【重点资料】新2019九年级数学上册 第二十三章 旋转 23.1 图形的旋转(1)教案
九年级数学上册第二十三章旋转笔记重点大全(带答案)
九年级数学上册第二十三章旋转笔记重点大全单选题1、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.2、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.3、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.4、以图(1)(以O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换,不能得到图(2)的是()A.绕着OB的中点旋转180°即可B.先绕着点O旋转180°,再向右平移1个单位C.先以直线AB为对称轴进行翻折,再向右平移1个单位D.只要向右平移1个单位答案:D分析:根据旋转、平移和轴对称的定义进行分析即可.由旋转、平移和轴对称的性质可知:经过A、B、C的变化,图(1)均可得到图(2),经过D的变化不能得到图(2);故选:D小提示:本题主要考查了旋转、平移和轴对称的性质,熟练地掌握各个性质是解题的关键.5、如图,在平面直角坐标系中,OA1=OB1,∠A1OB1=120°,将ΔA1OB1绕点O顺时针旋转并且按一定规律放大,每次变化后得到的图形仍是顶角为120°的等腰三角形.第一次变化后得到等腰三角形A2OB2,点A1(1,0)的对应点为A2(−1,−√3);第二次变化后得到等腰三角形A3OB3,点A2的对应点为A3(−32,3√32);第三次变化后得到等腰三角形A4OB4,点A3的对应点为A4(4,0)⋯⋯依此规律,则第2022个等腰三角形中,点B2022的坐标是()A.(2022,0)B.(−2022,−2022√3)C.(−1011,1011√3)D.(−1011,−1011√3)答案:D分析:利用循环的规律,找到第2022个等腰三角形与第一个循环的图形的第几个位置相同,再根据第一个循环中的点坐标进行求值即可.解:由题意可知,旋转规律为4次一个循环,即第2022次为:505个循环余2,∴点B2022位置与B3相同,在第三象限,∵B3坐标为(−32,−3√32),∴点B2022坐标为(−20222,−2022√32),即为(−1011,−1011√3).故选:D.小提示:本题主要考查的是坐标系与几何图形的规律问题,准确找到循环规律是解题的关键.6、如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC答案:C分析:根据旋转的性质,对每个选项逐一判断即可.解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.小提示:本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.7、在平面直角坐标系中,抛物线y=x2−4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为()A.y=−x2−4x+5B.y=x2+4x+5C.y=−x2+4x−5D.y=−x2−4x−5答案:A分析:先求出C点坐标,再设新抛物线上的点的坐标为(x,y),求出它关于点C对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.解:当x=0时,y=5,∴C(0,5);设新抛物线上的点的坐标为(x,y),∵原抛物线与新抛物线关于点C成中心对称,由2×0−x=−x,2×5−y=10−y;∴对应的原抛物线上点的坐标为(−x,10−y);代入原抛物线解析式可得:10−y=(−x)2−4⋅(−x)+5,∴新抛物线的解析式为:y=−x2−4x+5;故选:A.小提示:本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.8、将△OBA按如图方式放在平面直角坐标系中,其中∠OBA=90°,∠A=30°,顶点A的坐标为(1,√3),将△OBA绕原点逆时针旋转,每次旋转60°,则第2023次旋转结束时,点A对应点的坐标为()A.(−1,√3)B.(−√3,1)C.(−√33,1)D.(−1,√33)答案:A分析:根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋转对应的A点坐标,之后第2次旋转,根据图形位置以及OA长,即可求出,第3、4、5次分别利用关于原点中心对称,即可求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最后即可得出答案.解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:过点A′作x轴的垂线,垂足为C,如下图所示:由A的坐标为(1,√3)可知:OB=1,AB=√3,在RtΔAOB中,∠AOB=90°−∠A=60°,OA=2由旋转性质可知:ΔAOB≌ΔA′OB′,∴∠A′OB′=∠AOB=60°,OA′=OA,∴∠A′OC=180°−∠A′OB′−∠AOB=60°,在ΔA′OC与ΔAOB中:{∠A′OC′=∠AOB=60°∠A′CO=∠ABO=90°OA′=OA∴ΔA′OC′≌ΔAOC(AAS),∴OC =OB =1,A ′C =AB =√3,∴此时点A 对应坐标为(−1,√3),当第二次旋转时,如下图所示:此时A 点对应点的坐标为(−2,0).当第3次旋转时,第3次的点A 对应点与A 点中心对称,故坐标为(−1,−√3).当第4次旋转时,第4次的点A 对应点与第1次旋转的A 点对应点中心对称,故坐标为(1,−√3). 当第5次旋转时,第5次的点A 对应点与第2次旋转的A 点对应点中心对称,故坐标为(2,0). 第6次旋转时,与A 点重合.故前6次旋转,点A 对应点的坐标分别为:(−1,√3)、(−2,0)、(−1,−√3)、(1,−√3)、(2,0)、(1,√3).由于2023÷6=337⋅⋅⋅⋅⋅⋅1,故第2023次旋转时,A 点的对应点为(−1,√3).故选:A .小提示:本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,;通过旋转和中心对称求解对应点坐标,是求解该题的关键.9、如图,点O 是等边三角形ABC 内一点,OA =2,OB =1,OC =√3,则ΔAOB 与ΔBOC 的面积之和为( )A .√34B .√32C .3√34D .√3答案:C分析:将ΔAOB绕点B顺时针旋转60°得ΔBCD,连接OD,得到△BOD是等边三角形,再利用勾股定理的逆定理可得∠COD=90°,从而求解.解:将ΔAOB绕点B顺时针旋转60°得ΔBCD,连接OD,∴OB=OD,∠BOD=60°,CD=OA=2,∴ΔBOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+(√3)2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,∴ΔAOB与ΔBOC的面积之和为S△BOC+S△BCD=S△BOD+S△COD=√34×12+12×1×√3=3√34.故选:C.小提示:本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将ΔAOB与ΔBOC的面积之和转化为S△BOC+S△BCD,是解题的关键.10、已知点P(m−3,m−1)关于原点的对称点P′在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.答案:D分析:先确定点P 所在的象限,然后根据点所在象限的坐标特点列不等式组求解即可.解:∵点P(m −3,m −1)关于原点的对称点P′在第四象限,∴点P 在第二象限,∴ {m −3<0m −1>0, 解得:1<m <3,故选:D .小提示:本题主要考查了点的坐标特征,掌握第二象限的点的横坐标小于零、纵坐标大于零是解答本题的关键.填空题11、△ABC 中,AB =8,AC =6,AD 是BC 边上的中线,则AD 长度的范围是__________.答案:1<AD <7分析:延长AD 至E ,使DE =AD ,连接CE .根据SAS 证明△ABD ≌△ECD ,得CE =AB ,再根据三角形的三边关系即可求解.解:延长AD 至E ,使DE =AD ,连接CE .在△ABD 和△ECD 中,{DE =AD∠ADB =∠CDE DB =DC,∴△ABD ≌△ECD (SAS ),∴CE =AB .在△ACE 中,CE -AC <AE <CE +AC ,即2<2AD <14,故1<AD<7.故答数为:1<AD<7.小提示:本题主要考查了全等三角形的判定和性质、三角形的三边关系.注意:倍长中线是常见的辅助线之一.12、如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是 ___.答案:√6+√2分析:连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,由正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,所以∠OC'E=45°,OA=OC'=AB=2,∠A=90°,根据勾股定理得到BE的长,从而得到BC'.解:如图,连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,∵将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,点A′恰好落在线段BC′上,∴∠OC'E=45°,OA=OC'=AB=2,∠A=90°,∴OB=2√2,OE=EC'=√2,在Rt△OBE中,由勾股定理得:BE=√OB2−OE2=√(2√2)2−(√2)2=√6,∴BC'=BE+EC'=√6+√2.所以答案是:√6+√2小提示:本题考查了旋转的性质、正方形的性质以及勾股定理,解题的关键是作辅助线构造特殊三角形.13、已知坐标系中点A(−2,a)和点B(b,3)关于原点中心对称,则a+b=__________.答案:-1分析:直接利用关于原点对称点的性质,得出a,b的值,即可得出答案.解:∵坐标系中点A(-2,a)和点B(b,3)关于原点中心对称,∴b=2,a=-3,则a+b=2-3=-1.所以答案是:-1.小提示:此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.14、如图,在直角坐标系中,△ABC的顶点坐标分别为A(1,2),B(-2,2),C(-1,0).将△ABC绕某点顺时针旋转90°得到△DEF,则旋转中心的坐标是_____________.答案:(1,-1)分析:由旋转的性质可得A的对应点为D,B的对应点为E,C的对应点为F,同时旋转中心在AD和BE的垂直平分线上,进而求出旋转中心坐标.解:由旋转的性质,得A的对应点为D,B的对应点为E,C的对应点为F作BE和AD的垂直平分线,交点为P∴点P的坐标为(1,-1)所以答案是:(1,-1)小提示:本题考查坐标与图形变化—旋转,图形的旋转需结合旋转角求旋转后的坐标,常见的旋转角有30°,45°,60°,90°,180°.15、若点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,则a+b=___.答案:2分析:根据关于原点对称的性质得到a-1+5=0,5+1-b=0,求出a、b,问题得解.解:∵点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,∴a-1+5=0,5+1-b=0,∴a=-4,b=6,∴a+b=2.所以答案是:2小提示:本题考查了关于原点对称的点的坐标特点,熟知“两个点关于原点对称,则这两个点的横纵坐标都互为相反数”是解题关键.解答题16、如图,已知等边△ABC中,点D、E、F分别为边AB、AC、BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你连结EN,并判断EN与MF有怎样的数量关系?点F是否在直线NE 上?请写出结论,并说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)如图3,若点M在点C右侧时,请你判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论:若不成立,请说明理由.答案:(1)相等,在,理由见解析;(2)成立,证明见解析;(3)成立.分析:(1)连接DE、DF、EF,NF,根据等边三角形的性质和三角形中位线的性质,先证得△DBF是等边三角形,可得△DMB≌△DNF,可得∠DBM=∠DFN,从而得到∠NFD+∠DFE=180°,再由△DMN是等边三角形,从而证得△DMF≌△DNE,得到EN=MF,即可求证;(2)连接DF,NF,EF,等边三角形的性质,可证得△DMB≌△DNF,得到BM=FN,∠DFN=∠FDB=60°,从而NF∥BD,再由EF是△ABC的中位线,可得EF∥BD,从而F在直线NE上,即可求证;(3)连接DF、DE,EF,根据等边三角形的性质和三角形中位线的性质,可得△DBF是等边三角形,从而证得△DNE≌△DMF,即可求证.解:(1)EN=MF,点F在直线NE上,理由如下:如图1,连接DE、DF、EF,NF,∴AB=AC=BC,∠ABC=60°,又∵点D、E、F分别为边AB、AC、BC的中点,∴DE、DF、EF为等边△ABC的中位线,DE=12BC,EF=12AB,DF=12AC,∴DE=DF=EF,∴∠FDE=∠DFE=60°∵D、F分别是AB、BC的中点,∴BD=BF,∴△DBF是等边三角形,∴∠BDF=60°,∵△DMN是等边三角形,∴∠MDN=60°,DM=DN,∴∠MDN=∠BDF=60°,DB=DF,∴∠MDN-∠BDN=∠BDF-∠BDN,即∠MDB=∠NDF,在△DMB和△DNF中,∵DM=DN,∠MDB=∠NDF,DB=DF,∴△DMB≌△DNF,∴∠DBM=∠DFN,∵∠ABC=60°,∴∠DBM=120°,∴∠NFD=120°,∴∠NFD+∠DFE=120°+60°=180°,∴N、F、E三点共线,∴F在直线NE上;∴∠MDN=60°,DM=DN,∴∠FDE+∠NDF=∠MDN+∠NDF,∴∠MDF=∠NDE,在△DMF和△DNE中,∵DF=DE,∠MDF=∠NDE,DM=DN,∴△DMF≌△DNE,∴MF=NE,(2)成立,理由如下:如图2,连接DF,NF,EF,∵△ABC是等边三角形且D、F分别是AB、BC的中点,∴∠ABC=60°,BD=BF,∴△DBF是等边三角形,∴∠BDF=∠DBF=60°,∵△DMN是等边三角形,∴∠MDN=60°,DM=DN,∴∠MDN=∠BDF=60°,DB=DF,∴∠MDN-∠FDM=∠BDF-∠FDM,即∠MDB=∠NDF,在△DMB和△DNF中,∵DM=DN,∠MDB=∠NDF,DB=DF,∴△DMB≌△DNF,∴∠DBM=∠DFN=60°,BM=FN,∴∠DFN=∠FDB=60°,∴NF∥BD,∵E,F分别为边AC,BC的中点,∴EF是△ABC的中位线,BF=12BC=12AB,∴EF∥BD,EF=12AB,∴F在直线NE上,BF=EF,∴MF=EN;(3)MF与EN相等的结论仍然成立,理由如下:如图3,连接DF、DE,EF,∵△ABC是等边三角形,∴AB=AC=BC,又∵点D、E、F分别为边AB、AC、BC的中点,∴DE、DF、EF为等边△ABC的中位线,DE=12BC,EF=12AB,DF=12AC,∴DE=DF=EF,∴△DEF是等边三角形,∴∠FDE=60°,∵△DMN是等边三角形,∴∠MDN=∠FDE=60°,DM=DN,∴∠EDM+∠NDE=∠EDM+∠FDM,∴∠NDE=∠FDM,在△DNE和△DMF中,∵DE=DF,∠NDE=∠FDM,DN=DM,△DNE≌△DMF,∴MF=NE.小提示:本题主要考查了等边三角形的性质和判定,全等三角形的性质和判定,熟练掌握等边三角形的性质和判定,全等三角形的性质和判定是解题的关键.17、已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点Р(端点除外),连接PD.将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点Р在线段AC上的位置发生变化时,∠DPQ的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.答案:(1)见解析(2)∠DPQ大小不变,理由见解析(3)CP=AQ,证明见解析分析:(1)连接BD,由等边三角形的性质可得AC垂直平分BD,继而得出AB=BC=CD=AD,便可证明;(2)连接PB,过点P作PE∥CB交AB于点E,PF⊥AB于点F,可证明△APE是等边三角形,由等腰三角形三线合一证明∠APF=∠EPF,∠QPF=∠BPF,即可求解;(3)由等腰三角形三线合一的性质可得AF = FE,QF = BF,即可证明.(1)连接BD,∵△ABC是等边三角形,∴AB=BC=AC,∵点B,D关于直线AC对称,∴AC垂直平分BD,∴DC=BC,AD=AB,∴AB=BC=CD=AD,∴四边形ABCD是菱形;(2)当点Р在线段AC上的位置发生变化时,∠DPQ的大小不发生变化,始终等于60°,理由如下:∵将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处,∴PQ=PD,∵△ABC是等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°,连接PB,过点P作PE∥CB交AB于点E,PF⊥AB于点F,则∠APE=∠ACB=60°,∠AEP=∠ABC=60°,∴∠APE=∠BAC=60°=∠AEP,∴△APE是等边三角形,∴AP=EP=AE,∵PF⊥AB,∴∠APF=∠EPF,∵点B,D关于直线AC对称,点P在线段AC上,∴PB = PD,∠DPA =∠BPA,∴PQ = PD,∵PF⊥AB,∴∠QPF=∠BPF,∴∠QPF -∠APF=∠BPF -∠EPF,即∠QPA = ∠BPE,∴∠DPQ =∠DPA - ∠QPA=∠BPA-∠BPE = ∠APE= 60°;(3)AQ= CP,证明如下:∵AC = AB,AP= AE,∴AC - AP = AB–AE,即CP= BE,∵AP = EP,PF⊥AB,∴AF = FE,∵PQ= PD,PF⊥AB,∴QF = BF,∴QF - AF = BF–EF,即AQ= BE,∴AQ= CP.小提示:本题考查了图形的旋转,等边三角形的判定和性质,等腰三角形的性质,菱形的判定等,熟练掌握知识点是解题的关键.18、如图所示的两个图形成中心对称,请找出它的对称中点.答案:见解析.分析:根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.小提示:本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.。
人教版九年级数学上册考点与题型归纳第二十三章旋转23.1图形的旋转(基础与培优)【有答案】
人教版九年级数学上册第二十三章旋转23.1 图形的旋转一:考点归纳考点一、图形的旋转定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
旋转性质①旋转后的图形与原图形全等②对应线段与O形成的角叫做旋转角③各旋转角都相等考点二、平移将一个图形沿着某条直线方向平移一定的距离的变换叫做平移。
其中,该直线的方向叫做平移方向,该距离叫做平移距离。
平移性质①平移后的图形与原图形全等②两个图形的对应边连线的线段平行相等(等于平行距离)③各组对应线段平行且相等二:【题型归纳】题型一:旋转性质1.如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC以x轴为对称轴,画出对称后的△A1B1C1;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2.题型二:旋转中的三角形问题2.如图,Rt△ABC与Rt△BCD在线段BC的同侧,AB﹦BC,∠ABC﹦∠BCD﹦90°.(1)如图①,已知AC=BD=CD的长;(2)如图②,将Rt△BCD绕着点B逆时针旋转90°得到Rt△BAF,点C、D的对应点分别是点A、F,连接CF和AD,过点B作BH⊥CF于点H,交AD于点M,求证:CF﹦2BM.三:基础巩固和培优1.如图,等边△OAB 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把△OAB 逆时针转90︒,则旋转后点A 的对应点A '的坐标是( )A .(-1B -1)C .()D .(-2,1)2.如图,将△AOB 绕点O 按逆时针方向旋转60°后得到△COD ,若∠AOB =15°,则∠AOD 的度数为( )A .30°B .45°C .60°D .75°3.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .14.如图,在ABC 中,∠ACB =90°,∠A =30°,AB =8,点P 是AC 上的动点,连接BP ,以BP 为边作等边BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是( )A .2B .4CD 25.如图,△ABC 中,∠ACB =90°,∠ABC =40°,将△ABC 绕点B 逆时针旋转得到△A 'BC ',使点C 的对应点C '恰好落在边AB 上,则∠CAA '的度数是( )A .50°B .70°C .110°D .120°6.如图,设点P 到原点O 的距离为p ,将x 轴的正半轴绕O 点逆时针旋转与OP 重合,记旋转角为α,规定[p ,α]表示点P 的极坐标,若某点的极坐标为135°],则该点的平面坐标为( )A .(B .(2,2-)C .(2,2--)D .(2,2-)7.如图,四边形ABCD 中,∠DAB =30°,连接AC ,将ABC 绕点B 逆时针旋转60°,点C 与对应点D 重合,得到EBD ,若AB =5,AD =4,则AC 的长度为( )A .5B .6C D8.将抛物线23y x =绕原点按顺时针方向旋转180°后,再分别向下、向右平移1个单位,此时该抛物线的解析式为 ( )A .23(1)1y x =---B .23(1)1y x =-+-C .23(1)1y x =--+D .23(1)1y x =-++9.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后得到ACP '△,如果AP =2,那么PP '的长等于( )A .B .C .D .410.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .811.如图,△ABC 绕点B 顺时针旋转40°得到△EBD ,若AC 与DE 交于点F ,则∠AFE 的度数是_____.12.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为_______.13.如图,在ABC 中,AB =2,AC =1,∠BAC =30°,将ABC 绕点A 逆时针旋转60°得到11AB C △,连接BC 1,则BC 1的长为__________ .。
人教版数学九年级上册第二十三章《23.1 图形的旋转》课件
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.
九年级数学上册第二十三章旋转23.1图形的旋转教案2(新版)新人教版
与
态 度
经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神.
重 点
旋转的有关概念和旋转的基本性质
难 点
探索旋转的基本性质
教学流程安排
活动流程图
活动内容和目的
活动1:创设情境,导入新课
AD
E
BC
学生动手练习,教师及时展示学生练习结果,并及时给予点评.
通过例题讲解,让学生加深对新知识的理解,培养学生分析问题和解决问题的能力.
教 学 过 程 设 计
问题与情境
师生行为
设计意图
2、分析香港特别行政区的区徽图中的图形的旋转现象.
学生思考后,展示结果.
本次活动中,教师应重点关注:
(1)学生画出图形后,能否准确地运用旋转的基本性质表达出作图的理论依据.
(2)学生中作图的不同方法.
通过图形欣赏让学生感受数学图形的魅力,激发学生兴趣.
活动四 课堂练习 巩固提高
1、P64页练习
2、图形:线段、角、圆、梯形、正方形、菱形中绕一定点转动一定角度(小于360°)能与原图形重合的图形有( )
A、2个 B、3个
C、4个 D、5个
学生单独完成后及时反馈,教师及时点评.
教 学 过 程 设 计
问题与情境
师生行为
设计意图
2、动手做一做:
在一张半透明的薄纸与另一张纸片之间垫上一张复写纸,在薄纸上画ΔABC,并在ΔABC外面找一点0,再用一枚图钉在0处穿过.将薄纸绕点0旋转一个角度,再次把ΔABC复印在纸片上,并记成ΔA´B´C´.在纸片上分别连接0A、0B、0C、0A´、0B´、0C´.
2019-2020年秋九年级数学上册 第二十三章 旋转 23.1 图形的旋转 第1课时 旋转的概念及性质课件 新人教版
6.如图 23-1-12,△ACD,△AEB 都是等腰直角三角形,∠CAD=∠EAB= 90°,∠BAC=30°,若将△EAC 绕某点逆时针旋转后能与△BAD 重合,请解答下 列问题:
(1)指出旋转中心; (2)指出逆时针旋转的角度; 图 23-1-12 (3)若 EC=10 cm,求 BD 的长度.
解:(1)∵将△EAC 绕某点逆时针旋转后能与△BAD 重合, ∴旋转中心是点 A. (2)∵将△EAC 绕某点逆时针旋转后与△BAD 重合, ∴AE 与 AB 重合. ∵∠BAE=90°,∴旋转的角度为 90°. (3)由题意知,EC 和 BD 是对应线段,根据旋转的性质可得 BD=EC=10 cm.
7.[2017·南岗区模拟]如图 23-1-13,在四边形 ABCD 中,∠DAB=60°,AB =AD,将线段 BC 绕点 B 顺时针旋转 60°得到线段 BE,连接 AC,ED.
(1)求证:AC=DE. (2)若 DC=4,BC=6,∠DCB=30°,求 AC 的长.
(1)证明:如答图,连接 BD. ∵∠DAB=60°,AB=AD,∴△ABD 是等边三角形, ∴AB=DB,∠ABD=60°. ∵将线段 BC 绕点 B 顺时针旋转 60°得到线段 BE, ∴CB=EB,∠CBE=60°,∴∠ABC=∠DBE. 在△ABC 和△DBE 中,A∠BA=BDC=B,∠DBE,
四、听方法。
在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”的 研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进行 叙述。这些都是语文学习中的一些具体方法。其他的科目也有适用的学习方法,如解数学题时,会用到反正法;换元法;待定系数法;配方法;消元法; 因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。
人教版数学九年级上册23.1《图形的旋转》说课稿
人教版数学九年级上册23.1《图形的旋转》说课稿一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第23.1节的内容。
本节内容是在学生已经掌握了图形的平移、翻转的基础上,引入图形的旋转概念,让学生进一步理解图形的变换,提高学生的空间想象力。
教材通过丰富的实例,引导学生探究图形的旋转性质,培养学生的观察能力、操作能力和推理能力。
二. 学情分析九年级的学生已经掌握了图形的平移、翻转知识,具备一定的学习基础。
但是,对于图形的旋转,学生可能在生活中接触较少,对其理解和掌握可能存在一定的困难。
因此,在教学过程中,教师需要通过生动的实例,让学生感受图形的旋转,帮助学生建立直观的空间观念。
三. 说教学目标1.知识与技能目标:让学生理解图形的旋转概念,掌握图形旋转的性质,能够运用旋转知识解决实际问题。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象力,提高学生的观察能力和操作能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:图形的旋转概念及其性质。
2.教学难点:图形的旋转在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,增强学生的直观感受,帮助学生理解和掌握知识。
六. 说教学过程1.导入新课:通过一个生活中的实例,如风车的旋转,引导学生思考图形的旋转现象,激发学生的学习兴趣。
2.探究新知:引导学生观察和操作实物模型,让学生亲身体验图形的旋转,从而引导学生总结出图形的旋转性质。
3.深化理解:通过几何画板演示图形的旋转过程,让学生更直观地理解旋转性质,帮助学生建立空间观念。
4.应用拓展:设计一些实际问题,让学生运用旋转知识解决,巩固所学知识,提高学生的应用能力。
九年级数学上册 第二十三章 旋转 23.1 图形的旋转(第1
由旋转的性质,可得
△BCD≌△BAE,∴∠ห้องสมุดไป่ตู้AE=∠BCD=∠ABC=60°,∴AE∥BC,故选项A正确;
不能说明∠ADE=∠BDC,故选项B不正确;又知∠DBE=60°,BD=BE,可得 关闭 △B BDE是等边三角形,故选项C正确;DE=BD=4,因此△ADE的周长
=AD+AE+DE=BD+AC=9,故选项D正确.
关闭
C
答案
1
2
3
4
5
6
7
3.下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的 是( )
关闭
B
答案
1
2
3
4
5
6
7
4.在等边三角形ABC中,D是AC上一点,连接BD,将△BCD绕点B逆时 针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则下列结论错误的 是( ) A.AE∥BC B.∠ADE=∠BDC C.△BDE是等边三角形 D.△ADE的周长是9
解析 答案
1
2
3
4
5
6
7
5.如图,将左边的矩形绕点B旋转一定角度后,位置如右边的矩形,则
∠ABC=
.
90°
关闭
答案
7.0°
旋转的性质 【例】 如图,△ABC是等边三角形,D是BC边上一点,△ABD经过 旋转后到达△ACE的位置. (1)旋转中心是哪一点? (2)旋转了多少度? (3)如果M是AB边的中点,那么经过上述旋转后,点M转到了什么 位置? 分析确定这个图形的旋转中心是解决问题的关键. 解:(1)旋转中心是点A. (2)旋转角∠BAC=60°. (3)点M转到了AC的中点处. 点拨在旋转过程中,不动的点与其本身是对应点,且该点即为旋 转中心.一对对应点与旋转中心连线的夹角是旋转角,对应线段的 夹角也是旋转角.
2019秋九年级数学上册第二十三章旋转23.1图形的旋转第1课时图形的旋转及性质教案(新版)新人教版
23.1 图形的旋转第1课时图形的旋转及性质教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.。
九年级数学人教版上册课件第二十三章旋转23.1图形的旋转
∠ABE′=∠ADE=90°, BE′=DE .
将观察——发现——操作——交流——抽象— 说一说:旋转的基本性质
过程与方法:经历图形旋转概念的形成过程和性质的探索过程,发展直观想象能力,逐步提高分析、归纳、抽象概括的思维能力。 新人教版九年级上《旋转》
根据新课标的理念,本节课我坚持以“学 1、问题情境,导入新课
△ ABC ≌△A′B′C′
生为主体,教师为主导,数学活动为载体”的 在正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与点B重合.
OA与OA ′相等吗?OB与OB ′相等吗? 设计意图:既内化定义,加深对应点和旋转角的理解,又为后面的探究埋下伏笔。
教学重点: 归纳图形旋转的有关概念及性质。
教学难点: 概念的形成过程和性质的探索过程。
四、教法学法分析
我相信这样既能突出重点、突破难点教学,也会极大的激发学生的学习兴趣。
并且“图形的旋转”本身就是一种重要的数学变换思想,它不仅为本章后续学习“中心对称”打下基础,更为后面章节“圆”的相关 学习做了铺垫。
练习2.如图,用左面的三角形经过怎样
旋转,可以得到右面的图形.
练习3.找出图中扳手拧螺母
时的旋转中心和旋转角.
O
A
B
四、小结作业、深化提高
课堂小结:
今天这节课我们学习了那些内容,你学会了那些思想 方法,在学习的过程中有什么感受?请同学们畅所欲 言!
分层作业
1.将例题中的“顺时针”改为“逆时针”, 请完 成作图。 2习题23.1第4题 3把一个三角形进行旋转:选择不同的旋转中 心、不同的旋转角,看看旋转的效果有什么 不同。
九年级数学上册第二十三章旋转23.1图形的旋转(第2课时旋转作图)课时精讲新人教版(最新整理)
九年级数学上册第二十三章旋转23.1 图形的旋转(第2课时旋转作图)课时精讲(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十三章旋转23.1 图形的旋转(第2课时旋转作图)课时精讲(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十三章旋转23.1 图形的旋转(第2课时旋转作图)课时精讲(新版)新人教版的全部内容。
第2课时旋转作图1.在旋转的过程中,要确定一个图形旋转后的位置,除了应了解图形原来的位置外,还应了解__旋转中心___、__旋转方向___和__旋转角___.2.旋转作图的步骤:(1)首先确定__旋转中心___、旋转方向和__旋转角___;(2)其次确定图形的关键点;(3)将这些关键点沿指定的方向旋转指定的角度;(4)连接__对应点___,形成相应的图形.知识点1:旋转作图1.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心一定是__点B___.2.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置以及旋转后的三角形.解:图略3.任意画一个△ABC,作下列旋转:(1)以点A为旋转中心,把这个三角形逆时针旋转45°;解:图略(2)以三角形外任意一点O为旋转中心,把这个三角形顺时针旋转120°;解:图略(3)以AB边的中点D为旋转中心,把这个三角形旋转180°。
解:图略知识点2:在平面直角坐标系中的图形旋转4.将等腰直角三角形AOB按如图所示位置放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为(C)A.(1,1) B.(2,错误!)C.(-1,1)D.(-错误!,错误!),第4题图) ,第5题图) 5.如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为(D )A.(-a,-b) B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b+2)6.(2014·烟台)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( B)A.(1,1) B.(1,2)C.(1,3) D.(1,4),第6题图),第7题图)7.如图,正方形OABC的两边OA,OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是(C )A.(2,10)B.(-2,0)C.(2,10)或(-2,0) D.(10,2)或(-2,0)8.如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,点C在y轴上,把矩形OABC 绕着原点顺时针旋转90°得到矩形OA′B′C′,若OA=2,OC=4,则点B′的坐标为(C ) A.(2,4) B.(-2,4)C.(4,2)D.(2,-4),第8题图) ,第9题图) 9.如图,将平面直角坐标系中的△AOB绕点O顺时针旋转90°得到△A′OB′.已知∠AOB =60°,∠B=90°,AB=3,则点B′的坐标是( A )A.(错误!,错误!) B.(错误!,错误!)C.(错误!,错误!) D.(错误!,错误!)10.如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.解:图略11.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若A 的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.解:(1)△A1B1C和△A2B2C2图略(2)旋转中心坐标(32,-1)12.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?解:(1)根据旋转的意义和性质知,∠OCD=60°,CO=CD,∴△COD是等边三角形(2)当α=150°,即∠BOC=150°时,△AOD是直角三角形.由旋转的性质可知,△BO C≌△ADC,∴∠ADC=∠BOC=150°。
2019年秋九年级数学上册 第二十三章 旋转 23.1 图形的旋转(二)导学课件 新人教版PPT
和性质及等边三角形的判定和性质,熟练掌Biblioteka 握这些性质是解答本题的关键.9
课堂导学
对点训练二
△ △ 2.如下图, ABC由 EDC绕C点旋转得到,B、C、
E 三点在同一条直线上,∠ACD=∠B.
【答案】如图,D(2,3),E(2,1). 【点拔】旋转作图关键是:①找出图形的关健点;②
确定旋转中心、旋转方向和旋转角;③作出 关键点的对应点.
6
课堂导学
对点训练一
△ 1.请在网格内画出 ABC绕点O逆时针旋转90°后的
图形.
7
课堂导学
知识点2:与旋转有关的证明或计算
△ 【例2】如右图,将一个钝角 ABC(其中∠ABC= △ 120°)绕点B顺时针旋转得 A1BC1,使得C
转后的图形吗?试一试.
4
课堂导学
知识点1:画旋转后的图形
△ 【例1】如右图, ABC是格点 △ 三角形,将 ABC绕点
C逆时针旋转90°,得到
△CDE. △ (1)请画出 CDE;
(2)写出点B对应点D和点A对应点E的坐标.
5
课堂导学
【解析】本题旋转中心是点C,旋转方向为逆时针, 旋转角为90°,明确了这三要素后,在坐标 系中利用全等三角形知识,易画出△CDE, 并写出点D,E的坐标.
△ △ ADE经过旋转后得到 ABF.在这个旋转过程中:
(1)旋转中心是___点__A_____;
(2)∠FAE的度数是___9_0__°____;
△ △ (3) ABF与 ADE全等吗?答:___全__等_____. 3
【推荐重点】2019九年级数学上册 第二十三章 旋转 23.1 图形的旋转(1)教案
第二十三章旋转23.1 图形的旋转第1课时旋转的概念及性质※教学目标※【知识与技能】了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.【过程与方法】让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.【情感态度】让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.【教学重点】旋转及对应点的有关概念及其应用.【教学难点】从活生生的数学中抽出概念.※教学过程※一、复习导入问题我们以前学过图形的平移、对称等变换,它们有哪些特征?生活中是否还有其他运动变化呢?回答是肯定的,下面我们就来研究.二、探索新知探索1 请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?教师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?以上两种现象有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.归纳总结像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.试一试请你举出一些现实生活中旋转的实例,并指出旋转中心和旋转角.探索2 如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O 作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC ),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′),移开硬纸板.根据图回答下面的问题:(1)线段OA 与OA′,OB 与OB′,OC 与OC′有什么关系?(2)∠AOA′,∠BOB′,∠COC′有什么关系?(3)△ABC 与△A′B′C′的形状和大小有什么关系?答案:(1)OA =OA′,OB =OB′,OC =OC′,也就是对应点到旋转中心相等.(2)∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.(3)△ABC 和△A′B′C′形状相同和大小相等,即全等.归纳总结 旋转的性质:(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角.(3)旋转前、后的图形全等.三、掌握新知例 如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.分析:关键是确定△ADE 三个顶点的对应点,即它们旋转后的位置.解:四、巩固练习1.如图,它可以看作是由一个菱形绕某一点旋转一个角度后,顺次按这个角度同向旋转而得到的: ①请你在图中用字母O 标注出这一点;②每次旋转了_______度;③一共旋转了_______次.2.将图形绕点O 旋转,且图形上点P ,Q 旋转后的对应点分别为P′,Q′,若∠PO P′=80°,则∠QO Q′= ,若OQ=2.5cm ,则O Q′= .五、归纳小结通过这节课的学习,你有哪些收获和体会?※布置作业※从教材习题23.1 中选取.※教学反思※积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,在让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.完成本课时教学时,教师需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯.。
九年级数学上册第二十三章旋转23.1图形的旋转旋转的概念及性质_1
12/11/2021
第九页,共二十六页。
2.如图 23-1-4 是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与 自身重合,则至少应将它旋转的度数是( B )
A.60° C.90°
12/11/2021
图 23-1-4 B.72° D.144°
第十页,共二十六页。
3.[2018·衡阳]如图 23-1-5,点 A,B,C,D,O 都在方格纸的格点上,若△ COD 是由△AOB 绕点 O 按顺时针方向旋转而得到的,则旋转的角度为 90° .
A.55°
B.60°
C.65°
D.70°
图 23-1-10
12/11/2021
第十六页,共二十六页。
5.[2018·白银]如图 23-1-11,点 E 是正方形 ABCD 的边 DC 上一点,把△ADE 绕点 A 顺时针旋转 90°到△ABF 的位置.若四边形 AECF 的面积为 25,DE=2, 则 AE 的长为( D )
A.5
B. 23
C.7
D. 29
12/11/2021
图 23-1-11
第十七页,共二十六页。
【解析】 ∵将△ADE 绕点 A 顺时针旋转 90°到△ABF 的位置,∴△ADE≌ △ABF.∴S 正方形 ABCD=S 四边形 AECF=25.∴AD=CD=5.在 Rt△ADE 中,由勾股定理, 得 AE= AD2+DE2= 52+22= 29.故选 D.
如图 23-1-1,若把△ABC 绕点 A 旋转一定角度就得到△ADE,则对应 边 AB= AD ,BC= DE ,对应角∠CAB= ∠EAD ,∠B= ∠D .
12/11/2021
图 23-1-1
第六页,共二十六页。
2019秋九年级数学上册第23章旋转23.1图形的旋转23.1.1旋转的概念及性质作业本课件新版新人教版02
图 23-1-5
第1课时 旋转的概念及性质
【解析】 根据旋转的性质可得 AC=A′C, 因此△ACA′是等腰直角三角 形,所以∠CAA′=∠CA′A=45°.又∠1=25°,所以∠CA′B′=20°= ∠BAC,所以∠BAA′=20°+45°=65°.
第1课时 旋转的概念及性质
8.如图 23-1-6,在△ABC 中,∠CAB=65°,将△ABC 在平面 内绕点 A 旋转到△AB′C′的位置,使 CC′∥AB,则旋转角的度数为 ( C ) A.35° B.40° C.50° D.65°
第1课时 旋转的概念及性质
15.2016·娄底 如图 23-1-12,等腰三角形 ABC 绕顶点 B 逆 时针旋转角 α 到△A1BC1 的位置,AB 与 A1C1 相交于点 D,AC 与 A1C1, BC1 分别交于点 E,F. (1)求证:△BCF≌△BA1D; (2)当∠C=α 时,判断四边形 A1BCE 的形状,并说明理由.
图 23-1-1
第1课时 旋转的概念及性质
2.下列现象中是旋转的是( D ) A.推拉抽屉 B.火车车厢的直线运动 C.电梯的上下移动 D.汽车方向盘的转动
【解析】A 中,推拉抽屉是物体的平移运动;B 中,火车车厢的直线运动 是平移;C 中,电梯的上下移动是平移;D 中,汽车方向盘的转动是绕着一个 点的转动,是旋转.故选 D.
图 23-1-13
关键在态度
第1课时 旋转的概念及性质
证明:(1)∵将△ADF 绕点 A 顺时针旋转 90°后,得到△ABQ, ∴AQ=AF,∠FAQ=90°. ∵∠EAF=45°,∴∠QAE=45°.
AQ=AF, 在△AQE 和△AFE 中,∠QAE=∠FAE=45°, AE=AE,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三章旋转
23.1 图形的旋转
第1课时旋转的概念及性质
※教学目标※
【知识与技能】
了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.
【过程与方法】
让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.
通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.
【情感态度】
让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.【教学重点】
旋转及对应点的有关概念及其应用.
【教学难点】
从活生生的数学中抽出概念.
※教学过程※
一、复习导入
问题我们以前学过图形的平移、对称等变换,它们有哪些特征?
生活中是否还有其他运动变化呢?回答是肯定的,下面我们就来研究.
二、探索新知
探索 1 请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?教师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.
再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?
以上两种现象有什么共同特点呢?
共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.
归纳总结
像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
试一试请你举出一些现实生活中旋转的实例,并指出旋转中心和旋转角.
探索2 如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O
作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角
形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的
三角形(△A′B′C′),移开硬纸板.
根据图回答下面的问题:
(1)线段OA 与OA′,OB 与OB′,OC 与OC′有什么关系?
(2)∠AOA′,∠BOB′,∠COC′有什么关系?
(3)△ABC 与△A′B′C′的形状和大小有什么关系?
答案:(1)OA =OA′,OB =OB′,OC =OC′,也就是对应点到旋转中心相等.(2)∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.(3)△ABC 和△A′B′C′形状相同和大小相等,即全等.
归纳总结 旋转的性质:(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角.(3)旋转前、后的图形全等.
三、掌握新知
例 如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把
△ADE 顺时针旋转90°,画出旋转后的图形.
分析:关键是确定△ADE 三个顶点的对应点,即它们旋转后的位置.
解:
四、巩固练习
1.如图,它可以看作是由一个菱形绕某一点旋转一个角度后,顺次按
这个角度同向旋转而得到的: ①请你在图中用字母O 标注出这一点;②每
次旋转了_______度;③一共旋转了_______次.
2.将图形绕点O 旋转,且图形上点P ,Q 旋转后的对应点分别为P′,Q′,
若∠PO P′=80°,则∠QO Q′= ,若OQ=2.5cm ,则O Q′= .
五、归纳小结
通过这节课的学习,你有哪些收获和体会?
※布置作业※
从教材习题23.1 中选取.
※教学反思※
积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,在让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.完成本课时教学时,教师需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯
.。