选修1-1导数及其应用2

合集下载

_高中数学第一章导数及其应用2

_高中数学第一章导数及其应用2

f(x)=1x
f ′(x)=-x12=-x-2
f(x)= x
f ′(x)=21 x=12x-12
f(x)=x3
f′(x)=3x2
结论:若f(x)=xα(α为有理数),则f′(x)=αxα-1.
1.y=c表示平行于x轴的直线,或与x轴重合的直线, 其斜率为0,故y=c上任一点处的导数值为____0____, 直线y=x的斜率为1,故直线y=x上任一点处的导数值 为___1_____.
[分析] 只需求出K、Q两点的横坐标即可.
[解析]
设P(x0,y0),则kl1=y′|x=x0=2
1 x0
.
∵直线l1与l2垂直,则kl2=-2 x0,
∴直线l2的方程为y-y0=-2 x0(x-x0).
∵点P(x0,y0)在曲线y= x上,∴y0= x0.
在直线l2的方程中令y=0,则- x0=-2 x0(x-x0).
2.当y=c表示路程关于时间的函数时,常数c表明路 程不变化,因此一直处于__静__止____状态,故瞬时速度 为___0_____,因此y′=____0____;
当y=x表示路程关于时间的函数时,路程的改变量等 于时间的改变量,因此物体做匀速直线运动,瞬时速 度为___1_____,故y′=____1____.
当P点不是切点时,设切点为A(x0,y0),由定义可求得切 线的斜率为k=3x20.
∵A在曲线上,∴y0=x30,∴xx300--82=3x20,
∴x30-3x20+4=0,∴(x0+1)(x0-2)2=0, ∴x0=-1或x0=2(舍去),∴y0=-1,k=3, 此时切线方程y+1=3(x+1),即3x-y+2=0. 故经过点P的曲线的切线有两条,方程为12x-y-16=0和 3x-y+2=0. [警示] 求曲线过点P的切线时,应注意检验点P是否在曲 线上,若点P在曲线上,应分P为切点和P不是切点讨论.

_高中数学第一章导数及其应用2

_高中数学第一章导数及其应用2

[提示] ΔΔyx=x+Δx2+xΔ+2xΔx-x2+2x
=2x+Δx+xx-+2Δx
∴ lim Δx→0
2x+Δx+xx-+2Δx
=2x-x22.
Байду номын сангаас
[问题3] F(x)的导数与f(x)、g(x)的导数有何关系? [提示] F(x)的导数等于f(x)、g(x)导数和.
[问题 4] 试说明 y=cos3x-π4如何复合的. [提示] 令 u=g(x)=3x-π4,y=f(u)=cos u,
(3)y′=(2x2+3)′·(3x-2)+(2x2+3)·(3x-2)′
=4x·(3x-2)+(2x2+3)·3
=18x2-8x+9.
(4)y′=xl+n x1′-(2x)′
=1xx+x+1- 12ln
x -2xln
2
=1+x1x+-1ln2
x -2xln
2.
二. 复合函数的导数
例题 2 求下列函数的导数:
(1)y=1-12x3;
(2)y=cos x2;
(3)y=sin3x-π4; (4)y=lg(2x2+3x+1).
• [思路点拨] 解答本题可先分析复合函数的复合过 程,然后运用复合函数的求导法则求解.
解析: (1)设 y=u13,u=1-2x, 则 y′x=y′u·u′x =u13′·(1-2x)′ =-3u-4·(-2) =1-62x4. (2)设 y=cos u,u=x2, 则 y′x=y′u·u′x=(cos u)′·(x2)′ =-sin u·2x =-2x·sin x2.
(4)开始学习求复合函数的导数要一步步写清楚,熟 练后中间步骤可省略.
特别提醒:只要求会求形如f(ax+b)的复合函数的导 数.

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.3.2

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.3.2

数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
已知极值求参数
已知 f(x)=x3+ax2+bx+c 在 x=1 与 x=-23时都取 得极值.
(1)求 a,b 的值; (2)若 f(-1)=32,求 f(x)的单调区间和极值.
数学 选修1-1
第三章 导数及其应用
高效测评 知能提升
横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中. 在群山之中,各个山峰的顶端虽然不一定是群山之中的最 高处,但它却是其附近的最高点;同样,各个谷底虽然不一定 是群山之中的最低处,但它却是其附近的最低点.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: (1)f′(x)=3x2+2ax+b, 令 f′(x)=0,由题设知 x=1 与 x=-23为 f′(x)=0 的解. ∴11- ×23-=23-=23ab3,. ∴a=-12,b=-2.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
x
(-∞,-1) -1 (-1,1) 1 (1,+∞)
f′(x)

0

0

f(x)
极小值
极大值
由表可以看出:
当 x=-1 时,函数有极小值,且 f(-1)=-22-2=-3; 当 x=1 时,函数有极大值,且 f(1)=22-2=-1.

北师版高中同步学考数学选修1-1精品课件 第四章 §2 导数在实际问题中的应用

北师版高中同步学考数学选修1-1精品课件 第四章 §2 导数在实际问题中的应用

∴L(x)在[20,50)上是增加的,在(50,80]上是减少的,
∴当 x=50 时,L(x)max=1 000ln 50-250;
当 x∈(80,100]时,L(x)=1 000ln x-
20 000
是增加的,

∴L(x)max=L(100)=1 000ln 100-2 000.
∵1 000ln 50-250-(1 000ln 100-2 000)=1 750-1 000ln 2>1 750-1
2

<
1
<
10-
,
-3 < < 1,
< 1 < 10- ,
即 1 3
解得
2
() ≥ (1),
- ≥ - ,
≥ -2,
3
3
所以-2≤a<1,所以实数 a 的取值范围为[-2,1).
2
-18-
§2导数在实际问题中的应用
探究一
探究二
探究三
首页
自主预习
探究学习
当堂检测
思维辨析
反思感悟注意函数在闭区间与开区间上最值的区别,当函数在开
(1)把全程运输成本y(元)表示为速度x(海里/时)的函数;
(2)为了使全程运输成本最小,轮船应以多大速度航行?
分析(1)写出函数解析式时要注意函数的定义域;(2)利用导数求
最值,注意函数定义域的限制.
-13-
§2导数在实际问题中的应用
探究一
探究二
自主预习
首页
探究三
探究学习
当堂检测
思维辨析
500
480 000
区间或无穷区间上存在最值时,最值点不是在区间的端点,而在极

北师大版数学选修1-1:第四章§2 导数在实际问题中的应用2.1

北师大版数学选修1-1:第四章§2 导数在实际问题中的应用2.1

1.(2012·南阳测试)某汽车的紧急刹车装置在遇到特别情况时需在2 s 内完成刹车,其位移(单位:m)关于时间(单位:s)的函数为s (t )=-13t 3-4t 2+20t +15,则s ′(1)的实际意义为( ) A .汽车刹车后1 s 内的位移B .汽车刹车后1 s 内的平均速度C .汽车刹车后1 s 时的瞬时速度D .汽车刹车后1 s 时的位移解析:选C.由导数的实际意义知,位移关于时间的瞬时变化率为该时刻的瞬时速度. 2.(2012·驻马店质检)某旅游者爬山的高度h (单位:m)是时间t (单位:h)的函数,关系式是h =-100t 2+800t ,则他在2 h 这一时刻的高度变化的速度是( )A .500 m/hB .1000 m/hC .400 m/hD .1200 m/h解析:选C.∵h ′=-200t +800,∴当t =2 h 时,h ′(2)=-200×2+800=400(m/h).3.物体的运动方程是s (t )=4t -0.3t 2,则从t =2到t =4的平均速度是________.解析:由题意可得,Δt =4-2=2,Δs =(4×4-0.3×42)-(4×2-0.3×22)=11.2-6.8=4.4,∴平均速度为Δs Δt =4.42=2.2. 答案:2.24.若某段导体通过的电量Q (单位:C)与时间t (单位:s)的函数关系为Q =f (t )=120t 2+t -80,t ∈[0,30],则f ′(15)=________,它的实际意义是____________________.解析:Q ′=f ′(t )=110t +1,令t =15,则f ′(15)=52 (C/s),这表示t =15 s 时的电流强度,即单位时间内通过的电量.答案:52 C/s t =15 s 时的电流强度为52C/s[A 级 基础达标]1.圆的面积S 是半径r 的函数,S =πr 2,那么在r =3这一时刻面积的变化率是( )A .6C .9πD .6π解析:选D.S ′=2πr ,∴S ′(3)=6π.2.(2012·宝鸡检测)自由落体的运动公式是s =12gt 2(g 为重力加速度),则物体在下落3 s 到4 s 之间的平均变化率是(取g =10 m/s 2)( )A .30B .32C .35D .40解析:选C.v =Δs Δt =12g ×42-12g ×324-3=72g =35. 3.某公司的盈利y (元)和时间x (天)的函数关系是y =f (x ),假设f ′(x )>0恒成立,且f ′(10)=10,f ′(20)=1,则这些数据说明第20天与第10天比较( )A .公司已经亏损B .公司的盈利在增加,增加的幅度变大C .公司在亏损且亏损幅度变小D .公司的盈利在增加,但增加的幅度变小解析:选D.导数为正说明盈利是增加的,导数变小说明增加的幅度变小了,但还是增加的.4.人体血液中药物的质量浓度c =f (t )(单位:mg /mL)随时间t (单位:min)变化,若f ′(2)=0.3,则f ′(2)表示________________________________________________________________________________________________________________________________________________. 答案:服药2 min 时血液中药物的质量浓度以每分钟0.3 mg /mL 的速度增加5.(2012·西安调研)一质点沿直线运动,如果由始点起经过t 秒后的位移为s =3t 2+t ,则速度v =10时的时刻t =________.解析:s ′=6t +1,则v (t )=6t +1,令6t +1=10,则t =32. 答案:326.氡气是一种由地表自然散发的无味的放射性气体.如果最初有500克氡气,那么t 天后,氡气的剩余量为A (t )=500×0.834t .(1)氡气的散发速度是多少?(2)A ′(7)的值是什么(精确到0.1)?它表示什么意义?解:(1)A ′(t )=500×0.834t ×ln 0.834.(2)A ′(7)=500×0.8347×ln 0.834≈-25.5,它表示7天时氡气散发的瞬时速度.[B 级 能力提升]7.(2012·宜春调研)细杆AB 的长为20 cm ,M 为细杆AB 上的一点,AM 段的质量与A 到M 的距离的平方成正比,当AM =2 cm 时,AM 的质量为8 g ,那么当AM =x cm 时,M 处的细杆线密度ρ(x )为( )A .2xC .4xD .5x解析:选C.当AM =x cm 时,设AM 的质量为f (x )=kx 2,因为f (2)=8,所以k =2,即f (x )=2x 2,故细杆线密度ρ(x )=f ′(x )=4x ,故选C.8.某人拉动一个物体前进,他所做的功W 是时间t 的函数W =W (t ),则W ′(t 0)表示( )A .t =t 0时做的功B .t =t 0时的速度C .t =t 0时的位移D .t =t 0时的功率答案:D9.(2012·西安测试)酒杯的形状为倒立的圆锥(如图),杯深8 cm ,上口宽6 cm ,水以20 cm 3/s 的流量倒入杯中,当水深为4 cm 时,水升高的瞬时变化率为________.解析:设水深为h 时,水面半径为r ,则h 8=r 3,∴r =38h , 经过t s 后,水的体积为20t ,则20t =13π(38h )2·h ,即h (t )= 320×643πt , ∴h ′(t )=13 320×643πt -23.又h =4时,r =32,V =3π, ∴t =3π20,h ′(320π)=809π. 答案:809πcm/s 10.将1 kg 铁从0 ℃加热到t ℃需要的热量Q (单位:J):Q (t )=0.000297t 2+0.4409t .(1)当t 从10变到20时函数值Q 关于t 的平均变化率是多少?它的实际意义是什么?(2)求Q ′(100),并解释它的实际意义.解:(1)当t 从10变到20时,函数值Q 关于t 的平均变化率为Q (20)-Q (10)20-10≈0.4498,它表示在铁块的温度从10 ℃增加到20 ℃的过程中,平均每增加1 ℃,需要吸收热量约为0.4498 J.(2)Q ′(t )=0.000594t +0.4409,则Q ′(100)=0.5003,它表示在铁块的温度为100 ℃这一时刻每增加1 ℃,需要吸收热量0.5003 J.11.某食品厂生产某种食品的总成本C (单位:元)和总收入R (单位:元)都是日产量x (单位:kg)的函数,分别为C (x )=100+2x +0.02x 2,R (x )=7x +0.01x 2,试求边际利润函数以及当日产量分别为200 kg,250 kg,300 kg时的边际利润,并说明其经济意义.解:(1)根据定义知,总利润函数为L(x)=R(x)-C(x)=5x-100-0.01x2,所以边际利润函数为L′(x)=5-0.02x.(2)当日产量分别为200 kg,250 kg,300 kg时,边际利润分别为L′(200)=1(元),L′(250)=0(元),L′(300)=-1(元).其经济意义是:当日产量为200 kg时,再增加1 kg,则总利润可增加1元;当日产量为250 kg时,再增加1 kg,则总利润无增加;当日产量为300 kg时,再增加1 kg,则总利润反而减少1元.由此可得到:当企业的某一产品的生产量超过了边际利润的零点时,反而会使企业“无利可图”.。

高中数学新人教B版选修1-1第三章导数及其应用3.2.1常数与幂函数的导数3.2.2导数公式表课件

高中数学新人教B版选修1-1第三章导数及其应用3.2.1常数与幂函数的导数3.2.2导数公式表课件
第三章 §3.2 导数的运算
3.2.1 常数与幂函数的导数 3.2.2 导数公式表
学习目标
XUEXIMUBIAO
1.能根据定义求函数y=C,y=x,y=x2,y=1x 的导数. 2.能利用给出的基本初等函数的导数公式求简单函数的导数.
内容索引
NEIRONGSUOYIN
自主学习 题型探究 达标检测

y′=(5
3
x3)′= (x5 )
3
3 1
x5
3
2
x5
=Hale Waihona Puke 3.55
55 x2
(4)y=2sin 2xcos 2x;

∵y=2sin
x 2cos
2x=sin x,∴y′=cos x.
(5)y=log1 x;
2
解 y′=(log1 x )′= 1 1=-xln1 2.
2
xln 2
(6)y=3x.
解 y′=(3x)′=3xln 3.
f′(x)=__xl_n_a__ 1
f′(x)=__x_
2 题型探究
PART TWO
题型一 利用导数公式求函数的导数
例1 求下列函数的导数.
(1)y=x12;
解 y′=(x12)′=12x12-1=12x11.
(2)y=x14; 解 y′=(x-4)′=-4x-4-1=-4x-5=-x45. (3)y=5 x3;
导函数 f′(x)=__0_ f′(x)= nxn-1 (n为自然数) f′(x)=_c_o_s__x_ f′(x)=-__s_i_n_x__
f(x)=ax(a>0,a≠1)
f′(x)=_a_x_ln__a_
f(x)=ex f(x)=logax (a>0,a≠1,x>0)

选修1-1第三章第2节导数公式及运算法则(文)

选修1-1第三章第2节导数公式及运算法则(文)

='])([x kf )(x f k '; =±)'(v u ''v u ±;=)'(uv u v v u '+'; =⎪⎭⎫ ⎝⎛'v u 2v uv v u '-'(0)v ≠。

知识点一:利用公式与运算法则求导数例1 求下列函数的导数: (1)cos x y e x = (2)ln 1x y x =- (3)2tan y x x =+ (4)x y xe -=思路分析:看清结构,根据公式和法则进行运算。

解答过程:(1)x e x e x e x e y x x x x sin cos )(cos cos )(-='+'=')sin (cos x x e x -=1(1)ln ln (ln )(1)(1)ln ln 1(x x x x x x xx x x--''-----21324354()()(sin )sin cos ()()(sin cos )2cos ()()(2cos )2(cos sin )()()[2(cos sin )]4sin x x xxxxxxxxxxf x f x e x e x e xf x f x e x e x e xf x f x e x e x e x f x f x e x e x e x''===+''==+=''===-''==-=-……观察规律,发现每求4次导,sin x e x 循环出现,且导数值变为上个周期的-4倍, 1234567829101112(0)(0)(0)(0)01225(0)(0)(0)(0)0(4)(8)(8)5(4)(0)(0)(0)(0)5(4)f f f f f f f f f f f f +++=+++=+++=+-+-+-=⨯-+++=⨯- …… 所以:20122502(0)55(4)5(4)...5(4)i f =+⨯-+⨯-++⨯-∑解题后的思考:与判别式法求切线相比,用导数求切线,扩大了可求切线的函数图象的范围,且运算量小。

高中数学人教版选修1-1 第三章 导数及其应用 导数的计算

高中数学人教版选修1-1  第三章 导数及其应用 导数的计算

3.2导数的计算[教材研读]预习课本P81~85,思考以下问题1.幂函数f(x)=x2,f(x)=x 12的导数是什么?2.根据导数的运算法则,积f(x)g(x)的导数与f′(x),g′(x)有何关系?[要点梳理]1.基本初等函数的导数公式2.导数运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );当g (x )=c 时,[cf (x )]′=cf ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). [自我诊断]判断(正确的打“√”,错误的打“×”)1.y =1x ,y =x ,y =x 2等求导函数,都可以看成y =x α(α∈Q *),并用其导数公式求导.( )2.y =ln x 在x =2处的切线的斜率为12.( )3.f (x )=e x 在点(0,1)处的切线的方程为x -y +1=0.( )[答案] 1.√ 2.√ 3.√题型一 利用导数公式求函数的导数思考:如何充分利用基本初等函数的导数公式?提示:若函数解析式不能直接使用导数公式,则化成能应用导数公式的形式.求下列函数的导数:(1)y =10x ;(2)y =lg x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x 2+cos x 22-1. [思路导引] 把解析式化简成能应用公式的形式.[解] (1)y ′=(10x )′=10x ln10.(2)y ′=(lg x )′=1x ln10.(5)∵y =⎝⎛⎭⎪⎫sin x 2+cos x 22-1 =sin 2x 2+2sin x 2cos x 2+cos 2x 2-1=sin x ,∴y ′=(sin x )′=cos x .(1)若给出的函数解析式符合基本初等函数的导数公式,则直接利用公式求导.(2)若给出的函数解析式不符合导数公式,则通过恒等变换对解析式进行化简或变形后求导,如根式要化成指数幂的形式求导.[跟踪训练]求下列函数的导数:(1)y =⎝ ⎛⎭⎪⎫1e x ; (2)y =⎝ ⎛⎭⎪⎫110x ; (3)y =lg5;(4)y =3lg 3x ;(5)y =2cos 2x 2-1.[解] (1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x ln 1e =-1e x =-e -x . (2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x ln 110=-ln1010x =-10-x ln10. (3)∵y =lg5是常数函数,∴y ′=(lg5)′=0.(4)∵y =3lg 3x =lg x ,∴y ′=(lg x )′=1x ln10.(5)∵y =2cos 2x 2-1=cos x ,∴y ′=(cos x )′=-sin x .题型二 利用导数的运算法则求导数(链接教材P 84例2)求下列函数的导数:(1)y =x 3·e x ;(2)y =x -sin x 2cos x 2;(3)y =x 2+log 3x ;(4)y =e x +1e x -1.[思路导引] 尽量把解析式转化为能用和差的求导法则,减少求导法则的应用的烦索性.[解] (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x .(2)∵y =x -12sin x ,∴y ′=x ′-12(sin x )′=1-12cos x .(3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x(e x -1)2=-2e x(e x -1)2.(1)分析求导式符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定求导法则,基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数法则求导的原则是尽可能化为和、差,利用和、差的求导法则求导,尽量少用积、商的求导法则求导.[跟踪训练]求下列函数的导数:(1)y =cos x x ;(2)y =x sin x +x ;(3)y =1+x 1-x +1-x 1+x ; (4)y =lg x -1x 2.[解] (1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos x x 2. (2)y ′=(x sin x )′+(x )′=sin x +x cos x +12x .(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x-2, ∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln10+2x 3. 题型三 利用导数公式研究曲线的切线问题点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.[思路导引] 分析知,与曲线相切且与y =x 平行的直线与曲线的切点到直线y =x 的距离最小.[解]如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.(1)本例中的问题涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点.[跟踪训练]求过曲线y =cos x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.[解] ∵y =cos x ,∴y ′=(cos x )′=-sin x ,1.本节课的重点是基本初等函数的导数公式及导数运算法则,难点是灵活运用导数公式和运算法则解决相关问题.2.本节课要重点掌握的规律方法 (1)利用导数公式求导数. (2)利用导数运算法则求导数. (3)利用导数运算研究曲线的切线问题.3.本节课的易错点是导数公式(a x )′=a x ln a 和(log a x )′=1x ln a 以及运算法则[f (x )·g (x )]′与⎣⎢⎡⎦⎥⎤f (x )g (x )′的区别.1.已知f (x )=1x ,则f ′(3)=( ) A .-13 B .-19 C.19D.13[解析] ∵f (x )=1x ,∴f ′(x )=-1x 2,∴f ′(3)=-132=-19,故选B.[答案] B2.函数y =3x 2的导数为( ) A .y ′=3x2B .y ′=32xC .y ′=23x3D .y ′=233x[解析][答案] D3.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e[解析][答案] D4.已知f (x )=e x ln x ,则f ′(x )=( ) A.e x x B .e x+1xC.e x (x ln x +1)xD.1x +ln x[解析] f ′(x )=(e x)′·ln x +e x·(ln x )′=e x·ln x +e x·1x =e x (x ln x +1)x,所以选C.[答案] C5.已知使函数y =x 3+ax 2-43a 的导数为0的x 值也使y 值为0,则常数a 的值为( )A .0或±3B .0C .±3D .非以上答案[解析] y ′=3x 2+2ax ,令y ′=0,即3x 2+2ax =0,∴x =0或x =-2a 3.分别代入y =x 3+ax 2-43a ,得0=-43a ,即a =0;-8a 327+4a 39-43a =0,即a =±3,∴a =0或a =±3.[答案] A6.曲线y =ln x 在点M (e,1)处的切线的斜率是__________,切线的方程为__________________.[解析] y ′=1x ,则k =y ′|x =e =1e ,切线方程y -1=1e (x -e),即x -e y =0.[答案] 1e x -e y =0。

选修1-1-第三章-《导数及其应用》教案

选修1-1-第三章-《导数及其应用》教案

第三章 导数及其应用备课人 周志英3.1 导数的概念教学目的1.了解导数形成的背景、思想和方法;正确理解导数的定义、几何意义;2.使学生在了解瞬时速度的基础上抽象出变化率,建立导数的概念;掌握用导数的定义求导数的一般方法3.在教师指导下,让学生积极主动地探索导数概念的形成过程,锻炼运用分析、抽象、归纳、总结形成数学概念的能力,体会数学知识在现实生活中的广泛应用。

教学重点和难点导数的概念是本节的重点和难点 教学过程一、前置检测(导数定义的引入)1.什么叫瞬时速度?(非匀速直线运动的物体在某一时刻t0的速度) 2.怎样求非匀速直线运动在某一时刻t0的速度?在高台跳水运动中,如果我们知道运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系()105.69.42++-=t t t h ,那么我们就会计算任意一段的平均速度v ,通过平均速度v 来描述其运动状态,但用平均速度不一定能反映运动员在某一时刻的瞬时速度,那么如何求运动员的瞬时速度呢?问题:2秒时的瞬时速度是多少?我们现在会算任意一段的平均速度,先来观察一下2秒附近的情况。

先计算2秒之前的t ∆时间段内的平均速度v ,请同学们完成表格1左边部分,(事先准备好的),再完成表格的右边部分〉表格1 格 20<∆t 时,在[]2,2t ∆+这段时间内0>∆t 时,在[]t ∆+2,2这段时间内()()()1.139.41.139.422222-∆-=∆-∆+∆=∆+-∆+-=t tt t t t h h v ()()()1.139.41.139.422222-∆-=∆∆-∆-=-∆+-∆+=t tt t t h t h v 当-=∆t 0.01时,-=v 13.051; 当=∆t 0.01时,-=v 13.149; 当-=∆t 0.001时,-=v 13.095 1; 当=∆t 0.001时,-=v 13.104 9; 当-=∆t 0.000 1时,-=v 13.099 51;当=∆t 0.000 1时,-=v 13.100 49;当-=∆t 0.000 01时,-=v 1 3.099 951;当=∆t 0.000 01时,-=v 13.100 049; 当-=∆t 0.000 001时,-=v 13.099 995 1;当=∆t 0.000 001时,-=v 13.100 004 9;。

新课标人教A版选修1-1导数及其应用复习学案

新课标人教A版选修1-1导数及其应用复习学案

导数及其应用复习学案一、导数的定义及其几何意义1.一个物体的运动方程为21tts+-=其中s的单位是米,t的单位是秒,那么物体在3秒时的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒2、(09全国卷Ⅱ理)曲线21xyx=-在点()1,1处的切线方程为A. 20x y--= B. 20x y+-= C.450x y+-= D. 450x y--=3.求抛物线y=2x过点5,62⎛⎫⎪⎝⎭的切线方程4.求垂直于直线2610x y-+=并且与曲线3235y x x=+-相切的直线方程二、导数的计算5.求函数的导函数(1)23cossinxyx-=(2)21xxyx=-+(3)2xy x e=三、导数的应用类型一:图像题6.如果函数y=f(x)的导函数的图像如右图所示,给出下列判断:(1) 函数y=f(x)在区间(3,5)内单调递增;(2) 函数y=f(x)在区间(-1/2,3)内单调递减;(3) 函数y=f(x)在区间(-2,2)内单调递增;(4) 当x= -1/2时,函数y=f(x)有极大值;(5) 当x=2时,函数y=f(x)有极大值;则上述判断中正确的是:。

7.函数)(xf的定义域为开区间),(ba,导函数)(xf¢在),(ba内的图象如图所示,则函数)(xf在开区间),(ba内有极小值点(A 1个B 2个C 3个D 4个y=f(x)的图象如图1所示,则导函数y=f ¢(x)可能为()9.(浙江卷11)设f '(x)是函数f(x)的导函数,y=f '(x)的图象如右图所示,则y=f(x)的图象最有可能的是()班级:姓名:学号:10.(2009湖南卷文)若函数()y f x=的导函数...在区间[,]a b上是增函数,则函数()y f x=在区间[,]a b上的图象可能是()类型二:求函数的单调区间、极值、最值11.(2006安徽文)设函数()32()f x x bx cx x R=++∈,已知()()()g x f x f x¢=-是奇函数。

北师大版数学选修1-1:第四章§2 导数在实际问题中的应用2.2

北师大版数学选修1-1:第四章§2 导数在实际问题中的应用2.2

1.函数f (x )=x 3-3x (|x |<1),则f (x )( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,也无最小值 D .无最大值,但有最小值解析:选C.f ′(x )=3x 2-3,∵x 2<1,∴x 2-1<0,即f ′(x )<0恒成立.∴f (x )在(-1,1)内为减函数.∴无最大值,也无最小值.2.(2012·南阳质检)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获得最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件解析:选C.因为y ′=-x 2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9是函数的极大值点,又因为函数在(0,+∞)上只有一个极大值点,所以函数在x =9处取得最大值.3.某箱子的容积与底面边长x 的关系为V (x )=x 2⎝⎛⎭⎫60-x 2(0<x <60),则当箱子的容积最大时,箱子底面边长为________.解析:V (x )=30x 2-12x 3,∴V ′(x )=60x -32x 2=-32x (x -40).∵x ∈(0,40)时,V ′(x )>0,x ∈(40,60)时,V ′(x )<0, ∴x =40时,V (x )有极大值也是最大值. 答案:404.(2012·淮北检测)函数f (x )=2x 3-6x 2+a (a 为常数)在[-2,2]上的最大值为5,那么此函数在[-2,2]上的最小值为________. 解析:f ′(x )=6x 2-12x =6x (x -2).由f ′(x )=0得x =0或2.∵f (0)=a ,f (2)=a -8,f (-2)=a -40.∴a =5. 此函数[-2,2]上的最小值是5-40=-35. 答案:-35[A 级 基础达标]1.函数f (x )=1x +1+x (x ∈[1,3])的值域为( )A .(-∞,1)∪(1+∞)B .[32,+∞)C.⎝⎛32,134D.⎣⎡⎦⎤32,134解析:选D.f ′(x )=-1(x +1)2+1=x 2+2x (x +1)2,又x ∈[1,3],所以f ′(x )>0在[1,3]上恒成立,即函数在[1,3]上单调递增,所以函数的最大值是f (3)=134,最小值是f (1)=32,故选D.2.(2012·汉中检测)已知函数f (x )的图像过点(0,-5),它的导数f ′(x )=4x 3-4x ,则当f (x )取得极大值-5时,x 的值应为( )A .-1B .0C .1D .±1解析:选B.∵f ′(x )=4x 3-4x ,∴f (x )=x 4-2x 2+c . ∵f (x )过点(0,-5),∴f (x )=x 4-2x 2-5. 又f ′(x )=0得x =0或x =±1,且-1<x <0或x >1时, f ′(x )>0;0<x <1时,f ′(x )<0. ∴x =0时取得极大值-5.3.当函数f (x )=x +2cos x 在区间⎣⎡⎦⎤0,π2上取得最大值时,x =( ) A .0 B.π6 C.π3 D.π2解析:选B.f ′(x )=1+2(-sin x ),令f ′(x )=0,解得sin x =12.∵0≤x ≤π2,∴x =π6.当0≤x<π6时,f ′(x )>0,函数是增加的;当π6<x ≤π2时,f ′(x )<0,函数是减少的, ∴当x =π6时,函数取得极大值,也是最大值. 4.函数y =ln xx的最大值为________.解析:函数的定义域为(0,+∞),y ′=(ln x )′x -ln x ·x ′x 2=1-ln xx2,令y ′=0,得x =e ,当x >e 时,y ′<0;当0<x <e 时,y ′>0,所以x =e 是函数的极大值点,也是最大值点,故y max =ln e e =1e. 答案:1e5.(2012·商洛测试)用总长为14.8 m 的钢条制作一个长方体容器的框架,若所制作容器的底面的一边比高长0.5 m ,则当高为______米时,容器的容积最大.解析:由题意直接列出函数表达式,再用导数求最值,设高为x 米, 则V =x (x +0.5)(3.2-2x ), V ′=-6x 2+4.4x +1.6=0, 解15x 2-11x -4=0, 得x =1,x =-415(舍去). 答案:16.在经济学中,生产x 单位产品的成本称为成本函数,记为C (x );出售x 单位产品的收益称为收益函数,记为R (x );R (x )-C (x )称为利润函数,记为P (x ).(1)设C (x )=10-6x 3-0.003x 2+5x +1000,生产多少单位产品时,边际成本C ′(x )最低?(2)设C (x )=50x +10000,产品的单价p =100-0.01x ,怎样定价可使利润最大?解:(1)C ′(x )=3×10-6x 2-0.006x +5,记g (x )=C ′(x ).由g ′(x )=6×10-6x -0.006=0,解得x =1000.结合C ′(x )的图像可知,当x =1000时,边际成本最低. ∴生产1000单位产品时,边际成本最低.(2)由p =100-0.01x ,得收益函数R (x )=x (100-0.01x ),则利润函数P (x )=R (x )-C (x )=100x -0.01x 2-(50x +10000)=-0.01x 2+50x -10000.由P ′(x )=-0.02x +50=0,解得x =2500.结合P (x )的图像可知,当x =2500时,利润最大,此时p =100-0.01×2500=75. ∴当产品的单价为75时,利润最大.[B 级 能力提升] 7.(2012·西安质检)设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( )A.3VB.32VC.34VD .23V解析:选C.设直棱柱的底面边长为a ,高为h . 则34a 2·h =V ,∴h =4V 3a2.则表面积S (a )=3ah +32a 2=43V a +32a 2. S ′(a )=-43Va2+3a .令S ′(a )=0,得a =34V .当0<a <34V 时S ′(a )<0,当a >34V 时,S ′(a )>0.当a =34V 时,S (a )最小.8.(2011·高考湖南卷)设直线x =t 与函数f (t )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22解析:选D.|MN |的最小值,即函数h (x )=x 2-ln x 的最小值,h ′(x )=2x -1x =2x 2-1x,显然x =22是函数h (x )在其定义域内唯一的极小值点,也是最小值点,故t =22. 9.(2012·淮北检测)已知函数f (x )=x ln x .若对于任意x ∈⎣⎡⎦⎤1e ,e 不等式2f (x )≤-x 2+ax -3恒成立,则实数a 的取值范围为________.解析:由题意知,2x ln x ≤-x 2+ax -3,则a ≥2ln x +x +3x .设h (x )=2ln x +x +3x x >0),则h ′(x )=2x +1-3x 2=(x +3)(x -1)x 2.当x ∈⎣⎡⎭⎫1e 1时,h ′(x )<0,h (x )单调递减;当x ∈(1,e]时,h ′(x )>0,h (x )单调递增.由h ⎝⎛⎭⎫1e =-2+1e +3e ,h (e)=2+e +3e ,h ⎝⎛⎭⎫1e -h (e)=2e -2e -4>0,可得h ⎝⎛⎭⎫1e >h (e).所以当x ∈⎣⎡⎦⎤1e ,e 时,h (x )的最大值为h ⎝⎛⎭⎫1e =-2+1e +3e.故a ≥-2+1e+3e. 答案:a ≥-2+1e+3e10.(2011·高考北京卷)已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值. 解:(1)f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.f (x )与f ′(x )的变化情况如下:所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞). (2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.11.(创新题)某工厂统计资料显示:产品的次品率b 与日产量x 件(x ∈N ,1≤x ≤89)的关系符合下列规律:又知道每一件正品盈利a 元,每生产一件次品损失a2a >0)元.(1)将该厂日盈利额表示成日产量x 件的函数;(2)为了获得最大盈利,该厂的日产量应定为多少件?(3≈1.7)解:(1)由b 与x 的对应规律得次品率为b =2100-x (x ∈N ,1≤x ≤89).故日产量x 件中,次品数为bx 件,正品数为(x -bx )件,则日盈利额为T =a (x -bx )-a2bx =a ⎝⎛⎭⎫x -3x 100-x (x ∈N ,且1≤x ≤89). (2)T ′=a ⎣⎡⎦⎤1-3(100-x )+3x (100-x )2=a ⎣⎡1-300(100-x )2. 令T ′=0,则100-x =103,x =100-103, 当1≤x ≤100-103时,T ′>0,函数递增,当100-103<x ≤89时,T ′<0.函数递减. 所以当x =100-103≈83时,T 取最大值.因此,要获得最大盈利,该厂的日产量应定为83件.。

人教课标版高中数学选修1-1拓展资料:导数在证明恒等式中的应用

人教课标版高中数学选修1-1拓展资料:导数在证明恒等式中的应用

导数在证明恒等式中的应用一、预备知识定理1 若函数f(x)在区间I上可导,且x∈I,有f′(x)=0,则x∈I,有f(x)=c(常数).证明在区间I上取定一点x 0及x∈I.显然,函数f(x)在[x0,x]或[x,x0]上满足拉格朗日定理,有f(x)-f(x0)=f′(ξ)(x-x0),ξ在x与x0之间.已知f′(ξ)=0,从f(x)-f(x0)=0 或f(x)=f(x0)设f(x 0)=c,即x∈I,有f(x)=c.定理2 若x∈I(区间),有f′(x)=g′(x),则x∈I,有f(x)=g(x)+c,其中c 是常数.二、应用例题证法f(x)=arcsinx+arccosx,在(-1,1)上是常值函数.证明设f(x)=arcsinx+arccosx,x∈(-1,1),有f′(x)=(arcsinx+arccosx)′由定理1知,f(x)=c,即arcsinx+arccosx=c其中c是常数.证明设f(x)=arctanx+arccotx,c∈R,有由定理1知,arctanx+arccotx=c,其中c是常数.例3证明:arccos(-x)+arccosx=π,x∈[-1,1].证明设f(x)=arccos(-x)+arccosx,x∈[-1,1],于是f′(x)=(arccos(-x)+arccosx)′由定理1知,arccos(-x)+arccosx=c,其中c是常数.令x=1,则c=arccos(-1)+arccos1=π,于是arccos(-x)+arccosx=π.x∈(1,+∞)有例5证明:sin(3arcsinx)+cos(3arccosx)=0,x∈[-1,1]证明设f(x)=sin(3arcsinx)+cos(3arccosx),则x∈[-1,1],有f′(x)=(sin(3arcsinx)+cos(3arccosx))′由定理1知,sin(3arcsinx)+cos(3arccosx)=c,其中c是常数.令x=-1,则c=sin(3arcsin(-1)+cos(3arccos(-1))=0于是,x∈[-1,1],有sin(3arcsinx)+cos(3arccosx)=0.于是,x∈[0,1],有证明x∈R,有即x∈R,有与g′(x)=0.从而f′(x)=g′(x),由定理1知,f(x)=g(x)+c与g′(x)=-1.从而,f′(x)=g′(x),由定理1知,f(x)=g(x)+c.从而,c=0.于是,解设F(x)=f1(x)-f2(x)由定理1知,x∈R(x≠±1),有(2)x∈(-1,1),令x=0,则于是,例11求证:log a xy=log a x+log a y,其中x>0,y>0.证明将a,y看作固定常数,x看作变量,设f(x)=log a xy-log a x-log a y,x∈(0,+∞).则x∈(0,+∞),有由定理1知,(x)=c 或log a xy-log a x-log a y=c.令x=1,则c=log a y-log a y =0,从而log a xy-log a x-log a y=0,即log a xy=log a x+log a y.例12求x∈R,满足等式acosx-cos(ax+b2)=a-1-b2的所有实数对(a,b)全体,解设f(x)=acosx-cos(ax+b2),x∈R,要使x∈R,有f(x)=a-1-b2(常数),则根据定理1,x∈R,应有f′(x)=0,即f′(x)=-asinx+asin(ax+b2)(1)a=0,由题设等式知,-cosb2=-1-b2或cosb2=1+b2.解得b=0,所以求得符合要求的一个实数对为(0,0).(a-1)x+b2=2kπ 或(a-1)x=2kπ-b2,k∈Z解得a=1,b2=2kπ,并代入题设等式,有cosx-cos(x+2kπ)=-2kπ,并且仅当k=0,上式才成立,从而b=0,所以求得符合要求的实数对为(1,0),(a+1)x+b2=(2k+1)π,k∈Z解得a=-1,b2=(2k+1)π,并代入题设等式,有cosx+cos[(2k+1)π-x]=2+b2,即2+b2=0,显然,这样的b不存在.综上所述,所求实数对的集合为{(0,0),(1,0)}.例14 证明:x,y∈R sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy -sinxsiny证明设f(x,y)=sin(x+y)-sinxcosy-cosxsiny,g(x,y)=cos(x+y)-cosxcosy+sinxsiny.只须证明f(x,y)=g(x,y)=0即可.用反证法.假设f(x,y)≠0,由于f′x(x,y)=cos(x+y)-cosxcosy+sinxsiny=g(x,y),f′y(x,y)=cos(x+y)+sinxsiny-cosxcosy=g(x,y),则df(x,y)=f′x(x,y)dx+f′y(x,y)dy=g(x,y)d(x+y),(3)同理,dg(x,y)=-f(x,y)d(x+y).(4)由(3)与(4),得或-g(x,y)dg(x,y)=f(x,y)df(x,y),从而f2(x,y)+g2(x,y)=c.由假设f(x,y)≠0,则c为不等零的常数.令x=y=0,代入上式,有f2(0,0)+g2(0,0)=0,这与c≠0矛盾.于是,f(x,y)=0,由(3)式知,g(x,y)=0.例15已知x≠2kπ,k∈Z.求证:证明已知对上式两端同时求导,有类似可证:已知x≠2kπ,k∈Z,求证:例16 证明:2sinxcosx+4sin2xcos2x+…+2nsinnxcosnx=证明已知对上式两端求导,得2sinxcosx+4sin2xcos2x+…+2nsinnxcosnx注欲证等式的左端2sinxcosx+4sin2xcos2x+…+2nsinnxcosnx恰为sin2x+sin22x+…+sin2nx的导函数,所以证明开始应用了公式例17 已知证明对已知等式取自然对数,有对上式两端求导,有对上式两端求导,得令x=1,则令x=-1,则例19证明:若(a+b+c)2=3(bc+ca+ab),则a=b=c,其中a,b,c为常数.证明将a看作变量,b,c看作固定常量,等式两端同时对a求导,有由已知条件知,a、b、c为对称的,所以有将(2)代入(1),化简得a=c.同理a=b,从而,a=b=c.11/ 11。

高中新课程数学(新课标人教A版)选修1-1《第三章 导数及其应用》归纳整合

高中新课程数学(新课标人教A版)选修1-1《第三章 导数及其应用》归纳整合

网 络 构 建
专 题 归 纳
解 读 高 考
2.曲线的切线方程 利用导数求曲线过点 P 的切线方程时应注意: (1)判断 P 点是否在曲线上; (2)如果曲线 y=f(x)在 P(x0, f(x0))处的切线平行于 y 轴(此时导数 不存在),可得方程为 x=x0;P 点坐标适合切线方程,P 点处的 切线斜率为 f′(x0). 3. 利用基本初等函数的求导公式和四则运算法则求导数, 熟记 基本求导公式,熟练运用法则是关键,有时先化简再求导,会 给解题带来方便.因此观察式子的特点,对式子进行适当的变 形是优化解题过程的关键.
网 络 构 建
专 题 归 纳
解 读 高 考
(2)由 f(x)=x3-3x2+2 得,f′(x)=3x2-6x. 由 f′(x)=0 得,x=0 或 x=2. ①当 0<t≤2 时, 在区间(0, t)上 f′(x)<0, f(x)在[0, t]上是减函数, 所以 f(x)max=f(0)=2, f(x)min=f(t)=t3-3t2+2. ②当 2<t<3 时,当 x 变化时,f′(x)、f(x)的变化情况如下表:
(x1,x2) -
x2 0 极小值
(x2,+∞) +
网 络 构 建
专 题 归 纳
解 读 高 考
此时
a- f(x)在0,
a2-8 上单调递增, 2
a- 在 a+ 在
a2-8 a+ a2-8 , 上单调递减, 2 2
a2-8 ,+∞ 上单调递增. 2
网 络 构 建 专 题 归 纳 解 读 高 考
4.判断函数的单调性 (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义 域,解决问题的过程只能在函数的定义域内进行,通过讨论导 数的符号,来判断函数的单调区间; (2)注意在某一区间内 f′(x)>0(或 f′(x)<0)是函数 f(x)在该区间上 为增(或减)函数的充分条件.

高中数学人教版选修1-1 第三章 导数及其应用 导数的计算

高中数学人教版选修1-1  第三章 导数及其应用 导数的计算

题型三 利用导数公式研究曲线的切线问题
点 P 是曲线 y=ex 上任意一点,求点 P 到直线 y=x 的最小距离.
[思路导引] 分析知,与曲线相切且与 y=x 平行的直线与曲 线的切点到直线 y=x 的距离最小.
[解]
如图,当曲线 y=ex 在点 P(x0,y0)处的切线与直线 y=x 平行 时,点 P 到直线 y=x 的距离最近.
(2)准确利用求导法则求出导函数是解决此类问题的第一步, 也是解题的关键,务必做到准确.
(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点, 这是解题时的易错点.
[跟踪训练] 求过曲线 y=cosx 上点 Pπ3,12且与曲线在这点处的切线垂直 的直线方程.
[解] ∵y=cosx,∴y′=(cosx)′=-sinx,
(3)利用导数法则求导的原则是尽可能化为和、差,利用和、 差的求导法则求导,尽量少用积、商的求导法则求导.
[跟踪训练]
求下列函数的导数:
(1)y=coxsx;
(2)y=xsinx+ x;
(3)y=11-+
xx+11+-
x; x
(4)y=lgx-x12.
[解]
(1)y′

cosx
x


cosx′·x-cБайду номын сангаасsx·x′ x2
课堂互动探究 K
师生互动 合作探究
题型一 利用导数公式求函数的导数 思考:如何充分利用基本初等函数的导数公式? 提示:若函数解析式不能直接使用导数公式,则化成能应用 导数公式的形式.
求下列函数的导数: (1)y=10x; (2)y=lgx;
(4)y=4 x3; (5)y=sin2x+cos2x2-1. [思路导引] 把解析式化简成能应用公式的形式.

人教新课标版(A)高二选修1-1 第三章导数及其应用综合例题

人教新课标版(A)高二选修1-1 第三章导数及其应用综合例题

人教新课标版(A )高二选修1-1 第三章 导数及其应用综合例题例1. 求下列函数的导数:(1)32x 3x 2y +=;(2)()()2x 33x 2y 2-+=;(3)2xcos 2x sinx y ⋅-=。

解:由函数的和(或差)与积的求导法则,可得(1)()()43433232x 9x 4x 9x 4x 3x 2x 3x 2y --=--='+'='⎪⎭⎫⎝⎛+'⎪⎭⎫ ⎝⎛='----。

(2)方法1:()()()()'-++-'+='2x 33x 22x 33x 2y 22()()33x 22x 3x 42⋅++-=9x 8x 182+-=。

方法2:∵()()6x 9x 4x 62x 33x 2y 232-+-=-+=, ∴9x 8x 18y 2+-='。

(3)∵x sin 21x 2x cos 2x sin x y -=⋅-=, ∴x cos 211y -='。

点拨:在可能的情况下,求导时应尽量少用甚至不用乘法的求导法则,所以,在求导之前,应利用代数、三角恒等变形对函数进行化简,然后再求导,这样可减少运算量。

例2. 求函数()11x y 32+-=的单调区间。

分析:先化成基本初等函数后再利用求导法则求导。

解:()24632x 3x 3x 11x y +-=+-=,所以()()2224351x x 61x 2x x 6x 6x 12x 6y -=+-=+-=',令0y =',则0x =或1x ±=。

由上表可得函数()11x y 32+-=的递减区间为()0,∞-;递增区间为(0,∞+)。

点拨:有多个极值时,可用列表的方法求极值或单调区间。

例3. (2005·湖北)在函数x 8x y 3-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 A. 3 B. 2C. 1D. 0解:由1y 0<'<得,18x 302<-<,即3x 362<<。

(易错题)高中数学选修1-1第四章《导数应用》检测题(包含答案解析)(2)

(易错题)高中数学选修1-1第四章《导数应用》检测题(包含答案解析)(2)

一、选择题1.已知函数()22ln 3f x x ax x =+-在2x =处取得极小值,则()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值为( ) A .52-B .92ln 32-C .1-D .2ln 24-2.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定3.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞4.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞ B .()(),11,-∞-+∞C .()(),10,1-∞-⋃ D .()()1,01,-⋃+∞5.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( )A .34B .16C .24D .176.若函数32()x x x f x e e e a =---存在零点,则实数a 的取值范围为( ) A .[2,)-+∞B .[,)e C .2[,)e -+∞ D .[1,)-+∞7.已知函数()ln f x x ax =-,其中[)1+x ∈∞,,若不等式()0f x ≤恒成立,则实数a 的取值范围为( ) A .[)1,+∞ B .1,1e⎛⎤-∞- ⎥⎦⎝C .1,e ⎡⎫+∞⎪⎢⎣⎭D .[)0,+∞8.已知函数4213(),42f x x x mx n =-++其中m ,n 为正整数,若函数()f x 有极大值,则m 的值为( ) A .1B .2C .3D .49.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e10.对于R 上可导的任意函数()f x ,若当2x ≠时满足()02f x x '≤-,则必有( )A .()()()1322f f f +<B .()()()1322f f f +≤C .()()()1322f f f +≥D .()()()1322f f f +>11.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 12.若函数()xx f x ax e e -=+-在R 上单调递减,则实数a 的取值范围为( )A .2a ≤B .1a ≤C .1a ≥D .2a ≥二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________.14.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______.15.已知函数()f x 与()f x '的图象如图所示,则函数()()xf xg x e =的单调递减区间为___________.16.已知函数()2ln(1)f x x ax =+-,对任意的(0,1),(0,1)m n ∈∈,当m n ≠时,(1)(1)1f m f n m n+-+<-,则实数a 的取值范围是____________.17.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.18.已知函数()2cos sin 2f x x x =+,则()f x 的最大值是__________. 19.函数()31443f x x x =-+的极大值为______. 20.已知函数()f x 是定义在区间()0,∞+)上的可导函数,若对()0,x ∀∈+∞()()20xf x f x '+>恒成立,则不等式()()()202020202019201920192020x f x f x ++<+的解集为______.三、解答题21.已知函数()22xk f x e x x =--,k ∈R . (1)当0k =时,求函数() f x 的最小值;(2)若() f x 在[)1,+∞上单调递增,求实数k 的取值范围.22.在①()14f -=-,()10f '=;②()10f =,()01f '=;③()f x 在()()1,1f --处的切线方程为84y x =+,这三个条件中任选一个,补充在下面问题中求解. 已知函数()32f x x ax bx =++,且______.(1)求a 、b 的值; (2)求函数()f x 的极小值. 23.已知函数()3213 1.3f x x x x =+-- (1)求函数()f x 的极值;(2)求函数()f x 在区间[]5,4-上的最大值与最小值.24.已知f (x )=ax -ln x ,x ∈(0,e ],g (x )=ln xx,x ∈(0,e ],其中e 是自然常数,a R ∈. (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使()f x 的最小值是3?若存在,求出a 的值;若不存在,请说明理由.25.已知函数()ln af x x x x=--. (1)当2a =-时,求函数()f x 的极值;(2)若()2f x x x >-在()1,+∞上恒成立,求实数a 的取值范围.26.已知函数32()24,1f x x ax x =-+=是函数()f x 的一个极值点.(1)求函数()f x 的单调递增区间;(2)当[1,2]x ∈-,求函数()f x 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由()20f '=求出a 的值,然后利用导数可求得函数()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值.【详解】()22ln 3f x x ax x =+-,则()223f x ax x=+-', 由题意可得()2420f a '=-=,解得12a =,则()212ln 32f x x x x =+-, ()22323x x f x x x x-+'=+-=,令()0f x '=,可得1x =或2x =,列表如下:所以,函数()f x 的极大值为()12f =-,极小值为()22ln 24f =-, 又1112ln 228f ⎛⎫=-- ⎪⎝⎭,()932ln 32f =-,()()()95312ln 32ln 322ln 31022f f -=-+=-=->,则()()13f f <,所以,()()max 932ln 32f x f ==-. 故选:B. 【点睛】思路点睛:利用导数求函数()y f x =在[],a b 上的最大值和最小值的步骤如下: (1)求函数()y f x =在(),a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值()f a 、f b 比较,其中最大的一个是最大值,最小的一个是最小值.2.A解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1xh x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.3.B解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=-则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.4.C解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()00g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】 构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数,由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.5.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值. 【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.6.D解析:D【分析】由题意得32x x x a e e e =--,令32()x xx g x e e e =--,求()g x 的取值范围可得答案.【详解】 由32()0xx x f x ee e a =---=,则32x x x a e e e =--,令32()xxx g x e ee =--,则()()()3223()3211213xxx x x x x x x g x e ee e e e e e e '=--=+-=--,当()0g x '>得0x >,()g x 单调递增,当()0g x '<得0x <,()g x 单调递减, 所以min()(0)1g x g ≥=-,()2215()124x x x x xg x e e e e e ⎡⎤⎛⎫=--=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当x 趋向于正无穷大时,()g x 也趋向于正无穷大, 所以函数()f x 存在零点,则1a ≥-. 故选:D. 【点睛】方法点睛:本题考查函数零点问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,由图象观察所需条件求得结论.考查了分析问题、解决问题的能力.7.C解析:C 【分析】不等式()0f x ≤恒成立等价于ln xa x ≥在[)1,+∞上恒成立,则maxln x a x ⎛⎫≥ ⎪⎝⎭,运用导数求出函数ln xx在[)1,+∞上的最大值. 【详解】解:当[)1+x ∈∞,时,不等式()0f x ≤恒成立等价于ln xa x≥在[)1,+∞上恒成立, 令ln ()xg x x=,则21ln ()x g x x -'=当0x e <<时,()0g x '>;当x e >时,()0g x '<;所以max 1()()g x g e e==,所以1a e ≥故选:C. 【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.8.A解析:A 【分析】对()f x 进行求导得3()3f x x x m '=-+,构造新函数3()3,h x x x m x R =-+∈,利用导数研究函数()h x 的单调性,结合题意,可知函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,求解不等式且结合m ,n 为正整数,即可得出结果.【详解】 由题可知,4213()42f x x x mx n =-++()x R ∈, 则3()3f x x x m '=-+,设3()3,h x x x m x R =-+∈,则2()33h x x '=-,令2()330h x x '=-=,解得:121,1x x =-=,则当1x <-或1x >时,()0h x '>;当11x -<<时,()0h x '<,所以()h x 在区间()(),1,1,-∞-+∞上单调递增;在区间()1,1-上单调递减, 又因为函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,即()()120120h m h m ⎧-=+>⎪⎨=-<⎪⎩,解得:22m -<<,而m ,n 为正整数,所以m 的值为1.故选:A. 【点睛】关键点点睛:本题考查利用导数研究函数的单调性和极值,从而求参数值,构造新函数且利用导数求出单调区间是解题的关键,考查转化思想和运用能力.9.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.10.B解析:B 【分析】根据()02f x x '≤-,得到2x >时,()f x 单调非递增函数,2x <时,()f x 单调非递减函数求解. 【详解】因为()02f x x '≤-, 所以当20x ->,即2x >时,()0f x '≤,则()f x 单调非递增函数,所以()()32f f ≤;当20x -<,即2x <时,()0f x '≥,()f x 单调非递减函数, 所以()()12f f ≤;由不等式的性质得:()()()1322f f f +≤. 故选:B 【点睛】本题主要考查导数与函数的单调性以及不等式的基本性质,属于中档题.11.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 123a--=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;12.A解析:A 【分析】 由()xx f x ax e e -=+-在R 上单调递减,可得:导函数()0x x f x a e e -'=--≤在R 上恒成立,参变分离后,求最值即可的解.【详解】 由()xx f x ax ee -=+-在R 上单调递减,可得:导函数()0xx f x a e e -'=--≤在R 上恒成立,因为0x e >,参变分离可得:min (+)x xa e e -≤,+2x x e e -≥=2a ≤故选:A 【点睛】本题考查了利用函数单调性求参数范围,考查了恒成立思想和基本不等式的应用,属于中档题.二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为 解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--. 故答案为:()3,2--. 【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.【分析】首先求函数的导数由条件是函数的唯一极值点说明在无解或有唯一解求实数的取值【详解】∵∴∴x =1是函数f (x )的唯一极值点在上无解或有唯一解x=1①当x=1为其唯一解时k=e 令当时即h(x)的单 解析:(,]e -∞【分析】首先求函数的导数2(1)()()x x e kx f x x'--=,由条件1x =是函数()f x 的唯一极值点,说明0-=x e kx 在()0,x ∈+∞无解,或有唯一解1x =,求实数k 的取值.【详解】∵()(ln )x e f x k x x x =+-,∴22(1)1(1)()()(1)x x x e x e kx f x k x x x '---=+-=∴x =1是函数f (x )的唯一极值点,0x x e k ∴-=在(0,)x ∈+∞上无解,或有唯一解x =1,①当x =1为其唯一解时,k =e ,令()(0)x h x e ex x =->,()xh x e e '=-,当(0,1)x ∈时,()0h x '<,即h (x )的单调递减区间为(0,1), 当(1,)x ∈+∞时,()0h x '>,即()h x 的单调递增区间为(1,)+∞, ∴()h x 在x =1处,取得极小值, ∴k =e 时,x =1是f (x )的唯一极值点;②当xe k x=在(0,)x ∈+∞上无解,设()x e g x x =则2(1)()x e x g x x'-=, 当(0,1)x ∈时,()0g x '<,即g (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0g x '>,即()g x 的单调递增区间为(1,)+∞, ∴()g x 在x =1处,取得极小值,也是其最小值,min ()(1)g x g e ==,又k xe x=在(0,)x ∈+∞上无解,e k ∴<,综上k e ≤ 故答案为:(,]e -∞. 【点睛】易错点睛:本题考查根据函数的极值点求参数的取值范围,容易忽略k e =的情况,此时x e ex ≥恒成立.15.【分析】利用图象得出不等式的解集再利用导数可求得函数的单调递减区间【详解】由图象可知不等式的解集为由可得解得因此函数的单调递减区间为故答案为:【点睛】思路点睛:利用导数求函数单调区间的步骤:(1)求解析:()0,1、()4,+∞ 【分析】利用图象得出不等式()()0f x f x '-<的解集,再利用导数可求得函数()()x f x g x e=的单调递减区间. 【详解】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,()()x f x g x e =,()()()()()()()2x x x x f x e f x e f x f x g x e e ''-⋅'-==', 由()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞.因此,函数()()x f x g x e=的单调递减区间为()0,1、()4,+∞. 故答案为:()0,1、()4,+∞. 【点睛】思路点睛:利用导数求函数单调区间的步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间; (4)解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.16.【分析】把不等式恒成立转化为函数的导数小于1在内恒成立进而转化为在内恒成立结合函数的性质即可求解【详解】由题意分式的几何意义为:表示点与连线的斜率因为实数在区间内故和在区间内不等式恒成立所以函数图象解析:1,6⎡⎫-+∞⎪⎢⎣⎭【分析】 把不等式(1)(1)1f m f n m n+-+<-恒成立,转化为函数()f x 的导数小于1在(1,2)内恒成立,进而转化为()121a x ->+在(1,2)内恒成立,结合函数的性质,即可求解.【详解】由题意,分式(1)(1)f m f n m n+-+-的几何意义为:表示点(1,(1))m f m ++与(1,(1))n f n ++连线的斜率,因为实数,m n 在区间(0,1)内,故1m + 和1n +在区间(1,2)内, 不等式(1)(1)1f m f n m n+-+<-恒成立,所以函数图象上在区间(1,2)内任意两点连线的斜率小于1,故函数()2ln(1)f x x ax =+-的导数小于1在(1,2)内恒成立, 由函数()2ln(1)f x x ax =+-满足10x +>,即定义域为(1,)-+∞,即()2111f x ax x '=-<+在(1,2)内恒成立,即()121a x ->+在(1,2)内恒成立,设函数()()121g x x -=+,根据函数的单调性可知函数()()121g x x -=+在(1,2)上是单调增函数,可得()()126g x g <=-,所以16a ≥-, 故答案为:1,6⎡⎫-+∞⎪⎢⎣⎭. 【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.17.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,所以()()22420a a ∆=+-+>, 即()()2240a a ++->, 解得:2a >或2a <-, 故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题.18.【分析】求导后利用导数的正负求得函数的单调区间利用单调性求得函数的最大值【详解】由题意知是周期为的偶函数当时得的减区间为当时的增区间为所以当时取最大值故答案为:【点睛】本题主要考查利用导数求函数的最解析:2【分析】求导后利用导数的正负求得函数的单调区间,利用单调性求得函数的最大值. 【详解】2()2sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)f x x x x x x x '=-+=-+-=--+由题意知()f x 是周期为2π的偶函数, 当()0f x '≤时,得()f x 的减区间为52,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当()0f x '≥时,()f x 的增区间为5132,2()66Z k k k ππππ⎡⎤++⎢⎥∈⎣⎦,所以当2()6x k k Z ππ=+∈时,()f x 取最大值2.【点睛】本题主要考查利用导数求函数的最值,意在考查学生的数学运算的学科素养,属中档题.19.【分析】求函数导数解得的根判断导函数在两侧区间的符号即可求解【详解】由解得或时当时是的极大值点函数的极大值为故答案为:【点睛】本题主要考查了基本初等函数的求导公式二次函数的图象以及函数极大值点的定义 解析:283【分析】求函数导数,解得()0f x '=的根,判断导函数在2x =±两侧区间的符号,即可求解. 【详解】()31443f x x x =-+,2()4,f x x '∴=-由()0f x '=解得2x =±,2x ∴<-或2x >时,()0f x '>,当22x -<<时,()0f x '<, 2x ∴=-是()f x 的极大值点,∴函数的极大值为128(2)(8)8433f -=⨯-++=, 故答案为:283【点睛】本题主要考查了基本初等函数的求导公式,二次函数的图象,以及函数极大值点的定义及其求法,属于中档题.20.【分析】令求的导数根据条件可知从而判断单调递增将不等式化为即可求解【详解】令因为的定义域为所以函数的定义域也为则所以函数在上单调递增又可以化为即所以所以故不等式的解集为故答案为:【点睛】本题考查利用 解析:()2020,1--【分析】令()2()g x x f x =,求()g x 的导数'()g x ,根据条件可知'()0g x >,从而判断()g x 单调递增,将不等式化为()()20202019g x g +<即可求解. 【详解】令()2()g x x f x =,因为()f x 的定义域为()0,∞+,所以函数()g x 的定义域也为()0,∞+,则()()()()()2220g x xf x x f x x f x xf x '''=+=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增, 又()()()202020202019201920192020x f x f x ++<+可以化为()()()222020202020192019x f x f ++<,即()()20202019g x g +<,所以020202019x <+<, 所以20201x -<<-, 故不等式的解集为()2020,1--. 故答案为:()2020,1--. 【点睛】本题考查利用函数的单调性解不等式,构造函数求导是解题的关键,属于中档题.三、解答题21.(1)1;(2)1k e ≤-. 【分析】(1)求出()'fx ,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)() f x 在[1,)+∞上单调递增,等价于()'0f x ≥ 在[1,)+∞上恒成立,即1x e k x-≤在[1,)+∞恒成立,利用导数求出1x e x -的最小值即可得答案. 【详解】(1)当0k =时, ()()',1 xx e x e f fx x =-∴=-,令'0fx,则100x e x -=⇒=,当0x >时,10x e ->,()f x 在()0,∞+上递增, 当0x <时,10x e -<,()f x 在(),0-∞上递减,()()min 01f x f ∴==;(2)因为() f x 在[1,)+∞上单调递增,所以()'0fx ≥ 在[1,)+∞上恒成立, 因为()'1xf x e kx =--,所以10x e kx --≥在[1,)+∞恒成立,即1x e k x-≤在[1,)+∞恒成立,令()1x e g x x-=,则()min k g x ≤在[1,)+∞上恒成立,()()'211x e x g x x-+=,当[1,)x ∈+∞时,()'0g x >恒成立, ()g x ∴在[1,)+∞上单调递增,()()1min1111e g x g e -∴===-,1k e ∴≤-.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.22.选①或②或③,(1)2a =-,1b =;(2)0. 【分析】(1)求出()232f x x ax b '=++,根据所选条件可得出关于a 、b 的方程组,即可解得a 、b 的值;(2)利用导数分析函数()f x 的单调性,由此可求得函数()f x 的极小值. 【详解】(1)方案一:选择①,()32f x x ax bx =++,则()232f x x ax b '=++,由已知可得()()1141320f a b f a b ⎧-=-+-=-⎪⎨=++='⎪⎩,解得21a b =-⎧⎨=⎩;方案二:选择②,()32f x x ax bx =++,则()232f x x ax b '=++,由已知可得()()11001f a b f b ⎧=++=⎪⎨=='⎪⎩,解得21a b =-⎧⎨=⎩;方案三:选择③,()32f x x ax bx =++,则()232f x x ax b '=++,因为函数()f x 在()()1,1f --处的切线方程为84y x =+,所以,()()1328114f a b f a b ⎧-=-+=⎪⎨-=-+-=-'⎪⎩,解得21a b =-⎧⎨=⎩;(2)由(1)得()322f x x x x =-+,()2341f x x x '∴=-+,由()0f x '=得:113x =,21x =,列表如下:所以,函数f x 的极小值为10f =. 【点睛】思路点睛:求函数()f x 的极值的步骤: (1)求函数()f x 的定义域; (2)求导()f x ';(3)解方程()00f x '=,当()00f x '=; (4)利用导数分析函数()f x 的单调性; (5)将极值点代入函数解析式计算即可. 23.(1)答案见解析;(2)最大值是733,最小值是83-.【分析】(1)求得导函数,并计算()0f x '=的根,列表判断极值即可得结果; (2)根据(1)的极值再比较()853f -=-,()7343f =的大小即可得最值.【详解】解:(1)函数()321313f x x x x =+--的定义域为R . ()()()22331f x x x x x '=+-=+-.令()0f x '=,解得3x =-,或1x =.当x 变化时,()f x ',()f x 的变化情况如下表所示.因此,当3x =-时,函数f x 有极大值,并且极大值为38f -=, 当1x =时,函数()f x 有极小值,并且极小值为()318f =-. (2)由(1)知,函数()f x 在区间[]5,4-上, 极大值为()38f -=,极小值为()318f =-. 又由于()853f -=-,()7343f =, 所以函数()f x 在区间[]5,4-上的最大值是733,最小值是83-.【点晴】方法点晴:求极值的方法步骤:1、求函数定义域;2、求导函数并解方程()0f x '=的根;3、列表判断极值.24.(1)当01x <<时,()f x 单调递减;当1x e <≤时,()f x 单调递增;最小值1;(2)证明见解析;(3)存在,2a e =. 【分析】(1)根据f (x )=x -ln x ,求导得11()1x f x x x'-=-=,分别令f ′(x )<0,f ′(x )>0求解单调性和极值.(2)要证 f (x )>g (x )+12,即证[f (x )]min -[g (x )]max >12,由(1)知f (x )在(0,e ]上的最小值为1,再利用导数法求得[g (x )]max 即可.(3)假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e ])有最小值3,求导11()ax f x a x x'-=-=,分0<1a <e ,1a ≥e 讨论求解.【详解】(1)因为f (x )=x -ln x , 所以11()1x f x x x'-=-=, 所以当0<x <1时,f ′(x )<0,此时f (x )单调递减; 当1<x ≤e 时,f ′(x )>0时,此时f (x )单调递增. ∴f (x )的极小值为f (1)=1. (2)∵f (x )的极小值为1,∴f (x )在(0,e ]上的最小值为1,即[f (x )]min =1. 又g ′(x )=21ln x x-, ∴当0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增. ∴[g (x )]max =g (e)=112e <, ∴[f (x )]min -[g (x )]max >12, ∴在(1)的条件下,f (x )>g (x )+12. (3)假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e ])有最小值3, 则11()ax f x a x x'-=-=. ①当0<1a <e 时,f (x )在(0,1a )上单调递减,在(1a,e ]上单调递增, [f (x )]min =f (1a)=1+ln a =3,a =e 2,满足条件; ②当1a≥e 时,f (x )在(0,e ]上单调递减, [f (x )]min =f (e)=a e -1=3,a =4e(舍去), 所以,此时f (x )无最小值.综上,存在实数a =e 2,使得当x ∈(0,e ]时f (x )有最小值3. 【点睛】方法点睛:不等式问题.(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.25.(1)极小值为3ln 2-,无极大值;(2)(],1-∞. 【分析】(1)对函数求导,因式分解求得()0f x '=的根,列表判断单调性与极值;(2)将()2f x x x >-转化为3ln a x x x <-在()1,+∞上恒成立,令新的函数()g x ,然后求导以及二次求导以后判断单调性与极值,求出()g x 的最小值即可. 【详解】解:(1) 由2a =-,得()2ln f x x x x=+-,定义域为()0,∞+, ()()()2222212121x x x x f x x x x x-+--'=--==, 令()0f x '=,得2x =(或1x =-舍去),列表:所以f x 的极小值为23ln 2=-f ,无极大值. (2)由2ln a x x x x x -->-,得2ln ax x x<-, 问题转化为3ln a x x x <-在()1,+∞上恒成立,记()()3ln ,1,g x x x x x =-∈+∞,即min ()a g x <在()1,+∞上恒成立,则()()2231ln 3ln 1g x x x x x '=-+=--,令()23ln 1h x x x =--,则()21616x h x x x x-'=-=,由1x >,知2610x ->,即()0h x '>,所以()h x 在()1,+∞上单调递增,()()120h x h >=>,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=, 由()a g x <在()1,+∞上恒成立,所以1a ≤. 【点睛】方法点睛:导函数中两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 26.(1)(,0)-∞和(1,)+∞;(2)1-. 【分析】(1)由极值点求出参数3a =,再代入,解不等式()0f x '>求递增区间 (2)求()f x 在[1,2]-上的极值,与端点值比较得出最小值. 【详解】(1)由题意2()62f x x ax '=-()01f '=,则3a =32()234,()6(1)f x x x f x x x '=-+=-,当(,0)x ∈-∞时,()0f x '>;当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以,函数()f x 的单调递增区间为(,0)-∞和(1,)+∞ (2)当[1,2]x ∈-时,(),()f x f x '的变化情况如下表当1,(1)2343x f ==-+=.所以当[1,2]x ∈-时,函数()f x 的最小值为1-.【点睛】用导数法求最值方法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;。

高中数学选修1-1精品课件1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)

高中数学选修1-1精品课件1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)

1 ,可以转化为y=
x3
x
2 3
,y=x-3
后再求导.
(4)对解析式较复杂的,要先化简解析式,再选择公式进行求
导,化简时注意化简的等价性.
【典例训练】
1.若y=10x,则y′|x=1=_________.
2.求下列函数的导数:
(1)y=x7;(2)y=
1 x2
;(3)y=
3 x;
(4)y=2sin
题目类型三、导数的综合应用 【技法点拨】
导数的综合应用的解题技巧 (1)导数的几何意义为导数和解析几何的沟通搭建了桥梁,很 多综合问题我们可以数形结合,巧妙利用导数的几何意义,即 切线的斜率建立相应的未知参数的方程来解决,往往这是解决 问题的关键所在.
(2)导数作为重要的解题工具,常与函数、数列、解析几何、 不等式等知识结合出现综合大题.遇到解决一些与距离、面积 相关的最值、不等式恒成立等问题.可以结合导数的几何意义 分析.
【解析】1.依题意,y′|x=x1=
,1
2 x1
∵n与m垂直,
(6)若f(x)=ex,则f′(x)=_ex_;
(7)若f(x)=logax,则f′(x)=
1 (a>0且a≠1);
xlna
(8)若f(x)=lnx,则f′(x)= 1 .
x
1.利用导数的定义求导与导数公式求导的区别 导函数定义本身就是函数求导的最基本方法,但导函数是由极 限定义的,所以函数求导总是要归结为求极限,这在运算上很 麻烦,有时甚至很困难,但是用导函数定义推导出常见函数与 基本初等函数公式后,求函数的导函数就可以用公式直接求导 了,简洁迅速.
第三章 导数及其应用
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数 的运算法则(一)

人教A版(理)选修2-2第一章(文)选修1-1第三章《导数及其应用》教学指导意见解读

人教A版(理)选修2-2第一章(文)选修1-1第三章《导数及其应用》教学指导意见解读
概念的本质 导数概念”的处理: 例如 “导数概念”的处理: 通过研究“气球膨胀率” 通过研究“气球膨胀率”和“高台跳水运动员从 腾空到进入水面的过程中不同时刻的速度”等实例, 腾空到进入水面的过程中不同时刻的速度”等实例, 让学生经历由平均变化率到瞬时变化率的过程, 让学生经历由平均变化率到瞬时变化率的过程,引出 瞬时速度的概念,从而抽象出导数概念。 瞬时速度的概念,从而抽象出导数概念。
二、文理科教学内容与要求比较 1、课时分配 理科(24课时) (24课时 理科(24课时): 1.1 变化率与导数 1.2 导数的计算 1.3 导数在研究函数中的应用 1.4 生活中的优化问题举例 1.5 定积分的概念 1.6 微积分基本定理 1.7 定积分的简单应用 小结
约4课时 约4课时 约3课时 约4课时 约4课时 约2课时 约2课时 约1课时
文科(16课时): 文科(16课时): 课时 3.1 变化率与导数 约4课时 3.2 导数的计算 约3课时 3.3 导数在研究函数中的应用 约3课时 3.4 生活中的优化问题举例 约4课时 实习作业 约1课时 约1课时 小结
2、文科理科内容相同要求不同的地方有:1.3 文科理科内容相同要求不同的地方有: 导数在研究函数中的应用一节中, 导数在研究函数中的应用一节中,理科还要求体会 导数方法在研究函数性质中的一般性和有效性. 导数方法在研究函数性质中的一般性和有效性. 理科比文科增加的地方主要有: 3、理科比文科增加的地方主要有:在导数的 运算中,能根据导数定义求函数y= 的导数; 运算中,能根据导数定义求函数y= 的导数;能 求简单的复合函数( 的导数; 求简单的复合函数(仅限于形如f(ax+b)的导数; 定积分的概念、微积分基本定理及定积分的简单应 定积分的概念、 用。

2020版高中数学人教B版选修1-1课件:3.2.3 导数的四则运算法则 (2)

2020版高中数学人教B版选修1-1课件:3.2.3 导数的四则运算法则 (2)

[点评] 在可能的情况下,求导时应尽量少用甚至不 用乘法的求导法则,所以在求导之前,应利用代数、 三角恒等变形对函数进行化简,然后再求求导法则的综合应用
[点评] 解答本题可先运用求导法则求出y′,进而求出y′|x=1, 再用点斜式写出切线方程,令y=0,求出x的值,即为切线 在x轴上的截距.
第三章 导数及其应用
3.2 导数的运算
3.2.3 导数的四则运算法则
f′(x)±g′(x) f′(x)·g(x)+f(x)·g′(x)
1.函数y=x2cosx的导数是( )
A.y′=2xcosx-x2sinx B.y′=2xcosx+x2sinx
C.y′=x2cosx-2xsinx
D.y′=xcosx-x2sinx
5.若曲线y=xlnx上点P处的切线平行于直线2x-y+1=0,则 点P的坐标是________.
[答案] (e,e)
题目类型一、求导法则的直接应用
[点评] 熟练掌握导数运算法则,再结合给定函数本 身的特点,才能准确有效地进行求导运算,在解决问 题时才能做到举一反三,触类旁通.
题目类型二、求导法则的灵活运用
[答案] D
[解析] 根据对数函数的求导法则可知B正确. [答案] B
4.曲线y=-5ex+3在点(0,-2)处的切线方程是 ____________. [解析] ∵y′=-5ex,∴曲线在点(0,-2)处的切线 的斜率为-5e0=-5, ∴曲线在点(0,-2)处的切线方程为 y-(-2)=-5(x-0), 即5x+y+2=0. [答案] 5x+y+2=0
[解析] ∵y=x2cosx,
∴y′=(x2)′cosx+x2(cosx)′=2xcosx-x2sinx,故选A.
[答案] A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

给我五个系数,将画出一头大象;给我六个系数,大象将会摇动尾巴
编号: 课型:新授课 主备人:刘欣 审核人:田建芳 时间:
课题:导数的概念
【学习目标】
1.掌握用极限给瞬时速度下的精确的定义.
2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度.
【重点难点】导数概念的形成,导数内涵的理解
【学习过程】
一、课前准备(预习教材P74~ P76,找出疑惑之处)
复习1:气球的体积V 与半径r 之间的关系是
()r V =V 从0增加到1时,气球的平均膨胀率.
复习2:高台跳水运动中,运动员相对于水面的高度h 与起跳后的时间t 的关系为:2() 4.9 6.510h t t t =-++. 求在12t ≤≤这段时间里,运动员的平均速度.
二、新课导学
学习探究
探究任务一:瞬时速度
问题1:我们把物体在某一时刻的速度称为________.一般地,若物体的运动规律为)(t f s =,则物体在时刻t 的瞬时速度v 就是物体在t 到t t ∆+这段时间内,当_________时平均速度的极限,即t s
v x ∆∆=→∆0lim =___________________
探究任务二:导数
问题2: 瞬时速度是平均速度t s
∆∆当t ∆趋近于0时的
得导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()lim lim x x f x x f x f x x ∆→∆→+∆-∆=∆∆,我们称它
为函数()y f x =在0x x =处的导数,记作
0()f x '或0|x x y ='即000()()()lim x f x x f x f x x ∆→+∆-'=∆ 注意:(1)函数应在点0x 的附近有定义,否则导数不存在
(2)在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可以为0 (3)x y
∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上
点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率
(4)导数x x f x x f x f x ∆-∆+=→∆)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度.
小结:由导数定义,高度h 关于时间t 的导数就是运动员的瞬时速度,气球半径关于体积V 的导数就是气球的瞬时膨胀率.
典型例题
例1 已知质点M 按规律s=2t2+3做直线运动(位移单位:cm ,时间单位:s)
(1)当t=2,Δt=0.01时,求t s ∆∆(2)当t=2,Δt=0.001时,求t s
∆∆(3)求质点M 在t=2时的瞬时速度 利用导数的定义求导,步骤为:
第一步,求函数的增量00()()y f x x f x ∆=+∆-; 第二步:求平均变化率0()f x x y x x +∆∆=∆∆; 第三步:取极限得导数00()lim x y f x x ∆→∆'=∆.
当堂检测
1.在例1中,计算第3h 和第5h 时原油温度的瞬时变化率,并说明它们的意义.
2.已知函数)(x f y =,下列说法错误的是( )A 、
)()(00x f x x f y -∆+=∆叫函数增量 B 、x x f x x f x y ∆-∆+=∆∆)()(00叫函数在[x x x ∆+0
0,]上的平均变化率 C 、)(x f 在点0x 处的导数记为y ' D 、)(x f 在点0x 处的导数记为
)(0x f ' 3.求函数x y =在1=x 处的导数
4. 一球沿一斜面自由滚下,其运动方程是2()s t t =(位移单位:m ,时间单位:s),求小球在5t =时的瞬时速度
①导数即为函数y=f(x)在x=x0处的瞬时变化率;与上一节的平均变化率不同
②定义的变化形式:
③求函数()x f y =在
0x x =处的导数步骤:“一差;二比;三极限”.
三、课后练习与提高 1. 一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么0lim t s
t ∆→∆∆为( ) A.从时间t 到t t +∆时,物体的平均速度; B.在t 时刻时该物体的瞬时速度;
C.当时间为t ∆时物体的速度; D.从时间t 到t t +∆时物体的平均速度
2. 2y x =在 x =1处的导数为( )
A .2x
B .2
C .2x +∆
D .1
3. 在
0000()()()lim x f x x f x f x x ∆→+∆-'=∆中,x ∆不可能( )
A .大于0
B .小于0
C .等于0
D .大于0或小于0 4.若质点A 按规律22t s =运动,则在3=t 秒的瞬时速度为( )
A 、6
B 、18
C 、54
D 、81
5.函数
x x y 1
+
=在1=x 处的导数是______________ 6.已知自由下落物体的运动方程是2
21gt s =,(s 的单位是m,t 的单位是s),求: (1)物体在
0t 到t t ∆+0这段时间内的平均速度; (2)物体在
0t 时的瞬时速度; (3)物体在0t =2s 到s t 1.21=这段时间内的平均速度;
(4)物体在s t 2=时的瞬时速度.。

相关文档
最新文档