DUAL ROBOT

合集下载

空间双臂机器人运动学及动力学分析与建模研究

空间双臂机器人运动学及动力学分析与建模研究
摘 要 海
201109;
: 针对空间双臂机器人运动学和动力学建模, 对失重状态下空间机器人的运动学分析与建模进行了研
究 。給 出 了 双 臂 机 器 人 左 右 臂 的
D H 坐标及参数, 建立了正运动学的计算公式, 基于臂形角的方法, 給出了更高效 4
种四种机器人工作状态, 并基于拉格朗曰方
的 空 间 机 器 人 冗 余 单 臂 的 解 析 形 式 逆 解 求 解 方 法 。分 析 了 空 间 双 臂 机 器 人 全 部 工 作 状 态 , 引入二元判定系数归纳 得到了双臂独立运动、 双臂协同操作、 闭链本体漂浮、 开链本体漂浮 程得到了
(1. S tate K ey L aboratory of M echanical System and V ib ratio n, Shanghai Jiao T ong U niversity, Shanghai 200240, C h in a ;2. A erospace System E ngineering S hanghai, Shanghai 201109, C h in a ; 3. Shanghai A erospace E quipm ents M anufacturer, Shanghai 200245, C hina) A b stract : T o establish the kinem atics and dynam ics m odel of dual-arm space ro b o t, a study w as m ade to analysis th e characters of the robot in n orrg rav ity environm ent and m odeling in this paper. T h e form ulation for forw ard kinem atics of the righ t and left arm was given o ut in term s of the ro b o t?s D H param eters. A m ore efficiency m ethod to solve the inverse kinem atics for redundant w as derived based on the arm -angle approach. T h e 2 coefficients of determ ination param eters w ere introduced to describe the w orking condition for space robot. T he w orking condition was analyzed for dual-arm space robot and 4 different kinds of dynam ics equations w ere given based on the L ag rang e?s equations, w hich w ere the tw o arm s m oved independently, the tw o arm s cooperated, th e base floating w ith closed chain and th e base floating w ith open chain. T he m odeling of kinem atics and dynam ics laid the foundation for th e design and analysis for dual-arm space robot. K eyw ords : dual-arm space ro b o t ;re d u n d a n t ;an alytical ;inverse kin em atics ;dynam ics ;non -g ravity ;m odeling ; coefficient of determ ination

国内外双足人形机器人驱动器研究综述

国内外双足人形机器人驱动器研究综述

的方法。 Van de Straete 等[19] 提出了一种驱动器设 计方法,将设计分为可行性和优化阶段。 为伺服驱
设计了驱动器,如图 2 所示,包括无刷电机、谐波减 动系器统提供了快速,自动化的设计程序,同时可用
·938·
哈 尔 滨 工 程 大 学 学 报
第 42 卷
图表显示结果。 Roos 等[20-24] 就减速器传动比对驱 动器性能影响、伺服电机和减速器集成优化、机械和 控制整合设计进行了研究。 Vaculik 等[25] 研究了驱 动器的设计流程,建立电机和减速器参数模型。 为 了平衡 电 机 和 减 速 器 参 数, Zhou 等[26] 开 发 了 由 MSC. ADAMS 动力学模型和 Matlab 代码优化算法组 成的协同仿真平台,该平台通过电机和减速器不同 组 合 实 现 五 轴 机 械 臂 的 重 量 轻 量 化。 Budinger 等[27] 建立了基于模型的机电执行器初步设计的估 算模型。 Rezazadeh 等[28] 研究了机器人系统中一般 负载下驱动器电动机和传动装置的机电选择优化解 决方案。 Saerens 等[29] 针对机器人最大连续输出扭 矩和转动惯量,根据减速器级数、传动比和不同类型 的尺寸参数,制定了比例定律。
3)2016 年,Wensing 等[4] 提出了准直驱驱动器 PA( proprioceptive actuator) 的概念,并将其应用于四 足机器人 Cheetah 和双足机器人 Hermes,准直驱驱 动器成为最近几年研究的热点。
图 1 驱动器类型和历史
Fig. 1 Type and history of actuators
2)1995 年,麻省理工学院的 Pratt 等提出了弹 性驱动器 SEA ( series elastic actuator) 的概念[3] ,拉 开了弹性驱动器研究的序幕。 美国宇航局的机器人 Valkyrie 和意 大 利 技 术 研 究 院 的 机 器 人 Walk-Man 都使用了弹性驱动器。

毕业设计-二自由度机器人的结构设计与仿真

毕业设计-二自由度机器人的结构设计与仿真

二自由度机器人的结构设计与仿真学院:专业:姓名:指导老师:机械与车辆学院机械电子工程学号:职称:教授中国·XX二○一二年五月毕业设计诚信承诺书本人郑重承诺:本人承诺呈交的毕业设计《二自由度机器人的结构设计与仿真》是在指导教师的指导下,独立开展研究取得的成果,文中引用他人的观点和材料,均在文后按顺序列出其参考文献,设计使用的数据真实可靠。

本人签名:日期:年月日二自由度机器人的结构设计与仿真摘要并联机器人有着串联机器人所不具有的优点,在应用上与串联机器人形成互补关系。

二自由度并联机器人是并联机器人家族中的重要组成部分,由于结构简单、控制方便和造价低等特点,有着重要的应用前景和开发价值。

本论文研究了一种新型二自由度平移运动并联机构,该并联机构采用类五杆机构,平行四边形刚架结构来实现,可有效地消除铰链间隙,提高动平台的工作性能,同时有抵抗切削颠覆力矩的能力。

根据该二自由度平面机构的工作空间,利用平面几何的方法求得连杆的长度,并通过Pro/E软件进行仿真检验,并通过软件仿真的方式,优化连杆长度,排除奇异点,同时合理设计机械结构的尺寸,完成结构设计。

对该二自由度并联机器人,以Pro/E为平台,建立两自由度平移运动并联机器人运动仿真模型,验证了机构的实际工作空间和运动情况。

最后指出了本机构的在实际中的应用。

并使用AutoCAD软件进行了重要装置和关键零件的工程图绘制工作,利用ANSYS 软件分析了核心零件的力学性能。

研究结果表明,本文所设计的二自由度机器人性能良好、工作灵活,很好地满足了设计指标要求,并已具备了一定的实用性。

关键词:二自由度;并联机器人;仿真;结构设计;Pro/E2-DOF robot structure design and simulationAbstractParallel robot has a series of advantages of the robot does not have to form a complementary relationship between the application and the series robot. The 2-DOF parallel robot is an important part of the family of parallel robots. The structure is simple, convenient and cost control and low, with significant potential applications and the development value. In this thesis, a new 2- DOF translational motion parallel mechanism, the analogous mechanism for class five institutions, parallelogram frame structure, which can effectively eliminate the hinge gap and improve the performance of the moving platform, while resistance to cutting subvert the torque capacity.The working space of the 2-DOF planar mechanism, the use of plane geometry to obtain the length of the connecting rod, and the Pro/E software simulation test, and software simulation to optimize the connecting rod length, excluding the singular point, while the size of the rational design of mechanical structure, complete the structural design. And important equipment and key parts of the engineering drawings using AutoCAD software, using ANSYS software to analyze the mechanical properties of the core parts.The 2-DOF parallel robot to the Pro/E platform, the establishment of the 2-DOF of translational motion parallel robot simulation model to verify the organization's actual work space and movement. Finally, this institution in the practical application. The results show that the combination of good motor performance of the 2-DOF parallel robot,good to meet the index requirements, and already have a certain amount of practicality.Keywords: 2-DOF; parallel robot; simulation; structural design; Pro/E目录1前言 (1)1.1本课题的研究背景及意义 (1)1.1.1什么是机器人 (1)1.1.2机器人技术的研究意义 (1)1.2机器人的历史与发展现状 (2)1.2.1机器人的发展历程 (2)1.2.2机器人的主要研究工作 (3)1.2.3少自由度机器人的发展历程 (4)1.3本课题的研究内容 (5)2二自由度机器人系统方案设计 (7)2.1二自由度并联机器人机构简介 (7)2.2执行机构方案设计及分析 (7)3二自由度机器人的结构设计与运动分析 (8)3.1已知设计条件及参数 (8)3.1.1连杆机构自由度计算 (8)3.1.2五杆所能达到的位置计算 (8)3.2对机构主体部分的运动学逆解分析 (10)3.2.1位置分析 (10)3.2.2速度与加速的分析 (11)3.3受力分析 (12)4基于Pro/E软件环境下二自由度机器人的结构设计 (16)4.1 Pro/E软件简介 (16)4.2驱动元器件的选择 (17)4.2.1步进电机的选择 (17)4.2.2联轴器选择 (18)4.3平面连杆机构的结构参数确定 (19)4.4输入轴的设计 (20)4.5安装支架的参数确定 (21)5基于Pro/E软件环境下的机器人装配及动态仿真 (23)5.1虚拟装配过程 (23)5.1.1连杆机构的装配 (23)5.1.2安装支架的装配 (24)5.1.3完成二自由度机器人的最终装配 (24)5.2基于Pro/E软件环境下的动态仿真 (25)6基于AutoCAD软件环境下的机械结构设计 (31)6.1AutoCAD软件简介 (31)6.2平面连杆机构的结构设计 (32)6.3机架的结构部件图绘制 (33)6.4二自由度机器人工程图绘制 (34)7基于Ansys软件环境下的有限元分析 (36)7.1Ansys软件简介 (36)7.2对输入轴的有限元分析 (37)7.3对输入连杆的有限元分析 (37)8 总结与展望 (40)8.1课题研究工作总结 (40)8.2研究展望 (41)参考文献 (42)致谢 (44)附录(一) (45)附录(二) (52)1前言机器人技术是一门光机电高度综合、交叉的学科,它涉及机械、电气、力学、控制、通信等诸多方面。

FANUC机器人仿真软件操作手册

FANUC机器人仿真软件操作手册

目录目录 (1)第一章概述 (2)1.1. 软件安装 (2)1.2. 软件注册 (3)1.3. 新建Workcell的步骤 (4)1.3.1. 新建 (4)1.3.2. 添加附加轴的设置 (9)1.4. 添加焊枪,TCP设置。

(15)1.5. Workcell的存储目录 (18)1.6.鼠标操作 (19)第二章创建变位机 (21)3.1.利用自建数模创建 (21)3.1.1.快速简易方法 (21)3.1.2.导入外部模型方法 (31)3.2.利用模型库创建 (41)3.2.1.导入默认配置的模型库变位机 (41)3.2.2.手动装配模型库变位机 (44)第三章创建机器人行走轴 (49)3.1. 行走轴-利用模型库 (49)3.2. 行走轴-自建数模 (56)第四章变位机协调功能 (62)4.1. 单轴变位机协调功能设置 (62)4.2. 单轴变位机协调功能示例 (71)第五章添加其他外围设备 (72)第六章仿真录像的制作 (75)第一章概述1.1. 软件安装本教程中所用软件版本号为V6.407269正确安装ROBOGUIDE ,先安装安装盘里的SimPRO,选择需要的虚拟机器人的软件版本。

安装完SimPRO后再安装WeldPro。

安装完,会要求注册;若未注册,有30天时间试用。

如果需要用到变位机协调功能,还需要安装MultiRobot Arc Package。

1.2. 软件注册注册方法:打开WeldPRO程序,点击Help / Register WeldPRO弹出如下窗口,1.3. 新建Workcell的步骤1.3.1. 新建在Name 一栏输入文件名,文件名要以字母开头。

单选项第一项“根据缺省配置新建”;第二项“根据上次使用的配置新建”;第三项“根据机器人备份文件来创建”;第四项“根据已有机器人的拷贝来新建”;一般都选用第一项。

选择机器人的软件版本:V6.** 是针对R-J3iB 控制器,V7.**是应用在R-30iA控制器的。

巡检机器人 维护使用手册说明书

巡检机器人 维护使用手册说明书

巡检机器人维护使用手册版本:2.0北京眸视科技有限公司目录1.产品概述 (4)1.1.产品概述 (4)1.2.履带式机器人 (5)1.3.轮式机器人 (5)2.机器人开机 (6)2.1.机器人开机 (6)2.2.遥控器使用 (6)2.3.遥控器高级使用 (7)2.4.注意事项 (9)3.平板控制 (10)3.1.Wifi连接 (10)3.2.运行APP (10)3.3.自启动功能 (10)3.4.License更新功能 (11)3.5.参数配置 (14)3.6.状态检查 (15)3.7.开启巡检 (16)4.制图 (17)4.1.制图 (17)4.2.地图编辑 (20)4.3.地图备份与切换 (25)4.4.注意事项 (27)4.4.1.制图之前的准备 (28)4.4.2.建图操作原则 (28)4.4.3.建图结果检查 (30)5.导航 (31)5.1.导航到指定点 (31)5.2.导航到指定坐标 (32)5.3.取消导航 (32)6.1.准备工作 (34)6.2.工具安装 (34)6.2.1.开启root ssh权限 (34)6.2.2.JDK的安装 (35)6.2.3.TOMCAT安装 (35)6.2.4.MySQL数据库在线安装 (36)6.2.5.Redis安装 (37)6.2.6.Nginx安装 (37)6.3.程序部署 (38)6.3.1.前端web程序部署 (38)6.3.2.后端jar包部署 (39)6.4.系统参数配置 (41)6.4.1.域名地址映射 (41)6.4.2./etc/profile确认 (41)6.5.启动管理云平台系统程序 (41)6.5.1.后台java程序启动 (42)6.5.2.前台tomcat启动 (42)6.5.3.确认后台程序是否启动成功 (42)6.5.4.访问系统url (42)7.云平台使用 (43)7.1.系统登录 (43)7.1.1.系统首页 (44)7.1.2.个人中心 (45)7.2.实时监控 (45)7.3.数据查询 (47)7.3.1.巡检报表 (47)7.3.2.巡检点 (48)7.3.3.环境数据 (48)7.4.巡检任务 (49)7.4.1.任务管理 (49)7.4.2.任务日历 (51)7.5.1.巡检点管理 (52)7.5.2.地图管理 (53)7.5.3.机器人管理 (54)7.5.4.告警设置 (55)7.6.系统管理 (56)7.6.1.用户管理 (56)7.6.2.角色管理 (57)7.6.3.菜单管理 (59)7.6.4.场站管理 (59)7.6.5.字典管理 (60)7.6.6.车体状态 (61)7.6.7.版本信息 (62)8.巡检 (63)8.1.启动检查 (63)8.2.云平台操作 (64)9.注意事项 (66)9.1.常规检查 (66)9.2.维护保养 (66)9.3.长期储存 (67)10.快速故障排除 (69)10.1.机器人故障排查 (69)10.2.云端服务故障排查 (71)10.3.遥控器故障排查 (72)附录1:充电桩安装说明 (75)附录2、传感器清洁 (76)附录3、产品参数 (77)1.产品概述1.1.产品概述眸视机器人定位和导航系统,是一个集激光雷达、视觉(双目相机、深度相机)、超声波、惯性测量单元(IMU)等多种传感器于一体的定位和导航系统。

Operational Space Path Planning of the Dual-Arm Robot for the Assembly Task

Operational Space Path Planning of the Dual-Arm Robot for the Assembly Task

INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. 15, No. 10, pp. 2071-2076OCTOBER 2014 / 2071© KSPE and Springer 2014Operational Space Path Planning of the Dual-Arm Robot for the Assembly TaskSung-Jin Lim 1 and Chang-Soo Han 2,#1 Department of Mechanical Engineering, Hanyang University, Haengdang 1-dong, Seongdong-gu, Seoul, South Korea, 133-7912 Department of Mechanical Design Engineering, Hanyang University, 55, Hanyangdaehak-ro, Sangrok-gu, Ansan, Gyeonggi-do, South Korea, 426-791# Corresponding Author / E-mail: cshan@hanyang.ac.kr, TEL: +82-31-400-4062, FAX: +82-31-406-6398KEYWORDS: Multiple manipulator, Assembly task, Redundant robot, Sampling-based motion planningThe assembly task involving complex parts by the dual-arm robot conducted in configuration space tends to require the heavy computational load, especially when the robot motion is constrained to avoid any collisions during the assembly task. Thus, this study suggested the path planning algorithm of the dual-arm robot in operational space for the assembly task involving complex parts and conducted the simulations to verify the effectiveness of the suggested method. The results show that the suggested path planning method on operational space is more effective compared to the conventional path planning method in configuration space,particularly in aspects of the computational time.Manuscript received: October 31, 2013 / Revised: May 28, 2014 / Accepted: May 28, 20141. IntroductionIn the manufacturing process, robots had been used mainly for simple and repetitive tasks such as welding and transfer. However, in recent years, the dual-arm robot has been developed for complicated work in several institutions, similar to the Justin humanoid robot 1 and Motoman SDA10.2 Especially, the Motoman robot demonstrates the assembly of several products. Such demo shows the benefits of the dual-arm robot for the assembly task compared with the single-arm robot. However, in such task, the robot needs to be taught by a human or to be given a preprogrammed path. Manual teaching or programming by a human is a heavy load for many types of products. Therefore, the automatic path planning algorithm is important.There have been prior studies on dual-arm path planning. O’Donnel and Perez 3 presented a method of coordinating the trajectories of two robot manipulators to prevent collisions between them. Cheng 4presented online collision-free path planning for the service and the assembly task of a two-arm robot. Cheng’s study dealt with the task based on the condition that each arm has an individual task, although the tasks of both arms should be executed sequentially. Thus, the planner focuses on avoiding the collision between the motions of both arms. Latombe 5 presented a path planning algorithm for multi-robot coordination using the probabilistic roadmap (PRM). These prior studies focused on finding robot paths that would keep multiple robots from colliding with one another when they have different tasks.This study focused on finding paths when the two arms of a robot have common tasks, in which the robot grasps the two parts simultaneously and assembles them into one using two arms (see Fig.1). It was assumed in this study that the two parts were already held by the grippers, and the paths for gripping the parts were not tackled. The target system is the 14 degrees of freedom (DOF) dual-arm robot, each part (arm) has 7 DOF. The following were the input information for the algorithm:1)relative assembly positions of the two parts;2)geometry of the robot, workspace, and parts;3)part-gripping positions; and4)initial configuration of the two arms of the robot.Due to the common assembly task, the motion of each arm affects that of the other, and the two arms are constrained by the relative positions of the two hands that grip the parts and combine the two parts into one. To combine the two parts, the robot moves them close to each other. Thus, dual-arm path planning has a narrow-passage problem because of the collision of the two parts.To plan the path of a high-DOF robot, sampling-based methods -PRM 6 and rapidly exploring random tree (RRT)7 - are used most often,but solving a narrow passage in a high-DOF space requires moreDOI: 10.1007/s12541-014-0565-9computation than in a low-DOF space. Moreover, because the narrow-passage problem is not from the robot links but from the collision of the two parts, the dual-arm path could be divided into two sub-paths,the relative path between the two parts and the path of the dual-arm that executes the relative path of the two parts.This paper is organized as follows. In Section II, the planning of the relative path between the two parts strategy is presented. Then the planning of the dual-arm path that executes the relative path is presented in Section III. Finally, the simulation results and the conclusion are presented in Sections VI and V , respectively.2. Relative Path between the Two PartsAs mentioned above, the relative parts assembly path (hereinafter referred to as “relative path”) was first determined because it was very likely that the parts would collide during the assembly using two hands.To achieve this, one part (called “fixed part”) will be hold steady by the one arm of the dual-arm robot while the other part (called “moving part”) is moved toward the goal position by the other arm of the dual-arm robot. Thus, the path of the moving part relative to the fixed part could be planned. Note that the initial position of the moving part should be selected.To avoid the feasible collisions between two parts, the initial position of the moving part is determined as follows:Initial_position = (d , 0, 0)(1)In (1), the distance between the fixed part and the moving part is defined asd = l f + l m + m d(2)where l f and l m denotes the diagonal lengths of the rectangular shape bounding box of the fixed part and the moving part, respectively, and the constant m d denotes the margin which could be selected in advance.Note that along the trajectory of the moving part toward its goal position in assembling process involving two complex parts, most of its trajectory can be treated as the typical rigid-body path planning.However, as addressed before, when two parts gets close, the slightesterror is likely to cause collisions between them and thus the path planning in that stage should be treated as a narrow-passage problem.To handle the problems in this narrow-passage path planning stage, the dynamic RRT 8 is employed in our algorithm. This method is a sampling-based method that uses the collision information to adapt the sampling domain of the problem during the search process.As the temporary initial position of the moving part that was only far enough to avoid collision with the fixed part was chosen, the useless section of the relative path that included the temporary initial position was removed. For this, the new initial position in the relative path was found as follows. Along the relative path, from the temporary initial position to the goal position, the first point at which the convex hulls of the moving part and the fixed part intercepted was found.3. Assembly Path of the Dual Arm that Executes the Relative Path3.1 Determination of the initial and goal configurations of the dual-arm robotTo plan the assembly path, the configurations of the dual arm at the start and goal of the assembly path should be determined. For this, the manipulability 9 of the dual-arm robot was used. To determine the configurations of the robot at the start and goal of the assembly path,the n random configuration samples that satisfy the relative positions of the initial and goal nodes - which contain the position [SE(3)] of the moving part - of the relative path were generated (see Algorithm 3).The manipulability of the samples was calculated, and then the samples that had the maximum manipulability were chosen as the initial and goal configurations of the assembly path (see Algorithm 2).3.2 Planning of the assembly pathFinally, the assembly path from the initial configuration of the dualFig. 1 Assembly task of the dual-arm robotAlgorithm 1 Get relative pathInput:1)Relative position of the moving part with respect to the fixed part position at assembled state 2)Geometry data of the fixed part 3)Geometry data of the moving part Output:1)Relative Path of the moving partarm to the goal configuration was planned. The assembly path was planned for the 14-DOF robot, but because the relative positions of the two hands were constrained by the relative path, the motion had 8 DOF. Moreover, the motion of the robot was not made to execute the relative path at a specific velocity. Instead, 1 DOF was added for the execution of the relative path to the assembly path. Thus, the assembly path had 9 DOF.To plan the assembly path, the method based on the bidirectional RRT-connect algorithm10 (called “CONNECT algorithm”) was used. This algorithm finds the path by expanding the trees of the beginning and end configurations and trying to connect the two trees. As the planning space was not a general configuration space but a constrained space on the relative path, the CONNECT algorithm was modified as follows (see Algorithm 5).First, the random sample of the extension of RRT had to satisfy the random position of the relative path. Thus, the relative path in the internal (0, 1) was first parameterized, then a configuration of the dual-arm robot and a real value (called an “RP parameter”) in the internal (0, 1) was randomly generated for the relative path. As the relative positions of the two different parts grasped by both hands at the generated random configuration did not coincide with the positions on the relative path represented by the RP parameter, two positions - the relative position at the generated random configuration and the position at the relative path - had to match each other. For this, the Jacobian (termed “RP-Jacobian”) was used for the relative positions of both. The RP-Jacobian, J RP(q),is defined as follows:(3)where q and are the joint values and joint velocities of the dual-arm robot, RP is the translational velocity of the position of the hand that grasps the moving part with respect to the hand that grasps the fixed part, and ωRP is the angular velocity of the position of the hand that grasps the moving part with respect to the hand that grasps the fixed part.Then the problem was solved by getting the joint values that satisfied the given relative positions of both hands using the damped least-squares method11 with J RP. First, the forward kinematics of the random configuration q r was calculated, and the relative positions of both parts at q r were obtained. Then an error de between the relative position of q r and the relative position specified by the RP parameter were computed. If de was bigger than the tolerance, the magnitude of the error was clamped onto a specified maximum value (see Ref. 11) to reduce the oscillation in the damped least-squares method. J RP was calculated at the random configuration, and the inverse, J RP#, of J RP was calculated using the damped least-squares method. Then the updated value dq was obtained using the following equation:(4)q r was updated using the following equation:.(5)Then the updating of q r was repeated until q r satisfied the relative position specified by the RP parameter. Algorithm 3 shows this process. Moreover, in the planning of the assembly path, the random sample and nodes of the tree included not only the configuration [R14] of the dual arm but also the RP parameter.To extend RRT, a method of getting the random configuration that satisfies the relative position of the relative path was mentioned, as above. In the CONNECT algorithm, however, — in every interpolation step from the nearest node of the random configuration in the tree towards the random configuration, a configuration to the tree is added to the tree until the random configuration or obstacle is reached — a method by which a configuration satisfies the relative position of the relative path when the configuration changes from the nearest node to the random configuration is also needed. In the general CONNECT algorithm, the configuration is linearly interpolated in the configuration space from the nearest node to the random configuration. In planning the assembly path, however, the linear interpolation of a configuration in the configuration space could not be used because a change in the configuration had to satisfy a motion of the relative path between the relative position of the nearest node and the relative position of the random configuration. Thus, the CONNECT algorithm was modified for planning the assembly path, as follows.First, the nearest node N near of the given random sample N rand was found in the tree. Then N near and N rand were linearly interpolated using the pre-defined lengths in the interpolation step. H ere, as mentioned, both nodes included the configuration and the RP parameter. Thus, a node was interpolated with respect to the configuration and the RPp·RPωRP⎝⎠⎜⎟⎛⎞J RP q()q·=q·p·dq J RP#de=q r q r dq+=Algorithm 2 Get maximum manipulability configuration Input:1)f:relative position of the moving part with respect to thefixed part2)GP:grasp positions of the fixed part and the moving part Output:1)Max_m:maximum manipulability value among the valuesof the sample configurations2)q m:configuration of the dual-arm at the maximummanipulabilityparameter. The interpolated configuration, however, did not satisfy the interpolated RP parameter because the configuration was interpolated in the configuration space without considering the RP parameter. Thus,the interpolated configuration was made to satisfy the interpolated RP parameter using Algorithm 3. If there was no collision at the node, the node was added to the tree. Moreover, the aforementioned process was repeated until N rand or the obstacle was reached (see Algorithm 5).4. SimulationAll the simulations were performed on a 2.4GH z Pentium IV PC with 2GB RAM. The algorithm was developed in Visual Studio®. The collision test was performed using PQP .12 The dual-arm robot that was used in the simulation is Yaskawa Motoman SDA 10.2Fig. 2 shows the two different type of objects with wide and narrow passages for assembly. The first object has a broader interval between the moving part and the fixed part compared to the second objects.Also, a channel for the assembly of the second objects has twists and turns, unlike for the assembly of the first object.A motion of the assembly path can be seen in Fig. 3. And the resultsAlgorithm 3 Get configuration satisfying relative position Input:1)q i :initial configuration of the dual-arm 2)F RP :relative position of the both hands Output:1)the configuration of the dual-arm that satisfy the given relative position of the both handsAlgorithm 4 Get assembly path Input:1) q i : initial configuration of the dual-arm 2) q g : goal configuration of the dual-arm Back Data:1) RP : the Relative Path Output:1) the Assembly PathAlgorithm 5 Connect considering the relative position Input:1)T :tree for planning the AssemblyPath 2)N x :node to extend the tree Back Data:1)RP :the RelativePath Output:1)last extended node 12345678910111213141516171819202122232425N near ← GetNearNode(N x .joint, T )d_prev ← ∞N prev ← N near loop u ← (N x – N perv )/| N x - N perv |if d_prev < ∆step then N new ← N prev + u d_prev else then N new ← N prev + u ∆step end if F RP ← get Relative Position in the Relative Path (N new .RP-parameter, RP )N new .joint ← Get Configuration Satisfying Relative Position (N new .joint, F RP ) //Algorithm 3if N new is fail or in collision then if N prev = N near then return failure else then return N prev end if end ifif d_prev < ∆step then T.add_node(N near , N new )return N new end ifd ← |N x – N new |N prev ← N new d_prev ← d end loopof the planning through the proposed method are shown in Table 1.This results explain two main things – comparison of the performance between the proposed method and the conventional method, and the assessment of the effect for the complexity of the objects involved.Through the conventional method, path planning cannot be executed as in the result of the Table 1. Even though, more than 10 hours calculation was executed using Dynamic Domain RRT on the configuration space of the dual-arm, we could not get any result aboutpath. Complexity of the object directly affects the configuration space of the dual-arm robot. H owever, the proposed method successfully demonstrated its capabilities through the result deduced by both relative and assembly path. More details about this result depicted by the next simulation result (Table 2).In the planning of the assembly path, narrow-passage object took 2.59 times more than wide-passage object in terms of the calculation time, whereas calculation time in the planning of the relative path,narrow-passage object took 14.3 times more than wide-passage object (Table 1). Numerical value of 2.59 and 14.3 tells how complex the objects are and these values show that the relative path has more burden than the assembly path has. Complexity of the object which can be expressed by the RP parameter was considered in the planning of relative path. In the relative path planning, there are checking process with respect to the collision of two arbitrary objects. Whereas in the assembly path, there is no the process of collision check in the planning of assembly path for the complicated objects. Assembly path is only derived by the scalar factor, herein, RP parameter. Therefore, the proposed method, in specific, assembly path generation has minor influence on the complexity of the objects.Fig. 4 depicts the simplified objects to reduce computational load;Table 2 shows the result about the planned path using the simplified object in Fig. 4. Through the result, we could verify the feasibility of the proposed method in terms of the calculation time for planning and the number of iteration. The proposed method had a performance with less than 30% of planning time and about 10% of iterations withrespect to the conventional method.Fig. 2 Objects with 2 different type of passagesFig. 3 Assembly motion of the complex objectsTable 1 Planning time for the wide and narrow passage objectsCase Proposed Method Dynamic DomainRRT at the Configuration Space of the Dual-arm (sec)Relative Path(sec)AssemblyPath (sec)Total calculation time (sec)Wide-passageobject 92171263∞Narrow-passageobject13194431762∞Table 2 Result of the simple assembly objectsCase Proposed Method Dynamic Domain RRTat the Configuration Space of the Dual-armRelative Path AssemblyPath TotalPlanning Time (sec) 5.18.713.841.5Number of Iteration132.9-64.2197.11139.7Fig. 4 Simple assembly objects5. ConclusionThe strategy for path planning of the dual-arm robot in operational space for the assembly task is suggested. In the suggested method, as a means to reduce the computational load, the assembly procedure is divided into two stages, the relative path planning stage and the assembly path planning stage. Through the simulations, the feasibility of the proposed method is investigated and confirmed that it is more effective than the planning method in configuration space in aspect of the computation time. Further, the suggested method has an advantage over the conventional method, in that the higher accuracy could be secured in the operational space than in the configurational space, allowing the assembly tasks involving more complex and tighter tolerances to be performedACKNOWLEDGEMENTThis research was supported by the Ministry of Knowledge Economy, Korea, under the Industrial Foundation Technology Development Program supervised by the Korea Evaluation Institute of Industrial Technology (No. 10041827, Development on S/W Robot Control for Fast Real-time, Flexible and Open Platform supporting 20Khz control frequency and portability), and also supported by the Ministry of Knowledge Economy, Korea, under the 'Advanced Robot Manipulation Research Center' support program supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2013-H1502-13-1001).REFERENCES1.Ott, C., Eiberger, O., Friedl, W., Bauml, B., Hillenbrand, U., et al.,“A Humanoid Two-Arm System for Dexterous Manipulation,” Proc.of 6th IEEE-RAS International Conference on H umanoid Robots, pp. 276-283, 2006.2.Motoman Inc., “Motoman Dual Arm SDA 10 Robot,” http://www./robots/motoman/datasheet/SDA10.pdf (Accessed 22 AUG 2014)3.O'Donnell, P. A. and Lozano-Periz, T., “Deadlock-Free andCollision-Free Coordination of Two Robot Manipulators,” Proc. of IEEE International Conference on Robotics and Automation, pp.484-489, 1989.4.Cheng, X., “On-Line Collision-Free Path Planning for Service andAssembly Tasks by a Two-Arm Robot,” Proc. of IEEE International Conference on Robotics and Automation, V ol. 2, pp. 1523-1528, 1995.5.Sanchez, G. and Latombe, J. C., “Using a Prm Planner to CompareCentralized and Decoupled Planning for Multi-Robot Systems,”Proc. of IEEE International Conference on Robotics and Automation, V ol. 2, pp. 2112-2119, 2002.6.Kavraki, L. E., Svestka, P., Latombe, J. C., and Overmars, M. H.,“Probabilistic Roadmaps for Path Planning in H igh-Dimensional Configuration Spaces,” IEEE Transactions on Robotics and Automation, V ol. 12, No. 4, pp. 566-580, 1996.V alle, S. M., “Rapidly-Exploring Random Trees: A New Tool forPath Planning,” 1998.8.Yershova, A., Jaillet, L., Siméon, T., and LaV alle, S. M., “Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling Domain,” Proc. of IEEE International Conference on Robotics and Automation, pp. 3856-3861, 2005.9.Chiacchio, P., Chiaverini, S., Sciavicco, L., and Siciliano, B., “GlobalTask Space Manipulability Ellipsoids for Multiple-Arm Systems,”IEEE Transactions on Robotics and Automation, V ol. 7, No. 5, pp.678-685, 1991.10.Kuffner, J. J. and LaV alle, S. M., “RRT-Connect: An EfficientApproach to Single-Query Path Planning,” Proc. of IEEE International Conference on Robotics and Automation, V ol. 2, pp.995-1001, 2000.11.Buss, S. R., “Introduction to Inverse Kinematics with JacobianTranspose, Pseudoinverse and Damped Least Squares Methods,”IEEE Journal of Robotics and Automation, V ol. 17, pp. 1-19, 2004.rsen, E., Gottschalk, S., Lin, M. C., and Manocha, D., “FastProximity Queries with Swept Sphere V olumes,” Technical Report TR99-018, Department of Computer Science, University of North Carolina, 1999.。

史陶比尔 机器人 (产品系列)

史陶比尔 机器人 (产品系列)

200 mm
200 mm (400 mm 可选)
200 mm (400 mm 可选)
±138°
±500° (4)
±500° (4)
±500° (4)
±270°
-
-
-
+133.5°/-120°
-
-
-
±270° (4)
350°/s 360°/s 350°/s 360°/s 290°/s 290°/s 287°/s 555°/s
±270° +130°/-110° ±270° (4) 130°/s 155°/s 115°/s 130°/s 135°/s 205°/s 190°/s 237°/s 200°/s 243°/s 297°/s 562°/s 726
CS8 或 CS8 M
RX170 HP 65 60 1835 6 ±0.04 IP65 (67)
l l
±180° ±120° ±145°
RX260 150 130 2831 6 ±0.07 IP65
±180° +75°/-55° +110°/-170°
±270°
±280°
+130°/-110°
±120°
±270° (4) 91°/s 57°/s
155°/s 130°/s
±2700° 108°/s (5) 104°/s (5)
手臂安装方式 史陶比尔CS8系列控制器
TX40 TX60 CR/ TX60 L TX90 TX90 L TX90 XL RX160 RX160 L RX130
CR
SCR CR/SCR CR/SCR CR/SCR CR/SCR CR
CR XL CR
2,3

基于robotstudio的双机协同工作站仿真设计

基于robotstudio的双机协同工作站仿真设计

总687期第二十五期2019年9月河南科技Henan Science and Technology 基于RobotStudio 的双机协同工作站仿真设计李怡林(四川工商职业技术学院,四川成都611830)摘要:本文介绍了一种借助RobotStudio 软件构建机器人搬运、焊接等多功能于一体的双机协作工作站虚拟仿真方案。

首先,利用SolidWorks 三维建模软件对机器人末端夹具进行三维设计,搭建基于RobotStudio 仿真软件的双机协作虚拟仿真平台空间布局;其次,设计双机协作工作站工艺流程,完成动态Smart 组件及工作站逻辑设定;最后,完成工作站系统离线编程与仿真优化。

仿真结果表明,该虚拟双机协作工作站可实现搬运、焊接等作业,该方案可为焊接生产线设计提供可行性参考。

关键词:RobotStudio ;双机协同;离线仿真中图分类号:TP242文献标识码:A 文章编号:1003-5168(2019)25-0014-05Simulation Design of Two-machine CooperativeWorkstation Based on RobotStudioLI Yilin (Sichuan Technology &Business College ,Chengdu Sichuan 611830)Abstract:This paper introduced a virtual simulation scheme of two computer cooperative workstation,which was based on the RobotStudio software to build a multi-functional integration of robot handling and welding.First of all,3D designof robot endfixturewas carried out by usingSolidWorks3Dmodeling software,andspatiallayout of dualcomputer collaborative virtual simulation platform was built based on RobotStudio simulation software;secondly,pro⁃cess flow of dual computer collaborative workstation was designed,dynamic Smart components and logic setting of workstation were completed;finally,offline programming and simulation optimization of workstation system were com⁃pleted.Thesimulation results show that the virtual two machine cooperative workstation can realize the operation of carrying and welding,and the scheme can provide a feasible reference for the design of welding production line.Keywords:RobotStudio ;two computer collaboration ;offline simulation 工业机器人应用仿真是指通过计算机软件对实际的机器人系统进行模拟和检测,其间可以在仿真软件中进行与实际一致的全部工业机器人应用编程与调试[1]。

工业机器人英汉词汇

工业机器人英汉词汇

工业机器人英汉词汇Aabrasive wheel 砂轮绝对精度absolute accuracy交流变频器驱动AC inverter drive加速性能 acceleration performance加速时间acceleration time准确定位accurate positioning适应控制adaptive controladaptive robot 适应机器⼈附加轴additional axis附加负载additional loadadditional mass附加质量附加操作additional operation㬵黏剂密封adhesive sealingadvanced collision avoidance高级碰撞避免航空航天工业 aerospace industryagricultural robot农业机器人air robot 空中机器人air tube 空气管alignment pose 校准位姿全电动工业机器人 all-electric industrial robotant colony algorithm蚁群算法 anthropomorphic robot 拟人机器人应用程序application program圆弧示教arc teachingarc welding 点焊,电弧焊弧焊机器人arc welding purpose robot电弧焊机器人arc welding robotarch motion 圆弧运动arm 手臂手臂配置arm configuration关节模型articulated model铰接式机器人,关节(形)机器人 articulated robot关节结构articulated structure人工智能artificial intelligence流水线,装配线assembly lineassembly robot 装配机器人atomization air雾化空气attained pose 实到位姿增强现实技术 augmented reality technologyauto part 汽车零件自动码垛automated palletizingautomated production 自动化生产automatic assembly line自动装配线自动控制automatic control末端执行器自动更换装置 automatic end effector exchanger自动物流运输automatic logistics transportautomatic mode 自动模式自动操作automatic operation自动换刀automatic tool changerautomatically controlled自动控制automation technology 自动化技术汽车行业automotive industry辅助轴电缆auxiliary axis cableaxis 轴axis movement 轴运动BBase 机座机座坐标系base coordinate system机座安装面base mounting surfacebeltless structure无带结构bend motion 弯曲运动big data 大数据bio-inspired robotics仿生机器人制动过滤器brake filter制动电阻brake resistor内置碰撞检测功能 built-in collision detection feature内置控制器built-in controller内置梯形图逻辑处理 built-in ladder logic processingbus cable 总线电缆C电缆干扰cable interferencecamera sensor 相机传感器基于相机的工件定位 camera-based part locationCartesian coordinate笛卡尔坐标系笛卡尔坐标机器人 Cartesian coordinate robot直⻆坐标机器人cartesian robot儿童看护机器人child care robotclean room 洁净室clean room robot 清洁室机器人cloud computing 云计算云存储技术cloud storage technology协作机器人collaborative robot彩色触摸屏color touch screencombustible gas 可燃气体command pose 指令位姿commissioning 试运行communication feature 通信功能communication protocol 通信协议紧凑式六臂机器人compact six-axis robotcompliance 柔顺性component placemen 元件贴装复合材料composite materialcompound movement 复合运动compressed air 压缩空气计算机数控computer numerical control计算机数控机床 computer numerical control machine计算机数控系统 computer numerical control systemcomputing control 计算控制computing power 计算能力构形configuration无缝连接connect seamlessly可连接控制器connectable controllerconsumable part 中小型零部件消费类电子产品consumer electronicscontinuous path 连续路径连续路径控制continuous path control轨迹控制continuous- path controlled控制算法control algorithmcontrol electronics电子控制装置control movement 控制运动control program 控制程序control scheme 控制方案control system 控制系统控制器机柜;控制柜 controller cabinet控制器系统面板 controller system panel (CSP)人机协作 cooperation of humans and machines坐标变换 coordinate transformation核心竞争力core competitiveness对应关节corresponding joint曲线示教curve teaching网络物理系统cyber-physical systemcycle 循环cycle time 循环时间圆柱坐标系 cylindrical coordinate systemcylindrical joint圆柱关节圆柱坐标机器人cylindrical robotD达芬奇手术机器人 DaVinci surgical robot电弧焊机器人 dedicated arc welding robot防护等级degree of protectiondegrees of freedom 自由度Delta并联关节机器人 Delta parallel joint robotDelta robot Delta机器人DexTAR教育机器人 DexTAR educational robotdie-casting machine压铸机数字动力digital power直接空气管路direct air line直接耦合direct coupling直接驱动direct drive残障辅助机器人 disability auxiliary robotdisplacement machine 变位机距离准确度distance accuracy距离重复性distance repeatability分布关节distributed jointDOF 自由度double-arm SCARA robot 双臂SCARA机器人 drawing machine 拉丝机drift of pose accuracy位姿准确度漂移位姿重复性漂移 drift of pose repeatability伺服驱动器轴drive controller for axesdrive controller伺服驱动器drive mechanism 驱动机构drive power supply驱动电源驱动比drive ratio驱动单元drive unitdriving device驱动装置dual arm 双臂。

混联双平台错动式六足机器人步态分析及轨迹规划

混联双平台错动式六足机器人步态分析及轨迹规划

2023年第47卷第4期Journal of Mechanical Transmission混联双平台错动式六足机器人步态分析及轨迹规划王春臻李瑞琴柴超王志浩樊文龙(中北大学机械工程学院,山西太原030051)摘要提出了一种基于R&(2-UPU/2-RPR)混联机构的新型混联双平台错动式六足机器人,并对该机器人进行了结构设计。

该六足机器人依靠2-UPU/2-RPR并联机构上、下两个平台的相互错动产生行走动作,其并联机构同时被用作连接两组3条腿的机身,从而使得该机器人能够以较少的驱动实现“3+3”的步态行走;该六足机器人的机身与载物平台以相对转动结构串联,可实现零半径360°灵活转弯。

基于RPY变换矩阵求得了并联机构的位置逆解;通过分析该六足机器人腿部的相互干涉约束和驱动约束,得到了机器人的最大步长、在1个间歇周期中单次转动的最大零半径转角和运动轨迹曲线;分析了该六足机器人在平地行走和爬台阶时的步态;对其载重量进行的有限元分析结果证明,该六足机器人能够代替挑夫在崎岖山路上载物行走,具有广泛的应用前景。

关键词六足机器人R&(2-UPU/2-RPR)混联机构步态分析轨迹规划载重能力Gait Analysis and Trajectory Planning of a Hybrid Dual-platformStaggered Hexapod RobotWang Chunzhen Li Ruiqin Chai Chao Wang Zhihao Fan Wenlong(School of Mechanical Engineering, North University of China, Taiyuan 030051, China)Abstract A novel hybrid dual-platform staggered hexapod robot based on R&(2-UPU/2-RPR) hybrid mechanism is proposed, and the structure of the robot is designed. The hexapod robot relies on the mutual dislocation of the upper and lower platforms of a 2-UPU/2-RPR parallel mechanism to generate the walking action. The parallel mechanism is also used as a body connecting two groups of three legs, so that the robot can achieve “3+3”gait walking with less driving. The body of the hexapod robot is connected in series with the loading platform by a relative rotation structure, which can realize 360° flexible turning with zero radius. The inverse position solution of the parallel mechanism is obtained based on the RPY transformation matrix. The maximum step length, the maximum zero radius turning angle of a single turn in an intermittent period of the hexapod robot and the trajectory curve of the hexapod robot are obtained by analyzing the mutual interference constraints of the legs and driving constraints of the hexapod robot. The gait of the hexapod robot walking on flat ground and climbing steps is analyzed. Finite element analysis results on its load capacity show that the hexapod robot can replace the porter and has a wide range of potential applications.Key words Hexapod robot R&(2-UPU/2-RPR) hybrid mechanism Gait analysis Trajectory plan⁃ning Loading capacity0 引言在各大名山景区一直都存在挑夫这一职业。

机器人英语翻译

机器人英语翻译

外文翻译专业工业工程学生姓名钱晓光班级BD机制082学号0820101205指导教师邱亚兰外文资料出处:Applied Mathematics and Computation185 (2007) 1149–1159附件: 1.外文资料翻译译文2.外文原文灵活的双臂空间机器人捕捉物体的控制动力学译者:钱晓光文摘:在本文中,我们提出有效载荷的影响,来控制一个双臂空间机器人灵活的获取一个物体。

该拉格朗日公式动力学模型推导出了机器人系统原理。

源自初始条件的动力学模型模拟了整个系统的获取过程。

一个PD控制器设计,其目的是为了稳定机器人来捕捉对象,动态模拟执行例子:例:1.机器人系统不受控制发生撞击,仿真结果表明影响效果。

2.空间机器人捕获物体的成功是伟大的。

仿真结果表明,该机器人关节角和机械手的迅速程度已经达到稳定。

关键词:柔性臂;空间机器人;冲击;动力学;PD控制方案:圆柱型机器人;技能训练1.介绍空间机器人将成为人类未来在太空检验、装配和检索故障等日常工作的主要元素。

空间机器人满足宇航员额外的活动,对这些来说是很有价值的。

然而,人类生活配套设施的成本和时间对航员是有限制的,高度风险使空间机器人成为宇航员助手的选择。

增加设备的流动性, 自由飞行系统中一个或多个臂安装在一艘装有推进器里,然而,扩展推进器的使用却得到了极大的限制。

一个自由浮动的操作模式能增加系统的可操作性。

有很多的研究成果对刚性臂空间机器人做了研究。

考虑到空间机器人以下的特点:轻质量、长臂、重载荷、灵活、有效性等,切应考虑到良好的控制精度和性能。

与此同时,也存在着许多研究动态建模和单臂空间机器人灵活控制的成果。

作者描述了碰撞动力学建模方案的空间机器人和研究了多手臂灵活空间机器人。

吴中书使用假设模态方法描述了弹性变形,建立了动态模型,研究了拉格朗日公式和仿真的柔性双臂空间机械臂。

由两个特定操作阶段:影响阶段和撞击阶段。

影响阶段确定了初始条件的对象。

自动化专业英语词汇大全

自动化专业英语词汇大全

自动化专业英语词汇大全acceleration transducer 加速度传感器acceptance testing 验收测试accessibility 可及性accumulated error 累积误差AC-DC-AC frequency converter 交-直-交变频器AC (alternating current) electric drive 交流电子传动active attitude stabilization 主动姿态稳定actuator 驱动器,执行机构adaline 线性适应元adaptation layer 适应层adaptive telemeter system 适应遥测系统adjoint operator 伴随算子admissible error 容许误差aggregation matrix 集结矩阵AHP (analytic hierarchy process) 层次分析法amplifying element 放大环节analog-digital conversion 模数转换annunciator 信号器antenna pointing control 天线指向控制anti-integral windup 抗积分饱卷aperiodic decomposition 非周期分解a posteriori estimate 后验估计approximate reasoning 近似推理a priori estimate 先验估计articulated robot 关节型机器人assignment problem 配置问题,分配问题associative memory model 联想记忆模型associatron 联想机asymptotic stability 渐进稳定性attained pose drift 实际位姿漂移attitude acquisition 姿态捕获AOCS (attritude and orbit control system) 姿态轨道控制系统attitude angular velocity 姿态角速度attitude disturbance 姿态扰动attitude maneuver 姿态机动attractor 吸引子augment ability 可扩充性augmented system 增广系统automatic manual station 自动-手动操作器automaton 自动机autonomous system 自治系统backlash characteristics 间隙特性base coordinate system 基座坐标系Bayes classifier 贝叶斯分类器bearing alignment 方位对准bellows pressure gauge 波纹管压力表benefit-cost analysis 收益成本分析bilinear system 双线性系统biocybernetics 生物控制论biological feedback system 生物反馈系统black box testing approach 黑箱测试法blind search 盲目搜索block diagonalization 块对角化Boltzman machine 玻耳兹曼机bottom-up development 自下而上开发boundary value analysis 边界值分析brainstorming method 头脑风暴法breadth-first search 广度优先搜索butterfly valve 蝶阀CAE (computer aided engineering) 计算机辅助工程CAM (computer aided manufacturing) 计算机辅助制造Camflex valve 偏心旋转阀canonical state variable 规范化状态变量capacitive displacement transducer 电容式位移传感器capsule pressure gauge 膜盒压力表CARD 计算机辅助研究开发Cartesian robot 直角坐标型机器人cascade compensation 串联补偿catastrophe theory 突变论centrality 集中性chained aggregation 链式集结chaos 混沌characteristic locus 特征轨迹chemical propulsion 化学推进calrity 清晰性classical information pattern 经典信息模式classifier 分类器clinical control system 临床控制系统closed loop pole 闭环极点closed loop transfer function 闭环传递函数cluster analysis 聚类分析coarse-fine control 粗-精控制cobweb model 蛛网模型coefficient matrix 系数矩阵cognitive science 认知科学cognitron 认知机coherent system 单调关联系统combination decision 组合决策combinatorial explosion 组合爆炸combined pressure and vacuum gauge 压力真空表command pose 指令位姿companion matrix 相伴矩阵compartmental model 房室模型compatibility 相容性,兼容性compensating network 补偿网络compensation 补偿,矫正compliance 柔顺,顺应composite control 组合控制computable general equilibrium model 可计算一般均衡模型conditionally instability 条件不稳定性configuration 组态connectionism 连接机制connectivity 连接性conservative system 守恒系统consistency 一致性constraint condition 约束条件consumption function 消费函数context-free grammar 上下文无关语法continuous discrete event hybrid system simulation 连续离散事件混合系统仿真continuous duty 连续工作制control accuracy 控制精度control cabinet 控制柜controllability index 可控指数controllable canonical form 可控规范型[control] plant 控制对象,被控对象controlling instrument 控制仪表control moment gyro 控制力矩陀螺control panel 控制屏,控制盘control synchro 控制[式]自整角机control system synthesis 控制系统综合control time horizon 控制时程cooperative game 合作对策coordinability condition 可协调条件coordination strategy 协调策略coordinator 协调器corner frequency 转折频率costate variable 共态变量cost-effectiveness analysis 费用效益分析coupling of orbit and attitude 轨道和姿态耦合critical damping 临界阻尼critical stability 临界稳定性cross-over frequency 穿越频率,交越频率current source inverter 电流[源]型逆变器cut-off frequency 截止频率cybernetics 控制论cyclic remote control 循环遥控cylindrical robot 圆柱坐标型机器人damped oscillation 阻尼振荡damper 阻尼器damping ratio 阻尼比data acquisition 数据采集data encryption 数据加密data preprocessing 数据预处理data processor 数据处理器DC generator-motor set drive 直流发电机-电动机组传动D controller 微分控制器decentrality 分散性decentralized stochastic control 分散随机控制decision space 决策空间decision support system 决策支持系统decomposition-aggregation approach 分解集结法decoupling parameter 解耦参数deductive-inductive hybrid modeling method 演绎与归纳混合建模法delayed telemetry 延时遥测derivation tree 导出树derivative feedback 微分反馈describing function 描述函数desired value 希望值despinner 消旋体destination 目的站detector 检出器deterministic automaton 确定性自动机deviation 偏差deviation alarm 偏差报警器DFD 数据流图diagnostic model 诊断模型diagonally dominant matrix 对角主导矩阵diaphragm pressure gauge 膜片压力表difference equation model 差分方程模型differential dynamical system 微分动力学系统differential game 微分对策differential pressure level meter 差压液位计differential pressure transmitter 差压变送器differential transformer displacement transducer 差动变压器式位移传感器differentiation element 微分环节digital filer 数字滤波器digital signal processing 数字信号处理digitization 数字化digitizer 数字化仪dimension transducer 尺度传感器direct coordination 直接协调disaggregation 解裂discoordination 失协调discrete event dynamic system 离散事件动态系统discrete system simulation language 离散系统仿真语言discriminant function 判别函数displacement vibration amplitude transducer 位移振幅传感器dissipative structure 耗散结构distributed parameter control system 分布参数控制系统distrubance 扰动disturbance compensation 扰动补偿diversity 多样性divisibility 可分性domain knowledge 领域知识dominant pole 主导极点dose-response model 剂量反应模型dual modulation telemetering system 双重调制遥测系统dual principle 对偶原理dual spin stabilization 双自旋稳定duty ratio 负载比dynamic braking 能耗制动dynamic characteristics 动态特性dynamic deviation 动态偏差dynamic error coefficient 动态误差系数dynamic exactness 动它吻合性dynamic input-output model 动态投入产出模型econometric model 计量经济模型economic cybernetics 经济控制论economic effectiveness 经济效益economic evaluation 经济评价economic index 经济指数economic indicator 经济指标eddy current thickness meter 电涡流厚度计effectiveness 有效性effectiveness theory 效益理论elasticity of demand 需求弹性electric actuator 电动执行机构electric conductance levelmeter 电导液位计electric drive control gear 电动传动控制设备electric hydraulic converter 电-液转换器electric pneumatic converter 电-气转换器electrohydraulic servo vale 电液伺服阀electromagnetic flow transducer 电磁流量传感器electronic batching scale 电子配料秤electronic belt conveyor scale 电子皮带秤electronic hopper scale 电子料斗秤elevation 仰角emergency stop 异常停止empirical distribution 经验分布endogenous variable 内生变量equilibrium growth 均衡增长equilibrium point 平衡点equivalence partitioning 等价类划分ergonomics 工效学error 误差error-correction parsing 纠错剖析estimate 估计量estimation theory 估计理论evaluation technique 评价技术event chain 事件链evolutionary system 进化系统exogenous variable 外生变量expected characteristics 希望特性external disturbance 外扰fact base 事实failure diagnosis 故障诊断fast mode 快变模态feasibility study 可行性研究feasible coordination 可行协调feasible region 可行域feature detection 特征检测feature extraction 特征抽取feedback compensation 反馈补偿feedforward path 前馈通路field bus 现场总线finite automaton 有限自动机FIP (factory information protocol) 工厂信息协议first order predicate logic 一阶谓词逻辑fixed sequence manipulator 固定顺序机械手fixed set point control 定值控制FMS (flexible manufacturing system) 柔性制造系统flow sensor/transducer 流量传感器flow transmitter 流量变送器fluctuation 涨落forced oscillation 强迫振荡formal language theory 形式语言理论formal neuron 形式神经元forward path 正向通路forward reasoning 正向推理fractal 分形体,分维体frequency converter 变频器frequency domain model reduction method 频域模型降阶法frequency response 频域响应full order observer 全阶观测器functional decomposition 功能分解FES (functional electrical stimulation) 功能电刺激functional simularity 功能相似fuzzy logic 模糊逻辑game tree 对策树gate valve 闸阀general equilibrium theory 一般均衡理论generalized least squares estimation 广义最小二乘估计generation function 生成函数geomagnetic torque 地磁力矩geometric similarity 几何相似gimbaled wheel 框架轮global asymptotic stability 全局渐进稳定性global optimum 全局最优globe valve 球形阀goal coordination method 目标协调法grammatical inference 文法推断graphic search 图搜索gravity gradient torque 重力梯度力矩group technology 成组技术guidance system 制导系统gyro drift rate 陀螺漂移率gyrostat 陀螺体Hall displacement transducer 霍尔式位移传感器hardware-in-the-loop simulation 半实物仿真harmonious deviation 和谐偏差harmonious strategy 和谐策略heuristic inference 启发式推理hidden oscillation 隐蔽振荡hierarchical chart 层次结构图hierarchical planning 递阶规划hierarchical control 递阶控制homeostasis 内稳态homomorphic model 同态系统horizontal decomposition 横向分解hormonal control 内分泌控制hydraulic step motor 液压步进马达hypercycle theory 超循环理论I controller 积分控制器identifiability 可辨识性IDSS (intelligent decision support system) 智能决策支持系统image recognition 图像识别impulse 冲量impulse function 冲击函数,脉冲函数inching 点动incompatibility principle 不相容原理incremental motion control 增量运动控制index of merit 品质因数inductive force transducer 电感式位移传感器inductive modeling method 归纳建模法industrial automation 工业自动化inertial attitude sensor 惯性姿态敏感器inertial coordinate system 惯性坐标系inertial wheel 惯性轮inference engine 推理机infinite dimensional system 无穷维系统information acquisition 信息采集infrared gas analyzer 红外线气体分析器inherent nonlinearity 固有非线性inherent regulation 固有调节initial deviation 初始偏差initiator 发起站injection attitude 入轨姿势input-output model 投入产出模型instability 不稳定性instruction level language 指令级语言integral of absolute value of error criterion 绝对误差积分准则integral of squared error criterion 平方误差积分准则integral performance criterion 积分性能准则integration instrument 积算仪器integrity 整体性intelligent terminal 智能终端interacted system 互联系统,关联系统interactive prediction approach 互联预估法,关联预估法interconnection 互联intermittent duty 断续工作制internal disturbance 内扰ISM (interpretive structure modeling) 解释结构建模法invariant embedding principle 不变嵌入原理inventory theory 库伦论inverse Nyquist diagram 逆奈奎斯特图inverter 逆变器investment decision 投资决策isomorphic model 同构模型iterative coordination 迭代协调jet propulsion 喷气推进job-lot control 分批控制joint 关节Kalman-Bucy filer 卡尔曼-布西滤波器knowledge accomodation 知识顺应knowledge acquisition 知识获取knowledge assimilation 知识同化KBMS (knowledge base management system) 知识库管理系统knowledge representation 知识表达ladder diagram 梯形图lag-lead compensation 滞后超前补偿Lagrange duality 拉格朗日对偶性Laplace transform 拉普拉斯变换large scale system 大系统lateral inhibition network 侧抑制网络least cost input 最小成本投入least squares criterion 最小二乘准则level switch 物位开关libration damping 天平动阻尼limit cycle 极限环linearization technique 线性化方法linear motion electric drive 直线运动电气传动linear motion valve 直行程阀linear programming 线性规划LQR (linear quadratic regulator problem) 线性二次调节器问题load cell 称重传感器local asymptotic stability 局部渐近稳定性local optimum 局部最优log magnitude-phase diagram 对数幅相图long term memory 长期记忆lumped parameter model 集总参数模型Lyapunov theorem of asymptotic stability 李雅普诺夫渐近稳定性定理macro-economic system 宏观经济系统magnetic dumping 磁卸载magnetoelastic weighing cell 磁致弹性称重传感器magnitude-frequency characteristic 幅频特性magnitude margin 幅值裕度magnitude scale factor 幅值比例尺manipulator 机械手man-machine coordination 人机协调manual station 手动操作器MAP (manufacturing automation protocol) 制造自动化协议marginal effectiveness 边际效益Mason's gain formula 梅森增益公式master station 主站matching criterion 匹配准则maximum likelihood estimation 最大似然估计maximum overshoot 最大超调量maximum principle 极大值原理mean-square error criterion 均方误差准则mechanism model 机理模型meta-knowledge 元知识metallurgical automation 冶金自动化minimal realization 最小实现minimum phase system 最小相位系统minimum variance estimation 最小方差估计minor loop 副回路missile-target relative movement simulator 弹体-目标相对运动仿真器modal aggregation 模态集结modal transformation 模态变换MB (model base) 模型库model confidence 模型置信度model fidelity 模型逼真度model reference adaptive control system 模型参考适应控制系统model verification 模型验证modularization 模块化MEC (most economic control) 最经济控制motion space 可动空间MTBF (mean time between failures) 平均故障间隔时间MTTF (mean time to failures) 平均无故障时间multi-attributive utility function 多属性效用函数multicriteria 多重判据multilevel hierarchical structure 多级递阶结构multiloop control 多回路控制multi-objective decision 多目标决策multistate logic 多态逻辑multistratum hierarchical control 多段递阶控制multivariable control system 多变量控制系统myoelectric control 肌电控制Nash optimality 纳什最优性natural language generation 自然语言生成nearest-neighbor 最近邻necessity measure 必然性侧度negative feedback 负反馈neural assembly 神经集合neural network computer 神经网络计算机Nichols chart 尼科尔斯图noetic science 思维科学noncoherent system 非单调关联系统noncooperative game 非合作博弈nonequilibrium state 非平衡态nonlinear element 非线性环节nonmonotonic logic 非单调逻辑nonparametric training 非参数训练nonreversible electric drive 不可逆电气传动nonsingular perturbation 非奇异摄动non-stationary random process 非平稳随机过程nuclear radiation levelmeter 核辐射物位计nutation sensor 章动敏感器Nyquist stability criterion 奈奎斯特稳定判据objective function 目标函数observability index 可观测指数observable canonical form 可观测规范型on-line assistance 在线帮助on-off control 通断控制open loop pole 开环极点operational research model 运筹学模型optic fiber tachometer 光纤式转速表optimal trajectory 最优轨迹optimization technique 最优化技术orbital rendezvous 轨道交会orbit gyrocompass 轨道陀螺罗盘orbit perturbation 轨道摄动order parameter 序参数orientation control 定向控制originator 始发站oscillating period 振荡周期output prediction method 输出预估法oval wheel flowmeter 椭圆齿轮流量计overall design 总体设计overdamping 过阻尼overlapping decomposition 交叠分解Pade approximation 帕德近似Pareto optimality 帕雷托最优性passive attitude stabilization 被动姿态稳定path repeatability 路径可重复性pattern primitive 模式基元PR (pattern recognition) 模式识别P control 比例控制器peak time 峰值时间penalty function method 罚函数法perceptron 感知器periodic duty 周期工作制perturbation theory 摄动理论pessimistic value 悲观值phase locus 相轨迹phase trajectory 相轨迹phase lead 相位超前photoelectric tachometric transducer 光电式转速传感器phrase-structure grammar 短句结构文法physical symbol system 物理符号系统piezoelectric force transducer 压电式力传感器playback robot 示教再现式机器人PLC (programmable logic controller) 可编程序逻辑控制器plug braking 反接制动plug valve 旋塞阀pneumatic actuator 气动执行机构point-to-point control 点位控制polar robot 极坐标型机器人pole assignment 极点配置pole-zero cancellation 零极点相消polynomial input 多项式输入portfolio theory 投资搭配理论pose overshoot 位姿过调量position measuring instrument 位置测量仪posentiometric displacement transducer 电位器式位移传感器positive feedback 正反馈power system automation 电力系统自动化predicate logic 谓词逻辑pressure gauge with electric contact 电接点压力表pressure transmitter 压力变送器price coordination 价格协调primal coordination 主协调primary frequency zone 主频区PCA (principal component analysis) 主成分分析法principle of turnpike 大道原理priority 优先级process-oriented simulation 面向过程的仿真production budget 生产预算production rule 产生式规则profit forecast 利润预测PERT (program evaluation and review technique) 计划评审技术program set station 程序设定操作器proportional control 比例控制proportional plus derivative controller 比例微分控制器protocol engineering 协议工程prototype 原型pseudo random sequence 伪随机序列pseudo-rate-increment control 伪速率增量控制pulse duration 脉冲持续时间pulse frequency modulation control system 脉冲调频控制系统pulse width modulation control system 脉冲调宽控制系统PWM inverter 脉宽调制逆变器pushdown automaton 下推自动机QC (quality control) 质量管理quadratic performance index 二次型性能指标qualitative physical model 定性物理模型quantized noise 量化噪声quasilinear characteristics 准线性特性queuing theory 排队论radio frequency sensor 射频敏感器ramp function 斜坡函数random disturbance 随机扰动random process 随机过程rate integrating gyro 速率积分陀螺ratio station 比值操作器reachability 可达性reaction wheel control 反作用轮控制realizability 可实现性,能实现性real time telemetry 实时遥测receptive field 感受野rectangular robot 直角坐标型机器人rectifier 整流器recursive estimation 递推估计reduced order observer 降阶观测器redundant information 冗余信息reentry control 再入控制regenerative braking 回馈制动,再生制动regional planning model 区域规划模型regulating device 调节装载regulation 调节relational algebra 关系代数relay characteristic 继电器特性remote manipulator 遥控操作器remote regulating 遥调remote set point adjuster 远程设定点调整器rendezvous and docking 交会和对接reproducibility 再现性resistance thermometer sensor 热电阻resolution principle 归结原理resource allocation 资源分配response curve 响应曲线return difference matrix 回差矩阵return ratio matrix 回比矩阵reverberation 回响reversible electric drive 可逆电气传动revolute robot 关节型机器人revolution speed transducer 转速传感器rewriting rule 重写规则rigid spacecraft dynamics 刚性航天动力学risk decision 风险分析robotics 机器人学robot programming language 机器人编程语言robust control 鲁棒控制robustness 鲁棒性roll gap measuring instrument 辊缝测量仪root locus 根轨迹roots flowmeter 腰轮流量计rotameter 浮子流量计,转子流量计rotary eccentric plug valve 偏心旋转阀rotary motion valve 角行程阀rotating transformer 旋转变压器Routh approximation method 劳思近似判据routing problem 路径问题sampled-data control system 采样控制系统sampling control system 采样控制系统saturation characteristics 饱和特性scalar Lyapunov function 标量李雅普诺夫函数SCARA (selective compliance assembly robot arm) 平面关节型机器人scenario analysis method 情景分析法scene analysis 物景分析s-domain s域self-operated controller 自力式控制器self-organizing system 自组织系统self-reproducing system 自繁殖系统self-tuning control 自校正控制semantic network 语义网络semi-physical simulation 半实物仿真sensing element 敏感元件sensitivity analysis 灵敏度分析sensory control 感觉控制sequential decomposition 顺序分解sequential least squares estimation 序贯最小二乘估计servo control 伺服控制,随动控制servomotor 伺服马达settling time 过渡时间sextant 六分仪short term planning 短期计划short time horizon coordination 短时程协调signal detection and estimation 信号检测和估计signal reconstruction 信号重构similarity 相似性simulated interrupt 仿真中断simulation block diagram 仿真框图simulation experiment 仿真实验simulation velocity 仿真速度simulator 仿真器single axle table 单轴转台single degree of freedom gyro 单自由度陀螺single level process 单级过程single value nonlinearity 单值非线性singular attractor 奇异吸引子singular perturbation 奇异摄动sink 汇点slaved system 受役系统slower-than-real-time simulation 欠实时仿真slow subsystem 慢变子系统socio-cybernetics 社会控制论socioeconomic system 社会经济系统software psychology 软件心理学solar array pointing control 太阳帆板指向控制solenoid valve 电磁阀source 源点specific impulse 比冲speed control system 调速系统spin axis 自旋轴spinner 自旋体stability criterion 稳定性判据stability limit 稳定极限stabilization 镇定,稳定Stackelberg decision theory 施塔克尔贝格决策理论state equation model 状态方程模型state space description 状态空间描述static characteristics curve 静态特性曲线station accuracy 定点精度stationary random process 平稳随机过程statistical analysis 统计分析statistic pattern recognition 统计模式识别steady state deviation 稳态偏差steady state error coefficient 稳态误差系数step-by-step control 步进控制step function 阶跃函数stepwise refinement 逐步精化stochastic finite automaton 随机有限自动机strain gauge load cell 应变式称重传感器strategic function 策略函数strongly coupled system 强耦合系统subjective probability 主观频率suboptimality 次优性supervised training 监督学习supervisory computer control system 计算机监控系统sustained oscillation 自持振荡swirlmeter 旋进流量计switching point 切换点symbolic processing 符号处理synaptic plasticity 突触可塑性synergetics 协同学syntactic analysis 句法分析system assessment 系统评价systematology 系统学system homomorphism 系统同态system isomorphism 系统同构system engineering 系统工程tachometer 转速表target flow transmitter 靶式流量变送器task cycle 作业周期teaching programming 示教编程telemechanics 远动学telemetering system of frequency division type 频分遥测系统telemetry 遥测teleological system 目的系统teleology 目的论temperature transducer 温度传感器template base 模版库tensiometer 张力计texture 纹理theorem proving 定理证明therapy model 治疗模型thermocouple 热电偶thermometer 温度计thickness meter 厚度计three-axis attitude stabilization 三轴姿态稳定three state controller 三位控制器thrust vector control system 推力矢量控制系统thruster 推力器time constant 时间常数time-invariant system 定常系统,非时变系统time schedule controller 时序控制器time-sharing control 分时控制time-varying parameter 时变参数top-down testing 自上而下测试topological structure 拓扑结构TQC (total quality control) 全面质量管理tracking error 跟踪误差trade-off analysis 权衡分析transfer function matrix 传递函数矩阵transformation grammar 转换文法transient deviation 瞬态偏差transient process 过渡过程transition diagram 转移图transmissible pressure gauge 电远传压力表transmitter 变送器trend analysis 趋势分析triple modulation telemetering system 三重调制遥测系统turbine flowmeter 涡轮流量计Turing machine 图灵机two-time scale system 双时标系统ultrasonic levelmeter 超声物位计unadjustable speed electric drive 非调速电气传动unbiased estimation 无偏估计underdamping 欠阻尼uniformly asymptotic stability 一致渐近稳定性uninterrupted duty 不间断工作制,长期工作制unit circle 单位圆unit testing 单元测试unsupervised learing 非监督学习upper level problem 上级问题urban planning 城市规划utility function 效用函数value engineering 价值工程variable gain 可变增益,可变放大系数variable structure control system 变结构控制vector Lyapunov function 向量李雅普诺夫函数velocity error coefficient 速度误差系数velocity transducer 速度传感器vertical decomposition 纵向分解vibrating wire force transducer 振弦式力传感器vibrometer 振动计viscous damping 粘性阻尼voltage source inverter 电压源型逆变器vortex precession flowmeter 旋进流量计vortex shedding flowmeter 涡街流量计WB (way base) 方法库weighing cell 称重传感器weighting factor 权因子weighting method 加权法Whittaker-Shannon sampling theorem 惠特克-香农采样定理Wiener filtering 维纳滤波work station for computer aided design 计算机辅助设计工作站w-plane w平面zero-based budget 零基预算zero-input response 零输入响应zero-state response 零状态响应zero sum game model 零和对策模型z-transform z变换。

FANUC机器人仿真软件操作手册

FANUC机器人仿真软件操作手册

2008年10月第1版FANUC机器人仿真软件操作手册ROBOGUIDE 使用手册(弧焊部分基础篇)目录目录 (1)第一章概述 (2)1、1、软件安装 (2)1、2、软件注册 (3)1、3、新建Workcell的步骤 (3)1、3、1、新建 (4)1、3、2、添加附加轴的设置 (9)1、4、添加焊枪,TCP设置。

(15)1、5、Workcell的存储目录 (18)1、6、鼠标操作 (19)第二章创建变位机 (21)3、1、利用自建数模创建 (21)3、1、1.快速简易方法 (21)3、1、2.导入外部模型方法 (31)3、2、利用模型库创建 (41)3、2、1.导入默认配置的模型库变位机 (41)3、2、2.手动装配模型库变位机 (44)第三章创建机器人行走轴 (49)3、1、行走轴-利用模型库 (49)3、2、行走轴-自建数模 (56)第四章变位机协调功能 (62)4、1、单轴变位机协调功能设置 (62)4、2、单轴变位机协调功能示例 (71)第五章添加其她外围设备 (72)第六章仿真录像的制作 (75)第一章概述1、1、软件安装本教程中所用软件版本号为V6、407269正确安装ROBOGUIDE ,先安装安装盘里的SimPRO,选择需要的虚拟机器人的软件版本。

安装完SimPRO后再安装WeldPro。

安装完,会要求注册;若未注册,有30天时间试用。

如果需要用到变位机协调功能,还需要安装MultiRobot Arc Package。

1、2、 软件注册注册方法:打开WeldPRO 程序,点击Help / Register WeldPRO弹出如下窗口,注册后,有2001、3、 新建Workcell 的步骤将此区域的数据Email 给上海发那科,我们将为您向公司本部申请密钥,然后将密钥回发给您。

将我们提供的密钥填入此处(每行前面框里打勾才能输入密钥)1、3、1、新建在Name 一栏输入文件名,文件名要以字母开头。

基于Matlab的双机器人协作空间求解及分析

基于Matlab的双机器人协作空间求解及分析
摘要:以双机器人协作系统模型为研究对象,根据其 DH参数求出运动学正解, 基于 Matlab,利用蒙特卡洛方法解出双机器人工作空间的公共区域,采用极值 理论法和搜索区域法对公共区域边界曲线进行提取,可确定双机器人协作空间 的界限曲面和极限位置.仿真结果表明,该方法具有易于实现、空间表达直观等 优点,可应用于其他结构形式和任意自由度的双臂机器人类似问题求解.
基于matlab的双机器人协作空间求解及分析表1双机器人协作系统的dh参数表table1dhparameterstableofdoublerobotcollaborativesystem机器人关节角序号i连杆扭角i1连杆长度ai1mm偏置量dimm关节转角i1000180180290255015545308850160120490359803503505900014014069000345345机器人末端执行器的姿态坐标机器人的工作空间为末端执行器所能达到的空间位置即位置坐标只与变量123有关故只要满足式中所有点的集合就构成了机器人的工作空间从而得到机器人工作空间的点的集合为pxyzxfx123yfy123zfz123mintmaxt1232双机器人协作工作空间的求解21数学模型方程推导由公式可得到单个机器人在局部坐标系下的末端轨迹工作空间建立双机器人协作工作空间方程点的集合模型从而求得协作工作空间的公共区域
王威,许勇,刘勇,宋伟
WANGWei,XUYong,LIUYong,SONGWei
上海工程技术大学 机械与汽车工程学院,上海 201620
SchoolofMechanicalandAutomotiveEngineering,ShanghaiUniversityofEngineeringScience, Shanghai201620,ClerobotcollaborativeworkspacesolutionandanalysisbasedonMatlab

WAFER PROCESSING SYSTEM WITH DUAL WAFER ROBOTS CAP

WAFER PROCESSING SYSTEM WITH DUAL WAFER ROBOTS CAP

专利名称:WAFER PROCESSING SYSTEM WITH DUAL WAFER ROBOTS CAPABLE OFASYNCHRONOUS MOTION发明人:CHIDAMBARAM, MAHENDRAN,TRUONG, QUOC,SCHOCK, JERRY,PARKER, N. WILLIAM 申请号:US2007079773申请日:20070927公开号:WO2008039943A3公开日:20080619专利内容由知识产权出版社提供摘要:A robot assembly for transferring substrates includes a central tube assembly oriented along a central axis, perpendicular to a substrate transfer plane, and having an inner surface that forms part of a first enclosure at a first pressure, and an outer surface that forms part of a second enclosure at a second, different pressure. The robot assembly further includes a transfer robot which itself includes multiple rotor assemblies, each configured to rotate parallel to the substrate transfer plane. The various rotor assemblies are organized in pairs, each pair having one rotor fitted with a telescoping support arm/end effector arrangement to support substrates thereon, and the other rotor fitted with inner and outer actuator arms that cooperate to effect radial movement of the corresponding end effector of the paired rotor assembly. Each rotor is controlled to effect the transfer of substrates within a wafer processing system asynchronously and at differing heights.申请人:VSERV TECH,CHIDAMBARAM, MAHENDRAN,TRUONG, QUOC,SCHOCK, JERRY,PARKER, N. WILLIAM更多信息请下载全文后查看。

双臂机器人的轨迹规划研究与仿真

双臂机器人的轨迹规划研究与仿真

0 引言工业机器人能够代替人工完成枯燥、重复性较高的工作,大幅提高生产效率,甚至可以完成一些人工无法完成的危险性任务。

虽然单臂机器人已经得到了广泛应用,但随着生产作业越来越复杂,单臂机器人在某些场合下已经无法胜任,例如较为复杂的搬运、柔性装配等应用,而双臂机器人则能完成这些工作任务。

因此,研究双臂机器人的运动轨迹规划,可以提高机器人的双臂协作、协调能力,扩展其应用领域[1]。

双臂机器人的轨迹规划研究与仿真1刘子贵(江门职业技术学院 广东省江门市 529090)概 要:本文以Baxter双臂机器人为研究对象,借助三次多项式插值法、五次多项式插值法等关节变量空间轨迹规划方法,采用D-H法建立机器人的连杆坐标系,利用Robotics Toolbox构建运动学模型,仿真双臂机器人7个关节的角度轨迹曲线、速度曲线和加速度曲线。

通过对比分析,具有6个约束条件的五次多项式插值法可以让加速度曲线不存在跳变,各关节运动轨迹更加平稳、连续,能够提升双臂机器人运动的平稳性、双臂协作能力,让其完成复杂的生产工作任务。

关键词:双臂机器人;Robotics Toolbox;关节变量;轨迹规划Abstract: In this paper, the Baxter dual arm robot is taken as the research object. By means of joint variable space trajectory planning methods such as cubic polynomial interpolation and quintic polynomial interpolation, the D-H method is used to establish the linkage coordinate system of the robot, and the kinematics model is built by using the robotics toolbox to simulate the angle trajectory curve, velocity curve and acceleration curve of the seven joints of the dual arm robot. Through the comparative analysis, the quintic polynomial interpolation method with six constraints can make the acceleration curve without jump, and the motion track of each joint is more stable and continuous. It can improve the stability of the movement of the dual arm robot, the ability of cooperation between the two arms, and make it complete the complex production tasks.Key words: Dual arm robot; Robotics toolbox; Joint variable; Trajectory planning1 轨迹规划方法关节变量空间轨迹规划的常见方法有三次多项式插值和五阶多项式插值等方法。

Kawasaki Robot 1 1 Dual-arm SCARA机器人特点说明书

Kawasaki Robot 1 1 Dual-arm SCARA机器人特点说明书

Coexistent operations with workersCo-existing and collaborative works with human workers are possible thanks to various functions to assure safety and the use of soft materials on the arm surface. In the event of a collision with the worker, the collision detectionThe slim cart allows an easier installation at the site with aSince vision sensors can be used by simply adding optional software, a vision controller is not needed.Separation of the arms and controllerIn addition to the integrated type of arms and controller, a separate type (arms and controller are installed separately) allows free layout of the production line.1 At the time of power activation, rush current generates in the range of several to tens of several times of the normal current.Due to such rush current, the supply voltage could drop. It is recommended to select a power supply capacity with enough room to cope with such instantaneous current change.2 Please consult with us for use of specifications other than specified above.duAro 1 armConnector boxRobot harnessControl box F 61 controllerDimensionsSpecificationsOptional separate typeApplicationAssembling of PCBsFilling cups with soupCat. No. 3L1800 Aug. ’18MPrinted in JapanRobot Business Divisionhttps:///Tokyo Head Office/Robot Division1-14-5, Kaigan, Minato-ku, Tokyo 105-8315, Japan Phone: +81-3-3435-2501Akashi Works/Robot Division1-1, Kawasaki-cho, Akashi, Hyogo 673-8666, Japan Phone: +81-78-921-2946Global NetworkKawasaki Robotics (USA), Inc.Phone: +1-248-446-4100Kawasaki Robotics (UK) Ltd.Phone: +44-1925-71-3000Kawasaki Robotics GmbH Phone: +49-2131-34260Kawasaki Robotics Korea, Ltd.Phone: +82-32-821-6941Kawasaki Robotics (Tianjin) Co., Ltd.Phone: +86-22-5983-1888Kawasaki Motors Enterprise (Thailand) Co.,Ltd. (Rayong Robot Center)Phone: +66-38-955-040-58。

双臂机器人dual-arm PPT

双臂机器人dual-arm PPT

Kenematics analysis
Worksptant function of the dual arm robot manipulator is cooperation between left and right arms each other.
The kinematic structure of the left/right arm has the same as one of the traditional industrial 6-DOF robots and wrists have the spherical structure which has some advantages of simple inverse kinematics.
Example posture for cooperation task of developed dual arm robot manipulator
the front view The cooperation workspace of developed dual arm robot manipulator.
dual-arm的机器人机械结构
dual-arm robot由机身,臂部(包括大臂和小臂),手腕和手部 几部分组成。
1——机器人手部 2——机器人腕部 3——机器人手臂 4——机器人机身
The advantages of the proposed structure.
The new type of dual arm robot manipulator consists of two single industrial arms (6 DOF) and torso (2 DOF). In this structure, it is very easy to control the distance between the 2nd Joints of both arms. If the distance is too wide or short, the cooperation manipulability of two arms is not good. With this structure, each arm is also easily assembled with torso and de-assembled from torso. Thus each single industrial arm is able to be used as a stand-alone of industrial robot manipulator and as a part of dual arm manipulator at the same time. The first joint of left/right arm is composed of belt, pulley and hollow type of a harmonic drive for this purpose.

双机器人系统的快速手眼标定方法

双机器人系统的快速手眼标定方法

双机器人系统的快速手眼标定方法魏振忠;张博;张广军【摘要】For the hand-eye calibration of a dual robot measurement system, a method based on machine vision to calculate the target robot flange pose and center coordinate was presented. By moving the target robot flange to a proper pose to take an image by the camera and extract the ellipse contour of the flange in the image to calculate the flange pose and its circle center data, the coordinate transform H1 between camera coordinate system and flange coordinate system was obtained by using the location of pinhole on the flange. Then,the coordinate transforms between flange coordinate system and robot base coordinatesystems ,namely, H2 and H1 ,are gotten,respectivity, from the robot controllers. Furthermore, the coordinate system transform H3 between two robots were derived from single axis movements of robots, so that a hand-eye expression HCg was obtained to calculate the hand-eye coordinate transform. Finally,by moving the target flange to some coplanar poses to take their images, the calibration accuracy was improved by image fusion. Experimental results indicate that the cal ibration precisions of single image and coplanar poses using image fusion are 0. 345° and 0.187° , re -spectively. It can satisfy the the requirements of dual robot systems for vision guiding measurement.%针对双机器人仿真测量系统的手眼标定问题,提出一种由机器视觉求解法兰盘位姿得出手眼关系的方法.将目标机器人运动到合适的位姿,由视觉机器人拍摄其法兰盘图像,提取图像中法兰盘的椭圆轮廓,解算摄像机坐标系下的法兰盘姿态和圆心坐标,并由销孔位置约束得出摄像机与目标法兰盘坐标系的转换关系H1.然后由控制器读数得出两台机器人各自法兰盘坐标系与基坐标系间的转换关系H2,H4,并由机器人单轴旋转运动得出双机器人基坐标系转换关系H3,由此形成闭环得出机器人手眼关系HCG.将法兰盘运动到共面的多个不同位置分别拍摄图像,通过图像融合来提高标定精度.实验结果表明,单位置标定和多位置图像融合标定的精度分别为0.345°和0.187°,满足双机器人视觉仿真测量系统的精度要求.【期刊名称】《光学精密工程》【年(卷),期】2011(019)008【总页数】8页(P1895-1902)【关键词】机器人;手眼标定;坐标转换;图像融合;圆姿态【作者】魏振忠;张博;张广军【作者单位】北京航空航天大学精密光机电一体化技术教育部重点实验室,北京100191;北京航空航天大学精密光机电一体化技术教育部重点实验室,北京100191;北京航空航天大学精密光机电一体化技术教育部重点实验室,北京100191【正文语种】中文【中图分类】TP391.41在机器人视觉测量中,必须对摄像机与机器人末端执行器之间的相对安装位置进行标定,也就是手眼标定[1-4]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档