Dipl.-Ing. Daniel Fallmann Dipl.-Ing. Helmut Fallmann

合集下载

德国所有学位全称及简称

德国所有学位全称及简称

Dies ist die gesichtete Version, die am 13. September 2011 markiert wurde. Es gibt 1 ausstehende Änderung, die noch gesichtet werden muss.Wechseln zu: Navigation, SucheSiehe auch Hauptartikel: Akademischer GradInhaltsverzeichnis [Verbergen]1 Bachelorgrad2 Mastergrad2.1 Konsekutive Mastergrade2.2 Nicht-konsekutive und weiterbildende Mastergrade3 Lizentiat4 Magistergrad5 Diplomgrad5.1 Duale Hochschule Baden-Württemberg5.2 Fachhochschule5.3 Kunst- und Musikhochschule5.4 Universität6 Doktorgrad6.1 Hauptgrad6.2 Ph.D.-Graduierung6.3 Sonstige Doktorgrade6.4 Ehrendoktorwürde7 Siehe auch8 EinzelnachweiseBachelorgradB.A. Bachelor of ArtsB.Sc. Bachelor of ScienceB.Eng. Bachelor of EngineeringLL.B. Bachelor of LawsB.F.A. Bachelor of Fine ArtsB.Mus. Bachelor of MusicB.Ed. Bachelor of EducationBBA Bachelor of Business AdministrationBBA&E Bachelor of Business Administration and EngineeringBBI Bachelor of Business InformaticsMastergradKonsekutive MastergradeKonsekutive Studiengänge sind die häufigsten Masterstudiengänge (ca. 88% [1]) und bauen auf einen entsprechenden Bachelor auf. Ebenso kann nach einem Diplom-Studiengang ein Master-Studiengang absolviert werden. Für konsekutive Studiengänge gibt es zur Vereinfachung nur die folgenden sieben Mastergrade. Fachliche Zusätze sind dabei nicht mehr möglich. [2]Abkürzung kons. Mastergrad Fächergruppen [2]M.A. Master of Arts Sprach- und Kulturwissenschaften, Sport, Sportwissenschaft, Sozialwissenschaft, Kunstwissenschaft, Künstlerisch angewandte Studiengänge, Darstellende Kunst, teilw. WirtschaftswissenschaftenM.Sc. Master of Science Naturwissenschaften, Mathematik, Informatik, teilw. Ingenieurwissenschaften, teilw. WirtschaftswissenschaftenM.Eng. Master of Engineering IngenieurwissenschaftenLL.M. Master of Laws Rechtswissenschaften (außer Staatsexamen)M.F.A. Master of Fine Arts Freie Kunst, "künstlerische Kernfächer" an KunsthochschulenM.Mus. Master of Music MusikM.Ed. Master of Education V oraussetzungen für ein LehramtNicht-konsekutive und weiterbildende MastergradeNicht-konsekutive Masterstudiengänge und Weiterbildungsstudiengänge können dieselben Abschlussbezeichnungen wie konsekutive Mastergrade verleihen, wenn sie dieselben V oraussetzungen erfüllen. Ansonsten sind andere Abschlussbezeichnungen zu wählen. Der MBA wird in 6 % aller akkreditierten Masterstudiengänge vergeben, ansonsten werden die abweichenden Grade jedoch selten vergeben, alle übrigen zusammen in weiteren 6% aller Masterstudiengänge [1].Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (bspw. Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Hilf bitte der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.Abkürzung Mastergrad (nicht-konsekutiv oder weiterbildend) BemerkungE.M.P.H. European Master of Public HealthMaHM Master of Health ManagementM.Arch. Master of ArchitectureMBA Master of Business AdministrationMBC Master of Business ConsultingMBE Master of Business EngineeringM.B.L. Master of Business LawMScBL Master of Science in Business and Law[3]MBM Master of Business MarketingM.C.L. Master of Comparative Lawp.Sc. Master of Computer ScienceM.Env.Sc. Master of Environmental ScienceM.C.E. Master of Civil EngineeringM.E.A.M. Master of European Administrative ManagementMEGA Master of European Governance and AdministrationMHBA Master of Health Business AdministrationMHE Master of Higher EducationM.I.B. Master of International BusinessMLA Master of LandscapearchitectureMLB Master of Law and BusinessMLit Master of LettersM.O.P. Master of Organizational PsychologyM.O.M. Master of Organizational ManagementMOM Master of Oral Medicine in ImplantologyMPA Master of Public AdministrationMPA Master für Personalwesen und ArbeitsrechtM.M. Master of MediationM.M.I. Master of Medical InformaticsM.S.A. Master of Strategic AffairsMSE Master of Systems EngineeringM.P.H. Master of Public HealthM.P.M. Master of Public ManagementM.P.P. Master of Public PolicyM.T.D Master of Transportation DesignMED Master of Engineering DesignLizentiatlic. theol. Lizentiat der Theologie (lat. licenciatus theologiae)lic. iur. can. Lizentiat des (kanonischen) Kirchenrechts (lat. licentiatus iuris canonici)lic. rer. publ. Lizentiat der Publizistik (lat. licentiatus rerum publicarum)lic. rer. reg. Lizentiat der Regionalwissenschaft [KIT: Postgraduiertenstudium] (lat. licentiatus rerum regionalum )MagistergradM.A. Magister ArtiumLL.M. Legum MagisterMLE Magister Legum EuropaeMag. rer. publ. Magister rerum publicarumMag. theol. Magister TheologiaeMag. iur. Magister iurisM.Th. Magister TheologiaeDiplomgradDuale Hochschule Baden-WürttembergDipl.-Inf. (DH) Diplom-Informatiker (Duale Hochschule)Dipl.-Ing. (DH) Diplom-Ingenieur (Duale Hochschule)Dipl.-Betriebsw. (DH) Diplom-Betriebswirt (Duale Hochschule)Dipl.-Wirtsch.-Inf. (DH) Diplom-Wirtschaftsinformatiker (Duale Hochschule)Dipl.-Soz.päd. (DH) Diplom-Sozialpädagoge (Duale Hochschule)Der Diplomgrad …Diplom (DH)“ kann nur durch Nachgraduierung eines bestehenden staatlichenAbschlusses …Diplom (BA)“ erfolgen.[4] Mit der Nachgraduierung erwirbt der Absolvent der vormaligen Berufsakademie einen vollwertigen akademischen Grad.[5]FachhochschuleDipl.-Archivar (FH) Diplom-Archivar (FH)Dipl.-Betriebsw. (FH) Diplom-Betriebswirt (FH)Dipl.-Bibl. (FH) Diplom-Bibliothekar (FH)Dipl.-Bioinf. (FH) Diplom-Bioinformatiker (FH)Dipl.-Bioing. (FH) Diplom-Bioingenieur (FH)Dipl.-Biomath. (FH) Diplom-Biomathematiker (FH)Dipl.-Chem. (FH) Diplom-Chemiker (FH)Dipl.-Des. (FH) Diplom-Designer (FH)Dipl.-Dok. (FH) Diplom-Dokumentar (FH)Dipl.-Dolm. (FH) Diplom-Dolmetscher (FH)Dipl.-Energiewirt (FH) Diplom-Energiewirt (FH)Dipl.-oec.-troph. (FH) Diplom-Oecotrophologe (FH)Dipl.-Fachübersetzer (FH) Diplom-Fachübersetzer (FH)Dipl.-Finw. (FH) Diplom-Finanzwirt (FH)Dipl.-Forsting. (FH) Diplom-Forstingenieur (FH)... Diplom für Freie Bildende Kunst (FH)Dipl.-Freizeitwiss. (FH) Diplom-Freizeitwissenschaftler (FH)Dipl. Gartenbau-Ing. (FH) Diplom-Gartenbauingenieur (FH)Dipl.-Ges.oec. (FH) Diplom-Gesundheitsökonom (FH)Dipl.-Immobilienw. (FH) Diplom-Immobilienwirt (FH)Dipl.-Inf. (FH) oderDipl.-Inform. (FH) Diplom-Informatiker (FH)Dipl.-Inf.-Wirt. (FH) oderDipl.-Infw. (FH) Diplom-Informationswirtschaft (FH)Dipl.-Ing. (FH) Diplom-Ingenieur (FH)Dipl.-Journ. (FH) Diplom-Journalist (FH)Dipl.-Kffr. (FH) Diplom-Kauffrau (FH)Dipl.-Kfm. (FH) Diplom-Kaufmann (FH)Dipl.-Komm.Psych. (FH) Diplom-Kommunikationspsychologe (FH)Dipl.-Künstler (FH) Diplom-Künstler (FH)Dipl.-Kunsttherap. (FH) Diplom-Kunsttherapeut (FH)Dipl.-Logist. (FH) Diplom-Logistiker (FH)Dipl.-Math. (FH) Diplom-Mathematiker (FH)Dipl.-Medieninform. (FH) Diplom-Medieninformatiker (FH)Dipl.-Medienök. (FH) Diplom-Medienökonom (FH)Dipl.-Medienw. (FH) Diplom-Medienwirt (FH)Dipl.-Mediator (FH) Diplom-Mediator (FH)Dipl.-Museol. (FH) Diplom-Museologe (FH)Dipl.-Musiktherap. (FH) Diplom-Musiktherapeut/in (FH)Dipl.-Naut. (FH) Diplom-Nautiker (FH)Dipl.oec.troph (FH) Diplom-Ökotrophologe (FH)Dipl.-Online-Journalist (FH) Diplom-Online-Journalist (FH)Dipl.-Pfl. (FH) Diplom-Pfleger (FH)Dipl.-Pflegew. (FH) Diplom-Pflegewirt (FH)Dipl.-Pflegepäd. (FH) Diplom-Pflegepädagoge (FH)Dipl.-Red. (FH) Diplom-Redakteur (FH)Dipl.-Rel.-päd. (FH) Diplom-Religionspädagoge (FH)Dipl.-Rest. (FH) Diplom-Restaurator (FH)Dipl.-Reha-psych. (FH) Diplom-Rehabilitationspsychologe (FH)Dipl.-Rpfl. (FH) Diplom-Rechtspfleger (FH)Dipl.-Soz.arb. (FH) Diplom-Sozialarbeiter (FH)Dipl.-Soz.jur. (FH) Diplom-Sozialjurist (FH)Dipl.-Soz.Päd. (FH) Diplom-Sozialpädagoge (FH)Dipl.-Soz.-wirt (FH) Diplom-Sozialwirt (FH)... Diplom-Theaterpädagoge (FH)Dipl.-Techn. (FH) Diplom-Technologe (FH)Dipl.-Übers. (FH) Diplom-Übersetzer (FH)Dipl.-Verww. (FH) Diplom-Verwaltungswirt (FH)Dipl.-Verw.-Betriebsw. (FH) Diplom-Verwaltungsbetriebswirt (FH) Dipl.-Verw.-Manager (FH) Diplom-Verwaltungsmanager (FH)... Diplom für Wirtschaft (FH)Dipl.-V olksw. (FH) Diplom-V olkswirt (FH)Dipl.-Wirt.-Inf. (FH) Diplom-Wirtschaftsinformatiker (FH)Dipl.-Wi.-Inform. (FH) Diplom-Wirtschaftsinformatiker (FH)Dipl.-Wirtsch.-Ing. (FH) Diplom-Wirtschaftsingenieur (FH)Dipl.-Wirt.-Ing. (FH) Diplom-Wirtschaftsingenieur (FH)... Diplom-Wirtschaftsjapanologe (FH)Dipl.-Wi.Jur. (FH) Diplom-Wirtschaftsjurist (FH)Dipl.-Wirtschaftspsych. (FH) Diplom-Wirtschaftspsychologe (FH)Kunst- und Musikhochschule... Diplom der Akademie der bildenden Künste in Nürnberg + Fachrichtung Dipl.-Anim. Diplom-AnimatorDipl.-Arch. Diplom-Architekt (DDR-Grad, wird nicht mehr vergeben) Dipl. Audiovisuelle Medien Diplom in audiovisuellen Medien... Diplom-Ausstellungsdesigner... Diplom für Bildende Kunst... Diplom-Bühnenbildner... Diplom in Bühnenbild... Diplom-Bühnendarsteller... Diplom in BühnendarstellungDipl.-Des. Diplom-DesignerDipl.-Film- u. Fernsehdram. Diplom-Film- und FernsehdramaturgDipl.-Film- u. Fernsehwirt. Diplom-Film- und FernsehwirtschaftlerDipl.-Filmkomp. Diplom-FilmkomponistDipl. Freie Kunst Diplom für Freie Kunst... Diplom für Freie Bildende Kunst... Diplom in GesangDipl.-Ing. Diplom-IngenieurDipl.-Kam. Diplom-Kameramann... Diplom-Kirchenmusiker... Diplom in Kirchenmusik... Diplom in KunstpädagogikDipl.-Kunstpäd. Diplom-Kunstpädagoge... Diplom-MusikerDipl.-Rest. Diplom-RestauratorDipl. Mus. Diplom in MusikDipl.-Mus.-Päd. Diplom-MusikpädagogeDipl.-Musikl. Diplom-Musiklehrer... Diplom in Musikpädagogik... Diplom-SängerDipl.-Schau. Diplom-SchauspielerDipl.-Schnittm. Diplom-SchnittmeisterDipl.-Szeneb. Diplom-SzenebildnerDipl.-Szenem. Diplom-Szenemeister... Diplom-Szenograf... Diplom-Tanzpädagoge... Diplom in TanzpädagogikDipl.-Tonm. Diplom-TonmeisterDipl. Vis. Komm. Diplom für Visuelle KommunikationUniversitätDipl.agr.biol. Diplom-AgrarbiologeDipl.agr.oec. Diplom-AgrarökonomDipl.-Angl. Diplom-AnglistDipl.-Arch. Diplom-ArchitektDipl.-Berufspäd. Diplom-BerufspädagogeDipl.-Betriebsw. Diplom-Betriebswirt (akademischer Grad der Universität Hamburg, ehem. HWP) Dipl.-Bibl. Diplom-BibliothekarDipl.-Biochem. Diplom-BiochemikerDipl.-Biol. Diplom-BiologeDipl.-Biol. (t.o.) Diplom-Biologe (technisch orientiert) (Universität Stuttgart)Dipl.-Biotechnol. Diplom-BiotechnologieDipl.-Braumeister Diplom-BraumeisterDipl.-Chem. Diplom-ChemikerDipl.-Chem. Ing. Diplom-Chemieingenieur... Diplom-CaritaswissenschaftlerDipl.-Chem.oec. Diplom-WirtschaftschemikerDipl.-Demogr. Diplom-DemographDipl.-Des. Diplom-Designer... Diplom-DiakoniewissenschaftlerDipl.-Dolm. Diplom-DolmetscherDipl.-Dram. Diplom-DramaturgDipl.-Forstw. Diplom-Forstwirt... Diplom für Freie Bildende KunstDipl.-Geogr. Diplom-GeographDipl.-Geoinf. Diplom-GeoinformatikerDipl.-Geol. Diplom-GeologeDipl.-Geoökol. Diplom-GeoökologeDipl.-Geophys. Diplom-GeophysikerDipl.-Germ. Diplom-GermanistDipl.-Geront. Diplom-GerontologeDipl.-Ges.oec. Diplom-GesundheitsökonomDipl.-Ghl. Diplom-GesundheitslehrerDipl. GDFS Diplom für Grenzüberschreitende deutsch-französische StudienDipl.-Gwl. Diplom-GewerbelehrerDipl.-Gyml. Diplom-Gymnasiallehrer (Akademischer Grad, der an der RWTH Aachen bei Abschluss des Ersten Staatsexamens verliehen wird.)Dipl.-Hdl. Diplom-HandelslehrerDipl.-Heilpäd. Diplom-HeilpädagogeDipl.-Hist. Diplom-HistorikerDipl.-Holzwirt Diplom-HolzwirtDipl.-Humanbiologe Diplom-HumanbiologeDipl. human. biol. Diplom-HumanbiologeDipl.-Hydrol. Diplom-HydrologeDipl.-Inf. oder Dipl.-Inform. Diplom-InformatikerDipl.-Inf. Univ. Diplom-Informatiker Univ.Dipl.-Inform. Med. Diplom-Informatiker der MedizinDipl.-Inf.Wirt/Inform.Wirt Diplom-InformationswirtDipl.-Inf.wiss Diplom-InformationswissenschaftlerDipl.-Ing. Diplom-IngenieurDipl.-Ing. agr. Diplom-AgraringenieurDipl.-Ing. Univ. Diplom-Ingenieur (Akademischer Grad, der an der Technischen Universität München, der Friedrich-Alexander-Universität Erlangen-Nürnberg und an der Universität der Bundeswehr München bei Abschluss eines Ingenieurstudiengangs verliehen wird.)Dipl.-Ing. oec. Diplom-Ingenieur-Ökonom WirtschaftsingenieurDipl.-Ing. Päd. DiplomingenieurpädagogeDipl.-iur. oder Dipl.-Jur. Diplom-JuristDipl.-Journ. Diplom-JournalistDipl.-Kff. oder Dipl.-Kffr. Diplom-Kauffrau ist das weibliche Gegenstück zum Diplom-Kaufmann Dipl.-Kfm. Diplom-KaufmannDipl.-Kfm. t.o. Diplom-Kaufmann technischDipl.-Komm.-Wirt Diplom-KommunikationswirtDipl.-Krim. Diplom-KriminologeDipl.-Krim. Diplom-Kriminalist (DDR-Grad, wird nicht mehr vergeben)Dipl.-Kult. Diplom-KulturwissenschaftlerDipl.-Kult.Päd. Diplom-KulturpädagogeDipl.-Kult.Man. Diplom-KulturmanagerDipl.-Kulturwirt Diplom-KulturwirtIn (vgl. Studiengang Kulturwirt)Dipl.-Künstler Diplom-KünstlerDipl.-Kunstpädagoge Diplom-KunstpädagogeDipl.-Landsch.-ökol. Diplom-LandschaftsökologeDipl.-Lebensmittelchem. Diplom-LebensmittelchemikerDipl.-Lehrer Diplom-LehrerDipl.-Ling. Diplom-LinguistDipl.-LMChem. Diplom-LebensmittelchemikerDipl.-LM-Ing. Diplom-Lebensmittelingenieur (Lebensmitteltechnologie)Dipl.-Logist. Diplom-LogistikerDipl.-Math. Diplom-MathematikerDipl.-Math. oec. oder Dipl.-Wi.-Math. Diplom-Wirtschaftsmathematiker oder Diplom-Finanz- und WirtschaftsmathematikerDipl.-Math.techn. Diplom-TechnomathematikerDipl.-Med. Diplom-Mediziner (DDR-Grad, wird nicht mehr vergeben)Dipl.-Vet.-Med. Diplom-Veterinärmediziner (DDR-Grad, wird nicht mehr vergeben)Dipl.-Med. Päd. DiplommedizinpädagogeDipl.-Medienberater Diplom-MedienberaterDipl.-Mediengestalter Diplom-MediengestalterDipl.-Medieninf. Diplom-MedieninformatikerDipl.-Medienprakt. Diplom-MedienpraktikerDipl.-Medienwirt Diplom-Medienwirt (Studiengang Medienplanung, -beratung, -entwicklung in Siegen)Dipl.-Medienwiss. Diplom-MedienwissenschaftlerDipl.-Met. Diplom-MeteorologeDipl.-Mot. Diplom-MotologeDipl.-Mikrobiol. Diplom-MikrobiologeDipl.-Mil. Diplom-Militärwissenschaftler (DDR-Grad, wird nicht mehr vergeben)Dipl.-Min. Diplom-MineralogeDipl.-NanoSc. Diplom-NanostrukturwissenschaftlerDipl.-Nat. Diplom-NaturwissenschaftlerDipl.-Hist.Sc Diplom-NaturwissenschaftshistorikerDipl.-Neurowiss. Diplom-NeurowissenschaftlerDipl.oec.troph. Diplom-ÖkotrophologeDipl.oec. Diplom-ÖkonomDipl.-Ök. Diplom-ÖkonomDipl.-Orient. Diplom-OrientalistDipl.-Oz. Diplom-OzeanographDipl.-Päd. Diplom-Pädagoge... DiplompflegepädagogeDipl.-PGW Diplom-Pflege-und GesundheitswissenschaftlerDipl.-Pharm. Diplom-PharmazeutDipl.-Phil. Diplom-Philosoph (DDR-Grad, wird nicht mehr vergeben)Dipl.-Phys. Diplom-PhysikerDipl.-Phys. (Med.) Diplom-MedizinphysikerDipl.-Phys.Ing. Diplom-PhysikingenieurDipl.-Phys.oec. Diplom-WirtschaftsphysikerDipl.-Pol. Diplom-PolitologeDipl.-Prähist. Diplom-PrähistorikerDipl.-Psych. Diplom-PsychologeDipl.-Reg.-Wiss. Diplom-RegionalwissenschaftlerDipl.-Reh.-Päd. Diplom-RehabilitationspädagogeDipl. rer. com. Diplom-KommunikationswissenschaftlerDipl. rer. oec. Diplom-WirtschaftswissenschaftlerDipl.rer.pol. Diplomatus rerum politicarum (bei Politik- und Wirtschaftswissenschaftlern) Dipl.-Rom. Diplom-RomanistDipl.sc.pol.Univ. Diplomaticus scientiae politicae UniversitatisDipl.-Sicherheits.-Ing. Diplom-SicherheitsingenieurDipl.-Soz.Ök. Diplom-SozialökonomDipl.-Soz. Diplom-SoziologeDipl.-Soz. tech. Diplom-Soziologe technikwissenschaftlicher Richtung (nur TU Berlin) Dipl.-Sozialpäd. Diplom-SozialpädagogeDipl.-Sozw. Diplom-SozialwirtDipl.-Soz.Wiss. Diplom-SozialwissenschaftlerDipl.-Sporting. Diplom-SportingenieurDipl.-Sportl. Diplom-SportlehrerDipl.-SpOec. Diplom-SportökonomDipl.-Sportwiss. Diplom-SportwissenschaftlerDipl.-Sprechwiss. Diplom-SprechwissenschaftlerDipl.-Staatswiss. Diplom-StaatswissenschaftlerDipl.-Stat. Diplom-StatistikerDipl.-Stom. Diplom-Zahnarzt (DDR-Grad, wird nicht mehr vergeben)Dipl.-Stomat. Diplom-Zahnarzt (DDR-Grad, wird nicht mehr vergeben)Dipl.-Systemwiss. Diplom-SystemwissenschaftlerDipl.-Tech. Math. Diplom-TechnomathematikerDipl.-Technoinform. Diplom-TechnoinformatikerDipl.-Theol. Diplom-TheologeDipl.-Troph. Diplom-Trophologe (Ernährungswissenschaftler)Dipl.-Übersetzer Diplom-ÜbersetzerDipl.-Umweltwiss. Diplom-UmweltwissenschaftlerDipl.-UWT Diplom-UmwelttechnikerDipl.-Verk.wirtsch. Diplom-VerkehrswirtschaftlerDipl.-Verw. Wiss. Diplom-VerwaltungswissenschaftlerDipl.-V olksw. Diplom-V olkswirtDipl.-Wirt. Diplom-Wirtschaftler (DDR-Grad, wird nicht mehr vergeben)... Diplom - Wirtschafts- und Arbeitsjurist... Diplom in Wirtschafts- und Arbeitsrecht (HWP Hamburg)Dipl.-Wirtschaftschem. Diplom-WirtschaftschemikerDipl.-Wirt.-Inf./Dipl.-Wirt. Inform./Dipl.-Wirtsch.-Inf. Diplom-WirtschaftsinformatikerDipl.-Wi.-Ing./Dipl.-Wirt.-Ing./Dipl.-Wirtsch.-Ing. Diplom-WirtschaftsingenieurDipl.iur.oec.univ. Diplom-Wirtschaftsjurist Univ.Dipl.-Wirtl. Diplom-Wirtschaftslehrer (Akademischer Grad, der an der RWTH Aachen bei Abschluss des Ersten Staatsexamens verliehen wird.)Dipl.-Wipäd. Diplom-WirtschaftspädagogeDipl.-oec. bzw. Dipl.-WiWi. Diplom-WirtschaftswissenschaftlerDoktorgradGrade übernommen aus dem Artikel Doktor.HauptgradDr. agr. (agriculturae): Doktor der AgrarwissenschaftenDr. biol. anim. (biologiae animalis): Doktor der TierphysiologieDr. biol. hom. (biologiae hominis): Doktor der HumanbiologieDr. cult. (culturae): Doktor der KulturwissenschaftenDr. disc. pol. (disciplinarum politicarum): Doktor der Sozialwissenschaften an der Georg-August-Universität Göttingen (Politikwissenschaften)Dr.-Ing. (Doktor-Ingenieur): Doktor der Ingenieurwissenschaften. (Einführung 1899 an den Technischen Hochschulen Deutschlands. Wegen des Widerstandes der damaligen klassischen Universitäten gilt für den Titel die deutsche Schreibweise, nicht die lateinische)Dr. iur. (iuris): Doktor der Rechtswissenschaften (auch: jur. für …juris“)Dr. iur. utr. (iuris utriusque): Doktor …beiderlei Rechte“, also des weltlic hen und des kirchlichen Rechts (auch j.u.; jur.utr., s.o.)Dr. iur. can. (iuris canonici): Doktor der kanonischen Rechtswissenschaften (d.h. des römisch-katholischen Kirchenrechts)Dr. iur. et rer. pol (iuris et rerum politicarum): Doktor der Rechts- und StaatswissenschaftenDr. math. (mathematicae): Doktor der MathematikDr. med. (medicinae): Doktor der MedizinDr. med. dent. (medicinae dentariae): Doktor der ZahnmedizinDr. med. vet. (medicinae veterinariae): Doktor der TiermedizinDr. nat. med.: Doktor der naturwissenschaftlichen MedizinDr. nat. techn. (naturalium technicarum): Doktor der BodenkulturDr. oec. (oeconomiae): Doktor der Wirtschafts- / VerwaltungswissenschaftenDr. oec. publ. (oeconomiae publicae): Doktor der Staatswissenschaften / VolkswirtschaftDr. oec. troph. (oecotrophologiae): Doktor der Ernährungswissenschaften / Haushaltswissenschaft Dr. paed. (paedagogiae): Doktor der ErziehungswissenschaftenDr. pharm.' (pharmaciae): Doktor der PharmazieDr. phil. (philosophiae): Doktor der Philosophie. Umfasst die ganze Breite der alten Philosophischen Fakultäten, insbesondere alle Philologien, aber auch Soziologie, Politikwissenschaft, Geschichte, Psychologie, Pädagogik, Kulturwissenschaft, zuweilen auch noch Mathematik, Natur- und WirtschaftswissenschaftenDr. phil. in art. (philosophiae in artibus): Doktor der Philosophie in den Künsten (künstlerisch-wissenschaftlich) (nur Hochschule für bildende Künste Hamburg)Dr. phil. nat. (philosophiae naturalium): Doktor der Naturwissenschaften (geistes- und gesellschaftswissenschaftlicher Schwerpunkt, in Frankfurt am Main aber anstelle des Dr. rer. nat.) Dr. PH (public health): Doktor der GesundheitswissenschaftenDr. rer. agr. (rerum agriculturarum): Doktor der Landbauwissenschaften bzw. Landwirtschaft und BodenkulturDr. rer. biol. vet. (rerum biologiae veterinariae): Doktor der VeterinärbiologieDr. rer. biol. hum. (rerum biologiae humanae habilitatus): Doktor der HumanbiologieDr. rer. cult. (rerum culturarum): Doktor der KulturwissenschaftenDr. rer. cur. (rerum curae): Doktor der PflegewissenschaftenDr. rer. forest. (rerum forestalium): Doktor der Forstwissenschaften (auch ohne "rer.“)Dr. rer. hort. (rerum horticulturarum) Doktor der GartenbauwissenschaftenDr. rer. medic. (rerum medicinalium): Doktor der GesundheitswissenschaftenDr. rer. med. (rerum medicarum): Doktor der MedizinwissenschaftenDr. rer. merc. (rerum mercantilium): Doktor der HandelswissenschaftenDr. rer. mont. (rerum montanarum): Doktor der BergbauwissenschaftenDr. rer. nat. (rerum naturalium): Doktor der Naturwissenschaften, oft auch der Mathematik, Informatik, Pharmazie oder PsychologieDr. rer. oec. (rerum oeconomicarum): Doktor der WirtschaftswissenschaftenDr. rer. pol. (rerum politicarum): Doktor der Wirtschafts- und SozialwissenschaftenDr. rer. physiol. (rerum physiologicarum): Doktor der HumanbiologieDr. rer. publ. (rerum publicarum): Doktor der VerwaltungswissenschaftenDr. rer. sec. (rerum securitatis): Doktor der SicherheitswissenschaftenDr. rer. silv. (rerum silvestrium): Doktor der Forstwissenschaften (#)Dr. rer. soc. (rerum socialium): Doktor der SozialwissenschaftenDr. rer. tech. (rerum technicarium): Doktor der Technischen WissenschaftenDr. sc. agr. (scientiarum agrariarum): Doktor der AgrarwissenschaftenDr. sc. hum. (scientiarum humanarum): Doktor der HumanwissenschaftenDr. sc. mus. (scientiae musicae): Doktor der MusikwissenschaftenDr. sc. oec. (scientiarum oeconomicarum): Doktor der WirtschaftswissenschaftenDr. sc. pol. (scientiarum politicarum): Doktor der Wirtschafts- und SozialwissenschaftenDr. sc. soc. (scientiae socialis): Doktor der SozialwissenschaftenDr. sc. techn. (scientiae technicarum): Doktor der technischen WissenschaftenDr. Sportwiss.: Doktor der SportwissenschaftenDr. theol. (theologiae): Doktor der Theologie, früher häufig nur D.Dr. troph. (trophologiae): Doktor der ErnährungswissenschaftPh.D.-GraduierungPh.D. Freie Kunst (engl.: Doctor of philosophy in Fine Arts): Promotion in den Künsten (Bauhaus-Universität Weimar)Ph.D. Kunst und Design (engl.: Doctor of philosophy in Art and Design): Promotion in Kunst und Design (Bauhaus-Universität Weimar)Sonstige DoktorgradeDr. mult. (multiplex): abkürzend bei einer Person mit mehreren Doktorgraden.Dres. (doctores), Abkürzung bei Nennung mehrerer Personen mit Titel (bspw. Dres. Meier und Müller)Dr. habil. (habilitatus): Doktor mit Lehrberechtigung (Habilitation)Drs. (doctorandus): Bezeichnung für eine Person, die eine Doktorarbeit schreibtDr. des. (designatus): Doktortitel, der nach einigen Promotionsordnungen zwischen dem Ende des Promotionsverfahrens und der Veröffentlichung der Dissertation geführt werden kann.DDr. (Dr. theol. et Dr.): Eine Person mit einem theologischen (Ehrendoktortitel) und einem weiteren Doktortitel.EhrendoktorwürdeDr. h. c. (honoris causa): Ehrendoktor (…der Ehre halber“)Dr. e. h. (ehrenhalber): Ehrendoktor, auch eh. oder E.h.D. (ehrenhalber): Ehrendoktor der ev. TheologieDie Ehrendoktorwürde kann von einer Hochschule mit Promotionsrecht verliehen werden. Dies erfolgt ohne Dissertation. Die Ehrendoktorwürde ist kein akademischer Grad.。

迅达原装进口QKS-9门机调试资料(英语)

迅达原装进口QKS-9门机调试资料(英语)

Geschäftsführer / Managing Director Dipl.- Ing. Michael Laumann Dipl.- Ing. Matthias Langer
Bankverbindung / Bank Account Sparkasse Steinfurt BLZ: 40351220 Kto: 7024631 Volksbank Greven EG BLZ: 40061238 Kto: 8623333000
User Manual
QKS9 L&L
door operator
for doors QKS9 L&L V1.3: 2 panel telescoping left, 2 panel telescoping right, 2 panel central, 4 panel central telescoping.
Langer & Laumann Ingenieurbüro GmbH
48356 Nordwalde
Langer & Laumann
Ingenieurbüro GmbH
Wallgraben 30
+49 (02573) 9 55 99 0 +49 (02573) 9 55 99 5
http://www.LuL-Ing.de Email: Info@LuL-Ing.de
These operating instructions and the product described therein are copyright protected for Langer & Laumann Ingenieurbüro GmbH or its suppliers, with all rights reserved. In accordance with this copyright these operating instructions may not be copied either in part or in their entirety without the written authorisation of Langer & Laumann Ingenieurbüro GmbH unless within the framework of normal use of the product or to create backup copies. This exceptional provision does not extend to include copies, which are created for third parties and sold to or in any other way conveyed to same. Nevertheless, the entire, acquired material (including all backup copies) can be sold to, handed over to or made available on a loan basis to such parties. In accordance with the provisions of the law, the production of a translation similarly falls under the definition of copying.

德国舒勒公司用于HP-RTM的压机

德国舒勒公司用于HP-RTM的压机

17
Maintaining injection position of the slide
Resin injection with slide position control

Task: Maintaining of injection position against rising internal resin pressure and rising eccentrical load. Solution: Closed-loop control for position + parallelism with set value position of parallelism cylinders and actuating value slide force
CFRP
5
Overview of presentation


Copyright Schuler SMG 2013
Motivation for the use of CFRP parts in automotive industry The vacuum-assisted high pressure RTM press process Press technology for the high pressure RTM process with example of supplied presses 36,000 kN – 3.6 x 2.4 m System overview of complete RTM process New development of press technology
Copyright by Schuler SMG
Source BMW AG, Schuler AG

英语翻译

英语翻译

Sehr geehrte Damen und Herren,(尊敬的女士们,先生们)vielen Dank für Ihre Nachricht. Da ich derzeit nicht erreichbar bin,werde ich Ihre Nachricht erst ab dem 07.11.2011 lesen können.Thank you for your message. Since I am not attainable at present, I willonly be able to read your message starting from the date above.感谢您的来信,因为目前我无法到达,我只能从上述日期(2011.7.11)开始阅读您的邮件In dringenden Fällen wenden Sie sich bitte telefonisch an:In urgent cases please contact by telephone:(在紧急情况下,请电话联系)unser Sekretariat (我们办公室) Tel.: +49 203 3781 452.Diese Nachricht wurde automatisch erstellt. Eingehende Emails werdennicht automatisch weitergeleitet.This message was generated automatically. Incoming emails won`t be sent forward automatically.(此信息是自动生成的,传入的电子邮件将不能自动向前发送)Vi elen Dank für Ihr Verständnis.Thank you for your understanding.(感谢您的理解)Mit freundlichen Grüßen / best regards(麻省理工学院freundlichen Grüßen,最真挚的问候)Dipl.-Ing. Thomas Richter (IWE, EAE)(硕士工程师,托马斯里希特)Schweißtechnische Lehr- und Versuchsanstalt(焊接培训与研究所)SLV - Duisburg, Niederlassung der GSI mbH(SLV杜伊斯堡,GSI mbH公司的分支机构)Bismarckstraße 85 D-47057 Duisburg(地址)内部资料,未经允许,严禁复印。

Force-balanced lift valve

Force-balanced lift valve

专利名称:Force-balanced lift valve发明人:GOSSNER, MATTHIAS, DIPL.-ING.,TRENKMANN, JOACHIM, DIPL.-ING.,BUNGEROTH, LUTZ, DIPL.-ING.,THOMSEN, UWE,LEU, PETER, DIPL.-ING.申请号:EP89118126.5申请日:19890929公开号:EP0380754A2公开日:19900808专利内容由知识产权出版社提供专利附图:摘要:The force-balanced lift valve for controlling fluids consists of a housing (1), withflow paths for the fluid, a valve body device (4, 5), which is provided on shank devices (2), supported such that they can move axially in the housing, for opening and closing a valve opening (10), and sealing devices (17) for sealing the axially moving valve part with respect to the housing. A force-balancing compensation surface (A2), which can be subjected to pressurised fluid via an auxiliary channel (15), is assigned to the valve body device. The sealing devices comprise an elastic, axially effective sealing ring (17) which engages on the one hand in a sealing manner and in a positively locking and/or force-fitting manner with the valve housing (1) and, on the other hand, engages with the axially moving valve part such that a radial section of the ring rests in an axially sealing manner on at least one contact shoulder (2a) of the axially moving valve part. ……申请人:H. KUHNKE GMBH KG地址:Lütjenburger Strasse 101 D-23714 Malente DE国籍:DE代理机构:Wilcken, Thomas, Dipl.-Ing.更多信息请下载全文后查看。

Embroidery machine with central drive

Embroidery machine with central drive

专利名称:Embroidery machine with central drive发明人:HENZ, JUERGEN, DR.,ABEGGLEN, HANS,DIPL.-ING.,ZESCH, MANFRED,MASCHINENBAU-ING.申请号:EP93118107.7申请日:19931109公开号:EP0601343A2公开日:19940615专利内容由知识产权出版社提供专利附图:摘要:The subject-matter of the invention is an embroidery machine having amultiplicity of embroidering points with the corresponding embroidery tools (13,19,20,21)which are attached on shafts (5,6,7) which extend along the embroidery machine, oscillate in the operating state and are set in motion by means of corresponding drives. In order to reduce the torsion of these shafts, some of which are quite long, and their torsional vibrations, which leads to distortion of the movement required at the embroidery tools and to a temporal phase shift between the front and rear part of the machine, according to the invention the drives of the needles (19) and other embroidery tools (13,20,21) are provided about halfway along the embroidery machine.申请人:SAURER STICKSYSTEME AG地址:CH-9320 Arbon CH国籍:CH代理机构:Riebling, Peter, Dr.-Ing., Patentanwalt更多信息请下载全文后查看。

Dishwasher

Dishwasher

专利名称:Dishwasher发明人:STICKEL, ERNST, DIPL.-ING.,MAILANDER, HANS, DIPL.-ING.,JERG, HELMUT, DIPL.-ING.申请号:EP86104780.1申请日:19860408公开号:EP0205787B1公开日:19900131专利内容由知识产权出版社提供摘要:1. Dishwashing machine with a fresh water inflow duct (11, 12, 14), which leads to an ion exchanger (2) and displays a free flow path (13) and a water inlet valve which is controllable by the program control device of the machine, and with a multichamber storage container (8), which is fillable by fresh water and the chambers of which are connected by way of a distributor chamber (9) inclusive of setting element (10) and by way of a duct (39) with the salt supply chamber (5), which stands in communication through a controllable valve (40) with the ion exchanger (2) and sits together with this below the storage container (8), as well as with a level-regulating vessel (16), which consists of an overflow chamber (20), which is emptiable by means of a siphon (23) and divided off from the rinsing container by an overflow partition (18) and in which a float (21), sensor or the like is arranged or to which a pressure monitor is connected, which at a certain filling level closes the water inflow valve and/or a safety valve, wherein the ion exchanger (2) is connected to the rinsing container or its outlet trough and the filling nipple (6) of the salt supply chamber (5) is closable by a lid or the like, characterised thereby, that the fresh water inflow duct (11, 12, 14), the ion exchanger (2), the salt supply chamber (5) with its filling nipple (6), the storage container (8), the free flow path(13), the level-regulating vessel (16), the condensation chamber (35), the distributor chamber (9), the duct (39) leading therefrom to the salt supply chamber (5) and a valve housing (41) for the named valve (40) form a container unit (1) of synthetic material arranged beside the rinsing container and that the filling nipple (6) of the salt supply chamber (5) of the container unit (1) is led through the rinsing container side wall into the rinsing space.申请人:BOSCH-SIEMENS HAUSGERATE GMBH,BOSCH-SIEMENS HAUSGERATE GMBH 更多信息请下载全文后查看。

Smoke extracting hood

Smoke extracting hood

专利名称:Smoke extracting hood发明人:KELLER, HANS GERD, DIPL.-ING.,MAYER, NORBERT, DIPL.-ING.,MEINHARDT, GERT,DIPL.-ING.,ROHRBACH, PETER, DIPL.-ING.,RUECKERT, WILFRIED, DIPL.-ING.,SCHMID, DIETRICH, DIPL.-ING.,ZIBOLD,ARMIN申请号:EP01128909.7申请日:20011205公开号:EP1217308A1公开日:20020626专利内容由知识产权出版社提供专利附图:摘要:The cooker hood has a vapor extraction hood in front of a filter. The extraction hood is formed as a funnel (5) with a smaller outlet opening (7) and an larger intake opening (6). The distance between intake and filter (3), the blower performance, and the funnel are adjusted relative to each other, so that the suction blowers (8) in the cooker hood (1) generate a suction effect in the extraction funnel. The filter surface is divided into individual filter sections (3.1-3.4), each with its own suction shaft, and with suction nozzle (9) or suction blower. The funnel is mounted on a horizontally moveable pivot lever (10).申请人:BSH BOSCH UND SIEMENS HAUSGERAETE GMBH地址:Hochstrasse 17 81669 München DE国籍:DE更多信息请下载全文后查看。

The New 1.6-litre MPI CNG Engine from Volkswagen

The New 1.6-litre MPI CNG Engine from Volkswagen

The New 1.6-litre MPI CNG Engine from VolkswagenDr.-Ing. Alexander Schad,Dipl.-Ing. Friedrich Eichler, Dr.-Ing. Rüdiger Szengel, Dipl.-Ing. Carsten Helbing, Dipl.-Ing. Jörg WormVolkswagen AG, Wolfsburg, GermanySummaryThe next step in the consistent on-going development of VW engines in terms of reducing consumption and emissions is ready for introduction into series production: the first Chinese-produced EA211-series engine that can be operated with CNG.In this case, the modular system makes it possible to implement the necessary adaptations efficiently and relatively straightforwardly, thus integrating a high level of development experience. The very good consumption properties of the basic engine, combined with the physical and thermodynamic characteristics of natural gas or biomethane, offer the opportunity to achieve significant reductions in consumption and operating costs.1 IntroductionWith sales of 2.8 million vehicles last year, the Volkswagen Group is the most successful car manufacturer on the rapidly growing market of the People’s Republic of China. The ongoing growth strategy includes a strengthened commitment to the taxi sector, with the focus being on the Jetta and Santana models.Both models come with a 1.6-litre MPI engine from the new EA211 range. Its strengths are its low fuel consumption, low internal friction, compact dimensions, low weight and modular construction, facilitating flexible and cost-effective sourcing and production worldwide. The four-cylinder is also offered in a variant specifically engineered to run on Compressed Natural Gas (CNG) especially for taxi operation in China’s big cities.In the development of the Volkswagen 1.6 l MPI CNG, the target average fuel consumption was set at 4.3 kg CNG/100 km, which equates to CO2 emissions of 118 g/km. The target figures for power and torque are 70 kW and 140 Nm respectively. A further challenge for the development engineers was the cost-effective integration of CNG-specific components into the existing bivalent Jetta and Santana packages.CNG and petrol have very different physical characteristics. These result in different combustion processes that must be taken into account in the engine application. The high knock resistance of CNG enables earlier ignition timing, which helps to optimize efficiency. This, in turn, leads to higher peak pressures and higher component temperatures during combustion.2 Engine ConceptAll the engines in the new EA211 range share a cylinder spacing of 82.0 mm. In the new 1.6 l MPI CNG, the bore measures 76.5 mm and the stroke 86.9 mm. The resulting displacement of 1,598 cm3 is the largest in the range. Output stands at 70 kW at 5,600 rpm, while maximum torque is 140 Nm at 3,800 rpm.Compared with the preceding engine, the fundamental friction for the EA211 has been reduced by 20%. This was achieved through a smaller crankshaft bearing diameter, improvements to the con rods and valve gear, new timing gear driven by toothed belt and a regulated oil pump. The design of the new aluminium pistons is precisely adapted to the geometry of the intake channels and the special operating conditions associated with CNG.2.1 Cylinder block and crankcaseThe cylinder block and crankcase (CBC) (Fig. 1) has an open deck construction and is made from aluminium using pressure die casting. The entire design is systematically laid out for low weight. The ancillary mounts, for instance, were integrated directly into the crankcase.The aluminium crankcase incorporates four cast-in liners made from GJL 250 grey cast iron. Their application enables safe and secure engine operation using all kinds of fuels available worldwide. In order to ensure optimum heat transfer, the liners have a rough-cast finish on their outer diameter. This increases the contact surface area to the surrounding aluminium on the one hand and, on the other, provides a secure mechanical fit.The water jacket thickness has been optimized to an average of 40 mm for low cylinder distortion and sufficient heat transfer into the coolant. The CBC also incorporates a large number of cast-in channels for pressure oil feed, oil return and ventilation. The reduction of individual parts and processing facilitates cost-effective manufacturing, but sets significant demands on the casting process.Fig. 1: 1.6 l MPI CNG cylinder block and crankcase2.2 Crankshaft driveIn engineering the crankshaft drive (Fig. 2), care was taken to keep moving masses and friction as low as possible. While retaining comfort levels, engine weight and friction were reduced by using small main and con rod bearings (diameter of 48 mm each). Four counterweights reduce the internal forces in the crankshaft and thus the load on the main bearings. The use of the latest FEM and NVH computational methods enabled a reduction in the weight of the crankshaft by 20% and of the con rods by up to 30% compared with the preceding engine from the EA111 family. The big-end bearing pins are hollow bored.Fig. 2: 1.6 l MPI CNG crankshaft drive2.3 Cylinder headThe setup of the new four-cylinder MPI engine for CNG operation called for modifactions to the valves, the valve guides and the valve seats, taking into account the low lubrication qualities of gaseous fuels.To increase wear resistance in CNG operation, the valve seat angle on the intake side is 90° and, on the exhaust side, 120°. To minimise wear at the valve seats, valve contact times have been reduced. To this end, the ramp angle has been flattened around the last 0.2 millimetres. The intake shaft is fitted with a vane-type camshaft adjuster.The cylinder head (Fig. 3) of the new 1.6 l MPI CNG has a four-valve layout and is made using an aluminium gravity die-casting process. The valves hang in the pentroof combustion chamber and are actuated using low-friction roller cam followers. The intake valves are at an angle of 21° to the cylinder axis, with the exhaust valves at 22.4°. The valve stems have a diameter of 5 mm. The consequently low masses optimise the dynamics of the valve gear and friction decreases as a result of lower valve spring forces.The cylinder head features an integrated exhaust gas manifold (IEGM) that brings the four exhaust channels together within the head to a single, central flange. The engine reaches its operating temperature sooner, because the cooling water is warmed very quickly during the cold-start phase. In general, the exhaust flow is cooled more than in a conventional concept, which enables operation at a fuel/air mix of λ=1 even under high load. One further benefit is the compact package of engine and exhaust system, allowing the catalyst to be positioned very close to the engine and enabling it to warm-up quickly to the temperature necessary for the conversion of methane. This effect has a positive impact on fuel consumption and emissions.The water core was laid out to extract waste heat from the exhaust flow and direct it as effectively as possible into the cooling water. In the area above the combustion chambers, cooling is in the form of cross-flow cooling. From there, the water runs via bridges between the exhaust valves into the upper part of the main water jacket, which handles cooling in the area above the integrated exhaust manifold. Cooling beneath the IEGM is provided by a separate water core, which is also supplied with cooling water from the main water jacket.Fig. 3: Cylinder head with integrated exhaust gas manifold (IEGM)2.4 Integrated valve drive moduleThe new 1.6 l MPI CNG engine features an integrated valve drive module (Fig. 4). The assembled camshafts are inserted into the valve cover within this highly integrated component. For this process, the finish-machined pressure die-cast cover is placed in a fixture. The honed and heated cams and the master gear are then held in position inside the valve cover in the right orientation using an assembly cassette. The shafts, which have already been fitted with end pieces and cooled in a nitrogen bath, are then inserted through the bearing points in the cover and the heated cams. Once the cams have cooled down and the shafts have heated up, the two camshafts are now permanently mounted inside the valve drive module.The production technique enables a very stiff and compact layout of the camshaft mounting. This has a positive impact on the dynamics of the valve drive and on the weight. Compared with conventional camshaft plain bearings, it allows for a smaller bearing diameter, while the fundamental principle dispenses with the bearing cap offset and additional fastening required for bearing block/cap mounting. Small and fully round plain bearings prevent unnecessary friction losses.The first bearing on both the intake and exhaust camshafts, which are subject to additional forces from the control gear, are specified as grooved ball bearings for reasons of friction. The valve drive module is made entirely from aluminium and incorporates all the necessary components such as control valves and oil supplychannels.Fig. 4: Integrated valve drive module2.5 Timing gearAll EA211 variants with four cylinders, i.e. including the 1.6 l MPI CNG, all possess the same toothed belt drive, which generates around 30% less friction than comparable chain drives. The timing belt, which is 20 millimetres wide and has been designed to last the lifetime of the vehicle, is guided by a permanent tensioningpulley, while the steel belt pulley is fitted with an inner and outer flange.Fig. 5: Timing gear2.6 Water pump module with integrated dual-circuit coolingDuring the development process, particularly high demands were set on the high-temperature cooling circuit inside the engine. All EA211 engines have a fully-fledged dual-circuit cooling system, in which the cooling circuits for the cylinder head and the crankcase are separate from one another. This enables faster warm-up of the engine oil, which considerably reduces engine friction during the warm-up phase.In order to achieve a compact package with few components, it was necessary to avoid driving the water pump in the conventional manner via the timing gear or ancillary drive. Instead, the water pump is integrated into the thermostat housing mounted on the transmission side of the cylinder head (Fig. 6). It is driven from the exhaust camshaft by a separate toothed belt.The water pump module consists of an aluminium pressure die-cast main body incorporating the water feed, as well as the two return channels. It also includes the water pump mount. The thermostat housing, which is made from PA 6.6 polyamide, is fastened to the pressure die-casting and contains the main thermostat, the CBC thermostat, the connection points for the cooler feed and return and the heating connectors.Fig. 6: Water pump thermostat moduleThe water circuit in the 1.6 l MPI begins at the water pump, from where the coolant travels through a connecting channel in the cylinder head to the water gallery integrated into the CBC. From there, one stream is guided through the cylinder head gasket into the cylinder head. Here, it is split again to supply the cross-flow cooling for the combustion chambers and the integrated exhaust manifold. Both streams reunite directly in front of the thermostat module and flow into the mixing chamber in front of the main thermostat.At the end of the water gallery in the CBC is a breakthrough to the water jacket of cylinder number 1. This is the start of the second cooling circuit for the CBC, which flows longitudinally past cylinders 2, 3 and 4. The water flows to the CBC thermostat in the thermostat module through a third connecting channel. It opens at a temperature of 105°C and lets the water enter the mixing chamber in front of the main thermostat. This then regulates the amount of water that flows through the main vehicle radiator.2.7 Oil circuitThe motor has an additional oil cooler to allow for the higher thermal loading of the pistons and the oil in CNG operation. In general, the friction-optimised layout of the EA211 engines with their small main and big-end bearing diameters in the crankshaft drive, as well as the partial use of grooved ball bearings in the camshaft mounts, reduces the oil flow rate. This made it possible to reduce significantly the delivery rate of the oil pump and thus to reduce further the internal friction of the overall engine assembly.The internal gear pump located in the front sealing flange is driven directly by the crankshaft and sucks the oil from the oil sump through a plastic snorkel. Pump control is managed on the basis of the pressure in the main oil gallery, in order to exclude the influence of pressure losses in the oil filter. The pressure oil travels inside the CBC to the oil filter fixed to the oil sump, and from there to the main oil gallery. Here, the flow diverges to the main and big-end bearings and, via a riser on the timing gear side, to the cylinder head.Two galleries in the cylinder head supply oil to the balancer elements and cam followers. Branch bores send oil to the camshaft bearings in the module cover and to the control valve for the intake camshaft adjuster.2.8 Crankcase ventilationThe layout of the crankcase ventilation system was the focus of particular attention during the development of the 1.6 l MPI. There was a requirement to ensure that oil separation function efficiently under all conditions and that sufficient removal of condensation is guaranteed over short distances. The solution implemented was a pressure regulated system with forced ventilation.The distraction of blow-by gases occurs in the CBC behind bearing seat 2, where it is protected from oil spray. From there, the gas enters the separation chamber formed by the cylinder block and a plastic cover. This chamber is divided into coarse and fine separation, each with its own discharge port. Oil is removed from the gas using impact plates and orifice assemblies and sent to the pressure regulation valve integrated within the separator cover. The return of the separated oil runs beneath the oil level into the oil sump.The pressure regulation valve maintains a virtually constant vacuum across the engine’s entire load and rev range. The transfer of the de-oiled gas is via a riser in the CBC through the cylinder head and into the intake manifold beneath the throttle valve. Containing the gas completely inside the engine guarantees safe operation even under low ambient temperatures and a high level of blow-by.In order to ensure the removal of condensation, the vacuum in the CBC constantly sucks fresh air through the engine from the air intake side of the air filter via a non-return valve in the cylinder head cover. Water vapour released during engine warm-up is captured by the fresh air stream and channelled through the oil separator. The extracted air is then fed into the engine for combustion.In order to ensure the removal of condensation, the vacuum in the CBC constantly sucks fresh air through the engine from the air intake side of the air filter via a non-return valve in the cylinder head cover. Crankcase gases released during engine warm-up are captured by the fresh air stream and channelled through the oil separator to the engine for combustion.2.9 Intake moduleThe primary aim in the development of the intake tract of the 1.6 l MPI was the achievement of a high level of volumetric efficiency, to enable powerful torque delivery across a wide rev range. The four-part plastic intake manifold is conceived as a scroll-type intake pipe with an internal collector. The intake channels have been laid out together with the design of the combustion chambers for a good balance between high charge-air movement and low flow resistance.2.10 Ancillary drivesFor packaging and weight reasons, the ancillaries are mounted to the engine without additional bracketry. The necessary thread points have been included on the crankcase, oil sump and front sealing flange.The ancillaries, which also include the compressor for the standard air conditioning, are driven via a six-groove elastic belt, which dispenses with the need for a permanent tensioning device. To enable the belt to be threaded, there is an additional idler pulley on the alternator pulley that can be adjusted via an eccentric. This means that the belt can be threaded without the need for specialist tools.Fig. 7: Ancillary drives2.11 Mixture formation, sensors and engine controlAn electrically controlled throttle body with a diameter of 52 mm provides the entryway for the air into the intake manifold. To register cylinder fill (engine load), a dual sensor for measuring temperature and vacuum is integrated into the intake manifold. The location of the sensor was selected to enable measurement of the vacuum from all cylinders.To reduce consumption and emissions further, a sliding-vane camshaft adjuster is fitted to the intake shaft. It is regulated using a proportional valve located in front of the adjuster in the oil supply channel inside the module cover. The position of the intake camshaft is determined by a phase sensor at the end of the camshaft. The control of the adjuster is adapted to the low residual gas tolerance prevalent in CNG operation.New features of the 1.6 l MPI CNG include the individual plug-top spark ignition coils, which will be used in future in all of the Volkswagen Group’s spark-ignition engines. The ignition coils sit directly above the spark plugs and are fixed to the cylinder head. CNG operation requires a higher ignition voltage, which is why the coil charge time has been adapted accordingly.To determine engine temperature, the temperature sensor is located in the water jacket of the integrated exhaust manifold, where the highest water temperatures in the cooling system occur. The knock sensor is fastened to the CBC beneath the water jacket close to the second cylinder.Lambda control and catalyst monitoring are handled by two lambda sensors. The use of a continuous pre-cat sensor adapted specifically for operation with CNG enables rapid adaptation to varying gas qualities. The wideband sensor behind the catalyst monitors the catalyst conversion rate in the usual way and ensures the fine balance of the fuel/air mix.The engine control unit (ECU) has been optimised for function, cost and packaging space, and its notable for its high degree of functional integration. It controls not only all components associated with petrol operation, but also the CNG-specific parts. Alongside the engine management itself, it also handles control of the air conditioning compressor and the ventilation module. A further important task is the management of the gas feed valve and the electronic gas pressure regulator. For this, the ECU uses a pressure sensor on the high-pressure side and a low-pressure sensor at the entrance to the gas rail.Control of the CNG components is on the basis of a mathematical gas temperature model. Display of the operating mode, consumption and fuel level in the instrument panel is also based on mass calculations conducted in the engine control unit. Via the lambda sensors, the control unit identifies the different qualities of CNG available on the market. When the engine is running on L-gas, which has a lower calorific value on account of its lower methane content, the ECU adapts the gas feed time accordingly.2.12 CatalystThe charging of the catalyst with precious metals and their composition was also adapted to suit. The combustion of CNG generally results in around 25 percent fewer CO2emissions, as well as considerably less carbon monoxide and long-chain hydrocarbons. Soot and fine particulates are not emitted, although unburned residual methane has to be converted in the catalyst.3 Special Vehicle Components for CNG OperationBeyond the engine, there are components such as the gas pressure regulator and the gas tanks that are specific to CNG operation. Alongside functional considerations, the development process focused on keeping weight as low as possible and on cost-effective packaging.3.1 Electronic gas pressure regulator and gas railThe electronic gas pressure regulator in the engine compartment is extremely compact and lightweight with a volume of around 0.2 litres and a weight of ca. 600 grams. It lowers the pressure in two stages from 200 bar in the tanks to the 4 to 9 bar (absolute) that prevails in the low-pressure system. During the first stage, the pressure is mechanically lowered to 20 to 25 bar by a hollow-bored piston. In thesecond stage, it is electronically regulated to the target pressure via a proportional valve. A mechanical pressure relief valve prevents the CNG from entering the gas rail at excessive pressure and causing damage.To prevent the occurrence of unacceptably low temperatures during the reduction from 200 bar to the system pressure of 4 to 9 bar resulting from the Joule-Thomson effect, the component is incorporated into the cooling circuit.The variable regulation of CNG pressure at 4 to 9 bar has several benefits. In the higher load/rev range, gas is fed in at maximum pressure to achieve full torque and power output. At the lower and mid range, 4 to 5 bar is sufficient. When the pressure on the low-pressure side falls to 4 bar, which is equal to a remaining mass of 0.02 kilograms, the ECU switches to petrol operation.The intake manifold has dedicated mounting points for the stainless steel gas distribution rail. The gas feed valves are inserted into the cylinder intake channels. Their electrical function and control are the same as that for petrol injection valves4 Results4.1 Customer operationAt coolant temperatures upwards of minus 10 degrees Celsius, the Jetta and Santana are started on gas. At lower temperatures, the engine starts on petrol. In such cases, the gas rail is first evacuated by slightly opening the feed valves with the gas pressure regulator closed. The feed valves are then warmed by a continual flow until they have reached operating temperature and open safely.After refuelling with CNG, the engine starts initially on petrol before. Once lambda regulation becomes active, it switches to CNG operation. This is to allow adaptation to the gas quality of the new tank fill. Once adaptation is complete, the engine starts immediately on gas on every subsequent start-up, until the next CNG refuelling.4.2 Performance and fuel consumptionWith an output of 70 kW (95 hp) at 5,600 rpm and 140 Nm of torque at 3,800 rpm, the Jetta and Santana have ample engine power. The good torque figures at low engine speed should be particularly beneficial in the targeted taxi sector, while also permitting fuel-efficient transmission ratios. The sedan accelerates from zero to 100 km/h in 12.0 seconds and has a top speed of 182 km/h. The dash from 80 to 120 km/h in 4th gear takes 13.8 s.In terms of consumption and CO2 emissions, Volkswagen is setting benchmarks in the segment with the new 1.6 l MPI CNG. The average CO2 emissions are just 118 g/km, with the average fuel consumption standing at only 4.3 kg of CNG/100 km. If biogas is used instead of fossil CNG, this figure drops considerably further in thewell-to-wheel reckoning. As well as the gas tank, both the Jetta and the Santana have a fully-functional petrol tank, making them completely bivalent.Fig. 8: Technical data 1.6 l MPI CNG5 ConclusionWith the new 1.6 l MPI CNG for the Jetta and Santana sold in China for taxi use, Volkswagen has developed an innovative and economical engine solution that fulfils all the requirements in respect of ride, everyday usability and economy. The new engine has been systematically designed for optimum friction and weight. Competitive comparison confirms its good characteristics in respect of fuel consumption and emissions. At the same time, it has been possible to develop a very cost-effective engine for this price-sensitive vehicle class.6 References[1] Dr.-Ing. Jens HADLER, Dr.-Ing. Rüdiger SZENGEL, Dipl.-Ing. Uwe KIRSCH,Dipl.-Ing. Norbert BECKER, Dr.-Ing. Gerhard EGGERS,Dipl.-Ing. Manfred FRIESE, Dipl.-Ing. Kai PERSIGEHL20. Aachener Motorenkolloquium; Der neue 1,0l 3-Zylinder MPI Motor fürden up!Volkswagen AGWolfsburg, 2011[2] Dr.-Ing. Heinz-Jakob NEUßER, Dr.-Ing. Rüdiger SZENGEL,Dipl.-Ing. Uwe KIRSCH, Dipl.-Ing. Jörg WORMMotor und Umwelt 2012; Der neue Dreizylinder-Erdgasmotor im Volkswagen eco up!Volkswagen AGWolfsburg, 2012。

海底控制SCM 结构01_Subsea_Control_Structures_EMBT_2010

海底控制SCM 结构01_Subsea_Control_Structures_EMBT_2010

MotivationIncreasing demands for hydrocarbons make exploration and production activities in ultra ‐deepwater areas (>1.500 mwd) with huge step ‐out distances more attractive and remunerative. These areas are often characterized by harsh environments and/or ice coverage. As result modern production techniques work with completely submerged facilities and do not employ surface piercing fixed or floating platforms. Latest developments are made for the north part of the North Sea (Figure 1) as well as the Barents Sea (Snøhvit, Statoil).Figure 1: Scheme of a modern subsea production facility = no surface piercing offshore platform (Ormen Lange, StatoilHydro)The companies IMPaC Offshore Engineering, Aker ‐Wirth, Bornemann and the IPR (part of the Karlsruhe Institute of Technology, KIT) followed this trend and participated in the ISUP project (Integrated Systems for Underwater Production of Hydrocarbons) which was partly funded by the German Ministry of Economy and Technology (BMWi). Aim of the project was the conception of an innovative underwater production system for hydrocarbons, the so called technology platform, as well as the development of certain new components and subsystems which were focused by dedicated subprojects:• a modular extendable installation and assemblyplatform (Aker ‐Wirth) • a multifunctional, partly autonomous SeafloorWorking Unit (SWU) for installation, operation, enlargement and dismantling tasks (Aker ‐Wirth) • a multiphase booster pump to increase theproduction rate and for flow assurance over long distances to the processing plant (Bornemann) • a multiphase booster motor to locally producepower for subsea application (Bornemann) • a modular distributed control and automationsystem (dCAS) (IMPaC) with remote diagnosis abilities (IPR)Fast and safe subsea control structures, based on approved conventional technologiesDr.-Ing. Sven HoogDipl.-Ing. Tilman SchieglIMPaC Offshore Engineering GmbH, HamburgDr.-Ing. Sven HoogDipl.-Ing. Tilman SchieglThe project lasted three years and was finished with an impressive demonstration of the results end of 2009.IMPaC ‐dCAS ‐ Key featuresWithin the scope of the ISUP project IMPaC developed an innovative control and automation system for the whole production facility called “IMPaC ‐dCAS” (distributed Control and Automation System).Due to the electric power supply and the high ‐speed data transmission abilities this system satisfies requirements defined by the “multiplexed electro ‐hydraulic” or “all electric” class of control systems (refer standard ISO 13628‐6). Based on fiber optic (F/O) lines in the supply umbilical and subsea Ethernet switches these systems today offer a transmission bandwidth up to a Gigabit allowing to connect complete subsea production plants with high information density in (near) real ‐time to the onshore receiving plant with a step ‐out distance of 100 km and more. Advantages are e.g. very short reaction times for valve and choke actuation as well as reduced risk of hydraulic oil leakages compared to conventional hydraulically controlled systems.The key priorities to the control system are safety, availability and reliability resulting in a redundant software and hardware architecture.Figure 2: Local Control Room with web based SCADA (IMPaC)In the concept all major subsea field development modules like e.g. XTree’s, manifolds, (multiphase ‐) pumps, (wet gas ‐) compressors and separators are equipped with so called “Orange Boxes”, the Subsea Electronics Modules (SCM) providing the underwater part of the control system. In addition the land basedcontrol centre of the dCAS is equipped with a state ‐of ‐the ‐art SCADA environment (Supervisory Control and Data Acquisition) with the interactive HMI (Human Machine Interface) (Figure 2).The redundant software and hardware structure used in all dCAS components ensures secure data transmission and provides functions for remote diagnosis and remote control.As one key facility of the Underwater Production System (UPS), the IMPaC ‐dCAS control system shall be responsible for the safe and reliable data distribution, control and automation of the production, resulting in a more effective and economic operation. Thus all features required for a state ‐of ‐the ‐art (near) real ‐time asset management strategy for the underwater process plant can be made available.The dCAS uses future ‐proof components and subsystems with fully ‚open‘ (standardized) architecture and interfaces to provide a sustainable and resource ‐friendly production technology. Thus the system facilitates a maximum degree of integration allowing a variable set ‐up of subsystems so that the IMPaC ‐dCAS is generally (easy) integrable in existing systems or new concepts.dCAS for subsea – the caged “Orange Boxes”The dCAS subsea modules are designed to work in ultra ‐deepwater. For cost effective maintenance these modules are wet replaceable due to the use of latest wet mateable connector technology for power transfer, standard data transfer as well as data transfer with high ‐bandwidth based on single or multi mode fiber optic technology.Figure 3: dCAS subsea box with installation cage from 3D design to the real test system (IMPaC)Fast and safe subsea control structures, based on approved conventional technologiesBy definition the dCAS is an open system so all relevant types of connectors defined by any client specific application can be generally integrated.The currently selected family of connectors is rated for use up to full ocean depth. As consequence the overall water depth rating of the dCAS subsea modules depends on the strength of the pressure resistant and water tight cylindrical housing only. The kernel of each subsea box comprises electronic modules for uninterruptable power supply, programmable logic controller (PLCs), digital and analog inputs and outputs as well as the Ethernet network switches. The switches are equipped with single mode F/O interface sockets to allow data transfer with high bandwidth over step‐out distances up to 100 km and more.The type and number of each electronic component can be widely adapted to meet specific application needs. The hardware used in the ISUP dCAS (test) application follows a strict regime of simplicity with maximum reliability. To gain optimal system availability all relevant functionality is equipped with redundant hardware components. Only the specialized safety PLC is ‐ by definition ‐ not redundant implemented. To meet the ISUP specific requirement of a fully open architecture off‐the‐shelf components meeting highest German industry standards were used; in the current stage of development no custom made or modified hardware was employed. Nevertheless, it might be necessary to replace certain components with especially designed and tested units to meet the requirements of a long‐term housed subsea application when it comes to real world implementation – refer comments given below in chapter ‘Tests with the Demonstrator’ for details.SCADA and Human‐Machine‐Interface Professional SCADA environment software was developed as frontend to the control and automation system. The SCADA contains the Human‐Machine‐Interfaces which are developed with a hierarchical architecture. The general idea is to enter the system from top to bottom, from the overview to the detail views.Referring Figure 4t he SCADA concept considers all different ‘intelligent’ subsea aggregates in the process control layer as well as the different clients and asset manager (operating/ monitoring layer) served by the HMI surfaces (Figure 5). These instances are grouped around the data management kernel where the standardized OPC data exchange servers, the servers for the mirrored process database and the video data server are concentrated. All data are subject to problem specific logging, alarm or online handling allowing initiating and focusing on case dependent information and reaction procedures of the operator.Figure 4: Concept of the web based SCADA (IMPaC)Figure 5: Exemplary HMI surface of the ISUP SCADA(IMPaC)Access to various HMI user levels is organized by means of an authentication procedure allowing distinguishing between the different purposes of e.g. software service technicians, process operators as well as business managers.The programming of the SCADA and the HMI surfaces follows standards like IEC 61131‐3.Dr.-Ing. Sven HoogDipl.-Ing. Tilman SchieglOil and Gas production via Internet?Bi ‐directional communication between the production facilities with its various sensors and information levels and volumes as well as between these structures and the local and global control centers is basic for a sustainable asset management. The IMPaC ‐dCAS provides the hardware and software components and functions needed to realize a high potential communications network. Again it was essential to use today’s standards for the development of the communications architecture within the ISUP project.The system basically connects the (subsea) Local Area Network (LAN) build by the infield dCAS boxes mounted to each of the ‘intelligent’ process facility modules with the operators and worldwide located client applications (Figure 6). Safe access is realized by firewalls implemented at both ‘ends’ of the public network, the Internet. An encoded dialog is organized with authentication and establishment of Virtual Private Network (VPN) gateways where an encapsulated Internet Protocol (IP) package control takes place.Due to the high bandwidth (in the current stage up to a Gigabit) it is possible to remote control even the video assisted complex operations of unmanned vehicles and tools like the Seafloor Working Unit (SWU) from Aker ‐Wirth (Figure 7).Figure 6: Concept for the safe communication via Internet using VPN (IPR)Tests with the “Demonstrator”The ISUP project comprised specific Factory Acceptance Tests (FAT) for each subsystem developed by the project partners. After that the SWU fromAker ‐Wirth, the new designed multiphase pump from Bornemann as well as a XTree dummy and the operator environment from IMPaC were arranged in a set ‐up called the ‘Demonstrator’. These main subsystems were equipped with identical dCAS subsea boxes from IMPaC. For the Demonstrator the SWU and the XTree dummy were transported to a shallow water test area at the Blohm+Voss ship yard in the harbor of Hamburg (Figure 7). Only the pump was installed in a test basin at the remote Bornemann facility in Obernkirchen near Hannover, which is about 200 km away from the Hamburg test area. In addition the colleagues from IPR were online at its offices in Karlsruhe (distance to Hamburg approx. 620 km). They acted as ‘external experts’ and were implemented in the tests and during the presentations with their remotely running simulations and diagnosis tools. Each subsystem was connected via its dCAS box and F/O cables either directly or via Internet with the operator place (located in Hamburg). Thus the configuration of the different test locations used for the Demonstrator represented a very huge ‘production area’ and Internet based client structure, respectively, almost comparable with realistic field scenarios.Figure 7: The IMPaC-dCAS subsea boxes with the Seafloor Working Unit from Aker-Wirth during trialsAim of the tests with the Demonstrator was to get validation of the functionality of the implemented mechanical, electrical and data interfaces and the proper high ‐speed data distribution – especially when used with wet mateable underwater connectors ‐ as well as to establish a first exemplary network build by the dCAS in a heterogeneous application.Fast and safe subsea control structures, based on approved conventional technologiesDuring the tests relevant control values of the new designed multiphase pump as well as a basic test version of a multiphase motor was made available and online implemented as dynamic data in the SCADA. In parallel an online simulation of basic physical processes were simulating the effect of e.g. opening and closing of valves determining changes in pressure and velocity of the fluid in the flowlines. A remote diagnosis algorithm working with the real values provided by the multiphase machines started to determine the process dependent remaining system availability. All these data were safely transferred between the different test locations by means of the dCAS and its data management system. Although these tests were carried out with good success important and required tests are still needed to meet the market needs: shock tests, vibration tests and temperature tests, partly coming as long time tests (refer standard ISO 13628‐6).ConclusionThe project ISUP was dedicated to the development of a new modular underwater production system as well as certain exemplary subsystems providing a simplified test application for this system. As part of the ISUP system the distributed control and automation system (dCAS) developed by IMPaC uses standardized interfaces, programming languages and functions wherever possible and feasible. Also standards with regard to reliability, availability, lifetime, maintainability and HSE requirements were taken into account (e.g. IEC 61131, ISO 61508, ISO 13628).All relevant components and functions are redundant to provide a high level of availability. Its state‐of‐the‐art fully open architecture provides web based (near) real‐time access to any subsea production facility equipped with the dCAS “Orange Box”. Thus the operator and any of its externally located experts will be able to perform an efficient asset management based on high‐speed data transfer with up to Gigabit bandwidth.The new dCAS provides remote control, automation and diagnosis capabilities for the whole subsea production plant enabling modern subsea‐to‐beach applications with access from all over the world via safe internet infrastructure.AcknowledgementsThe authors wish to express their gratitude to the German Federal Ministry of Economics and Technology (BMWi) and Project Management Jülich (PTJ) for funding the joint research project ’ISUP — Integrated Systems for Underwater Production of Hydrocarbons’ (FKZ 03SX229).Special thanks also to the colleagues from IPR (Karlsruhe Institute of Technology) for fruitful discussions and cooperation in the specific fields of safe data transfer, data management and remote system diagnosis.The authors want to acknowledge the contribution of all project involved colleagues from Bornemann, Aker‐Wirth and IMPaC.References[1.]Hoog, S., Kupke, H., Tchouchenkov, I., Reimann,G., Wörn, H.: Asset Management über dasInternet bis in die Tiefsee, Schiff & Hafen, October 2008, Nr. 10 (in German)[2.]Hoog, S: Facing Challenges of Deepwater Oil andGas Production Systems – Introduction of a new distributed Control and Automation System‘, oral presentation at Conference InWaterTec, Session S3 ‐ Underwater Installations, Kiel, October 08‐2009。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Research PaperComparison of the Enterprise Functionalities of Open Source Database Management SystemsApril 26, 2005Herausgeber und Urheber Fabalabs Software GmbH, Honauerst. 4 A-4020 LinzBearbeiter: Dipl.-Ing. Daniel Fallmann Dipl.-Ing. Helmut Fallmann Dipl.-Ing. Andreas Pramböck Horst Reiterer Dipl.-Ing. Martin Schumacher Dipl.-Ing. Thomas Steinmaurer Univ.-Prof. Dr. Roland Wagner Research Paper Page 1Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 LinzIndex1 Introduction ..................................................................................................................................... 4 1.1 Purpose of the Document ...................................................................................................... 4 1.2 Abstract .................................................................................................................................. 4 1.3 Feedback and Further Information......................................................................................... 4 1.4 Demands of Enterprise Applications on Database Systems ................................................. 4 2 Evaluation and Comparison............................................................................................................ 6 2.1 Licensing ................................................................................................................................ 6 2.2 Operating Systems Support ................................................................................................... 7 2.2.1 Supported Platforms...................................................................................................... 7 2.2.2 64-bit OS Support........................................................................................................ 10 2.3 Limits of the Database ......................................................................................................... 11 2.3.1 Limits per Database..................................................................................................... 11 2.3.2 Limits per Table ........................................................................................................... 12 2.3.3 Limits per Index ........................................................................................................... 13 2.3.4 Numeric Limits............................................................................................................. 14 2.3.5 String Limits................................................................................................................. 15 2.3.6 Unicode Support.......................................................................................................... 16 2.3.7 Complex Query Limits ................................................................................................. 17 2.4 Database Interfaces ............................................................................................................. 18 2.4.1 SQL-Standards............................................................................................................ 18 2.4.2 Programming Language Interfaces ............................................................................. 19 2.4.3 Database Links............................................................................................................ 20 2.4.4 Gateways..................................................................................................................... 21 2.5 Programming Features ........................................................................................................ 21 2.5.1 Transactions ................................................................................................................ 21 2.5.2 Transaction Isolation Levels........................................................................................ 22 2.5.3 Prepared Statements .................................................................................................. 23 2.5.4 Bind Variables ............................................................................................................. 24 2.5.5 Stored Procedures with Bind Variables....................................................................... 24 2.5.6 Indicator Host Variables .............................................................................................. 25 2.5.7 Array Inserts / Array Fetches....................................................................................... 25 2.5.8 Row-Level Locks ......................................................................................................... 26 2.5.9 Timeout Functionality .................................................................................................. 26 2.5.10 Error Code Expressiveness......................................................................................... 27 2.5.11 Date/Time Literals ....................................................................................................... 27 2.5.12 Conversion from String to Date/Time .......................................................................... 28 2.5.13 Conversion from String to Numeric ............................................................................. 29 2.5.14 Stored Procedure Support........................................................................................... 30 2.5.15 Trigger Support............................................................................................................ 30 2.6 Text Searching Capabilities ................................................................................................. 32 2.6.1 Full-Text Search .......................................................................................................... 32 2.6.2 Soundex Search .......................................................................................................... 33 2.7 Performance of the Database .............................................................................................. 33 2.7.1 Table Structures .......................................................................................................... 33 2.7.2 Index Structures .......................................................................................................... 34 2.7.3 Scalability / SMP Support............................................................................................ 35 2.7.4 Load Balancing............................................................................................................ 36 2.7.5 Multi-volume Support .................................................................................................. 37 2.7.6 Large Memory Support................................................................................................ 38 2.8 Distributed Transactions ...................................................................................................... 38 2.8.1 Two-Phase Commit ..................................................................................................... 38 2.8.2 XA-Protocol Support.................................................................................................... 39 2.8.3 Consistent Multi-Database-Recovery.......................................................................... 39 2.9 Replication ........................................................................................................................... 40Research PaperPage 2Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 Linz3 45 672.10 High Availability Features..................................................................................................... 41 2.10.1 Online Backup ............................................................................................................. 41 2.10.2 Online Reorganization................................................................................................. 42 2.10.3 Cluster Support............................................................................................................ 43 2.11 Ease of Administration ......................................................................................................... 43 2.11.1 System Management .................................................................................................. 44 2.11.2 Database Management ............................................................................................... 45 2.11.3 Performance Tuning / Profiling Tools .......................................................................... 46 2.11.4 Security........................................................................................................................ 47 2.12 Technical Appraisal.............................................................................................................. 49 2.12.1 Project Activity / Release Cycle................................................................................... 49 2.12.2 Size of Development Team ......................................................................................... 50 2.12.3 Support Availability ...................................................................................................... 50 2.12.4 Future Trends .............................................................................................................. 51 Feature Matrix............................................................................................................................... 53 Limit Tests..................................................................................................................................... 58 4.1 MAXIN Test.......................................................................................................................... 58 4.2 MAXOP Test ........................................................................................................................ 58 4.3 MAXJOIN Test ..................................................................................................................... 59 Conclusion .................................................................................................................................... 61 Bibliography .................................................................................................................................. 63 6.1 Firebird 1.5.2 ........................................................................................................................ 63 6.2 Ingres r3 3.0.1 ...................................................................................................................... 64 6.3 MaxDB 7.5.0.23 ................................................................................................................... 65 6.4 MySQL 4.1.10 ...................................................................................................................... 66 6.5 PostgreSQL 8.0.1................................................................................................................. 67 6.6 General................................................................................................................................. 68 Information / Allgemeines ............................................................................................................. 69SamplesSample 1: Limit Tests – MAXIN Table DDL.......................................................................... 58 Sample 2: Limit Tests – MAXOP Table DDL......................................................................... 58 Sample 3: Limit Tests – MAXJOIN Tables DDL.................................................................... 59 Sample 4: Limit Tests – MAXJOIN Tables – ER diagram...................................................... 60 Sample 5: Limit Tests – MAXIN – Join of two tables............................................................. 60 Sample 6: Limit Tests – MAXIN – Join of three tables........................................................... 60Research PaperPage 3Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 Linz1 Introduction1.1 Purpose of the DocumentEver since the very beginning, the enterprise-grade database management systems (DBMS) market was clearly dominated by commercial offerings from IBM, Oracle and Microsoft. Meanwhile the situation has changed: Open source DBMS have reached a high grade of evolution and are seen as a cost effective and functionally adequate alternative to commercial DBMS by many business companies. Besides the cost aspects the question if open source DBMS can cope with the demands that are given by enterprise-level applications comes to our mind. To give an answer to this question, Fabalabs Software GmbH and the Institute For Applied Knowledge Processing (FAW) evaluated Firebird 1.5.2, Ingres r3 3.0.1, MaxDB 7.5.0.23, MySQL 4.1.10 and PostgreSQL 8.0.1 in respect to their applicability on enterprise-level applications.1.2 AbstractThis study is an in-depth evaluation on open source DBMS in consideration of their applicability on enterprise-level applications. Based on a catalog of requirements typical for enterprise-level applications, product manuals, books, websites, newsgroups and other DBMS-related resources have been worked through to give an extensive answer on requirements like licensing, operating system support, certain limits of a database, database interfaces, programming features, text searching capabilities, performance of the database, distributed transaction support, replication, high availability features, ease of administration and a technical appraisal in regard to the project activity, size of the development team and support availability. Additionally, three so-called “limit tests” have been developed and executed against each DBMS to test limits relevant for complex query execution. These tests are discussed in section 4 in more detail. No total cost of ownership (TCO) analysis has been done however and not every feature has been tested practically. The following open source DBMS have been evaluated: Firebird 1.5.2, Ingres r3 3.0.1, MaxDB 7.5.0.23, MySQL 4.1.10 and PostgreSQL 8.0.11.3 Feedback and Further InformationFeel free to cantact us for feedback or further information: Fabalabs Software GmbH Honauerstr. 4 A – 4020 Linz Dipl.-Ing. Daniel Fallmann daniel.fallmann@1.4 Demands of Enterprise Applications on Database SystemsThe database world has changed over the last years. Behind the scenes the world of relational DBMS is not as easy as it sometimes maybe seems to be. A DBMS has lots of components, or modules, including modules for implementing the catalog, processing the interface, processing a queryResearch PaperPage 4Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 Linzlanguage, accessing data, buffering data, controlling concurrency and last but not least it has to handle data recover and security in an adequate way, too. This all is quite common knowledge to DBMS system designers and implementers. There are indeed many ways to solve problems, but one should still keep in mind that different solutions often have a different impact to performance, stability and usability. Nowadays we are dealing with DBMS up to many terabytes of footprint on disk. When dealing with actual enterprise applications we have to concern that new problems arrive. What is it that we have to draw our attention to? Well, actual enterprise applications and especially the databases in the background have to deal with ten thousands of tables, hundred thousands of columns, huge footprints in memory and disk, many different languages, hundreds or sometimes thousands of transactions per second, hundred thousands of DB calls per second and not to forget today’s hardware, like perfect SMP scalability, shared memory access, etc. Nevertheless, there has a lot more to be considered for databases than the usage of the right architecture and the most appropriate algorithms. For the daily work one needs useful and therefore easy to handle tools for debugging, profiling, backup data, recover data and for maintenance. This study looks at five open source databases and looks into the aspects of enterprise applications that use huge database systems. We deal with the most important aspects we consider when we decide which database is most suitable for our needs. This addresses for example full-text search, soundex, XA-compliance, limits of the database (number of tables, size of columns, kinds of data to be stored, …), indexing, online reorganisation, backup (full and incremental), load balancing, internal data structures, ease of maintenance (SNMP support, …), complex queries (maximum number of conditional connections in one statement, maximum number of tables that can be joined, maximum size of IN list, …), connection interfaces (native, ODBC, JDBC, …), locking (grain), isolation levels, triggers (level, timing, nested), connectivity (gateways to other DBMS) and much more.Research PaperPage 5Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 Linz2 Evaluation and ComparisonThe following section is the core part of this document, comparing open source DBMS in different areas. The evaluation starts in section 2.1 with a description of license terms followed by an extensive list of supported operating systems and a list of supported 64-bit architectures in section 2.2. Section 2.3 discusses limits of the products including per database, table, index, and data type limits, and if the DBMS supports Unicode. The section ends with the so-called “limit test” trying to determine different limits important for complex queries. The implemented tests are discussed in more detail in section 4. Section 2.4 proceeds with an analysis of the supported SQL standard, available language interfaces for database developers and the support of database links and gateways. After that, ACID-compliant transaction support, transaction isolation levels, support for prepared statements, the capability to run code modules on the server via stored procedures, triggers and much more is evaluated in section 2.5. Section 2.6 is dedicated to evaluating enhanced search capabilites in character data like full-text and soundex search. Section 2.7 discusses data structures for table and index storage and outlines scalability and load balancing capabilities as well as SMP (Symmetric Multiprocessing), multi volume and large memory support. Distributed transaction support is another important feature for an enterprise-ready DBMS. Section 2.8 explores the support of distributed transactions, and if the used protocol is XA-compliant as well as the ability to recover a multi-database transaction in case of a server or network failure. Section 2.9 covers replication facilities available in the evaluated DBMS. Some high availability features are discussed in section 2.10, including online backup, online reorganization and cluster support. Section 2.11 covers the area of administrating the DBMS. This includes SNMP (Simple Network Management Protocol) support, the need for a full-time database administrator, availability of graphical database administration and development tools, performance tuning and profiling tools. This section will also discuss some basic security related topics. Section 2.12 highlights the activity of the open source project, estimated values regarding release cycle, size of the development team, availability of free and commercial support and official future trends including planned features for forthcoming versions.2.1 LicensingBefore comparing the products from a technical point of view, the applicable open source license is listed. This is important because open source doesn’t necessarily mean that the DBMS can be used in commercial applications for free, which might be an important business requirement when following the open source route, instead of choosing a commercial product.Research PaperPage 6Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 LinzFirebird 1.5.2The original modules released by Inprise are licensed under the InterBase Public License (IPL). [FIPl00] New code modules added to Firebird are licensed under the Initial Developer's Public License (IDPL). [FIDPL04] Both licenses are modified versions of the Mozilla Public License v.1.1. [MoPl05] Firebird is distributed completely free of registration or deployment fees, even for commercial applications.Ingres r3 3.0.1Ingres is available under the Computer Associates Trusted Open Source License. Ingres is distributed completely free of registration or deployment fees, even for commercial applications. [InLIC05]MaxDB 7.5.0.23MaxDB is available under the MySQL Dual Licensing Model. - Commercial License [MaCl04] - GNU General Public License [MaOl04] Pricing information for the commercial license is available at [MaPr05].MySQL 4.1.10MySQL is available under the MySQL Dual Licensing Model. - Commercial License [MaCl04] - GNU General Public License [MaOl04] Pricing information for the commercial license is available at [MaPr05].PostgreSQL 8.0.1PostgreSQL is released under the BSD license. PostgreSQL is distributed completely free of registration or deployment fees, even for commercial applications. [PGLC05]2.2Operating Systems SupportThis section covers the supported operating systems and builds for 64-bit architectures, if available.2.2.1Supported PlatformsThe most important platforms supported by the DBMS are shown in the following table. If you are looking for a particular operating system / architecture which is missing, then please make sure that you visit the provided resources.Firebird 1.5.2Firebird supports the following operating systems and architectures [FbBo04] [IpFd05]: Operating system Microsoft Windows 95 / 98 / ME Microsoft Windows 2000 Architecture X86_32 X86_32Research PaperPage 7Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 LinzMicrosoft Windows XP Microsoft Windows Server 2003 Linux* FreeBSD Sun Solaris HP-UX Mac OS XX86_32 X86_32 X86_32 X86_32 Sparc, X86_32 PA-RISC PPC_32* Linux: NPTL (Native POSIX Thread Library) – specific builds are required for Red Hat 9 or higher, SuSE 8.10 or higher and Mandrake 9.0 or higher. Firebird builds for NTPL-based Linux distributions are available.Ingres r3 3.0.1Ingres supports the following operating systems and architectures [InGSfL05] [OSPSI05]: Operating system Microsoft Windows 2000 Microsoft Windows XP Microsoft Windows Server 2003 Linux Sun Solaris HP-UX* Architecture X86_32 X86_32 X86_32 X86_32 Sparc, 32-bit and 64-bit PA-RISC, 32-bit and 64-bit* HP-UX: currently in betaMaxDB 7.5.0.23MaxDB supports the following operating systems and architectures [MaDo05]: Operating system Microsoft Windows 2000 Microsoft Windows XP Microsoft Windows Server 2003 Linux Architecture X86_32 X86_32 X86_32, X86_64, IA64 X86_32, X86_64, IA64, PPC_64Research PaperPage 8Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 LinzSun Solaris HP-UX HP Tru64 UNIX IBM AIXSparc, 64-bit PA-RISC, IA64 Alpha PPC_64MySQL 4.1.10MySQL supports the following operating systems and architectures [MyRM05] [MySSP05]: Operating system Microsoft Windows 95 / 98 / ME Microsoft Windows 2000 Microsoft Windows XP Microsoft Windows Server 2003 Linux FreeBSD Sun Solaris HP-UX HP Tru64 UNIX Mac OS X IBM AIX QNX Novell Netware Architecture X86_32 X86_32 X86_32 X86_32 X86_32, X86_64, IA64, Alpha, S/390 X86_32 X86_32, Sparc 32-bit and 64-bit PA-RISC, IA64 Alpha PPC_32 RS6000 X86_32 X86_32PostgreSQL 8.0.1PostgreSQL supports the architectures [PGMAN05]: Operating system Microsoft Windows 2000 Microsoft Windows XPfollowingoperatingsystemsandArchitecture X86_32 X86_32Research PaperPage 9Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 LinzMicrosoft Windows 2003 Server LinuxX86_32 X86_32, X86_64, ARM, IA64, PARISC, MIPS, PPC_32, PPC_64, Sparc, S/390 X86_32 Sparc, X86_32 PA-RISC, IA64 Alpha PPC_32 PPC_32, RS6000FreeBSD Sun Solaris HP-UX HP Tru64 UNIX Mac OS X IBM AIXA full list of all supported operating systems and architectures is available here [PGSP05].2.2.2 64-bit OS Support32-bit operating systems can address only 4 GB of data in memory. Especially for query intensive tasks with a huge amount of data like in data warehouse and analysis applications, accessed data might exceed the 4 GB limit. If main memory is exhausted, data needs to be swapped onto disk, which is a serious bottleneck for high responsive environments. A 64-bit operating system is capable of addressing memory beyond the 4 GB limit. The availability of versions for 64-bit operating systems is shown below.Firebird 1.5.2 Ingres r3 3.0.1Firebird isn’t currently available for 64-bit OS. [IpFd05] Ingres supports the following 64-bit OS [OSPSI05]: Operating system HP-UX* Sun Solaris Architecture PA-RISC Sparc* HP-UX: currently in betaMaxDB 7.5.0.23MaxDB supports the following 64-bit OS [MaDo05]: Operating system HP-UX Linux Architecture PA-RISC, IA64 X86_64, IA64, PPC_64Research PaperPage 10Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 LinzSun Solaris HP Tru64 UNIX Microsoft Windows Server 2003Sparc Alpha X86_64, IA64MySQL 4.1.10MySQL supports the following 64-bit OS [MyDL05]: Operating system HP-UX Linux Sun Solaris HP Tru64 UNIX Architecture PA-RISC, IA64 X86_64, IA64, Alpha Sparc AlphaPostgreSQL 8.0.1PostgreSQL supports the following 64-bit OS [PGMAN05]: Operating system HP-UX Linux Sun Solaris HP Tru64 UNIX Architecture PA-RISC, IA64 X86_64, IA64, PPC_64 Sparc Alpha2.3Limits of the DatabaseSeveral per database, table and index limits are listed in this section. Additionally, numerical and string limits are evaluated, which include the maximum precision of fixed decimal types and support for a 64bit integer data type as well as the maximum size of character data types including character large objects. Another important issue is if the products support Unicode. Several complex query limits are shown at the end of this chapter. The limits were determined by implementing and running limit tests, which are explained in more detail in section 4.2.3.1Limits per DatabaseEspecially in the area of very large databases (VLDB), a database administrator and developer must be aware of fundamental limits of a particular DBMS. Limits on a per database include: Maximum database size, maximum number of files per database, maximum file/volume size, maximum number of tables and more. Use the term “Unlimited” with cautious. Of course, physical limits like available disk space still apply. The most important database limits are listed in the table below.Research PaperPage 11Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 LinzFirebird 1.5.2Maximum number of tables: 32767 Maximum database size: Theoretical limit of 7 TB Maximum number of files per database: Theoretically 65536 (216) including shadow files Maximum page size: 16384 bytes Maximum cache buffers: 65536 pages [FbBo04]Ingres r3 3.0.1Maximum number of tables: 67108863 Maximum database size: Unlimited Maximum number of files per database: Unlimited Maximum page size: 65536 bytes [InDAG05]MaxDB 7.5.0.23Maximum number of tables: Unlimited Maximum database size: 32 TB (with 8 KB page size) Maximum number of files/volumes per database: 64 – 4096, specified by a configuration parameter Maximum file/volume size (data): 518 MB – 8 GB Maximum file/volume size (log): 16 TB [MaTf05]MySQL 4.1.10Maximum number of tables: Unlimited Maximum database size: Unlimited Maximum number of files per database: Unlimited The maximum size of a MySQL tablespace is 64 TB (InnoDB) [MyRM05]PostgreSQL 8.0.1Maximum number of tables: Unlimited Maximum database size: Unlimited Maximum number of files per database: Not determinable [PGMAN05] [PGLIM05]2.3.2Limits per TableOther limits exist per table. This includes: Maximum number of rows, maximum row size, maximum number of columns/fields and the maximum number of indexes per table. Use the term “Unlimited” with cautious. Of course, physical limits like available disk space still apply. These limits are shown in the following table.Firebird 1.5.2Maximum number of rows per table: 4294967296 (232) Maximum row size per table: 64 KB Maximum number of fields per table: Depends on data types used (seeResearch PaperPage 12Copyright © Fabalabs Software GmbH, 2004-2005, Honauerstr. 4 A-4020 Linz。

相关文档
最新文档