八年级数学导学案模板3.2.1

合集下载

湘教版八年级数学上册导学案 2.1第3课时 三角形的内角和定理

湘教版八年级数学上册导学案 2.1第3课时  三角形的内角和定理

第3课时三角形的内角和定理1.知道三角形的内角和是180°,能应用此性质解决相关问题.2.知道三角形的分类,并会用数学符号表示直角三角形.3.会找一个三角形的外角,能应用三角形外角的性质解决相关问题.自学指导:阅读课本P46-48,完成下列问题.知识探究1.三角形的内角和等于180°.2.在△ABC中,∠A=80°,∠B=∠C,则∠C=50°.3.若△ABC中,∠A=40°,∠B=50°,则△ABC为直角三角形.4.如图1,把△ABC的一边BC延长,得到∠ACD.像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.如图2,一个三角形有6个外角.每个顶点处有2个外角.图1 图25.如图1,△ABC中,∠A=80°,∠B=40°,∠ACD是△ABC的一个外角,则∠ACD=120°.试猜想∠ACD与∠A,∠B的关系是∠A+∠B=∠ACD.6.试结合图形写出证明过程:证明:过点C作CM∥AB,延长BC到D.则∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等),所以∠1+∠2=∠A+∠B.即∠ACD=∠A+∠B.一般地,有下面的结论:三角形的一个外角等于与它不相邻的两个内角的和.自学反馈1.△ABC中,若∠A+∠B=∠C,则△ABC是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.一个三角形至少有( )A.一个锐角B.两个锐角C.一个钝角D.一个直角3.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去 4.判断下列∠1是哪个三角形的外角:5..求下列各图中∠1的度数.活动1 小组讨论例1 如图, AD 是△ABC 的角平分线, ∠B= 36°, ∠C= 76°, 求∠DAC 的度数.解:因为∠B= 36°, ∠C= 76°, 又∠BAC+∠B +∠C=180°, 所以 ∠BAC=68°.因为 AD 是△ABC 的角平分线, 所以 ∠DAC=21∠BAC =34°.例2 如图,∠CAD =100°,∠B = 30°,求∠C 的度数.解:因为∠CAD 是△ABC 的外角,所以∠B+∠C= ∠CAD ,于是∠C = ∠CAD -∠B = 100°-30°=70°.活动2 跟踪训练1.在△ABC中,∠A=20°,∠B=50°,则∠△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形2.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这这块三角板的另一个角的度数是()A.30°B.40°C.50°D.60°3.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C的度数为()A.45°B.60°C.75°D.90°4.如图,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.63°B.83°C.73°D.53°5.在△ABC中,若∠A=80°,∠B=∠C,则∠C=________.6.如图,在△ABC中,D、E分别为AB、AC上的点,点F在BC的延长线上,DE∥BC,∠A=40°,∠1=60°,则∠2的度数为________.7.如图,在△ABC中,点D、E分别在ABAC上,若∠B+∠C=120°,则∠1+∠2=______.8.如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=50°,试求:(1)∠D的度数;(2)∠ACD的度数.9.如图,△ABC中,∠A=80°,BE、CF相交于点O,∠ACF=30°,∠ABE=20°,求∠BOC的度数.10.已知,如图,BD 、CD 分别为∠EBC 和∠FCB 的平分线. (1)若∠A=80°,求∠D 的度数; (2)试探究∠D 和∠A 的数量关系;课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?教学至此,敬请使用《名校课堂》课时部分.【预习导学】 自学反馈1.B2.B3.C4.(1)△ABC (2)△ABD (3)△ABC (4)△ACE5.75° 125° 【合作探究】 活动2 跟踪训练1.D2.B3.C4.A5.50°6.100°7.120°8.(1)∵∠DAE=∠B+∠D ,∴∠D=∠DAE-∠B ,即∠D=50°-30°=20°. (2)∵AD 平分∠CAE , ∴∠CAE=2∠DAE=100°. ∴∠BAC=80°. ∵∠B=30°,∴∠ACD=∠B+∠BAC=110°.9. ∵∠A=80°,∴∠ACB+∠ABC=100°. 即∠ACF+∠BCF+∠ABE+∠CBE=100°, ∵∠ACF=30°,∠ABE=20°, ∴∠BCF+∠CBE=50°.在△BOC 中,∠BOC=180°-∠BCF-∠CBE=130°. 10.(1)∵∠A=80°, ∴∠ABC+∠ACB=100°. ∴∠CBE+∠BCF=260°.∵BD 平分∠EBC ,CD 平分∠FCB , ∴∠CBD+∠BCD=130°. ∴∠D=50°. (2)21∠A+∠D=90°.。

八年级数学上册全册导学案(XX新版人教版)

八年级数学上册全册导学案(XX新版人教版)

八年级数学上册全册导学案(XX新版人教版)分式方程一、学教目标:1.了解分式方程的概念,和产生增根的原因..掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、学教重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、学教难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.四、自主探究:前面我们已经学习了哪些方程?是怎样的方程?如何求解?前面我们已经学过了方程。

一元一次方程是方程。

一元一次方程解法步骤是:①去___;②去____;③移项;④合并_____;⑤_____化为1。

如解方程:探究新知:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程:______________________.像这样分母中含未知数的方程叫做分式方程。

分式方程与整式方程的区别在哪里?通过观察发现得到这两种方程的区别在于未知数是否在分母上。

未知数在_____的方程是分式方程。

未知数不在分母的方程是____方程。

前面我们学过一元一次方程的解法,但是分式方程中分母含有未知数,我们又将如何解?解分式方程的基本思路是将分式方程转化为方程,具体的方法是去分母,即方程两边同乘以最简公分母。

如解方程:=……………………①去分母:方程两边同乘以最简公分母_____________,得00=60……………………②解得V=_______.观察方程①、②中的v的取值范围相同吗?①由于是分式方程v≠_______,②而②是整式方程v可取_____实数。

这说明,对于方程①来说,必须要求使方程中各分式的分母的值均不为0.但变形后得到的整式方程②则没有这个要求。

如果所得整式方程的某个根,使原分式方程中至少有一个分式的分母的值为0,也就是说,使变形时所乘的整式的值为0,它就不适合原方程,即是原分式方程的增根。

人教版初二数学八年级下册教案导学案

人教版初二数学八年级下册教案导学案

人教版初二数学八年级下册教案导学案一、教学目标1. 知识与技能:- 熟练掌握平行线及其性质;- 掌握平行线与交错线的性质;- 能应用平行线性质解决问题。

2. 过程与方法:- 培养学生观察、发现和解决问题的能力;- 通过引入问题,激发学生学习数学的兴趣。

3. 情感态度价值观:- 培养学生严谨求实的科学态度;- 培养学生合作学习的意识。

二、教学重难点1. 重点:- 平行线及其性质的理解和应用;- 平行线与交错线的性质的理解和应用。

2. 难点:- 平行线与交错线的性质的应用。

三、教学准备- 教师:教案、导学案、课件、学生练习册- 学生:学习用具、练习册四、教学过程1. 导入(5分钟)- 引入平行线的概念:请同学们在笔记本上用直尺和铅笔画一个平行四边形,观察并描述它的特点。

2. 探究(30分钟)- 向学生提出以下问题:如果平行线与交错线相交,有什么特点?请同学们自行探究并记录下来。

3. 总结(10分钟)- 整理学生的探究结果,引出平行线与交错线的性质,并向学生讲解和确认。

4. 练习(15分钟)- 请同学们打开练习册,完成相关练习题。

5. 拓展(10分钟)- 提出一些与平行线性质相关的拓展问题,鼓励学生进行讨论和解答。

6. 小结(5分钟)- 对本节课所学内容进行小结,强调学习重点和难点。

五、作业- 完成练习册中相关练习题。

六、教学反思本节课通过提出问题和引导学生自主探究的方式,激发了学生的学习兴趣和主动性。

学生在观察和记录中逐渐理解了平行线与交错线的性质,并能够灵活应用于解决问题。

通过小组合作,培养了学生的合作学习和相互帮助的意识。

然而,在练习环节,部分学生存在理解上的困惑,需要进一步强化巩固。

在今后的教学中,我将更加注重练习环节的设计,以加深学生对知识的理解和熟练应用。

北师大版八年级数学 上册导学案:3.2平面直角坐标系(1)(无答案)

北师大版八年级数学 上册导学案:3.2平面直角坐标系(1)(无答案)

八年级数学 3.2 平面直角坐标系(1)双边【学习目标】1、认识并能画出平面直角坐标系;2、能在方格纸上建立适当的直角坐标系,描述物体的位置;3、在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.【课堂引入】阅读课本P58做一做上方内容,回答下列问题。

1(1)如图3-4是某市的旅游示意图,在科技大学处的你如何向来访的朋友介绍该市几个风景点的位置呢?尽可能给出简洁的表示方法,并与同伴交流。

大成殿:,中心广场:,碑林:。

【自学指导一】探究坐标系1、小红用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置可以表示为?按照小红的方法,(5,2)表示,(5,2)中的2表示,(2,5)中的2表示。

2(1)站在中心广场的小亮,以中心广场为“原点”,做了如图3-6所示的标记,怎样用数对表示各景点的位置呢?碑林:,大成殿:,科技大学:。

【自学指导二】认识平面直角坐标系阅读课本59页,回答下列问题:平面直角坐标系定义:在平面内,两条且的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的.水平的数轴叫做或,铅直的数轴叫做或,x 轴和 y 轴统称,它们的公共原点 O 称为直角坐标系的.如图 3-7,对于平面内任意一点 P,过点 P 分别向 x 轴、y 轴作垂线,垂足在 x 轴、y 轴上对应的数a, b 分别叫做点P的、,有序数对(a,b)叫做点P 的坐标.如图,在平面直角坐标系中,两条坐标轴将坐标平面分成了四个部分,右上方的部分叫做,其他三部分按逆时针的方向依次叫做、、。

坐标轴上的点。

例题1写出下图中的多边形 ABCDEF各个顶点的坐标.A B ;C ;D ;E ; F ; 做一做⑴在如上图所示的平面直角坐标系中,描出下列各点:A(-5,0),B(1,4),C(3,3),D(1,0),E(3,-3),F(1,-4)。

⑵依次连接ABCDEFA,你得到什么图形?⑶在平面直角坐标系中,点与实数对之间有何关系?小结:在直角坐标系中,对于平面上的任意一点,都有一对有序实数对(即点的坐标)与它对应;反过来,对于任意一对有序实数对,都有平面上和它对应。

北师大版八年级数学下册全册导学案

北师大版八年级数学下册全册导学案

北师大版八年级数学下册全册导学案前言本文档为北师大版八年级数学下册全册的导学案,旨在帮助学生掌握数学的基本知识和方法,提高数学素养,适用于八年级学生和教师使用。

本导学案按照教材的章节顺序编排,每章节包括学习目标、学习内容、课堂要求、课后作业等内容,以帮助学生有效地学习数学知识。

第一章一次函数学习目标1.了解一次函数的定义和性质;2.能够根据函数表、图像和函数式等信息确定一次函数;3.掌握一次函数的图像及其与系数的关系;4.能够解一元一次方程及简单应用。

学习内容1.一次函数的定义及性质;2.函数表和函数图像;3.解一元一次方程及简单应用。

课堂要求1.认真听讲,积极思考;2.熟练掌握函数表和函数图像的绘制方法;3.能够根据函数式计算出函数值;4.能够解一元一次方程。

课后作业1.完成课后习题,巩固知识点;2.思考并尝试解决课外练习。

第二章平面图形的认识学习目标1.掌握平面图形的基本性质和特征;2.熟悉平面图形的正确定义和分类;3.能够求解平面图形的周长和面积。

学习内容1.平面图形的定义和性质;2.平面图形的正确定义和分类;3.计算平面图形的周长和面积。

课堂要求1.认真听讲,积极思考;2.熟悉各种平面图形的特征;3.能够用公式计算平面图形的周长和面积。

课后作业1.完成课后习题,巩固知识点;2.思考并尝试解决课外练习。

第三章空间与立体图形学习目标1.掌握三棱柱、三棱锥、四棱柱、四棱锥、棱台和正六面体的定义和特征;2.熟悉空间中的方向及投影方法;3.能够计算立体图形的表面积和体积。

学习内容1.立体图形的定义和特征;2.空间中的方向及投影方法;3.计算立体图形的表面积和体积。

课堂要求1.认真听讲,积极思考;2.熟悉各种立体图形的特征;3.能够用公式计算立体图形的表面积和体积。

课后作业1.完成课后习题,巩固知识点;2.思考并尝试解决课外练习。

第四章数据的收集和处理学习目标1.掌握数据的收集和处理方法;2.熟悉统计所需的计量尺度和基本术语;3.能够利用频数分布表和统计图形对数据进行描述和分析。

八年级数学上册导学案_(全册有答案)

八年级数学上册导学案_(全册有答案)

八年级数学上册导学案第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

图形的全等导学案(模板)

图形的全等导学案(模板)
教师校本研修——导学案
科目:
课 题 学 习 目 标 重 难 点
班级:
组名:
学生姓名:

周星期
设计者:
3.2 图形的全等【导学案】
1、 通过实例理解图形全等的概念和特性,并能识别图形的全等。 2.理解全等三角形的概念及表示方法,会寻找全等三角形的对应边、对应角和对应顶点。 3.掌握全等三角形的性质,并能进行简单的推理和计算,能解决一些实际问题。 重点:1、全等图形的意义及特征。 2、全等三角形的有关概念及性质。
难点:寻找两个全等三角形的对应边、对应角的元素规律,进行简单的推理和计算,并解决一些 实际问题。
一 预 习
一、
我们把
自主学习:
的 个图形称为全等图形。 )相同,但( )不同。
(2) 观察课本 P73 图 3-11 的两组图形,请把(2)中完全一样的图形找出来。 2、观察课本 P74 图 3-12 的图形,它们是不是全等图形?为什么? 第(1)组图形( )相同,但( )不同。第(2)组图形( 第(3)组图形( )相同, ( )也相同。 体会:全等图形的 和 都相同。 (3)阅读课本 P74 下面的内容。回答下列问题。 (1)什么是全等三角形? (2)全等三角形性质: 画出一对全等三角形 ,并尝试用符号表示: ∵ △ ≌△ ( ∴ = ; = = ; =
B
E
C
F
拓 展 延 伸
第8题
B
E 30° C D 第2题
2、如图,若△ABC≌△DEF,则∠E 等于( ) A. 30° B. 50° C. 60°边三角形,你能把它分成两个全等三角形吗?三个呢?四个呢?
A
E
B
D
C
如上图所示,已知△ABC≌△ADE,∠C=∠E,AB=AD, 则另外两组对应边为________

人教版八年级下数学全册导学案(表格式)

人教版八年级下数学全册导学案(表格式)

目录学习目标1学习目标2学习目标345710111213上2、本节课我对自己最不满意的一件事是:作业独立完成()求助后独立完成()未及时完成()未完成()备课时间年( 2 )月( 26 )日星期(三)学习时间年()月()日星期()学习目标1、理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及利用它们进行运算.2、利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.学习重点理解ab=ab(a≥0,b>0),ab=ab(a≥0,b>0)及利用它们进行计算和化简.学习难点发现规律,归纳出二次根式的除法规定.学具使用多媒体课件、小黑板、彩粉笔、三角板等学习内容学习活动设计意图一、创设情境独立思考(课前20分钟)1、阅读课本P8 ~ 9页,思考下列问题:1417181921导二次根式的计算和化简.3、运用二次根式、化简解决问题.学习重点 把二次根式化简为最简根式,合并同类二次根式. 学习难点 会判定是否是最简二次根式.学具使用 多媒体课件、小黑板、彩粉笔、三角板等学习内容 学习活动 设计意图一、创设情境独立思考(课前20分钟) 1、阅读课本P 12~13 页,思考下列问题:(1)分析P12页问题,理解二次根式加减的方法。

(2)进行二次根式加减时先做什么?再做什么? (3)你能独立解答P13页例1、例2吗? 2、独立思考后我还有以下疑惑:(课前写在小组的小黑板上)二、答疑解惑我最棒(约8分钟) 甲: 乙: 丙: 丁:同伴互助答疑解惑 学习活动设计意图 三、合作学习探索新知(约15分钟) 1、小组合作分析问题 2、小组合作答疑解惑 3、师生合作解决问题 ◆复习回顾:(1)什么是最简二次根式?(2)化简二次根式并找出同类二次根式 (3)合并同类二次根式与合并同类项有什么联系四、归纳总结巩固新知(约15分钟) 1、知识点的归纳总结:(一化、二找、三合并) 二次根式加减运算的步骤:(1)把各个二次根式化成最简二次根式75)1(96)2(18)3(125)4(21)5(48)6(45)7(24)8(22(2)28-38+58(3)7+27+397(4)33-23+2(5)348-913+312六、独立作业我能行1、预习课本P14页例3、例4七、课后反思:1、学习目标完成情况反思:2、掌握重点突破难点情况反思:3、错题记录及原因分析:自我评价课上1、本节课我对自己最满意的一件事是:2、本节课我对自己最不满意的一件事是:作业独立完成()求助后独立完成()未及时完成()未完成()$16.3二次根式的加减(二)导学案备课时间年( 3 )月( 2 )日星期(日)学习时间年()月()日星期()学习目标1、掌握二次根式混合运算的方法2、掌握二次根式的多项式乘法公式的应用.3、复习整式运算知识并将该知识运用于含有二次根式的式子的运算.学习重点二次根式的混合运算规律;学习难点由整式运算知识迁移到含二次根式的运算学具使用多媒体课件、小黑板、彩粉笔、三角板等学习内容学习活动设计意图一、创设情境独立思考(课前20分钟)23$16.3二次根式的加减(二)导学案2425$16.3二次根式的加减(二)导学案学习活动设计意图 2、运用新知解决问题:(重点例习题的强化训练) 例3:练习1:例5: (2)(3)练习2:(3) (4)练习3:课本P15页习题16.3第5、6、7、8、9题五、课堂小测(约5分钟) (1)(6+8)×3 (2)(46-32)÷22(3)(5+6)(3-5) (4)(10+7)(10-7)六、独立作业我能行 1、复习小结第十六章二次根式的内容,写在工具单本上。

3 2平面直角坐标系(第二课时)导学案(表格式) 北师大版数学八年级上册

3 2平面直角坐标系(第二课时)导学案(表格式) 北师大版数学八年级上册
交流:
【例题】 在直角坐标系中描出下列各点,并将各组内这些点依次用线段连起来.
(1)D(-3,5),E(-7,3),C(1,3),D(-3,5);
(2)F(-6,3),G(-6,0),A(0,0),B(0,3);
观察所描出的图形,它像什么?根据图形回答下列问题:
(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?
拓展:平行于两坐标轴的直线上的点坐标有什么特点?象限角平分线上的点坐标有什么特点?
精讲:
1.连接横坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴.
2.横坐标轴上点的纵坐标为0;纵坐标轴上点的横坐标为0.
3.各个象限内的点的坐标特征是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).
4.已知点A(-5,0),B(3,0).
(1)在y轴上找一点C,使之满足S△ABC=16,求点C的坐标(要有必要的步骤);
(2)在直角坐标平面上找一点C,能满足S△ABC=16的C有多少个?这些点有什么特征?
作业
反思
年级学科
八年级数学上
上课时间
主备人
序号
课题
3.2平面直角坐标系(第二课时)
教学目标
认识平面直角坐标系中点的坐标特征,根据坐标特点确定字母的取值,解决有关问题.
教学重难点
重点:
1.认识平面直角坐标系中点的坐标特征.
2.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标系上每个点的坐标有什么特点.
(2)线段EC与x轴有什么位置关系?点E和点C的坐标有什么特点?线段EC上其他点的坐标呢?

2022-2023新人教版八年级数学下册导学案全册

2022-2023新人教版八年级数学下册导学案全册

2022-2023新人教版八年级数学下册导学案全册第一单元:有理数的加减第一课时:有理数的加法- 研究目标:掌握有理数的加法运算- 研究内容:正数加正数、负数加负数、正数加负数、有理数加零的运算法则- 研究重点:灵活运用有理数的加法规则解决实际问题- 研究方法:理解规则,多做练题第二课时:有理数的减法- 研究目标:掌握有理数的减法运算- 研究内容:正数减正数、负数减负数、正数减负数、有理数减零的运算法则- 研究重点:理解减法的本质,解决实际问题- 研究方法:理解规则,多做练题第三课时:加减混合运算- 研究目标:运用有理数加减法解决实际问题- 研究内容:有理数的混合运算,包括正数、负数的加减混合运算- 研究重点:分析问题,运用加减法的规则解决问题- 研究方法:多做实际问题练,加强思维训练第二单元:比例与相似第一课时:比例- 研究目标:了解比例的概念,掌握比例的基本性质- 研究内容:比例的定义、比例的基本性质- 研究重点:掌握比例的性质,能够应用到实际问题中- 研究方法:理解概念,多做练题第二课时:比例的应用- 研究目标:学会应用比例解决实际问题- 研究内容:比例的应用,包括物体的放大缩小、图形的相似等- 研究重点:分析问题,应用比例的知识解决实际问题- 研究方法:多做应用题,强化实际操作能力第三课时:相似图形- 研究目标:了解相似图形的性质和判定条件- 研究内容:相似图形的定义、相似图形的性质- 研究重点:掌握相似图形的性质和确定相似关系的条件- 研究方法:理解概念,多做练题......(继续给出下一单元的导学案)。

人教版八年级数学上册全册导学案

人教版八年级数学上册全册导学案

人教版八年级数学上册全册导学案第一单元有理数导学目标- 掌握有理数的概念和表示方法;- 理解有理数的大小比较规则;- 能够进行有理数的加法和减法运算。

导学内容1. 有理数的概念:有理数是一种可以表示为分数形式的数,包括整数和分数。

2. 有理数的表示方法:- 整数可以用正负号和数字表示,如正整数用"+"表示,负整数用"-"表示;- 分数可以用分子和分母表示,分子表示分数的数值,分母表示分数的单位。

3. 有理数的大小比较规则:- 两个有理数大小比较时,可以先化为相同分母的分数,然后比较分子的大小;- 同号的有理数比较大小,绝对值大的数更大;异号的有理数比较大小,正数更大。

4. 有理数的加法和减法运算:- 加法:同号有理数相加,先相加后保持原符号;异号有理数相加,先相减后取绝对值较大的符号;- 减法:减去一个有理数等于加上它的相反数。

导学步骤1. 引入话题:通过举例子和学生互动引入有理数的概念。

2. 讲解表示方法:介绍整数和分数的表示方法,结合练让学生掌握如何表示有理数。

3. 比较大小规则:通过例题引导学生理解有理数的大小比较规则。

4. 运算操练:设计一些加法和减法的练题,让学生运用所学的规则进行计算。

5. 总结归纳:请学生总结有理数的概念、表示方法和运算规则,并进行相互讨论。

导学评价本节导学案主要介绍了有理数的概念、表示方法以及大小比较规则和运算规则。

通过学生的活动参与和练习题的操练,可以评价学生是否掌握了有关内容。

可以在课堂上进行小组讨论和个别辅导,帮助学生消化和理解所学内容。

新人教版八年级数学上册全册导学案

新人教版八年级数学上册全册导学案

EDC BAED DCB ADCBAED CBAFE DCB A EDCBA11.1全等三角形一、导学自习看教材1-2页,并解决下列问题:(聚焦学习目标1)1.找出各图中形状、大小完全相同的图形.2.举出现实生活中能够完全重合的图形的例子? 3.什么是全等形?什么是全等三角形?看教材P 3第一个“思考”及下面的两段,并解决下列问题:(聚焦学习目标2)1.一个图形经过平移、翻转、旋转后,位置变化了,但 和 都没有改变。

即平移、翻转、旋转前后的图形 . 2.全等三角形的记法.如下图,△ABC 与△A 1B 1C 1全等,记作,“≌”读作 .3.指出上图中全等三角形的对应顶点、对应边和对应角.温馨提示:书写全等式时要求把对应顶点字母写在 的位置上. 看教材P 3第二个“思考”,并解决下列问题:(聚焦学习目标3) 全等三角形具有什么性质? 文字语言: 几何语言:二、研习展评(一)问题探究(一)(聚焦学习目标2) 1.在找全等三角形的对应元素时一般有什么规律?(二)问题探究(二)(聚焦学习目标3)2.如图,△ABC ≌△AED,AB 是△ABC 的最大边,AE 是△AED 的最大边, ∠BAC 与∠ EAD 对应角,且∠BAC=25°, ∠B=35°,AB=3cm,BC=1cm,求出∠E, ∠ ADE 的度数和线段DE,AE 的长度。

∠BAD 与∠EAC 相等吗?为什么?(三)学习体会(从知识、方法和思想等方面谈收获和体会)(四)检测反馈1.教材P 4练习1、2题.(做在书上)2.教材P 4习题11.1 1、2、3题(做在书上)3.如图△ABC ≌ △ADE,若∠D=∠B , ∠C= ∠AED ,则∠DAE= ; ∠DAB= . 4.判断题1)全等三角形的对应边相等,对应角相等.( ) 2)全等三角形的周长相等,面积也相等. ( ) 3)面积相等的三角形是全等三角形. ( )1B 1ABA 1DCBAEDCBAODCBA4.如图△ABD ≌ △EBC ,AB=3cm,BC=5cm,求DE 的长.11.2 三角形全等的判定 (1)一、导学自习1.复习:什么是全等三角形?全等三角形有些什么性质? 如图,△A BC ≌△A ′B ′C ′那么相等的边是: 相等的角是:2.(聚焦学习目标2)讨论三角形全等的条件(动手画一画并回答下列问题)(1)只给一个条件:一组对应边相等(或一组对应角相等),•画出的两个三角形一定全等吗? (2) 给出两个条件画三角形,有 种情形.按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等 ②两组对应边相等 ③两组对应角相等(3) 给出三个条件画三角形,有 种情形。

八年级数学导学案

八年级数学导学案

八年级数学导学案一、一元二次方程1. 一元二次方程的定义一元二次方程是指最高次数为2的一元方程,一般形式为$ax^2 + bx + c = 0$,其中$a、b$和$c$为实数且$a ≠ 0$。

2. 一元二次方程的解一元二次方程的解可以通过求解方程$ax^2 + bx+ c = 0$来找到。

根据一元二次方程的求根公式$x = \frac{-b ± \sqrt{b^2 - 4ac}}{2a}$,可以求得方程的根为两个实数、两个相等的实数或两个复数。

3. 实际问题中的应用一元二次方程可以用来解决很多实际问题,比如抛物线的运动轨迹、物体自由下落的时间等。

通过建立数学模型,可以将现实问题转化为一元二次方程,然后求解方程来得出答案。

二、二次根式1. 二次根式的概念二次根式是指形如$\sqrt{a}$的数,其中$a$为一个非负实数。

二次根式的运算包括化简、加减、乘除等。

2. 二次根式的化简化简二次根式就是将根号内的数化为最简形式,不能再约分的形式。

如$\sqrt{75} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}$。

3. 二次根式的加减二次根式的加减需要先化简,然后根据同类项进行合并。

如$2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$。

4. 二次根式的乘法和除法二次根式的乘法和除法同样需要化简后进行计算。

如$(2\sqrt{3})(3\sqrt{3}) = 6\sqrt{9} = 18$。

三、函数概念1. 函数的定义函数是一种对应关系,对于每个自变量$x$,对应唯一的因变量$y$。

函数可以用方程$y = f(x)$表示。

2. 函数的图像函数的图像是在平面直角坐标系中表示的,横轴为自变量$x$,纵轴为因变量$y$。

函数的图像可以是一条曲线、直线、抛物线等。

3. 函数的性质函数可以是奇函数或偶函数,也可以是增函数或减函数。

奇函数的图像关于原点对称,偶函数的图像关于$y$轴对称;增函数的函数值随着自变量的增加而增加,减函数则相反。

新人教版八年级数学下导学案(全册)

新人教版八年级数学下导学案(全册)

新人教版八年级数学下导学案(全册)导学目标1.了解八年级数学下学期的学习内容和重点。

2.掌握学习方法和技巧,提高自主学习能力。

3.激发兴趣,增强学习动力,达到学以致用的目的。

课章安排本课程共分为以下 9 章:1.有理数的加减运算2.有理数的乘除运算3.整式的加减4.一元一次方程5.一元一次方程的应用6.几何图形的认识7.平面图形的性质8.空间图形的认识9.统计图表的制作和分析学习方法指导1. 每节课前预习在开始上课前,先预习本节课的内容。

预习时要重点阅读所学内容的目的、重点、难点等,对照教材和导学资料,理清思路,确定自己需要掌握的知识点和技能。

2. 记笔记,做好知识点概念的总结在学习和预习过程中,要及时记录下来遇到的问题、困惑和需要加强的知识点等要点,做好知识点的概念总结。

笔记可以在课后补充和完善。

3. 练习题目,加强练习认真完成教材和导学资料中的例题和练习题,加强练习,熟练掌握所学知识,做到理论联系实际。

4. 交流讨论,相互帮助在学习中,可以结伴学习、交流讨论,相互帮助、提高互动性和学习效果。

5. 总结复习,强化记忆及时总结复习所学知识点和技能,对个人掌握程度进行自我评估,找出不足之处进一步加强练习,强化记忆。

学习注意事项1.学习时要耐心细心,认真思考和分析问题,不急不躁,遇到困难要针对性地加以解决。

2.课上所学知识要及时总结、前瞻下节课程的内容,尽量形成自己的思维导图和学习笔记,方便课后回顾。

3.做题时不要死记硬背,要结合实际情况,理解原理和逻辑,并联系实际问题进行练习。

4.学习过程中要不断提高自己的自主学习能力和学习动力,积极探索、创新,促进自己的全面发展。

结语通过本次导学,相信大家对八年级数学下学期的课程安排和学习方法已经有了更全面的认知。

在学习过程中,我们一起努力、相互支持,一定能够理清思路、掌握技巧,取得更好的学习成果!。

新人教版八年级下册数学教案导学案

新人教版八年级下册数学教案导学案

新人教版八年级下册数学教案导学案一、导学目标1.了解本课的学习内容和学习目标;2.掌握辅助角公式的应用;3.能够运用辅助角公式解决实际问题。

二、导学内容本课重点讲解辅助角公式的应用,包括求解角的正弦、余弦和正切值以及应用辅助角公式解决实际问题。

三、学习重点和难点1.辅助角公式的应用方法;2.实际问题的解决方法。

四、学习过程1.导入新课引导学生回顾和总结上一节的学习内容,帮助他们建立知识框架,为学习今天的内容做好铺垫。

2.学习新知(1)出示辅助角公式的相关公式,并解释其意义和用法。

辅助角公式如下:对于任意角A,有以下辅助角公式成立:sin(A) = sin(180° - A)cos(A) = -cos(180° - A)tan(A) = -tan(180° - A)(2)通过例题演示辅助角公式的运用。

例题:已知角A的正弦值为0.866,求角B的正弦值。

(A与B为锐角)解析:由于正弦函数是奇函数,即sin(A) = sin(180° - A),所以sin(B) = sin(180° - A) = sin(A) = 0.866。

(3)引导学生进行练习,巩固辅助角公式的运用。

练习题1:已知角A的余弦值为0.5,求角B的余弦值。

练习题2:已知角A的正切值为1.732,求角B的正切值。

3.拓展延伸将辅助角公式应用于实际问题的解决中。

通过实际问题的解答,培养学生运用数学知识解决问题的能力。

例题:一幢高楼的顶部与地面的连线与水平线夹角为60°。

现在有一人站在距离该幢高楼1km处的地点,他用测角仪观测到的顶角为30°。

已知水平距离与垂直距离的比值为4:3,求该高楼的高度。

解析:将问题抽象为三角形ABC,角ABD为观测到的顶角,角ACB为夹角,利用正切函数可得 tan(ABD) = BD / AD。

已知 tan(ABD) = √3,AD = 1km,求BD。

第三章位置与坐标导学案

第三章位置与坐标导学案

3.1确定位置(分2课时)【学习目标】1、明确确定位置的必要性,掌握确定位置的基本方法。

2、体验形式多样的确定位置的方式,体会学习的兴趣。

【学习过程】一、忆一忆:1、数轴:规定了、和的一条直线,叫数轴。

2、任何一个实数都可以用数轴上的来表示,它们成关系。

二、教材导读1.行列定位法行列定位常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,要准确标记某点的位置需要两个独立的数据,两者缺一不可。

例1小强与小华买了两张票去观看电影,小强的座号为10排12座,记作(10,12)。

若小华买的票记作(10,14),请问小华应怎样去找自己的位置?分析:从已知的小强的座位号的记法可看出括号内第一个数表示排数,第二个数表示列数。

解:由题意可知,(10,14)表示排座。

因此应先找到第排,再在第排找到座。

归纳..:在“行列定位法”中,明确行列记数的先后顺序是解决问题的关键。

2. 方格定位法在方格纸上,一点的位置由横向格数与纵向格数确定,记作(横向格数,纵向格数)或记作(水平距离,纵向距离)。

要注意横向格数排在前面,纵向格数排在后面。

例2下图是用黑白两种棋子在方格纸上摆出的两幅图案,如果用(0,0)表示A点的的位置,用(2,1)表示B点的位置,那么(1)图○1中五个顶点的位置表示为:;(2)图○2中五枚黑子的位置表示为:;(3)图○2中(6,1),(10,8)位置上的棋子分别是那一枚?在图中....。

...标记出来...用字母归纳..:用一对数表示位置时注意这对数是有顺序的,一般先写横格所表示的数,再写坚格所表示的数。

(先“横”后“纵”)3. “方位角加距离”定位法用“方位角加距离”定位法(也叫极坐标定位法),是生活中常用的方法,运用此法必须具备两个数据:一是“方位角”;二是“距离”。

特别要注意中心位置的确定。

例3如图是某次海战中敌我双方舰艇对峙示意图,对我方潜艇来说:(1)北偏东40°的方向上的目标有;要想确定敌舰B的位置,还需要的数据是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备 注
1.写出下列图中 A、C、E、F、B、I、H 各点的坐标,坐标(2,-2) , (4,-1)所代表 的分别是图中的那个点?
y F E A
H. 1
G B
。I
x
D
C
2.平面直角坐标系中点(3,2)在第 象限; (-3,2)在第 第 象限; (-1,-2)在第 象限; (2,-3)在
象限;点(0,5)在____轴上;点(-1,0)在____轴上. )
课后 反思
【 课 堂 小 结 】
1.点 P 在 y 轴上,且点 P 到原点的距离为 2 ,则点 P 的坐标为 2.填空:当 x= 在纵轴上. 时,P(x,2-x)点在横轴上;当 x=
. 时,P(x,2-x)点
3.在平面直角坐标系中,点 A1(1,1),A2(2,4),A3(3,9),A4(4,16),„„用你 发现的规律确定点 A9 的坐标为 .
【 自 主 预 习 】 1. 什么是数轴?数轴上点与实数之间的关系是什么? 2. 在上节课中我们如何确定位置,应注意什么? 【 合 作 交 流 】 阅读课本 P58-60 完成下列问题: 1.在图 3-4 中,确定各景点的位置需要几个数据? 2.完成 P58 做一做 (1)图 3-5 中,以“科技大学”为原点, “钟楼”的位置表示为______, (2,5)表示 ____________的位置, (5,2)表示____________的位置. (1)图 3-6 中,以“中心广场”为原点, “碑林”的位置表示为_______,“大成殿” 的位置表示为________. 2. ①什么叫平面直角坐标系?什么是横轴(x 轴)?什么是纵轴(y 轴)?什么是原 点?正方向? ②什么叫点的横坐标、纵坐标?什么叫点的坐标?在图 3-7 中,点 P 的坐标能否写 成 b, a ?为什么?你认为在写点的坐标时应该注意什么? ③平面直角坐标系的四个象限是怎样划分的?横轴、纵轴上的点在哪些象限里? 3. 若点 P 的坐标为 a, b ,则点 P 到 x 轴的距离为___________,即______;到 y 轴 的距离为___________,即______;到原点的距离为__________. 4. 阅读例 1 并完成 P60 做一做 我们知道数轴上的点与实数是一一对应的,那么平面直角坐标系中的点与有序实 数对是否也有这种对应关系? 【 当 堂 检 测 】
3. 点 M 的坐标为(3,4) ,则下列说法正确的是( A. 点 M 到 x 轴的距离是 3 B.点 M 到 y 轴的距离是 4 C. 点 M 到原点的距离是 5 D. 以上说法都不对
4. 若点 A(-a,b)在第三象限,则点 B(a,ab)在第____象限. 5. 已知点 P(m+2,m-1)是 y 轴上的点,则点 P 的坐标为 .
“531”有效课堂八年级数学导学案
班级
课 题 设 计
学习目标
组名:
3.2.1 平面直角坐标系
Hale Waihona Puke 组号:姓名:授课时间 序号
姜娜
审定
范秀刚 王鹏飞
康 玲 袁瑞梅
1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念; 2.认识并能画出平面 直角坐标系;3.能在给定的直角坐标系中,由点的位置写出它的坐标.
学 生 活 动
相关文档
最新文档