实验一集成乘法器幅度调制实验,高频电子线路,南京理工大学紫金学院实验报告资料

合集下载

幅度调制与解调电路实验报告

幅度调制与解调电路实验报告

一、实验标题:幅度调制与解调电路实验二、实验目的1、加深理解调幅调制与检波的原理2、掌握用集成模拟乘法器构成调幅与检波电路的方法3、掌握集成模拟乘法器的使用方法4、了解二极管包络检波的主要指标、检波效率及波形失真三、实验仪器与设备5、高频电子线路试验箱(TKGP);6、双踪示波器;7、频率计;8、交流毫伏表。

四、实验原理实验原理图图一:电路原理图MC1496 是双平衡四象限模拟乘法器。

引脚8 与10 接输入电压UX,1 与4 接另一输入电压Uy,输出电压U0 从引脚6 与12 输出。

引脚2 与3 外接电阻RE,对差分放大器VT5、VT6 产生串联电流负反馈,以扩展输入电压Uy的线性动态范围。

引脚14 为负电源端(双电源供电时)或接地端(单电源供电使),引脚5 外接电阻R5。

用来调节偏置电流I5 及镜像电流I0 的值。

五、 实验内容及步骤1、 乘法器失调调零2、 观察调幅波形调幅波形一-60-40-20020406001234567tU /m v图二:K502 1-2短接波形图调幅波形二-40-30-20-1001020304001234567tU /m v图三:K502 2-3短接波形图3、 观测解调输出解调波形-500-400-300-200-100010020030040050000.511.522.533.544.55tU /m v图四:解调输出波形图六、实验分析用低频调制电压去控制高频载波信号的幅度的过程称为幅度调制(或调幅)。

既然高频载波的幅度随低频调制波而变,所以已调波同样随时间而变。

即有式中m是调幅波的调制系数(调幅度)。

同时当m<1时,实现了不失真的调制,而当m>1时,调制后的波形包络线,将与调制波不同,即产生了失真,或称超调。

七、实验体会通过本次实验,我了解了集成模拟乘法器的基本工作原理、分类、特性等,在了解信号的调制和解调知识的。

温故而知新,本次试验使我熟悉了对实验仪器是使用,并且初步学会了集成模拟乘法器设计幅度调制的方法。

通信电子线路实验报告

通信电子线路实验报告

中南大学《通信电子线路》实验报告学院信息科学与工程学院题目调制与解调实验学号专业班级姓名指导教师实验一振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。

2.研究已调波与调制信号及载波信号的关系。

3.掌握调幅系数测量与计算的方法。

4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。

二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正比。

通常称高频信号为载波信号。

本实验中载波是由晶体振荡产生的10MHZ高频信号。

1KHZ的低频信号为调制信号。

振幅调制器即为产生调幅信号的装置。

在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D、V7、V8为差动放大器V5与V6的恒流源。

进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

图2-1 MC1496内部电路图用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。

器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。

高频电子线路实验报告

高频电子线路实验报告

南京信息工程大学高频电子线路实验报告实验一高频小信号放大器 (3)一、实验原理 (3)二、实验内容 (4)实验二振幅调制实验 (6)一、实验原理 (6)二:实验结果: (7)实验三调幅信号的解调 (9)一、实验原理 (9)二.实验内容 (12)实验四混频器 (14)一、实验原理 (14)二、实验内容 (15)实验一 高频小信号放大器一、实验原理高频小信号放大器的作用就是放大无线电设备中的高频小信号, 以便作进一步变换或处理。

所谓“小信号”,主要是强调放大器应工作在线性范围。

高频与低频小信号放大器的基 本构成相同,都包括有源器件(晶体管、集成放大器等)和负载电路,但有源器件的性能及负载电路的形式有很大差异。

高频小信号放大器的基本类型是以各种选频网络作负载的频带 放大器,在某些场合,也采用无选频作用的负载电路,构成宽带放大器。

频带放大器最典型的单元电路如图 1-1 所示, 由单调谐回路做法在构成晶体管调谐放大器。

图 1-1 电路中,晶体管直流偏置电路与低频放大器电路相同,由于工作频率高,旁路电 容C b.、C e 可远小于低频放大器中旁路电容值。

调谐回路的作用主要有两个:图 1-1 晶体管单调谐回路调谐放大器第一、选频作用,选择放大0f f =的信号频率,抑制其它频率信号。

第二、提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。

高频小信号频带放大器的主要性能指标有:(1)中心频率 0f :指放大器的工作频率。

它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。

(2)增益:指放大器对有用信号的放大能力。

通常表示为在中心频率上的电压增益和 功率增益。

电压增益 /VO O i A V V = (1—1)功率增益 /PO O i A P P = (1—2)式中 O V 、i V 分别为放大器中心频率上的输出、输入电压幅度, O P 、i P 分别为放大器中心频率上的输出、输入功率。

增益通常用分贝表示。

高频电子线路实验指导书1

高频电子线路实验指导书1

高频电子线路实验指导书南京理工大学紫金学院二〇一一年十二月目录1. JH5007A+新型高频电子电路实验系统介绍 (3)2. 实验一小信号调谐放大器实验 (7)3. 实验二 LC、晶体正弦波振荡电路实验 (12)4. 实验三集成乘法器幅度调制实验 (17)5. 实验四二极管包络检波实验 (25)1. JH5007A+新型高频电子电路实验系统介绍一、电路组成及模块配置1、JH5007/A+新型高频电子电路综合实验系统由3个仪表模块、11块实验功能模块、高频与低频连接电缆、电源模块及机箱等组成。

原理性实验模块可根据用户需求任意选用与扩充(参见下部示意图)。

2、标配实验功能模块:模块A1 集成乘法器调幅实验模块A3 调幅信号同步解调实验模块A4 二极管包络检波电路实验模块A5 LC、晶体正弦波振荡电路实验模块A6 变容二极管调频实验模块A7 电容耦合相位鉴频实验模块A8 晶体三极管混频电路实验模块A9 小信号调谐放大器实验模块A10高频功率放大器实验模块A17集成锁相环测试及调频实验模块A18集成锁相环鉴频实验3、本新型高频电子电路综合实验系统可为教学提供的主要实验内容如下:实验一小信号调谐放大器实验(A9+A5)实验二 LC、晶体正弦波振荡电路实验(A5+频率计)实验三集成乘法器幅度调制实验(低频源+高频源+A1)实验四二极管包络检波实验(低频源+高频源+A1+A4)二、概述JH5007/A+新型高频电子电路综合实验系统内均配置了低频信号源模块、高频信号源模块和精密数字频率计模块,统称为“仪表模块”。

其中低频信号源模块可产生方波、正弦波和三角波等函数波形,信号频率及各波形的输出幅度均可独立调节,主要用于在各类调制/解调实验中产生发端原始调制信号。

频率范围按不同应用分为两档,第一档为10Hz~1.5KHz;第二档为10KHz~700KHz。

高频信号源模块可分多档粗调选择频率范围,每一档内又可进行连续细调。

高频仿真实验报告

高频仿真实验报告

实验报告实验课程:通信电子线路实验(软件部分)学生姓名:周倩文学号:6301712010专业班级:通信121班指导教师:雷向东老师、卢金平老师目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:6301712010 专业班级:通信121班实验类型:□验证□综合□设计□创新实验日期: 2014-10-24 实验成绩:、实验三非线性丙类功放仿真设计(软件)一、实验目的1.了解丙类功率放大器的基本工作原理.掌握丙类放大器的调谐特性以及负载改变时的动态特性。

2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。

3. 掌握丙类放大器的计算与设计方法。

二、实验内容1. 观察高频功率放大器丙类工作状态的现象.并分析其特点2. 测试丙类功放的调谐特性3. 测试丙类功放的负载特性4. 观察激励信号变化、负载变化对工作状态的影响三、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。

功率放大器电流导通角越小.放大器的效率越高。

非线性丙类功率放大器的电流导通角小于90°.效率可达到80%.通常作为发射机末级功放以获得较大的输出功率和较高的效率。

特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小).基极偏置为负值.电流导通角小于90°.为了不失真地放大信号.它的负载必须是LC谐振回路。

在丙类谐振功放中.若将输入谐振回路调谐在输出信号频率n次谐波上.则可近似的认为.输出信号回路上仅有ic中的n次谐波分量产生的高频电压.而它的分量产生的电压均可忽略。

因而.在负载RL上得到了频率为输入信号频率n倍的输出信号功率。

《高频电子线路》频率调制与解调实验报告

《高频电子线路》频率调制与解调实验报告

《高频电子线路》频率调制与解调实验报告课程名称:高频电子线路实验类型:验证型实验项目名称:频率调制与解调一、实验目的和要求通过实验,学习频率调制与解调的工作原理、电路组成和调试方法,学习用锁相环电路实现频率调制、斜率鉴频实现调频信号的解调的设计方法,利用Multisim仿真软件进行仿真分析实验。

二、实验内容和原理1、实验原理所谓调制,就是用一个信号(原信号也称调制信号)去控制另一个信号(载波信号)的某个参量,从而产生已调制信号,解调则是相反的过程,即从已调制信号中恢复出原信号。

根据所控制的信号参量的不同,调制可分为:调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。

调频,使载波的瞬时频率随着调制信号的大小而变,而幅度保持不变的调制方式。

调相,利用原始信号控制载波信号的相位。

这三种调制方式的实质都是对原始信号进行频谱搬移,将信号的频谱搬移到所需要的较高频带上,从而满足信号传输的需要。

2、实验内容(1)设计实现中心频率为100kHz的调频信号发生器。

绘出电路原理图,采用锁相调频的方式,给出仿真结果图。

(2)对产生的调频信号,采用斜率鉴器进行鉴频,设计失谐网络和包络检波器,绘出电路图,给出仿真结果图。

三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、函数发生器、直流电源。

四、操作方法与实验步骤及实验数据记录和处理1、采用锁相环路实现调频信号,调频信号的中心频率为100kHz。

2、对调频信号进行解调,采用斜率鉴器,对调频信号进行解调。

将AD741输出的100kHz 的调频信号加到电容C7与地之间,设计失谐网络和包络检波器。

C21nFR65kΩR550ΩC71µF L11.2mHU2AD741CH3247651U3AD741CH3247651R131kΩR141kΩR152kΩR164kΩD21N4150D31N4150V712VV812VC81µFXSC1A BExt Trig++__+_C3160nFR810kΩR71kΩR111kΩR121kΩC4160nFC510µF C9160nF4、分析说明U2、U3、D2、D3的作用。

集成乘法器混频器实验报告

集成乘法器混频器实验报告

集成乘法器混频器试验汇报模拟乘法混频试验汇报模拟乘法混频试验汇报姓名: 学号: 班级: 日期:23模拟乘法混频一、试验目旳1. 深入理解集成混频器旳工作原理2. 理解混频器中旳寄生干扰二、试验原理及试验电路阐明混频器旳功能是将载波为vs(高频)旳已调波信号不失真地变换为另一载频(固定中频)旳已调波信号,而保持原调制规律不变。

例如在调幅广播接受机中,混频器将中心频率为535~1605KHz旳已调波信号变换为中心频率为465KHz旳中频已调波信号。

此外,混频器还广泛用于需要进行频率变换旳电子系统及仪器中,如频率合成器、外差频率计等。

混频器旳电路模型如图1所示。

VsV图1 混频器电路模型混频器常用旳非线性器件有二极管、三极管、场效应管和乘法器。

本振用于产生一种等幅旳高频信号VL,并与输入信号 VS经混频器后所产生旳差频信号经带通滤波器滤出。

目前,高质量旳通信接受机广泛采用二极管环形混频器和由双差分对管平衡调制器构成旳混频器,而在一般接受机(例如广播收音机)中,为了简化电路,还是采用简朴旳三极管混频器。

本试验采用集成模拟相乘器作混频电路试验。

图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完毕。

24图2 MC1496构成旳混频电路MC1496可以采用单电源供电,也可采用双电源供电。

本试验电路中采用,12V,,8V供电。

R12(820Ω)、R13(820Ω)构成平衡电路,F2为4.5MHz选频回路。

本试验中输入信号频率为 fs,4.2MHz,本振频率fL,8.7MHz。

为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上旳除了输入信号电压VS和本振电压VL外,不可防止地还存在干扰和噪声。

它们之间任意两者均有也许产生组合频率,这些组合信号频率假如等于或靠近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号旳接受。

干扰是由于混频器不满足线性时变工作条件而形成旳,因此干扰不可防止,其中影响最大旳是中频干扰和镜象干扰。

《高频电路原理与分析》实验报告

《高频电路原理与分析》实验报告

高频电路原理与分析
实验报告
专业电子信息科学与技术
班级20 级电子二班
学号
姓名
同组人
实验名称混频器实验、中频放大器实验
20xx年6 月8 日
目录
一、实验目的 (1)
二、原理说明 (1)
三、实验设备 (1)
四、实验内容 (2)
五、实验注意事项 (2)
六、实验心得及体会 (2)
一、实验目的
1.了解三极管混频器和集成混频器的基本工作原理,掌握用MC1496来实现混频的方法。

2.了解混频器的寄生干扰。

3.熟悉电子元器件和高频电子线路实验系统;
4.了解中频放大器的作用、要求及工作原理;
5.掌握中频放大器的测试方法。

二、实验设备
集成乘法器混频模块、集体三极管混频模块、LC振荡器与集体振荡器模块、试验箱、电源、中频放大器模块。

三、实验内容
1.中频频率观测
(1)晶体三极管混频器
当改变高频信号源频率时,输出中频5TP03波形变化为先增大后减小。

(2)集成乘法器混频器
当改变高频信号源的频率时,输出中频9TP04的波形变化为先增大后减小。

2中频放大器输入输出波形观察及放大倍数测量
调整7W02,使中放输出幅度最大且不失真,记下此时的幅度大小为4.52V,然后测量中放此时的输入幅度,即可计算出中放的电压放大倍数。

电压放大倍数计算得w=4.52/0.15=30.1。

实验图如下:。

高频电路-集成乘法器幅度调制电路实验报告

高频电路-集成乘法器幅度调制电路实验报告

《高频电子电路》课程实验报告
万用表
1.模拟相乘调幅器的输入失调电压调节。

2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。

3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。

4.用示波器观察调制信号为方波、三角波的调幅波。

AM正常波形应为下图所示:求Ma:
通过本次实验,了解了调制信号、载波信号与已调波之间的关系,掌握了在示波器上测量与调整调幅波特性的方法。

若调制信号为单一频率的余弦波:,
载波信号为:
则普通调幅波(AM)的表达式为
式中ma称为调幅系数或调
幅度。

由于调幅系数ma与调制电压的振幅成正比,ma越大,调幅波幅度变化越大。

模拟乘法器调幅实验报告

模拟乘法器调幅实验报告

模拟乘法器调幅实验报告模拟乘法器调幅实验报告引言:调幅(Amplitude Modulation, AM)是一种常用的调制技术,广泛应用于无线通信、广播电视等领域。

在调幅技术中,模拟乘法器是一个关键的组件,它能够实现信号的调幅处理。

本实验旨在通过搭建模拟乘法器电路,深入了解调幅原理,并通过实验验证其效果。

一、实验目的通过搭建模拟乘法器电路,掌握调幅原理,并验证其调幅效果。

二、实验原理调幅是通过将调制信号与载波信号相乘,实现信号的幅度调制。

模拟乘法器是实现这一功能的关键元件。

在本实验中,我们采用二极管作为模拟乘法器的核心元件。

当二极管正向偏置时,其电流与输入电压成正比。

将调制信号与载波信号输入到二极管的正向偏置端,通过电流与电压的乘积,实现信号的幅度调制。

三、实验器材和仪器1. 信号发生器:提供调制信号和载波信号。

2. 二极管:作为模拟乘法器的核心元件。

3. 示波器:用于观察输出信号的波形。

四、实验步骤1. 搭建电路:将信号发生器的调制信号输出与载波信号输出分别连接到二极管的正向偏置端,将二极管的反向端接地。

将二极管的输出端连接到示波器,观察输出信号的波形。

2. 调节信号发生器:分别调节调制信号和载波信号的频率、幅度和相位,观察输出信号的变化。

3. 记录实验数据:记录不同调制信号和载波信号参数下的输出信号波形和幅度。

五、实验结果与分析在实验中,我们通过调节信号发生器的调制信号和载波信号的频率、幅度和相位,观察了输出信号的变化。

实验结果显示,当调制信号的频率与载波信号的频率相等时,输出信号呈现出明显的幅度调制效果。

当调制信号的幅度增大时,输出信号的幅度也相应增大。

当调制信号的相位与载波信号的相位相差90度时,输出信号的幅度最大,表现出最明显的幅度调制效果。

通过实验结果的分析,我们可以得出以下结论:1. 调制信号的频率与载波信号的频率相等时,能够实现明显的幅度调制效果。

2. 调制信号的幅度与输出信号的幅度成正比,调制信号的幅度增大时,输出信号的幅度也相应增大。

集成电路构成的频率调制器实验报告 -回复

集成电路构成的频率调制器实验报告 -回复

集成电路构成的频率调制器实验报告 -回复
一、实验目的
本实验的目的是通过使用集成电路构成一个频率调制器,实现信号的调制功能,深入了解频率调制原理和集成电路在电子电路中的应用。

二、实验原理
频率调制是一种常见的调制方式,通过改变信号的频率来携带信息。

在本实验中,我们将使用NE566集成电路构成一个简单的频率调制器。

NE566是一种单片集成电路,它可以在FM和FSK调制中实现频率的调制。

其工作原理是输出频率与输入电压成正比。

当输入电压变化时,输出频率也会相应改变。

三、实验器材
1. NE566集成电路
2. 电阻、电容、电感等元件
3. 示波器
4. 功率放大器
四、实验步骤
1. 将NE566集成电路与其他所需的元件连接起来,按照频率调制器的电路图进行搭建。

2. 将输入信号连接到NE566集成电路的相应输入端口。

3. 通过示波器观察输出信号频率随输入信号变化的情况。

4. 使用功率放大器放大输出信号。

五、实验结果分析
在实验过程中,我们可以通过调节输入信号的幅值和频率,观察到输出信号频率的相应变化。

当输入信号电压变化时,输出信号频率也会相应改变,实现了频率调制的功能。

六、实验总结
通过本实验,我们成功地使用NE566集成电路构成了一个频率调制器,并实现了频率的调制功能。

我们还了解了集成电路在电子电路中的应用和频率调制的原理。

通过这个实验,我们对频率调制的原理和应用有了更深刻的理解,并学会了使用集成电路构建频率调制器。

这对我们今后的学习和应用都有很大的帮助。

集成运算放大电路,南京理工大学紫金学院eda实验报告

集成运算放大电路,南京理工大学紫金学院eda实验报告

EDA(五)模拟部分电子线路仿真实验报告实验名称:集成运算放大电路姓名:学号:班级:通信实验时间:2012.5南京理工大学紫金学院电光系一、 实验目的1、掌握运算电路的特点,能组成基本的运算电路。

2、掌握集成运算放大电路输入电压和输出电压的关系。

3、掌握运算电路参数的测试方法。

二、 实验原理1、 反相比例运算电路图6-3为反相比例运算电路原理图:图6-3 反相比例运算电路原理图由虚断得:0==-+I I故:0≈+u ,f i I I =;由虚短得:0=≈-+u u11//)(R u R u u I i i i ≈-=-f o f o f R u R u u I //)(-≈-=-利用两式可以得到输入和输出电压的关系:i f o R R u u 1-=其中负号表示输出信号和输入信号相位相反。

电路中R2为平衡电阻,f R R R //12=。

当f R R =1时,i o u -=u ,此时电路为反相器。

2、原理图如图6-18所示,输入信号从反相输入端输入,利用电容作为反馈网络。

由虚断和虚短得:,1iR v i i c == 对电容而言:t i C d 1u C C ⎰=则输出电压为:t C R t i C d u 1d 1u u i 1C C O ⎰⎰-=-=-= 因此输出信号的波形和输入信号的波形有关系。

图6-18 积分运算电路原理图1)设正弦波输入,频率为f ,则波形可以表示为:)2sin()sin(ft t u i πω==则输出电压的关系式为:)2cos(21)(u 1O ft fC R t ππ-=说明:正弦波输入,经积分电路后输出波形为余弦波,输出电压的幅度为fC R V om π211=,相位超前输入信号090。

2)方波输入方波信号输入时,在某一段时间t ~0内U u i =为一恒量,在另一段时间t t 2~内U u i -=,也是一个恒量。

输出电压的表达式为:)()()(d 11121I 21t u RCt t u t u t u RC u C i C tt o +--=+-=⎰ 故方波输入,当C 选择合适当且信号稳定后输出信号为三角波,如图6-19所示。

高频电子技术实验讲稿详解

高频电子技术实验讲稿详解

实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性2.做本实验时所用到的仪器:●单调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。

为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图第 3 页共 28 页2.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。

其基本部分与图1-1相同。

图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。

1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

1Q02为射极跟随器,主要用于提高带负载能力。

并行乘法器-南京理工大学紫金学院vhdl实验报告-eda

并行乘法器-南京理工大学紫金学院vhdl实验报告-eda

EDA技术与应用实验报告实验名称:并行乘法器姓名:学号:班级:通信时间:2013理工大学紫金学院电光系一、实验目的1、学习包集和元件例化语句的使用。

2、学习FLU(全加器单元)电路的设计。

3、学习并行乘法电路的设计。

二、实验原理并行乘法器的电路原理图如下图所示,主要由全加器和与门构成。

并行乘法器原理图三、实验容1、and_2library ieee;use ieee.std_logic_1164.all;entity and_2 isport (a,b:in std_logic;y:out std_logic);end and_2;architecture and_2 of and_2 isbeginy <= a and b;end and_2;2、faulibrary ieee;use ieee.std_logic_1164.all;entity fau isport (a,b,cin:in std_logic;s,cout:out std_logic);end fau;architecture fau of fau isbegins <= a xor b xor cin;cout <= (a and b)or(a and cin)or(b and cin);end fau;3、top_rowlibrary ieee;use ieee.std_logic_1164.all;use work.my_components.all;entity top_row isport (a:in std_logic;b:in std_logic_vector(3 downto 0);sout,cout:out std_logic_vector(2 downto 0);p:out std_logic);end top_row;architecture structural of top_row isbeginU1: component and_2 port map(a,b(3),sout(2));U2: component and_2 port map(a,b(2),sout(1));U3: component and_2 port map(a,b(1),sout(0));U4: component and_2 port map(a,b(0),p);cout(2) <= '0';cout(1) <= '0';cout(0) <= '0';end structural;4、mid_rowlibrary ieee;use ieee.std_logic_1164.all;use work.my_components.all;entity mid_row isport (a:in std_logic;b:in std_logic_vector(3 downto 0);sin,cin:in std_logic_vector(2 downto 0);sout,cout:out std_logic_vector(2 downto 0);p:out std_logic);end mid_row;architecture structural of mid_row issignal and_out:std_logic_vector(2 downto 0);beginU1: component and_2 port map(a,b(3),sout(2));U2: component and_2 port map(a,b(2),and_out(2));U3: component and_2 port map(a,b(1),and_out(1));U4: component and_2 port map(a,b(0),and_out(0));U5: component fau port map(sin(2),cin(2),and_out(2), sout(1), cout(2));U6: component fau port map(sin(1),cin(1),and_out(1), sout(0), cout(1));U7: component fau port map(sin(0),cin(0),and_out(0), p, cout(0));end structural;5、lower_rowlibrary ieee;use ieee.std_logic_1164.all;use work.my_components.all;entity lower_row isport (sin,cin:in std_logic_vector(2 downto 0);p:out std_logic_vector(3 downto 0));end lower_row;architecture structural of lower_row issignal local:std_logic_vector(2 downto 0);beginlocal(0) <= '0';U1: component fau port map(sin(0),cin(0),local(0), p(0),local(1));U2: component fau port map(sin(1),cin(1),local(1), p(1),local(2));U3: component fau port map(sin(2),cin(2),local(2), p(2),p(3));end structural;6、my_componentslibrary ieee;use ieee.std_logic_1164.all;package my_components iscomponent and_2 isport (a,b:in std_logic; y:out std_logic);end component;component fau isport (a,b,cin:in std_logic; s,cout:out std_logic); end component;component top_row isport (a:in std_logic;b:in std_logic_vector(3 downto 0);sout,cout:out std_logic_vector(2 downto 0);p:out std_logic);end component;component mid_row isport (a:in std_logic;b:in std_logic_vector(3 downto 0);sin,cin:in std_logic_vector(2 downto 0);sout,cout:out std_logic_vector(2 downto 0);p:out std_logic);end component;component lower_row isport (sin,cin:in std_logic_vector(2 downto 0);p:out std_logic_vector(3 downto 0));end component;end my_components;7、multiplierlibrary ieee;use ieee.std_logic_1164.all;use work.my_components.all;entity multiplier isport (a,b:in std_logic_vector(3 downto 0);prod:out std_logic_vector(7 downto 0));end multiplier;architecture structural of multiplier istype matrix is array (0 to 3)ofstd_logic_vector (2 downto 0);signal s,c:matrix;beginU1: component top_row port map (a(0),b,s(0),c(0),prod(0));U2: component mid_row port map (a(1),b,s(0),c(0),s(1), c(1),prod(1));U3: component mid_row port map (a(2),b,s(1),c(1),s(2), c(2),prod(2));U4: component mid_row port map (a(3),b,s(2),c(2),s(3), c(3),prod(3));U5: component lower_row port map(s(3),c(3),prod(7 downto 4));end structural;8、仿真9、把multiplier代码改为百位、十位、个位输出代码如下:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;use work.my_components.all;entity multiplier isport (a,b:in std_logic_vector(3 downto 0);hun,ten,one:out std_logic_vector(3 downto 0)); end multiplier;architecture structural of multiplier istype matrix is array (0 to 3)ofstd_logic_vector (2 downto 0);signal s,c:matrix;signal p:std_logic_vector(7 downto 0);beginU1: component top_row port map (a(0),b,s(0),c(0),p(0));U2: component mid_row port map (a(1),b,s(0),c(0),s(1), c(1),p(1));U3: component mid_row port map (a(2),b,s(1),c(1),s(2), c(2),p(2));U4: component mid_row port map (a(3),b,s(2),c(2),s(3), c(3),p(3));U5: component lower_row port map(s(3),c(3),p(7 downto 4));process(p)variable temp:std_logic_vector(7 downto 0);beginif p >"1100_0111" thenhun <="0010";temp:=p-"1100_1000";elsif p>"0110_0011" thenhun <="0001";temp:=p-"0110_0100";elsehun <="0000";temp:=p;end if;if temp>"0101_1001" thenten <="1001";temp:=temp-"0101_1010"; elsif temp>"0100_1111" then ten <="1000";temp:=temp-"1010_0000"; elsif temp>"0100_0101" then ten <="0111";temp:=temp-"0100_0110"; elsif temp>"0011_1011" then ten <="0110";temp:=temp-"0011_1100"; elsif temp>"0011_0001" then ten <="0101";temp:=temp-"0011_0010"; elsif temp>"0010_0111" then ten <="0100";temp:=temp-"0010_1000"; elsif temp>"0001_1101" then ten <="0011";temp:=temp-"0001_1110"; elsif temp>"0001_0011" then ten <="0010";temp:=temp-"0001_0100"; elsif temp>"0000_1001" then ten <="0001";temp:=temp-"0000_1010"; elseten <="0000";temp:=temp;end if;one <=temp(3 downto 0);end process;end structural;四、小结与体会通过本次实验,我对包集和元件例化语句的使用有了更深刻的了解。

3集成乘法器幅度解调电路

3集成乘法器幅度解调电路

实验3 集成乘法器幅度解调电路
—、实验准备
1.做本实验时应具备的知识点:
●振幅解调
●模拟乘法器实现同步检波
2.做本实验时所用到的仪器:
●集成乘法器幅度解调电路模块
●集成乘法器幅度调制模块
●高频信号源
●双踪示波器
●万用表
二、实验目的
1.熟悉电子元器件和高频电子线路实验系统;
2.掌握用MC1496模拟乘法器组成的同步检波器来实现AM波和DSB波解调的方法;3.了解输出端的低通滤波器对AM波解调、DSB波解调的影响;
4.理解同步检波器能解调各种AM波以及DSB波的概念。

三、基本原理
振幅解调即是从振幅受调制的高频信号中提取原调制信号的过程,亦称为检波。

通常,振幅解调的方法有包络检波和同步检波两种,本实验采用同步检波,即集成乘法器幅度解调电路。

四、实验步骤
(一)实验准备
1.选择好需做实验的模块:集成乘法器幅度调制电路、集成乘法器幅度解调电路。

2.接通实验板的电源开关,使相应电源指示灯发光,表示已接通电源即可开始实验。

注意:做本实验时仍需重复调幅实验部分内容,先产生调幅波,再供这里解调之用。

(二)集成电路(乘法器)构成的同步检波
1.AM波的解调
2.DSB波的解调
DSB正弦波的解调波形图
三角波DSB的解调波形图
方波DSB的解调波形图。

《高频实验内容》word版

《高频实验内容》word版

实验一低电平振幅调制器(利用乘法器)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系。

2.掌握测量调幅系数的方法。

3.通过实验中波形的变换,学会分析实验现象。

二、预习要求1.预习幅度调制器有关知识。

2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。

3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。

三、实验仪器设备1.双踪示波器。

2.SP1461型高频信号发生器。

3.万用表。

4.TPE-GP4高频综合实验箱(实验区域:乘法器调幅电路)四、实验电路说明图幅度调制就是载波的振幅受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正比。

通常称高频信号为载波图1 1496芯片内部电路图信号,低频信号为调制信号,调幅器即为产生调幅信号的装置。

本实验采用集成模拟乘法器1496来构成调幅器,图1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D、V7、V8为差动放大器V5、V6的恒流源。

进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

用1496集成电路构成的调幅器电路图如图2所示,图中R P5002用来调节引出脚①、④之间的平衡,R P5001用来调节⑧、⑩脚之间的平衡,三极管V5001为射极跟随器,以提高调幅器带负载的能力。

五、实验内容及步骤图2 1496构成的调幅器1.直流调制特性的测量1)载波输入端平衡调节:在调制信号输入端P5002加入峰值为100mv,频率为1KHz的正弦信号,调节Rp5001电位器使输出端信号最小,然后去掉输入信号。

高频电子线路实验报告

高频电子线路实验报告

高频实验报告2013年12月实验一、调幅发射系统实验、实验目的与内容:通过实验了解与掌握调幅发射系统,了解与掌握LC 三点式振荡器电路、三极 管幅度调制电路、高频谐振功率放大电路。

二、实验原理:1、LC 三点式振荡器电路:曲0KSA匡T3-1 H 嫌斎戎验或幣隔吨堕原理:LC 三点式振荡器电路是采用LC 谐振回路作为相移网络的LC 正弦波振 荡器,用来产生稳定的正弦振荡。

图中5R5, 5R6, 5W2和5R8为分压式偏置电阻, 电容5C7或5C8或5C9或5C10或5C11进行反馈的控制。

5R3 5W1 5L2以及5C4 构成的回路调节该电路的振荡频率,在V5-1处输出频率为30MHZE 弦振荡信号。

原理:三极管幅度调制电路是通过输入调制信号和载波信号,在它们的共同 作用下产生所需的振幅调制信号。

图中7R1, 7R4, 7W1和7R3为分压式偏置电阻, 电容7C10 7C2以及电感7L1构成的谐振滤波网络,7W2控制输出幅度,在信号 输出处输出所需的振幅调制信号。

3、高频谐振功率放大电路:V5-1—1廿4FilKrT、ITl “I .-------osc IP 5UTSG TU J 曰r I —RKI二乍工 朋U 2SI * o J I ---- (SClO-Ll cH __.5C1J-IWSCJ印會艸:I 1UUKETt3sr 2原理:高频谐振功率放大电路是工作频率在几十放大电路。

图中前级高频功放电路中,6R2和6R3分压式偏置电阻,供给三极管 6BG1偏置电压,输出采用6C5 6C6 6L1构成的T 型滤波匹配网络,末级高频 功放电路中,基极采用由6R4产生偏置电压供给电路,输出采用 6C13 6C13 6L3和6L4构成的T 型滤波匹配网络。

4、调幅发射系统:原理:首先LC 振荡电路产生一个频率为30MHZ 幅度为lOOmV 的信号源,然 后加入频率为1KHZ 幅度为lOOmV 的本振信号,通过三极管幅度调制,再经过 咼频谐振功率放大器输出稳定的最大不失真的正弦波。

幅度调制实验报告结论

幅度调制实验报告结论

一、实验背景幅度调制(AM)是无线通信中常用的一种调制方式,它通过改变载波的幅度来传递信息。

本实验旨在通过搭建调幅和解调电路,加深对幅度调制原理的理解,掌握幅度调制和解调的基本方法,并分析实验过程中出现的现象。

二、实验目的1. 理解幅度调制的原理,掌握调幅和解调电路的搭建方法。

2. 观察和分析调幅和解调过程中信号的波形变化。

3. 掌握使用示波器等仪器测量信号参数的方法。

4. 分析实验过程中出现的问题,提高实验技能。

三、实验原理幅度调制是指将信息信号(基带信号)叠加到高频载波上,使载波的幅度随信息信号的变化而变化。

调幅方式分为全调幅(AM)和单边带调制(SSB)等。

解调是指从已调信号中恢复出原始信息信号的过程。

本实验采用全调幅方式,使用集成模拟乘法器MC1496作为调制和解调电路的核心元件。

调制电路将基带信号与高频载波相乘,实现调幅。

解调电路则通过检测调幅信号的包络,恢复出原始信息信号。

四、实验内容1. 搭建调幅电路,观察调制信号波形。

2. 搭建解调电路,观察解调信号波形。

3. 使用示波器测量调制和解调信号的参数,如幅度、频率等。

4. 分析实验过程中出现的问题,并提出改进措施。

五、实验结果与分析1. 调制信号波形实验中,我们使用示波器观察了调制信号的波形。

调制信号波形由基带信号和高频载波两部分组成。

基带信号为正弦波,高频载波为等幅正弦波。

调制后的信号波形为调幅信号,其包络线随基带信号的变化而变化。

2. 解调信号波形实验中,我们使用解调电路从调幅信号中恢复出原始信息信号。

解调后的信号波形与基带信号相似,但幅度有所减小。

这表明解调电路能够有效地从调幅信号中恢复出原始信息信号。

3. 信号参数测量实验中,我们使用示波器测量了调制和解调信号的参数,如幅度、频率等。

测量结果表明,调制信号和基带信号的幅度、频率等参数基本一致,表明调制和解调电路工作正常。

4. 实验问题分析在实验过程中,我们发现以下问题:(1)调制信号和基带信号的幅度存在差异,这可能是因为调制电路中的放大器增益设置不当。

实验一集成乘法器幅度调制实验,高频电子线路,南京理工大学紫金学院实验报告

实验一集成乘法器幅度调制实验,高频电子线路,南京理工大学紫金学院实验报告

咼频实验报告实验名称:集成乘法器幅度调制实验姓名:学号:___________________________班级:__________ 通信_________时间:2013.12南京理工大学紫金学院电光系设调制信号为单一频率的余弦波:cmCOS (,c 一U AM实验目的1. 通过实验了解集成乘法器幅度调制的工作原理, 验证普通调幅波(AM 和抑制 载波双边带调幅波(DSB/SC —AM )的相关理论。

2. 掌握用集成模拟乘法器 MC1496实现AM 和 DSB-SC 勺方法,并研究调制信号、 载波信号与已调波之间的关系。

3. 掌握在示波器上测量与调整调幅波特性的方法。

二、实验基本原理与电路1. 调幅信号的原理(一)普通调幅波(AM (表达式、波形、频谱、功率)(1) •普通调幅波(AM 的表达式、波形U c =U C m cos c t普 通调 幅 波 (AM ) 的 表 达式 为U AM =U AM (t)cos c t =U cm (1 m a cos"t) cos c t 式中,m a 称为调幅系数或调幅度由于调幅系数m a 与调制电压的振幅成正比,即 U m 越大,m a 越大,调幅波 幅度变化越大,一般m a 小于或等于1。

如果m a >1,调幅波产生失真,这种情况称为过调幅。

(2).普通调幅波(AM 的频谱 普通调幅波(AM 的表达式展开得:1 1 UmCOS'c t 丁a U cm COSL cf Ja Ucos ,载波信号为图3-1调幅波的波形P c i u cm2 R Lmm^U cm)2R L . 2| | 2 1 m a U cm 8 R L-(m^U )22^2 cm丿R L =1 m O uJ m _ 8 RL它由三个高频分量组成。

将这三个频率分量用图画出,便可得到图3-2所示的频谱图,在这个图上调幅波的每一个正弦分量用一个线段表示,线段的长度代表其幅度,线段在横轴上的位置代表其频率。

实验一 乘法器调幅实验

实验一 乘法器调幅实验

实验一乘法器调幅实验一、实验目的1、掌握AM、DSB和SSB调制的原理与性质;2、掌握模拟乘法器的工作原理及其调整方法;3、了解小信号检波的原理;4、熟悉用二极管实现检波的方法。

二、实验内容1、产生并观察AM、DSB的波形;2、观察AM、DSB、SSB波的频谱;3、观察DSB波和过调幅时的反相现象;4、用二极管小信号检波器对调幅波进行检波。

三、实验仪器1、20MHz模拟示波器2、调试工具四、实验原理模拟乘法器调幅实验原理图如图1所示。

图1 模拟乘法器调幅实验原理图调制信号从TP2输入,载波从TP1输入。

合理设置调制信号与载波信号的幅度以及乘法器的静态偏置电压(调节W1),可在TT1处观察普通调幅波(AM)和抑制载波双边带调幅波(DSB)。

FL1为10.7MHz的陶瓷滤波器,它的作用是对TT1处调幅波进行滤波,得到抑制载波单边带调幅波(SSB)。

为兼容检波电路的滤波网络,在进行调制与检波实验时,调制信号的频率选择为1KHz左右,载波信号的频率选择为10.7MHz。

为了便于观察各种调幅波的频谱和DSB波的相位突变现象,调制信号的频率选择为500KHz,载波信号的频率选择为11.2MHz。

模拟乘法器调幅部分所产生的普通调幅波和抑制载波双边带调幅波,是小信号检波的输入信号。

五、实验步骤1、连接实验电路在主板上正确插好幅度调制与解调模块,开关K1、K2、K8、K9、K10、K11向左拨,主板GND接模块GND,主板+12V接模块+12V,主板-12V接模块-12V,检查连线正确无误后,打开实验箱右侧的船形开关,K1、K2向右拨。

若正确连接,则模块上的电源指示灯LED1、LED2亮。

2、产生并观察AM波和DSB波(1)输入调制信号VΩ本步骤的调制信号可由由低频信号源模块提供。

参考低频信号源的使用方法,用低频信号源产生频率为1KHz,峰峰值约700mV的正弦波调制信号VΩ。

连接信号源的Vout与幅度调制与解调模块的TP2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频实验报告
实验名称:集成乘法器幅度调制实验
姓名:
学号:
班级:通信
时间:2013.12
南京理工大学紫金学院电光系
一、 实验目的
1.通过实验了解集成乘法器幅度调制的工作原理,验证普通调幅波(AM )和抑制载波双边带调幅波(AM SC DSB -/)的相关理论。

2.掌握用集成模拟乘法器MC1496实现AM 和DSB-SC 的方法,并研究调制信号、载波信号与已调波之间的关系。

3.掌握在示波器上测量与调整调幅波特性的方法。

二、实验基本原理与电路
1.调幅信号的原理
(一) 普通调幅波(AM )(表达式、波形、频谱、功率)
(1).普通调幅波(AM )的表达式、波形
设调制信号为单一频率的余弦波: t U u m Ω=ΩΩcos ,载波信号为 :
t U u c cm c ωcos =
普通调幅波(AM )的表达式为
AM u =t t U c AM ωcos )()cos 1(t m U a cm Ω+=t c ωcos
式中,a m 称为调幅系数或调幅度。

由于调幅系数a m 与调制电压的振幅成正比,即m U Ω越大,a m 越大,调幅波幅度变化越大,
一般a m 小于或等于1。

如果a m >1,调幅波产生失真,这种情况称为过调幅。

未调制状态调制状态
图3-1 调幅波的波形
(2). 普通调幅波(AM )的频谱
普通调幅波(AM )的表达式展开得:
t U m t U m t U u c cm a c cm a c cm AM )cos(2
1
)cos(21cos Ω-+Ω++
=ωωω
它由三个高频分量组成。

将这三个频率分量用图画出,便可得到图3-2所示
的频谱图,在这个图上调幅波的每一个正弦分量用一个线段表示,线段的长度代表其幅度,线段在横轴上的位置代表其频率。

图3-2 普通调幅波的频谱图
调幅的过程就是在频谱上将低频调制信号搬移到高频载波分量两侧的过程。

在单频调制时,其调幅波的频带宽度为调制信号频谱的两倍,即F B 2=
(3).普通调幅波(AM )的功率
载波分量功率:
L
cm
c R U P 2
21=
上边频分量功率:
c a L cm a L cm a P m R U m R U m P 222214
1811)2(21===
下边频分量功率:
c a L cm a L cm a P m R U m R U m P 22
2224
1811)2(21===
因此,调幅波在调制信号的一个周期内给出的平均功率为:
c a c P m
P P P P )2
1(2
21+=++=
可见,边频功率随a m 的增大而增加,当1=a m 时,边频功率为最大,即
C P P 2
3=。

这时上、下边频功率之和只有载波功率的一半,这也就是说,用这种调制方式,发送端发送的功率被不携带信息的载波占去了很大的比例,显然,这是很不经济的。

但由于这种调制设备简单,特别是解调更简单,便于接收,所以它仍在某些领域广泛应用。

(二) 抑制载波双边带调幅(AM SC DSB -/)
(1).抑制载波双边带调幅(AM SC DSB -/)的表达式、波形
由于载波不携带信息,因此,为了节省发射功率,可以只发射含有信息的上、
下两个边带,而不发射载波,这种调制方式称为抑制载波的双边带调幅,简称双边带调幅,用DSB 表示。

可将调制信号Ωu 和载波信号c u 直接加到乘法器或平衡调幅器电路得到。

双边带调幅信号写成:
t tU AU u Au u c cm m C DSB ωcos cos Ω==ΩΩ
])cos()[cos(2
1
t t U AU c c cm m Ω-+Ω+=
Ωωω A 为由调幅电路决定的系数;t U AU cm m ΩΩcos 是双边带高频信号的振幅,它
与调制信号成正比。

双边带调幅的调制信号、调幅波形如图3-3所示。

双边带调幅波的包络已不再反映调制信号的变化规律。

图3-4为AM SC DSB -/频谱图。

由以上讨论可以看出AM SC DSB -/调制信号有如下的特点:
图3-3 双边带调幅的调制信号、调幅波
图3-4 AM SC DSB -
/频谱图
(a )AM SC DSB -/信号的幅值仍随调制信号而变化,但与普通调幅波不同,AM SC DSB -/的包络不再反映调制信号的形状,仍保持调幅波频谱搬移的特征。

(b )在调制信号的正负半周,载波的相位反相,即高频振荡的相位在0)(=t f 瞬间有0180的突变。

(2)AM SC DSB -/调制,信号仍集中在载频0ω附近,所占频带为
max 2F B DSB =
由于AM SC DSB -/调制抑制了载波,输出功率是有用信号,它比普通调幅经济。

但在频带利用率上没有什么改进。

2. 集成模拟乘法器MC1496工作原理
实现调幅的方法很多,目前集成模拟乘法器得到广泛的应用。

本实验采用 MC1496集成模拟乘法器来实现普通调幅波(AM )和抑制载波双边带调幅
(AM SC DSB -/)。

图3-6 MC1496的内部电路及引脚图
MC1496是双平衡四象限模拟乘法器。

其内部电路图和引脚图如图3-6 所示。

其中V 1、V 2与V 3、V 4组成双差分放大器,V 5、V 6组成的单差分放大器用以激励V 1~V 4。

V 7、V 8及其偏置电路组成差分放大器V 5、V 6的恒流源。

引脚8与10接输入电压u x ,1与4接另一输入电压u y ,输出电压u 0从引脚6与12输出。

引脚2与3外接电阻R E ,对差分放大器V 5、V 6产生串联电流负反馈,以扩展输入电压U y 的线性动态范围。

引脚14为负电源端(双电源供电时)或接地端(单电源供电时),引脚5外接电阻R 5。

用来调节偏置电流I 5及镜像电流I 0的值。

MC1496可以采用单电源供电,也可以采用双电源供电,器件的静态工作点由外接元件确定,静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体
84
1
5
接-E E 或接地
IN R E R E IN OU -E E
T y y
x u y u
管的集一基极间的电压应大于或等于2V,小于或等于最大允许工作电压。

一般
情况下,晶体管的基极电流很小,,三对差分放大器的基极电流I
8、I
10
、I
1

I
4
可以忽略不计,因此器件的静态偏置电流主要由恒流源的值确定。

当器件为单
电源工作时,引脚14接地,5脚通过一电阻R
5接正电源(+U
CC
的典型值为+12V),
由于I
0是I
5
的镜像电流,所以改变电阻R
5
可以调节I
的大小,即
Ω
+
-
=

500
7.0
5
5
0R
V
u
I
I CC
当器件为双电源工作时,引脚14接负电源-U
EE
(一般接-8V),5脚通过一电
阻R
5接地,因此,改变R
5
也可以调节I
的大小,即
Ω
+
-
-
=

500
7.0
5
5
0R
V
u
I
I EE
根据MC1496的性能参数,器件的静态电流小于4mA,一般取I
0=I
5
=1mA左右。

3.实验电路
集成乘法器幅度调制实验电路如图3-7所示。

图3-7 MC1496构成集成乘法器幅度调制实验电路三、实验内容
1.模拟乘法器的调节,测试电路直流工作点。

U1=-1.563v U4=-1.606v
U8=5.87v U10=5.88v
U6=6.92v U12=7.02v
2.普通调幅波(AM)的产生,调幅系数ma测量与调整。

m a
表3-1 调幅系数
调幅系数ma A B
0.3 2.68v 1.34v
0.5 2.14v 0.72v
1 1.42v 0.14v
调制信号频率: KHz,载波信号频率: MHz
3.抑制载波的双边带调幅波(DSB/SC-AM)的产生与观测。

四、实验总结与体会
通过此次集成乘法器幅度调制的实验,我了解集成乘法器幅度调制的工作原理,验证普通调幅波(AM)和抑制载波双边带调幅波(AM
/)的相关
SC
DSB
理论。

相关文档
最新文档