流线的基本特性
• 流线的特性 – 流线一般不相交
§3.1 研究流体运动的两种方法
怎样描述整个流体的运动规律呢?
拉格朗日法
欧拉法
§3.1 研究流体运动的两种方法
1.拉格朗日法
拉格朗日法: 从分析流体质点的运动入手,设法描述出每一 流体质点自始至终的运动过程,即它们的位置随时间变化的 规律,综合流场中所有流体质点的运动情况,来获得整个流 体运动的规律。
§3.1 研究流体运动的两种方法 迹线、流线和脉线
• 迹线
– 一个流体质点在一段连续时间内在空间运动的轨迹
线,它给出同一质点在不同时刻的速度方向
• 迹线方程
拉格朗日法
欧拉法
x x(a,b,c,t) y y(a,b,c,t)
z z(a,b,c,t)
a,b,c确定后,消去t 后可得迹线方程
dx uxdt dy uydt dz uzdt
(x, y, z) :
(a, b, c , t ) :
质点起始坐标 任意时刻 质点运动的位置坐标 拉格朗日变数
欧拉法
(x, y, z) : t:
(x, y, z , t ) :
空间固定点(不动) 任意时刻 欧拉变数
§3.1 研究流体运动的两种方法
液体质点通过任意空间坐标时的加流速
a x
du ( x, y, z, t) x dt

《水力学》课件——第三章 流体运动学

《水力学》课件——第三章 流体运动学

是否是接
均匀流 否

渐变流
流线虽不平行,但夹角较小; 流线虽有弯曲,但曲率较小。
急变流
流线间夹角较大; 流线弯曲的曲率较大。
• 渐变流和急变流是工程意义上对流动是否符合均匀流条件的
划分,两者之间没有明显的、确定的界限,需要根据实际情况
来判定
急变流示意图
五. 流动按空间维数的分类
一维流动 二维流动 三维流动
• 根据流线的定
• 在非恒定流情况下,流
义,可以推断:除
线一般会随时间变化。在
非流速为零或无穷
恒定流情况下,流线不随
大处,流线不能相
时间变,流体质点将沿着
交,也不能转折。
流线走,迹线与流线重
合。
• 迹线和流线最基本的差别是:迹线是同一流
体质点在不同时刻的位移曲线,与拉格朗日观
点对应,而流线是同一时刻、不同流体质点速
• 由确定的流体质点组成
的集合称为系统。系统在 运动过程中,其空间位 置、体积、形状都会随时 间变化,但与外界无质量 交换。
• 有流体流过的固定不变
的空间区域称为控制 体,其边界叫控制面。 不同的时间控制体将被 不同的系统所占据。
• 通过流场中某曲面 A 的流速通量
u nd A
A
称为流量,记为 Q ,它的物理意 义是单位时间穿过该曲面的流体 体积,所以也称为体积流量,单 位为 m3/s .
n A
dA
u
• u n d A 称为质量流量,记为Qm,单位为 kg/s . 流量计算
A
公式中,曲面 A 的法线指向应予明确,指向相反,流量将反
s s — 空间曲线坐标
元流是严格的一维流动,空间曲线坐标 s 沿着流线。

第3章 河道水流运动基本规律

第3章 河道水流运动基本规律

四、河道水流的环流结构
环流结构是河道水力学中一个颇为重要的问题。 前面已经提到, 河道水流除了主流以外, 还有次生流。具有复归性的次生流被称之为环流。主流一般以纵向为主。环流则否然,它因 产生的原因不同,具有不同的轴向。因此输沙的方向,也不限于纵向。可以这样地说,河流 中的横向输沙主要是有关的环流造成的, 而不是主流或纵向水流造成的。 河道水流的输沙自 然是纵横两向彼此联系的。因此,一个河段的冲淤状况,除了受主流的影响之外,还受环流 的影响。环流就其生成原因而言,可以区别为以下几种。 1.因离心惯性力而产生的弯道横向环流 水流通过弯道时,在弯道离心力的作用下,水流中出现离心惯性力。离心惯性力的方向 是从凸岸指向凹岸,结果使凹岸水面高于凸岸水面,形成横向水面比降。 为了计算横向水面比降的大小,在弯段水 流中曲率半径为 R 的流线上,取一个长、宽各 为一个单位的微小水柱,如图 3-1 所示,分析 水柱受力情况。为了简化起见,只考虑二维恒 定环流。这样,水柱的上下游垂直面中的内摩 阻力可以不计。在这种情况下,水柱在横向受 的力有:离心力 F,两侧动水压力差
[8]
其中 m 为指数流速分布公式中的指数;C 0 为无量纲谢才系数,C0 C / g , (这里的 C 为 谢才系数),与对数流速分布公式中的摩阻流速有下列关系; v v / C 0 ,其中 v 为垂线平 均流速。只要已知 C 0 与 m 之间的关系,便可实现式(3-2)及式(3-5)之间的转换。
83
侧或一侧,有平均单宽流量较小的、近岸的边流带。主流线及主流带对河段的流态及发展趋 势有决定性的作用,是河流水力学分析主要研究对象之一。 除主流线之外, 还可取最大单宽动量线(亦称动力轴线)或最大单宽动能线来表示河道水 流的轴线。 主流线、 最大单宽动量线及最大单宽动能线在河段正流中的位置相近而不一定重 合。在很多情况下,可任取三者之一作为河道水流的轴线,差别不是很大。但在研究某些特 殊问题时,则三者的代表性会有明显不同。如研究堤防受水流顶冲强度,则以采用最大单宽 动量线为宜。 此外,沿河床各横断面中高程最低点的平面平顺连接线,称为深弘线。某些河段的深弘 线位置,可能在同一时段与主流相近或相重合,但也可能相差很远。 在河道水流中,与正流相对应的,有副流或次生流。所谓副流或次生流就是从属于正流 的水流,不能单独存在。这种副流或次生流,有的具有复归性,或者基本上与正流脱离,在 一个区域内呈循环式的封闭流动; 或者与正流或其他副流结合在一起, 呈螺旋式的非封闭的

水力学 (张耀先 著) 黄河水利出版 第3章 课后答案

水力学 (张耀先 著) 黄河水利出版 第3章 课后答案

2 2 得p 3 0k N/ m , p 4 0k N/ m , B点处断面平均流速 A= B=
v 1 . 5m/ s , 求A 、 B两断面的总水头差及管中水流流动 B= 方向。 解: 由连续方程 v A v A A A= B B 从而得出 v 6m/ s A= A 、 B两断面总水头差为( 以 A点所在水平面为基准面) :
2 2 d d π 1 2 Q K槡 1 2 . 6 × h= 2 g槡 1 2 . 6 × h Δ Δ 理论值 = 槡 4 4 4 d d 1- 2 槡
图3 5 2
= 0 . 0 6 15 9 ( m/ s ) 0 . 0 6 = 0 . 9 7 4 μ= 0 6 15 9 0 . 3 2 3 一引水管的渐缩弯段( 见图 3 5 3 ) , 已知入口直径 d 2 5 0m m , 出口直径 d 1= 2=
3 2 2 有 一 文 德 里 管 路 ( 见图 3 5 2 ) , 已知管径 d 1 5c m , 文德里管喉部直径 d 1 0c m , 水银压差计 1= 2= 高差 Δ h = 2 0c m , 实测管中流量 Q= 6 0L / s , 试求文德 里流量计的流量系数 μ 。 Q 实测 解: 流量系数 μ= Q 理论值
3 Q= A v 0 . 0 1 57 ( m / s ) 3 3=
图3 4 5
3 1 6 如图 3 4 6所示, 某主河道的总流量
3 Q 18 9 0m / s , 上游两个支流的断面平均流 1=
速为 v 1 . 3 0m/ s , v 0 . 9 5m/ s 。若两个支 3= 2= 流过水断面面积之比为 A A 4 , 求两个支流 2/ 3= 的断面面积 A 。 2及 A 3 解: 根据连续性方程: Q Q Q 图3 4 6 2+ 3= 1 Q = A v 2 22 2 2 14 8 2 . 3 5 ( m ) A 3 7 0 . 5 9 ( m ) Q A v 2= 3= 联立解得 A 3= 3 3 A 2 = 4 A 3 0 . 2m , d 0 . 4m , 高差 Δ z = 1 . 5m , 今测 3 1 7 一变直径的管段 A B ( 见图 3 4 7 ) , d A= B= ·7 ·

水力学第3章

水力学第3章
Z1 p1

2 2 u1 p2 u2 Z2 hw 2g 2g
z为单位重量液体的势能(位能)。 u2/2g为单位重量液体的动能。 p/为单位重量液体的压能(压强势能)。
• z+p/=该质点所具有的势能。 • z+p/+ u2/2g=总机械能 • hw'为单位重量的流体从断面1-1流到2-2 过程中由于克服流动的阻力作功而消耗 的机械能。这部分机械能转化为热能而 损失,因此称为水头损失。
0
Δh
h1
h2
动 压 管
A-A
静 压 管
A
1
2
例3 试证明图中所示的具有底坎的矩形断面 渠道中的水流是否有可能发生.
(a) 假设这种水流可以发生 证:
以0-0为基准面,列1-1, 2-2断面能量方程:
p1 1V12 p2 2V22 Z1 Z2 hw12 2g 2g
Q3 Q1 Q2
Q3 Q1 Q2 Q1
Q1 Q2 Q3
Q3 Q2
对于有分叉的恒定总流,连续性方程可以表示为: ∑Q流入=∑Q流出 连续性方程是一个运动学方程,它没有涉及作用 力的关系,通常应用连续方程来计算某一已知过水断 面的面积求断面平均流速或者已知流速求流量,它是 水力学中三个最基本的方程之一。
二、迹线和流线 迹线是液体质点运动的轨迹,它是某一个质 点不同时刻在空间位置的连线。 流线是某一瞬间在流场中画 出的一条曲线,这个时刻位于 曲线上各点的质点的流速方向 与该曲线相切。 对于恒定流,流线的形状不随时间而变化, 这时流线与迹线互相重合;对于非恒定流,流 线形状随时间而改变,这时流线与迹线一般不 重合。
Q dQ udA

水力学系统讲义课件第三章水动力学基础

水力学系统讲义课件第三章水动力学基础


ux t
ux
ux x
uy
ux y
uz
ux z




ay

uy t
ux
uy x
uy
uy y
uz
uy z




az

uz t
ux
uz x
uy
uz y
uz
uz z
4
a du du(x, y, z,t) u u dx u dy u dz
z p C
g
中,各项都为长度量纲。
位置势能(位能): Z 位置水头(水头) : Z
pA /
pB /
压强势能(压能): p
测压管高度(压强水头) : g
zA
O
zB
O
单测位压势管能水:头:z
p
g
35
恒定总流的能量方程
理想液体恒定微小流束能量方程推导
动能定理:某物体在运动过程中动能的改变等于其在同 一时间内所有外力所做的功。
解:ax

ux t
ux
ux x
uy
ux y
4y 6x 4y 6xt 6t 6y 9xt 4t
4y 6x 1 6t2 6t2
将t 2, x 2, y 4代入得,ax 4m / s2 同理可得, ay (6 y 9x) (4 y 6x)9t 2 (6 y 9t)6t 2

Q A

49 60
umax
24
(2)过流断面上,速度等于平均流速的点距管壁的距离。
1/ 7

水力学教程 第3章

水力学教程 第3章

第三章 水动力学基础本章研究液体机械运动的基本规律及其在工程中的初步应用。

根据物理学和理论力学中的质量守恒原律、牛顿运动定律及动量定理等,建立水动力学的基本方程,为以后各章的学习奠定理论基础。

液体的机械运动规律也适用于流速远小于音速(约340 m/s )的低速运动气体。

因为当气体的运动速度不大于约50m/s 时,其密度变化率不超过1%,这种情况下的气体也可认为是不可压缩流体,其运动规律与液体相同。

研究液体的运动规律,也就是要确定描述液体运动状态的物理量,如速度、加速度、压强、切应力等运动要素随空间与时间的变化规律以及相互关系。

由于实际液体存在粘性,使得水流运动分析十分复杂,所以工程上通常先以忽略粘性的理想液体为研究对象,然后进一步研究实际液体。

在某些工程问题上,也可将实际液体近似地按理想液体估算。

§3-1 描述液体运动的两种方法描述液体运动的方法有拉格朗日(grange )法和欧拉(L.Euler )法两种。

1.拉格朗日法(Lagrangian View ) 拉格朗日法是以液体运动质点为对象,研究这些质点在整个运动过程中的轨迹(称为迹线)以及运动要素(Kinematic Parameter)随时间的变化规律。

每个质点运动状况的总和就构成了整个液体的运动。

所以,这种方法与一般力学中研究质点与质点系运动的方法是一样的。

用拉格朗日法描述液体的运动时,运动坐标不是独立变量,设某质点在初始时刻t =t 0时的空间坐标为a 、b 、c (称为起始坐标),则它在任意时刻t 的运动坐标x 、y 、z 可表示为确定这个质点的起始坐标与时间变量的函数,即⎪⎭⎪⎬⎫===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x(3-1-1)变量a ,b ,c ,t 统称为拉格朗日变量。

显然,对于不同的质点,起始坐标a ,b ,c 是不同的。

根据式(3-1-1),将某质点运动坐标时间历程描绘出来就得到该质点的迹线(Trace)。

清华 水力学 讲义 第三章

清华 水力学 讲义 第三章

第三章 流体运动学本章在连续介质假设下,讨论描述流体运动的方法,根据运动要素的特性对流动进行分类。

本章的讨论是纯运动学意义上的,不涉及流动的动力学因素。

连续方程是质量守恒定律对流体运动的一个具体约束,也在本章的讨论范围之中。

§3—1 描述流动的方法一. 拉格朗日法和欧拉法● 拉格朗日法是质点系法,它定义流体质点的位移矢量为:r r a b c t =(,,,),其中(,,)(,,,)a b c r a b c t =0是拉格朗日变数,即t 0时刻质点的空间位置,用来对连续介质中无穷多个质点进行编号,作为质点标签。

● 欧拉法是流场法,它定义流体质点的速度矢量场为:u u x y z t =(,,,),其中(,,)x y z 是空间点(场点)。

流体的其它物理特性和运动要素也都用对应于时间与空间域的场的形式描述。

二. 流体质点的加速度、质点导数● 在拉格朗日观点下,流体质点加速度的求法是比较简单的。

求速度和加速度只须将位移矢量直接对时间求一、二阶导数即可,求导时a,b,c 作为参数不变,意即跟定流体质点。

u r t rt a u t u t r t =====d d ,d d ∂∂∂∂∂∂22.● 欧拉法中流体质点加速度的表达必须特别注意,求加速度需要跟定流体质点,于是 x,y,z均随 t 变,而且),,(d ),,d(z y x u u u tz y x =,所以加速度 u u tz u u y u u x u u t u t z z u t y y u t x x u t u t u a z y x)(d d d d d d d d ∇⋅+=+++=+++==∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂. ● 建立 t 时刻和 t+dt 时刻的流场图,假设一流体质点在 t 时刻位于场点 M ,t + dt 时刻它到达场点M ’,在 t+dt 时刻的流场图上再标上与点M 处于同一位置的场点M 1,此时有另一个流体质点占据该场点。

水力学3-2

水力学3-2

∂ u x ∂u y ∂ u z ∂p ∂ρ ≡ ≡ ≡ ≡ ≡ ... ≡ 0 ∂t ∂t ∂t ∂t ∂t
3.2.2 非恒定流
运动要素之一随时间而变化的流动, 运动要素之一随时间而变化的流动,即运动要素之 一对时间的偏导数不为零
河道中水位和流量的变化
洪水期中水位、流量有涨落现象- 洪水期中水位、流量有涨落现象-非恒定流 平水期中水位、流量相对变化不大- 平水期中水位、流量相对变化不大-恒定流
闸门迅速开启时引起的非恒定流
闸门突然关闭时, 闸门突然关闭时,管道中水流的运动随时间变化
水静力学就是恒定流

p0
h m z x z0
z
容器中液体 当容器中液体 处于相对平衡- 处于相对平衡-恒 定流。 定流。当容器 的旋
g f ω2r
转角速度突然改变, 转角速度突然改变, 容器中液体变速运 动-非恒定流。 非恒定流。
R
O
ω2 y y
f ω2 x
O
r θ x
y
x
ω
大海中潮起潮落现象- 大海中潮起潮落现象-非恒定流
3 水运动学
3.1 描述液体运动的两种方法 3.2 恒定流和非恒定流 3.3 3.4 流线和迹线 质点与控制体的概念
3.5 一元流动法 3.6 恒定元流和总流的连续方程 3.7 三元流的连续方程
3.2 恒定流和非恒定流 3.2.1 恒定流
运动要素之一不随时间发生变化的流动, 运动要素之一不随时间发生变化的流动 , 即 所 有运动要素对时间的偏导数恒等于零

武汉大学水力学教材答案第三章

武汉大学水力学教材答案第三章

武汉⼤学⽔⼒学教材答案第三章第三章⽔动⼒学基础渐变流与急变流均属⾮均匀流急变流不可能是恒定流。

总⽔头线沿流向可以上升,也可以下降。

⽔⼒坡度就是单位长度流程上的⽔头损失。

扩散管道中的⽔流⼀定是⾮恒定流。

恒定流⼀定是均匀流,⾮恒定流⼀定是⾮均匀流。

均匀流流场内的压强分布规律与静⽔压强分布规律相同。

测管⽔头线沿程可以上升、可以下降也可不变。

总流连续⽅程V1A1 = V2A2对恒定流和⾮恒定流均适⽤21、对管径沿程变化的管道(1)测压管⽔头线可以上升也可以下降(3)测压管⽔头线沿程永远不会上升测压管⽔头线总是与总⽔头线相平⾏测压管⽔头线不可能低于管轴线,则管内⽔流属(3)恒定⾮均匀流10、11、12、渐变流过⽔断⾯上动⽔压强随⽔深的变化呈线性关系。

⽔流总是从单位机械能⼤的断⾯流向单位机械能⼩的断⾯。

恒定流中总⽔头线总是沿流程下降的,测压管⽔头线沿流程则可以上升、下降或⽔平。

13、液流流线和迹线总是重合的。

14、⽤毕托管测得的点流速是时均流速15、测压管⽔头线可⾼于总⽔头线。

16、管轴⾼程沿流向增⼤的等直径管道中的有压管流,其管轴压强沿流向增⼤。

17、理想液体动中,任意点处各个⽅向的动⽔压强相等。

18、恒定总流的能量⽅程Z1 + P1/g + V12/2g = Z2 + P2/g + V22/2g + h w1- 2 ,式中各项代表( ) (1)单位体积液体所具有的能量;(2)单位质量液体所具有的能量(3)单位重量液体所具有的能量;(4)以上答案都不对。

19、图⽰抽⽔机吸⽔管断⾯A—A动⽔压强随抽⽔机安装⾼度h的增⼤⽽(3)不变( )⑷不定20、在明渠恒定均匀流过⽔断⾯上1、2两点安装两根测压管,如图所⽰,则两测压管⾼度h1与h2的关系为( )⑶ h1 = h2 (4)⽆法确定(1) h1 > h2 ⑵ h1 v h222、图⽰⽔流通过渐缩管流岀,若容器⽔位保持不变(1)恒定均匀流(2)⾮恒定均匀流((4)⾮恒定⾮均匀流23、管轴线⽔平,管径逐渐增⼤的管道有压流,通过的流量不变(1)逐渐升⾼(2)逐渐降低(3)与管轴线平⾏24、均匀流的总⽔头线与测压管⽔头线的关系是(1)互相平⾏的直线;(2)互相平⾏的曲线;(3)互不平⾏的直线;(4)互不平⾏的曲线。

水力学第三章第二部分

水力学第三章第二部分
下午3时36分33秒
3.9 圆管内液体的紊流运动
因为
e
32.8d
Re
(1)当雷诺数较小时,δe较大,以至于壁面凸起完全 被粘性底层所覆盖,紊流流核被粘性底层与壁面凸起完
全隔开,此时紊流阻力不受壁面粗糙凸起的影响,沿程
阻力系数只和雷诺数有关。
——光滑紊流,水力光滑壁,水力光滑管。
下午3时36分33秒
下午概3时念36分对33紊秒 流均适用。
3 圆管紊流断面分区结构
在紊流中,水流贴附在边界面上的质点,边壁对其横 向运动有限制作用,质点几乎平行于边壁的迹线慢慢运动
,故其脉动很小,而流速梯度du/dy较大,粘性切应力τ起
主导作用,其流态基本属于层流,因而在紊流中: ①紧靠固体边界有一极薄的层流运动流层称为粘性底层; ②在层流底层以外是紊流,称之为紊流区(是紊流主体) ; ③两液层还有一层极薄的过渡层。(因该层无研究价值可 不考虑)
水力学
xx交通学院
下午3时36分33秒
复习
1 沿程损失的产生原 因及其影响因素。
产生原因是流体的粘 性和惯性以及管道的粗 糙度等,因而这种损失 的大小与流体的流动状 态(层流或紊流)有密 切关系。
沿程损失的大小与流 过的管道长度成正比, 与流态相关
下午3时36分33秒
2 局部损失的产生原 因及其影响因素。
f f f
瞬时流速,时均流速,脉动流速
下午3时36分33秒
3.7 液体的紊流运动
2 紊流运动的特征
f 1
T
fdt
To
脉动值的时均值为零
f 1
T f dt 1
T
( f f )dt
To
To
1
T f dt 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水静力学h
z
z0 x

z
容器中液体
当容器中液体
处于相对平衡-恒
ω2r
定流。当容器 的旋
g
转角速度突然改变,
f
O
2 y ωy
容器中液体变速运
动-非恒定流
R
ω2r
O
r θ x
ω2 x
y
x
ω

大海中潮起潮落现象-非恒定流

闸门迅速开启时引起的非恒定流

闸门突然关闭时,管道中水流的运动随时间变化
u x u y uz p ... 0 t t t t t
3.2.2 非恒定流
运动要素之一随时间而变化的流动,即运动要素之 一对时间的偏导数不为零

河道中水位和流量的变化
洪水期中水位、流量有涨落现象-非恒定流
平水期中水位、流量相对变化不大-恒定流

3 水运动学
3.1 描述液体运动的两种方法 3.2 恒定流和非恒定流 3.3 流线和迹线
3.4
质点与控制体的概念
3.5 一元流动法 3.6 恒定元流和总流的连续方程 3.7 三元流的连续方程
3.2
恒定流和非恒定流
3.2.1 恒定流
运动要素不随时间发生变化的流动,即所有运
动要素对时间的偏导数恒等于零
相关文档
最新文档