14指数函数 对数函数

合集下载

指数函数幂函数对数函数的比较

指数函数幂函数对数函数的比较

指数函数幂函数对数函数的比较1. 引言嘿,大家好!今天我们来聊聊一些数学里的“明星”——指数函数、幂函数和对数函数。

这三位可不是普通的数学函数,它们在生活中扮演着重要的角色,像是在演一场大戏,各自有各自的风格和特点。

别看它们名字听起来很高大上,其实咱们可以用简单易懂的方式来理解它们,今天就让我们轻松愉快地把这些数学概念捋一捋!2. 指数函数的魅力2.1 指数函数是什么先来看看指数函数,简单来说,它的形式就是 ( f(x) = a^x ),其中 ( a ) 是一个正数,比如 2、3、甚至更大。

这个函数的特征就是,随着 ( x ) 的增加,函数值会迅速飞涨,简直就像是火箭发射!想象一下,当你用 ( a=2 ) 时,( x ) 从 1 增加到 10,结果就从 2 跑到了 1024,哇哦,真是个“数”字飞人!2.2 日常应用这玩意儿在哪用呢?比如说,利息计算就是个典型的例子。

银行给你存款利息,随着时间的推移,利息就像坐上了直升机,飞速增长。

这让人觉得,哦,时间就是金钱,没错!而且在科学和工程领域,指数函数也经常被用到,比如放射性衰变、人口增长等,简直无处不在。

3. 幂函数的风采3.1 幂函数是什么再说说幂函数,它的形式是 ( f(x) = x^n ),其中 ( n ) 是个常数。

你可以把它想象成在做一些小型的数学“杂技”,当 ( n ) 是正整数时,随着 ( x ) 的增加,函数值也是在慢慢上涨,但没那么快。

就像爬山一样,虽然一路上坡,但总有些缓冲。

3.2 常见场景幂函数在生活中也常常见到,比如说,物体的体积和边长的关系就是个典型的例子。

如果你有一个立方体,边长增加一倍,体积可是翻了八倍哦,真是让人惊掉下巴!而且在物理学中,许多公式,比如牛顿的引力定律,也都涉及到幂函数的运算,可以说是非常“靠谱”的小伙伴。

4. 对数函数的智慧4.1 对数函数是什么接下来我们要聊的是对数函数,形式为 ( f(x) = log_a(x) )。

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数知识方法扫描一、指数函数及其性质形如y =a x (a >0,a ≠1)的函数叫作指数函数,其定义域为R ,值域为(0,+∞).当0<a <1时,y =a x 是减函数,当a >1时,y =a x 为增函数,它的图像恒过定点(0,1).二、分数指数幂a 1n=na ,a m n=n a m ,a -n=1an ,a -mn =1na m三、对数函数及其性质对数函数y =log a x (a >0,a ≠1)的定义域为(0,+∞),值域为R ,图像过定点(1,0).它是指数函数y =a x (a >0,a ≠1)的反函数,所有性质均可由指数函数的性质导出.当0<a <1时,y =log a x 为减函数,当a >1时,y =log a x 为增函数.四、对数的运算性质(M >0,N >0)(1)a log M a =M (这是定义);(2)log a (MN )=log M a +log a N ;(3)log a MN=log a M -log a N ;(4)log a M n =n log a M ;(5)log a b =log c blog c a (a ,b ,c >0,a ,c ≠1)(换底公式).由以上性质(4)、(5)容易得到以下两条推论:1)log a mb n =n m log a b ;2)log a b =1log b a.典型例题剖析1已知x 1是方程x +lg x =10的根,x 2是方程x +10x =10的根,求x 1+x 2的值.【解法1】由题意得lg x 1=10-x 110x 2=10-x 2,表明x 1是函数y =lg x 与y =10-x 的交点的横坐标,x 2是函数y =10x 与y =10-x 的交点的横坐标.因为y =lg x 与y =10x 互为反函数,其图像关于y =x 对称,由y =10-x y =x 得,x =5y =5 ,所以x 1+x 22=5,所以x 1+x 2=10.【解法2】构造函数f (x )=x +lg x ,由x 1+lg x 1=10知f x 1 =10,x 2+10x 2=10即10x 2+lg10x 2=10,则f 10x 2 =10,于是f x 1 =f 10x 2 ,又f (x )为(0,+∞)上的增函数,故x 1=10x 2,x 1+x 2=10x 2+x 2=10.【解法3】由题意得x 1=1010-x 110-x 2=10x 2,两式相减有x 1+x 2-10=1010-x 1-10x 2.若x 1+x 2-10>0,则1010-x 1-10x 2>0,得10-x 1>x 2,矛盾;若x 1+x 2-10<0,则1010-x 1-10x 2<0,得10-x 1<x 2,矛盾;而当x 1+x 2=10时,满足题意.【评注】解法1巧妙地利用了数形结合的方法,解法2巧妙地利用了函数的单调性,解法3巧妙地利用了反证法的技巧.2已知a >0,b >0,log9a =log 12b =log 16(a +b ),求ba的值.【解法1】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .由于9k ×16k =12k 2故(a +b )a =b 2,解得:b a =1+52(负根舍去).【解法2】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .b a =12k 9k =43 k ,而9k +12k =16k,故1+12k 9k =16k 9k ,即43 k 2-43 k -1=0,故b a =43 k =1+52(负根舍去).【评注】对数运算和指数运算互为逆运算,有关对数的运算和处理,往往可以转化为指数的运算和处理.3已知函数f (x )=1x +1+log 13x 2-x,试解不等式f x x -12 >12.【分析】本题为分式不等式与对数不等式混合.初看不易解决,但可以发现该函数在其定义域内单调递减,这是本题的解题关键.【解】易证函数y =f (x )在其定义域(0,2)内是单调减函数.并且f (1)=12,所以原不等式即为f x x -12 >f (1)等价于x x -12 <10<x x -12 <2⇒ x 12<x <1+174或1-174<x <0 .【评注】利用函数单调性解决不易入手的不等式是一种常用方法.4设方程lg (kx )=2lg (x +1)仅有一个实根,求k 的取值范围.【分析】本题要注意函数的定义域.【解法1】当且仅当kx >0①x +1>0②x 2+(2-k )x +1=0③时原方程仅有一个实根,对方程③使用求根公式,得x 1,x 2=12k -2±k 2-4k ④Δ=k 2-4k ≥0⇒k <0或k ≥4.当k <0时,由方程③,得x 1+x 2=k -2<0,x 1x 2=1>0,所以x 1,x 2同为负根.又由方程程④知x 1+1>0,x 2+1<0,所以原方程有一个解x 1.当k =4时,原方程有一个解x =k2-1=1.当k >4时,由方程③,得x 1+x 2=k -2>0,x 1x 2=1>0. 所以x 1,x 2同为正根,且x 1≠x 2,不合题意,舍去.综上所述可得k <0或k =4为所求.【解法2】由题意,方程kx =(x +1)2,也即方程k =x +1x+2在满足关于x 的不等式kx >0x +1>0 的范围内有唯一实数根,以下分两种情况讨论:(1)当k >0时,k =x +1x +2在x >0范围内有唯一实数根,则有k =4;(2)当k <0时,k =x +1x+2在-1<x <0范围内有唯一实数根,则有k <0.综上可得k <0或k =4为所求.【评注】本题实质上是一道一元二次方程问题.5解不等式:log 12(x +3x )>log 64x .【分析】若考虑到去根号,可设x =y 6(y >0),原不等式变为log 12y 3+ y 2 >log 6446=log 2y ,即2log 12y +log 2(y +1)>log 2y ,陷入困境.原不等式即6log 12(x +3x )>log 2x ⇒2log 12x +log 121+x166>log 2x ,设t =log 2x ,则log 12x =1log x12=12log x 2+log x 3,同样陷入困境.下面用整体代换y =log 64x .【解】设y =log 64x ,则x =64y,代人原不等式,有log 128y +4y >y ,8y +4y >12y,23 y +13 y >1,由指数函数的单调性知y =log 64x <1,则0<x <64.故原不等式的解集为(0,64).6已知1<a ≤b ≤c 证明:log a b +log b c +log c a ≤log b a +log c b +log a c .【证法1】注意到log a b +log b c +log c a -log b a +log c b +log a c=ln b ln a +ln c ln b +ln a ln c -ln a ln b+ln b ln c +ln c ln a =ln 2b ln c +ln 2c ln a +ln 2a ln b -ln 2b ln a +ln 2c ln b +ln 2a ln c ln a lnb ln c=-(ln a -ln b )(ln b -ln c )(ln c -ln a )ln a ln b ln c.【证法2】设log b a =x ,log c b =y ,则log a c =1xy ,于是原不等式等价于x +y +1xy ≤1x +1y+xy ,即x 2y +xy 2+1≤y +x +x 2y 2,即xy (x +y )-(x +y )+1-x 2y 2 ≤0,也即(x +y -1-xy )(xy -1)≤0也即(x -1)(y -1)(xy -1)≥0,由1<a ≤b ≤c 知x ≥1,y ≥1,所以(x -1)(y -1)(xy -1)≥0,得证.因为1<a ≤b ≤c ,所以ln a ln b ln c >0,(ln a -ln b )(ln b -ln c )(ln c -ln a )≥0所以log a b +log b c +log c a -log b a +log c b +log a c ≤0即log a b +log b c +log c a ≤log b a +log c b +log a c °【评注】若令x =ln a ,y =ln b ,z =ln c 则原不等式等价于:设0<x ≤y ≤z ,求证:x 2y +y 2z +z 2x ≤xy 2+yz 2+zx 2.7设函数f (x )=|lg (x +1)|,实数a ,b (a <b )满足f (a )=f -b +1b +2,f (10a +6b +21)=4lg2,求a 、b 的值.【分析】利用已知条件构建关于a 、b 的二元方程组进行求解.【解】因为f (a )=f -b +1b +2 ,所以|lg (a +1)|=lg -b +1b +2+1 =lg 1b +2=|lg (b +2)|所以,a +1=b +2或(a +1)(b +2)=1,又因为a <b ,所以a +1≠b +2,所以(a +1)(b +2)=1又由于0<a +1<b +1<b +2,于是0<a +1<1<b +2,所以(10a +6b +21)+1=10(a +1)+6(b +2)=6(b +2)+10b +2>1,从而f (10a +6b +21)=lg 6(b +2)+10b +2=lg 6(b +2)+10b +2,又f (10a +6b +21)=4lg2,所以lg 6(b +2)+10b +2 =4lg2,故6(b +2)+10b +2=16.解得b =-13或b =-1(舍去).把b =-13代故(a +1)(b +2)=1,解得a =-25.所以,a =-25,b =-13.同步训练一、选择题1已知a 、b 是方程log 3x 3+log 27(3x )=-43的两个根,则a +b =().A.1027B.481C.1081D.2881【答案】C .【解析】原方程变形为log 33log 3(3x )+log 3(3x )log 327=-43,即11+log 3x +1+log 3x 3=-43.令1+log 3x =t ,则1t +t 3=-43,解得t 1=-1,t 2=-3.所以1+log 3x =-1或1+log 3x =-3,方程的两根分别为19和181,所以a +b =1081.故选C .2已知函数f (x )=1a x -1+12x 2+bx +6(a ,b 为常数,a >1),且f lglog 81000 =8,则f (lglg2)的值是().A.8 B.4 C.-4 D.-8【答案】B .【解析】由已知可得f lglog 81000 =f lg33lg2=f (-lglg2)=8,又1a -x -1+12=a x 1-a x +12=-1+11-a x +12=-1a x -1-12,令F (x )=f (x )-6,则有F (-x )=-F (x ).从而有f (-lglg2)=F (-lglg2)+6=-F (lglg2)+6=8,即知F (lglg2)=-2,f (lglg2)=F (lglg2)+6=4.3如果f (x )=1-log x 2+log x 29-log x 364,则使f (x )<0的x 的取值范围为().A.0<x <1 B.1<x <83C.x >1D.x >83【答案】B .【解析】显然x >0,且x ≠1.f (x )=1-log x 2+log x 29-log x 364=1-log x 2+log x 3-log x 4=log x 38x .要使f (x )<0.当x >1时,38x <1,即1<x <83;当0<x <1时,38x >1,此时无解.由此可得,使得f (x )<0的x 的取值范围为1<x <83.应选B .4若f (x )=lg x 2-2ax +a 的值域为R ,则a 的取值范围是().A.0<a <1 B.0≤a ≤1 C.a <0或a >1 D.a ≤0或a ≥1【答案】D .【解析】由题目条件可知,(0,+∞)⊆y |y =x 2-2ax +a ,故Δ=(-2a )2-4a ≥0,解得a ≤0或a ≥1.选D .二、填空题5设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是.【答案】[3,4].【解析】定义域(0,4].在定义域内f (x )单调递增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4].6设0<a <1,0<θ<π4,x =(sin θ)log asin θ,y =(cos θ)log atan θ,则x 与y 的大小关系为.【答案】x <y .【解析】根据条件知,0<sin θ<cos θ<1,0<sin θ<tan θ<1,因为0<a <1,所以f (x )=log a x 为减函数,所以log a sin θ>log a tan θ>0,于是x =(sin θ)log a sin θ<(sin θ)log a tan θ<(cos θ)log a tan θ=y .7设f (x )=12x +5+lg 1-x 1+x ,则不等式f x x -12<15的解集为.【答案】1-174,0 ∪12,1+174.【解析】原不等式即为f x x -12<f (0).因为f (x )的定义域为(-1,1),且f (x )为减函数.所以-1<x x -12 <1x x -12 >0.解得x ∈1-174,0∪12,1+174.8设f (x )=11+2lg x +11+4lg x +11+8lg x ,则f (x )+f 1x =.【答案】3.【解析】f (x )+f 1x =11+2lg x +11+4lg x +11+8lg x +11+2-lg x +11+4-lg x +11+8-lg x =3.三、解答题9已知函数f (x )=a x +3a (a >0,a ≠1)的反函数是y =f -1(x ),而且函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称.(1)求函数y =g (x )的解析式;(2)若函数F (x )=f -1(x )-g (-x )在x ∈[a +2,a +3]上有意义,求a 的取值范围.【解析】(1)由f (x )=a x +3a (a >0,a ≠1),得f -1(x )=log a (x -3a ).又函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称,则g (a +x )=-f -1(a -x ),于是,g (x )=-f -1(2a -x )=-log a (-x -a ),(x <-a ).(2)由(1)的结论,有F (x )=f -1(x )-g (-x )=log a (x -3a )+log a (x -a ).要使F (x )有意义,必须满足x -3a >0,x -a >0. 又a >0,故x >3a .由题设F (x )在x ∈[a +2,a +3]上有意义,所以a +2>3a ,即a <1.于是,0<a <1.10设f (x )=log a (x -2a )+log a (x -3a ),其中a >0且a ≠1.若在区间[a +3,a +4]上f (x )≤1恒成立,求a 的取值范围.【解析】f (x )=log a x 2-5ax +6a 2=log a x -5a 2 2-a 24.由x -2a >0x -3a >0, 得x >3a ,由题意知a +3>3a ,故a <32,从而(a +3)-5a 2=-32(2-a )>0,故函数g (x )=x -5a 2 2-a 24在区间[a +3,a +4]上单调递增.若0<a <1,则f (x )在区间[a +3,a +4]上单调递减,所以f (x )在区间[a +3,a +4]上的最大值为f (a +3)=log a 2a 2-9a +9 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式loglog a 2a 2-9a +9 ≤1恒成立,从而2a 2-9a +9≥a ,解得a ≥5+72或a ≤5-72.结合0<a <1,得0<a <1.若1<a <32,则f (x )在区间[a +3,a +4]上单调递增,所以f (x )在区间[a +3,a +4],上的最大值为f (a +4)=log a 2a 2-12a +16 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式log a 2a 2-12a +16 ≤1恒成立,从而2a 2-12a +16≤a ,即2a 2-13a +16≤0,解得13-414≤a ≤13+414.易知13-414>32,所以不符合.综上所述,a 的取值范围为(0,1).11解方程组x x +y=y 12y x +y =x 3,(其中x ,y ∈R * .【解析】两边取对数,则原方程组可化为(x +y )lg x =12lg y ①(x +y )lg y =3lg x ②把式①代入式②,得(x +y )2lg x =36lg x ,所以(x +y )2-36 lg x =0.由lg x =0,得x =1;代入式①,得y =1.由(x +y )2-36=0x ,y ∈R * 得x +y =6.代入式①得lg x =2lg y ,即x =y 2,所以y 2+y -6=0.又y >0,所以y =2,x =4.所以方程组的解为x 1=1y 1=1 ,x 2=4y 2=2 .12已知f (x )=lg (x +1)-12log 3x .(1)解方程f (x )=0;(2)求集合M =n f n 2-214n -1998 ≥0,n ∈Z 的子集个数.【解析】(1)任取0<x 1<x 2,则f x 1 -f x 2 =lg x 1+1 -lg x 2+1 -12log 3x 1-log 3x 2=lgx 1+1x 2+1-12log 3x 1x 2=lg x 1+1x 2+1-log 9x 1x 2,因为x 1+1x 2+1>x 1x 2,所以lg x 1+1x 2+1>lg x 1x 2.故f x 1 -f x 2 =lg x 1+1x 2+1-log 9x 1x 2>lg x 1x 2-lg x1x 2lg9,因为0<lg9<1,lg x 1x 2<0,所以f x 1 -f x 2 >lg x 1x 2-lg x1x 2=0,f (x )为(0,+∞)上的减函数,注意到f (9)=0,当x >9时,f (x )<f (9)=0;当<x <9时,f (x )>f (9)=0,所以f (x )=0有且仅有一个根x =9.(2)由f n 2-214n -1998 ≥0⇒f n 2-214n -1998 ≥f (9)所以n 2-214n -1998≤9n 2-214n -1998>0 ⇔n 2-214n -2007≤0n 2-214n -1998>0⇔(n -223)(n +9)≤0(n -107)2>1998+1072=13447>1152⇔-9≤n ≤223n >222或n <-8 ⇔⇔-9≤n ≤223n ≥223或n ≤-9 ,所以n =223或n =-9,M ={-9,223},M 的子集的个数是4.13已知a >0,a ≠1,试求使得方程log a (x -ak )=log a x 2-a 2 有解的k 的取值范围.【解析】由对数性质知,原方程的解x 应满足(x -ak )2=x 2-a 2x -ak >0x 2-a 2>0(1)(2)(3)若式(1)、式(2)同时成立,则式(3)必成立,故只需要解(x -ak )2=x 2-a 2x -ak >0.由式(1)可得2kx =a 1+k 2(4)当k =0时,式(4)无解;当k ≠0时,式(4)的解是x =a 1+k 2 2k ,代人式(2),得1+k 22k>k .若k <0,则k 2>1,所以k <-1;若k >0,则k 2<1,所以0<k <1.综上所述,当k ∈(-∞,-1)∪(0,1)时,原方程有解.14已知0.301029<lg2<0.301030,0.477120<lg3<0.477121,求20001979的首位数字.【解析】lg20001979=1979lg2000=1979(3+lg2).所以6532.736391<lg20001979<6532.73837.故20001979为6533位数,由lg5=1-lg2,lg6=lg2+lg3,得0.698970<lg5<0.6989710.778149<lg6<0.778151⇒lg5<0.736391<0.73837<lg6,说明20001979的首位数字是5.15已知3a +13b =17a ,5a +7b =11b ,试判断实数a 与b 的大小关系,并证明之.【解析】令a =1,则13b =14,5+7b =11b ,可见b >1.猜想a <b .下面用反证法证明:若a ≥b ,则13a ≥13b ,5a ≥5b ,所以17a =3a +13b ≤3a +13a ,11b =5a +7b ≥5b +7b ,即317 a +1317 a ≥1,511 b +711 b ≤1,而函数f (x )=317 x +1317 x和g (x )=511 x +711 x在R 上均为减函数,且f (1)=317+1317=1617<1≤f (a ),g (1)=511+711=1211>1≥g (b ).所以a <1,b >1.这与a ≥b 矛盾,故a <b .16解不等式log 2x 12+3x 10+5x 8+3x 6+1 <1+log 2x 4+1 .【解析】原不等式等价于log 2x 12+3x 10+5x 8+3x 6+1 <log 22x 4+2 .由于y =log 2x 为单调递增函数,于是x 12+3x 10+5x 8+3x 6+1<2x 4+2,两端同时除以x 6,并整理得2x2+1x 6>x 6+3x 4+3x 2+1+2x 4+2=x 2+1 3+2x 2+1 构造函数g (t )=t 3+2t ,则上述不等式转化为g1x2>g x 2+1 .显然g (t )=t 3+2t 在R 上为增函数.于是以上不等式等价于1x2>x 2+1,即x 2 2+x 2-1<0,解得x 2<5-12.故原不等式的解集为-5-12,5-12.。

指数函数与对数函数

指数函数与对数函数

指数函数与对数函数指数函数和对数函数是数学中常见的函数类型,它们在各个领域都有重要的应用。

本文将介绍指数函数和对数函数的定义、性质以及它们在实际问题中的应用。

一、指数函数指数函数是以某个正数为底数的幂函数,其自变量是指数。

一般形式表示为:y = a^x,其中a是底数,x是指数,y是函数值。

1. 定义与性质指数函数的底数一般为正数且不等于1,指数可以是任意实数。

当底数大于1时,指数函数呈现递增趋势;当底数在0和1之间时,指数函数呈现递减趋势。

指数函数的特点包括:- 当指数为0时,指数函数的函数值恒为1,即a^0 = 1。

- 当指数为正数时,函数值递增;当指数为负数时,函数值递减。

- 当指数趋于正无穷大时,函数值趋于正无穷大;当指数趋于负无穷大时,函数值趋于0。

2. 应用示例指数函数的应用非常广泛,其中一些常见的应用领域包括:- 经济学中的复利计算:复利计算可以用指数函数模型来描述。

- 生物学中的种群增长:种群增长也可以用指数函数模型来描述。

- 物理学中的放射性衰变:放射性元素的衰变过程也符合指数函数的规律。

二、对数函数对数函数是指数函数的逆运算,用来求解以某个正数为底数的对数。

一般形式表示为:y = logₐx,其中a是底数,x是真数,y是对数值。

1. 定义与性质对数函数的底数一般为正数且不等于1,真数和对数值可以是任意正数。

对数函数的一些性质包括:- a^logₐx = x,即对数函数和指数函数互为逆运算。

- logₐa = 1,即对数函数以底数为底的底数对数等于1。

- logₐ1 = 0,即以任何正数为底的1的对数都等于0。

2. 应用示例对数函数在实际问题中也有广泛的应用,以下是一些例子:- 测量震级:地震的震级可以通过对数函数来计算。

- 计算pH值:化学中,pH值可以通过对数函数来计算。

- 评估信息量:信息论中,信息量可以用对数函数来度量。

结论指数函数和对数函数是数学中重要的函数类型,它们在各个领域都有广泛的应用。

指数对数函数基本知识点

指数对数函数基本知识点

指数对数函数基本知识点指数函数和对数函数是高中数学紧密相关的数学概念,对于理解和运用多种数学问题都是至关重要的。

下面将从定义、性质、图像和应用等几个方面进行详细介绍。

一、指数函数指数函数的定义是f(x)=a^x,其中a是一个正实数且a≠1,x是实数。

指数函数的特点包括:1.a^0=1,a^1=a。

2.指数函数的定义域是整个实数集。

3.当a>1时,指数函数是严格递增的;当0<a<1时,指数函数是严格递减的。

4.指数函数的图像可以分成两种情况:当a>1时,图像在x轴的右侧逐渐向上增长;当0<a<1时,图像在x轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。

二、对数函数对数函数的定义是f(x)=log_a(x),其中a是一个正实数且a≠1,x是正实数。

对数函数的特点包括:1. log_a(1)=0,log_a(a)=12.对数函数的定义域是正实数集。

3.当a>1时,对数函数是严格递增的;当0<a<1时,对数函数是严格递减的。

4.对数函数的图像可以分成两种情况:当a>1时,图像在y轴的右侧逐渐向上增长;当0<a<1时,图像在y轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。

三、指数函数和对数函数的性质1. 反函数性质:指数函数和对数函数互为反函数,即a^log_a(x)=x,log_a(a^x)=x。

2. 对数与指数的互化性质:log_a(x)=y等价于 a^y=x。

3.对于任意的正实数a,b和任意实数x,有如下几个基本性质:-a^x*a^y=a^(x+y)- (a^x)^y = a^(xy)- (ab)^x = a^x * b^x-a^(-x)=1/(a^x)-(a/b)^x=a^x/b^x- log_a(xy) = log_a(x) + log_a(y)- log_a(x^y) = y * log_a(x)- log_a(1/x) = -log_a(x)- log_a(x/y) = log_a(x) - log_a(y)四、指数和对数函数的图像指数函数和对数函数的图像可以通过制作表格来得到,然后连接各个点形成曲线图。

对数指数函数公式

对数指数函数公式

对数指数函数公式对数函数和指数函数是高中数学中非常重要的两类函数。

指数函数是形如y=a^x的函数,其中a为常数且a>0且a≠1,x为自变量,y为因变量;对数函数是指在指数函数y=a^x中的三个参数a、x、y中的一个固定不变的量,若固定其中的a和x,求出使得y=a^x的x,那么我们称这个x为以a为底的对数,记作x=loga y。

下面我们分别对指数函数和对数函数进行详细的介绍。

一、指数函数:指数函数是一种自变量在连续变化时,因变量按照指数规律随之变化的函数。

指数函数的一般式为y=a^x,其中a为底数,x为指数,a>0且a≠11.指数的定义和性质:指数函数中,a的取值范围与loga x存在一一对应关系,也就是a 的取值范围应该是(0,∞)。

当a=1时,指数函数简化为y=1^x=1,这是一个常值函数。

指数函数的性质如下:①当x=0时,指数函数的值为a^0=1,即指数函数在x=0处的函数值为1②当x<0时,指数函数的值为a^x=1/a^,x,即指数函数在x<0时的函数值为倒数。

③当x>0时,指数函数随着x的增大,函数值也随之增大,且增长速度越来越快。

2.指数函数的图像:指数函数的图像可以用以下性质来描述:①当a>1时,随着x的增大,函数值也随之增大,且增长速度越来越快。

这种函数的图像呈现递增趋势,且图像越来越陡峭。

②当0<a<1时,随着x的增大,函数值也随之减小,且减小速度越来越快。

这种函数的图像呈现递减趋势,且图像越来越平缓。

③当a=1时,指数函数的图像为一条水平直线,即y=1二、对数函数:对数函数是指在指数函数y=a^x中的三个参数a、x、y中的一个固定不变的量,求出使得y=a^x的x,那么我们称这个x为以a为底的对数,记作x=loga y。

1.对数的定义和性质:对数函数的定义如下:对于任意的正数a(a>0且a≠1),b(b>0),整数n,称n为以a为底的对数,记作n=loga b,当且仅当a的n次幂等于b。

指数与对数函数知识点小结

指数与对数函数知识点小结

指数与对数函数知识点小结1 指数与对数函数是数学中重要的函数类型之一,它们在许多领域都有广泛的应用。

本文将对指数与对数函数的定义、性质、图像以及应用等方面进行详细的介绍和总结。

一、指数函数1. 定义:指数函数是以固定底数为底的幂函数,其中底数为正实数且不等于1,指数为实数。

指数函数的一般形式为f(x) = a^x,其中a为底数,x为指数。

2. 性质:(1) 当底数a大于1时,指数函数是递增函数,即随着指数x的增加,函数值也增加;(2) 当0 < a < 1时,指数函数是递减函数,即随着指数x的增加,函数值减小;(3) 当底数a等于1时,指数函数是常值函数,即函数值始终为1;(4) 当指数x为0时,指数函数的函数值始终为1;(5) 当指数x为正无穷大时,指数函数的函数值趋于正无穷大;(6) 当指数x为负无穷大时,指数函数的函数值趋于0。

3. 图像:指数函数的图像呈现出一种特殊的曲线,当底数a大于1时,曲线从左下方向右上方逼近x轴;当0 < a < 1时,曲线从左上方向右下方逼近x轴;当底数a等于1时,曲线始终与x轴重合。

4. 应用:(1) 经济学中的复利计算就是基于指数函数的原理;(2) 物理学中的指数衰减和指数增长等现象都可以用指数函数来描述;(3) 生物学中的细胞分裂和生物种群增长等现象也可以用指数函数来描述。

二、对数函数1. 定义:对数函数是指数函数的反函数,即对数函数是以固定底数为底的幂函数的反函数。

对数函数的一般形式为f(x) = loga(x),其中a为底数,x为实数。

2. 性质:(1) 对数函数的定义域为正实数集合,值域为实数集合;(2) 当底数a大于1时,对数函数是递增函数,即随着自变量x的增加,函数值也增加;(3) 当0 < a < 1时,对数函数是递减函数,即随着自变量x的增加,函数值减小;(4) 当底数a等于1时,对数函数无定义;(5) 对数函数的反函数是指数函数。

高中数学中的指数与对数函数的性质

高中数学中的指数与对数函数的性质

高中数学中的指数与对数函数的性质指数与对数函数是高中数学中重要的概念,它们在数学和实际生活中都具有广泛的应用。

本文将探讨指数与对数函数的性质,包括定义、图像、性质以及应用等方面。

一、指数函数的性质指数函数是以底数为常数的幂的形式表示的函数,其中底数是一个正实数,指数是自变量。

指数函数的一般形式为:f(x) = a^x,其中a为底数,x为指数。

1. 定义和图像指数函数的定义域是全体实数,值域是正实数。

当底数a大于1时,指数函数是递增函数;当底数a介于0和1之间时,指数函数是递减函数。

指数函数的图像特点是从左下方向右上方逼近x轴,并且永远不会与x轴相交。

当底数a等于1时,指数函数 f(x) = 1^x = 1,为常函数。

2. 性质(1)指数函数的基本性质:f(x) = a^x,其中a为正实数且不等于1。

当a>1时,函数f(x)是递增函数;当0<a<1时,函数f(x)是递减函数。

当a=1时,f(x)=1^x=1,为常函数。

(2)指数运算法则:对于指数函数,指数运算有以下法则:a^m * a^n = a^(m+n)(a^m)^n = a^(m*n)(a*b)^m = a^m * b^m(3)特殊指数函数的性质:a^0 = 1 (其中a为正实数,且a≠0)a^(-n) = 1/(a^n) (其中a为正实数,且a≠0)a^(1/n) = 平方根a (其中a为正实数)a^m * a^(-m) = a^0 = 13. 应用指数函数的应用非常广泛,例如:(1)财务增长和投资回报的计算。

(2)物质的衰变和放射性的测量。

(3)自然生长和人口增长的模拟。

(4)科学实验数据的分析。

(5)信号传输和电磁波的分析等。

二、对数函数的性质对数函数是指以某个正实数为底数,使得指数等于给定数的函数。

对数函数的一般形式为:f(x) = loga(x),其中a为底数,x为实数。

1. 定义和图像对数函数的定义域是正实数,值域是全体实数。

对数与指数函数

对数与指数函数

对数与指数函数是数学中常见的两种特殊函数,它们在自然科学、工程学以及金融领域等各个方面都有广泛的应用。

本文将从定义、特点以及应用方面来探讨对数与指数函数。

首先,我们先来了解对数函数。

对数函数是指数函数的反函数。

设a是大于0且不等于1的实数,其中a称为底数。

对于任意实数x,如果a^x=y,那么x叫做以a为底y的对数,记作x=loga(y)。

例如,以10为底10000的对数为4,即log10(10000)=4。

对数函数也可以写作ln(x),其中ln表示自然对数,底数是e(自然常数)。

对数函数有以下特点:首先,底数小于1时,对数函数是递增的;底数大于1时,对数函数是递减的;底数等于1时,对数函数是常数函数。

其次,对数函数有一个重要的性质就是对数函数的定义域是正数集,值域是全体实数集。

接下来,我们来了解指数函数。

指数函数是以指定实数为底数的以e为底的指数函数。

指数函数的一般形式为f(x)=a^x,其中底数a大于0且不等于1。

例如,2^3=8,其中底数为2,指数为3,结果为8。

在指数函数中,底数a决定了函数的特征。

当底数a大于1时,指数函数具有递增特性;当底数a小于1时,指数函数具有递减特性;当底数a等于1时,指数函数为常数函数。

指数函数也有一些重要的特点:首先,指数函数的定义域是全体实数集,值域是正数集。

其次,指数函数具有平移、伸缩和反射的性质。

平移指的是在x轴上移动函数的位置;伸缩指的是函数的纵坐标上下伸缩;反射指的是函数与x轴之间的关系。

对数函数和指数函数在应用中有很多重要的作用。

在自然科学领域,指数函数可以用来描述物体的增长或衰减过程,例如放射性元素的衰变、细胞的增长等。

对数函数可以用来计算难以进行普通运算的乘法和除法,从而简化问题的解决。

在工程学领域,对数函数和指数函数可以用来描述复杂电路中的电流和电压等相关关系。

在金融领域,对数函数和指数函数被广泛应用于计算复利、利润等。

此外,对数函数和指数函数还在图像处理、信号处理、概率统计等领域中发挥着重要作用。

指数函数 幂函数 对数函数比较大小

指数函数 幂函数 对数函数比较大小

指数函数、幂函数和对数函数是高中数学中的重要概念,它们在数学和现实生活中都有着重要的应用。

在本篇文章中,我们将深入探讨这三种函数的性质,以及它们之间的比较大小关系。

通过本文的阅读,你将能够更全面地理解这些函数的特点,并从中获得更深入的数学启发。

1. 指数函数指数函数是数学中常见的一种函数,其一般形式可表示为 y = a^x,其中a为常数且不等于1。

指数函数的特点是随着自变量x的增大,函数值y以指数方式增长或者下降。

指数函数在自然科学、工程技术以及金融领域都有着广泛的应用,例如放射性衰变、人口增长模型等都可以使用指数函数来描述。

在指数函数中,底数a的大小决定了函数的增长速度,当a大于1时,函数呈现增长趋势;当a在0和1之间时,函数呈现下降趋势。

2. 幂函数幂函数是指数函数的一种特殊形式,其一般形式可以表示为y = x^a,其中a为常数。

幂函数的特点是自变量x的次幂影响了函数值y的大小,不同的a值会导致函数曲线的形状发生变化。

当a为正数时,幂函数呈现增长趋势;当a为负数时,幂函数呈现下降趋势。

幂函数在物理学、生物学以及经济学中都有着重要的应用,例如牛顿定律中的物体受力情况、生物种群数量增长模型等都可以用幂函数来描述。

3. 对数函数对数函数是幂函数的逆运算,常见的对数函数有以10为底的常用对数函数和以e为底的自然对数函数。

对数函数的一般形式可以表示为 y= loga(x),其中a为底数。

对数函数的特点是能够将幂函数转化为线性函数,便于进行求解和分析。

对数函数在科学领域、信息论以及计算机科学中有着广泛的应用,例如信噪比的计算、数据压缩算法等都离不开对数函数的运算。

指数函数、幂函数和对数函数各自具有独特的特点和应用,它们在数学领域和现实生活中都扮演着重要的角色。

在比较大小方面,一般来说,指数函数增长速度最快,其次是幂函数,对数函数增长速度最慢。

在实际问题中,我们可以根据具体情况选择合适的函数来进行建模和求解。

指数函数与对数函数的性质证明

指数函数与对数函数的性质证明

指数函数与对数函数的性质证明指数函数与对数函数是数学中常见的两类函数,它们具有许多重要的性质。

本文将就指数函数和对数函数的性质进行证明和解析。

一、指数函数的性质证明1. 指数运算法则:指数运算法则是指对于任意实数a,b和整数m,n,有以下等式成立:a^m * a^n = a^(m+n)(a^m)^n = a^(m*n)(a*b)^n = a^n * b^n证明:对于第一个等式,我们可以将a^m * a^n展开,得到a * a * ... * a * a * a(m个a)* a * a * ... * a * a * a(n个a)。

根据乘法的结合律,我们可以将这些a进行合并,得到a^(m+n)。

因此该等式成立。

对于第二个等式,我们可以将(a^m)^n展开,得到a^m * a^m * ... *a^m * a^m * a^m(n个a^m)。

根据乘法的结合律,我们可以将这些a^m进行合并,得到a^(m*n)。

因此该等式成立。

对于第三个等式,我们可以将(a*b)^n展开,得到(a*b) * (a*b) * ... * (a*b) * (a*b) * (a*b)(n个a*b)。

根据乘法的结合律,我们可以将这些a*b进行合并,得到(a^n) * (b^n)。

因此该等式成立。

2. 指数的负指数和零指数:对于任意实数a(a≠0),有以下等式成立:a^(-m) = 1/(a^m)a^0 = 1证明:对于第一个等式,我们可以将a^(-m)进行展开,得到1/(a^m),而1/a^m等价于1/a * 1/a * ... * 1/a(m个1/a)。

根据乘法的结合律,我们可以将这些1/a进行合并,得到1/(a^m)。

因此该等式成立。

对于第二个等式,任何数的0次方都等于1,即a^0 = 1。

因此该等式成立。

二、对数函数的性质证明1. 对数运算法则:对于任意正数a,b和正整数m,n,有以下等式成立:log_a (a^m * a^n) = log_a (a^(m+n))log_a (a^m) = mlog_a (m * n) = log_a (m) + log_a (n)证明:对于第一个等式,我们可以将log_a (a^m * a^n)进行展开,得到log_a (a^m) + log_a (a^n),而log_a (a^m) + log_a (a^n)等价于m + n,根据对数的定义,我们可以得到等式左边等于右边。

指数与对数函数

指数与对数函数
指数与对数函数
目录
• 指数函数 • 对数函数 • 指数与对数函数之间的关系 • 指数和对数函数的运算性质 • 指数和对数函数在实际生活中的应用 • 指数和对数函数的综合应用
01
CATALOGUE
指数函数
定义与性质
定义
指数函数是一种数学函数,表示 为 y = a^x (a > 0, a ≠ 1),其中 a 是底数,x 是自变量,y 是因变 量。
对数的除法性质
$log_afrac{m}{n} = log_a m - log_a n$
对数的指数公式
$log_a a^b = b$
指数函数与对数函数的运算性质比较
01
幂运算法则与对数运算法则
指数函数中的幂运算法则与对数函数中的对数运算法则具有相反的运算
方向,但它们在各自领域内具有相似的应用。
0Hale Waihona Puke 0305CATALOGUE
指数和对数函数在实际生活中的应用
在金融领域的应用
复利计算
保险精算
指数函数用于计算复利,帮助投资者 了解投资增长情况。
指数函数和对数函数在保险精算中用 于计算生命表和风险评估。
风险评估
对数函数用于评估金融风险,例如股 票价格的对数变化用于计算波动率。
在物理科学中的应用
放射性衰变
加密算法
指数函数和对数函数在加密算法 中用于实现公钥和私钥加密,例
如RSA算法。
06
CATALOGUE
指数和对数函数的综合应用
利用指数和对数函数解决实际问题
计算复利
利用指数函数计算存款在固定利率下的未来值或 现值,是金融领域常见的应用。
人口增长预测
通过指数函数模拟人口随时间增长的情况,为政 策制定提供依据。

指数函数对数函数和幂函数知识点归纳

指数函数对数函数和幂函数知识点归纳

精心整理一、 幂函数1、幂的有关概念正整数指数幂:...()n na a a a n N =∈零指数幂:01(0)a a =≠ 负整数指数幂:1(0,)p p a a p N a -=≠∈分数指数幂:正分数指数幂的意义是:(0,,,1)mn m n a a a m n N n =>∈>且 负分数指数幂的意义是:11(0,,,1)mn mnm n a a m n N n a a -==>∈>且2、幂函数的定义 一般地,函数ay x =叫做幂函数,其中x 是自变量,a 是常数(我们只讨论a 是有理数的情况).3、幂函数的图象 幂函数a y x =当11,,1,2,332a =时的图象见左图;当12,1,2a =---时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:a y x =有下列性质:(1)0a >时:①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数.(2)0a <时:1234如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =⇔=(0a >,1a ≠,0N >).1.对数的性质()log log log a a a MN M N =+.log log log a a a M M N N=-. log log n a a M n M =.(00M N >>,,0a >,1a ≠)b mn b a n a m log log =(a,b>0且均不为1)2.换底公式:log log log m a m N N a=(a>0,a ?1;0,1m m >≠) 常用的推论:(1)log log 1a b b a ⨯=;1log log log =⋅⋅a c b c b a .(2)log log m n a a n b b m =(a 、0b >且均不为1).1log log 1N N a a m n nm==. (3)01log =,1log =a (4)对数恒等式N a N a log .。

指数函数对数函数公式

指数函数对数函数公式

指数函数对数函数公式
指数函数和对数函数是高中数学中比较重要的概念,它们有着紧密
的关系,下面我们将详细介绍它们的相关知识。

一、指数函数
指数函数是一种以确定底数为底的幂次函数,其定义域可以是实数集,也可以是复数集,其一般形式可以表示为:
y = a^x
其中,a为底数,x为幂次,y为函数值。

指数函数的图像一般呈现出指数增长的趋势,当底数a大于1时,函数值随着幂次x的增大而成指数增长,当底数a介于0和1之间时,函数值随着幂次x的增大而成指数衰减。

二、对数函数
对数函数是指数函数的反函数,其定义域为正实数集,其一般形式可
以表示为:
y = loga(x)
其中,a为底数,x为函数值,y为幂次。

对数函数的图像通常为单调递增的曲线,当底数a大于1时,函数值随着自变量x的增大而增大,当底数a介于0和1之间时,函数值随着自变量x的增大而减小。

三、指数函数与对数函数的关系
对数函数是指数函数的反函数,因此指数函数和对数函数是互逆的。

对于底数为a的指数函数和以a为底的对数函数,它们之间存在以下等式:
a^(loga(x)) = x
loga(a^x) = x
这些等式将指数函数和对数函数联系起来,可以更方便地进行计算。

总之,指数函数和对数函数是高中数学中的重要概念,其关系密切,相互补充。

通过学习这些知识,我们可以更好地理解数学中的许多问题。

高中数学-指数函数对数函数知识点

高中数学-指数函数对数函数知识点

高中数学-指数函数对数函数知识点指数函数、对数函数知识点知识点内容:1.整数和有理指数幂的运算:当a≠0时,aⁿ×aᵐ=aⁿ⁺ᵐ;aⁿ÷aᵐ=aⁿ⁻ᵐ;(aⁿ)ᵐ=aⁿᵐ2.指数函数y=aᵐ⁄ⁿ(a>0.m,n∈N*,且n>1)的性质:①解析式:y=aᵐ⁄ⁿ(a>0.且a≠1)②图象:过点(0,1),在a>1时,在R上是增函数,在0<a<1时,在R上是减函数③单调性:在定义域R上当a>1时,在R上是增函数当0<a<1时,在R上是减函数④极值:在R上无极值(最大、最小值)⑤奇偶性:非奇非偶函数典型题:1.把0.9017x=0.5化为对数式为log0.9017(0.5)=x2.把lgx=0.35化为指数式为x=10⁰.³⁵3.计算:2×6⁴³=6⁴⁴⁹4.求解:(2+1)⁻¹+(2-1)⁻²sin45°=0.5915.指数函数y=aᵐ⁄ⁿ(a>0.m,n∈N*,且n>1)的图象过点(3,π),求f(0)、f(1)、f(-3)的值f(0)=a⁰⁄ⁿ=1f(1)=aᵐ⁄ⁿ=a³⁄ⁿf(-3)=a⁻⁹⁄ⁿ6.求下列函数的定义域:① y=2-x²,定义域为R② y=1⁄(4x-5)-2,定义域为R-{5⁄4}7.比较下列各组数的大小:① 1.2<2.5<1.2+0.5,0.4-0.1<0.4-0.2② 0.3=0.4=0.4=0.3,<2112③ (2³)²<(3²)³<(2²)³8.求函数y=(x²-6x+17)⁄2的最大值,最大值为159.函数y=(a-2)x在(-∞,+∞)上是减函数,则a的取值范围为a>310.函数y=(a²-1)x在(-∞,+∞)上是减函数,则a的取值范围为|a|>1x其中a为底数,x为真数,y为对数。

对数函数与指数函数的应用

对数函数与指数函数的应用

对数函数与指数函数的应用随着数学的发展,对数函数与指数函数的应用越来越广泛。

它们在不同领域中扮演着重要的角色,帮助我们解决各种实际问题。

本文将探讨对数函数与指数函数的应用,以及它们在生活和科学中的重要性。

一、对数函数的应用对数函数是指数函数的逆运算,这意味着对数函数可以解决指数函数中的问题。

对数函数在许多方面都有广泛的应用。

1. 金融领域对数函数在金融领域中具有重要的应用。

例如,利息的计算和复利的增长可以通过对数函数来解决。

投资者可以使用对数函数来计算投资的回报率和未来价值,以帮助他们做出更明智的决策。

2. 科学领域对数函数在科学领域中也非常常见。

在物理学中,对数函数可以用来描述指数增长或衰减。

例如,放射性元素的衰变过程可以通过对数函数来描述。

在生态学中,对数函数可以用来描述物种的增长和减少。

对数函数又可以在生物学中用来表示声音的强度和亮度的变化。

3. 数据分析对数函数在数据分析中也发挥着关键作用。

当数据呈指数增长时,使用对数函数可以将这种增长变为线性增长。

这可以帮助我们更好地理解和分析数据。

对数函数在统计学中也被广泛使用,如正态分布的计算和图像的展示等。

二、指数函数的应用指数函数是以常数为底数的幂函数,也是一种常见的数学函数。

它在各个领域中具有重要的应用。

1. 经济领域指数函数在经济领域中具有广泛的应用。

例如,经济增长模型可以使用指数函数来描述。

指数函数还可以用来计算货币的贬值和股票的增长。

许多经济指标,如国内生产总值(GDP)和消费指数,也可以使用指数函数来计算和预测。

2. 生物学领域指数函数在生物学中也有重要的应用。

生物学中的许多过程,如细胞分裂和人口增长,都可以用指数函数来描述。

通过使用指数函数,我们可以更好地理解和研究生物系统。

3. 工程领域指数函数在工程领域中也被广泛使用。

例如,指数函数可以用来描述电路中的电压和电流的变化。

在物理学中,指数函数可以用来描述波动和振动的行为。

总结:对数函数和指数函数在现实生活和科学研究中都有广泛的应用。

指数_对数_幂函数必备知识点

指数_对数_幂函数必备知识点

指数_对数_幂函数必备知识点指数、对数和幂函数是数学中非常重要的概念和工具。

它们在各个领域中都有广泛的应用,包括科学、工程和经济等方面。

在这篇文章中,我们将详细介绍指数、对数和幂函数的必备知识点。

1. 指数函数(Exponential Functions)a.当a>1时,指数函数是递增函数,随着x的增加,函数值也增加;b.当0<a<1时,指数函数是递减函数,随着x的增加,函数值减小;c.当x=0时,f(x)=a^0=1;d.当x<0时,f(x)=a^x=1/a^(-x)。

指数函数在各个领域的应用非常广泛,比如在物理学中描述指数增长、衰变等现象,在经济学中描述复利现象等。

2. 对数函数(Logarithmic Functions)对数函数是指数函数的逆运算。

对数函数可以表示为f(x) =loga(x),其中a为底数,x为正实数。

常见的对数函数有以10为底数的常用对数函数,即f(x) = log10(x) = lg(x),以及以e为底数的自然对数函数,即f(x) = ln(x)。

对数函数具有以下特点:a.对数函数是递增函数,随着x的增加,函数值也增加;b. 当x=a时,f(a) = loga(a) = 1;c. 当x=1时,f(1) = loga(1) = 0;d.当a>1时,对数函数在定义域内的所有正实数上都有定义;e.当0<a<1时,对数函数只在定义域内的正实数中的一部分上有定义。

对数函数在数学和科学中有广泛的应用。

例如,对数函数可以用来解决指数方程、求解复利问题等。

3. 幂函数(Power Functions)幂函数是以x为底数,并以常数为指数的函数形式。

幂函数可以表示为f(x)=x^k,其中k为常数。

幂函数具有以下特点:a.当k>0时,幂函数是增函数,随着x的增加,函数值也增加;b.当k<0时,幂函数是减函数,随着x的增加,函数值减小;c.当k=0时,幂函数为常数函数,函数值始终为1幂函数在各个领域中都有广泛的应用。

指数函数与对数函数

指数函数与对数函数

指数函数指数函数程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7)函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)(8)显然指数函数无界。

(9)指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

(11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。

底数的平移:对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

即“上加下减,左加右减”底数与指数函数图像:指数函数(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。

幂的大小比较:比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。

比较两个幂的大小时,除了上述一般方法之外,还应注意:(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。

例如:y1=3^4,y2=3^5,因为3大于1所以函数单调递增(即x的值越大,对应的y值越大),因为5大于4,所以y2大于y1.(2)对于底数不同,指数相同的两个幂的大小比较,可指数函数以利用指数函数图像的变化规律来判断。

数学对数函数与指数函数知识点

数学对数函数与指数函数知识点

数学对数函数与指数函数知识点说起数学里的对数函数和指数函数,那可真是让我又爱又恨。

还记得高中的时候,初次接触这俩“家伙”,我整个人都懵了。

老师在讲台上滔滔不绝,我在下面云里雾里。

先来说说指数函数吧。

就拿一个最简单的例子,y = 2^x 。

这看起来好像挺简单,不就是底数不变,指数变化嘛。

但当真正深入去研究它的性质、图像的时候,那可就复杂了。

比如说,指数函数的底数大于 1 时,函数是单调递增的;底数在 0到 1 之间时,函数是单调递减的。

为了搞清楚这个,我可是做了无数道题目。

有一次,我做一道关于指数函数单调性的题目,那道题是这样的:已知函数 f(x) = 3^(2x 1) ,求它在区间 0, +∞)上的单调性。

我一开始想当然地认为,底数 3 大于 1 ,那肯定是单调递增啊。

结果一对答案,错得一塌糊涂。

后来我仔细一看,原来是要先把函数变形为 f(x) = 3^2(x 1/2) ,这样就能清楚地看出,指数 2(x 1/2) 在区间 0,+∞)上是单调递增的,所以整个函数也是单调递增的。

当时我那个懊悔呀,就怪自己没有仔细分析。

再说说对数函数。

对数函数 y = log₂x ,这当中的学问也不少。

就说对数的定义吧,我刚开始总是搞混,什么真数、底数、对数,感觉脑袋里一团乱麻。

有一次做作业,遇到一个求对数的值的题目,我愣是想了半天,最后还是做错了。

老师讲的时候我才恍然大悟,原来是自己对数的运算法则没掌握好。

还有一次,老师在课堂上讲了一道特别复杂的对数函数和指数函数综合的题目。

题目大概是这样的:已知函数 f(x) = log₂(2^x 1) ,求函数的定义域。

我看着题目,心里直发怵。

老师在黑板上一步一步地分析,先让 2^x 1 大于 0 ,然后解这个不等式。

我当时努力地跟着老师的思路,手不停地在笔记本上记着,眼睛都不敢眨一下,生怕错过了哪个关键步骤。

最后终于搞明白了,那种成就感,简直无法形容。

为了学好这两个函数,我可是下了不少功夫。

对数函数 指数函数

对数函数 指数函数

对数函数指数函数数学中有两种主要的计算函数:指数函数和对数函数。

这两个函数的定义和特性有很多相同之处,它们是关于数学和科学专业领域中最重要的数学概念之一。

指数函数指的是可以将不同的指数应用到大量的数据上的一种函数,它的定义为:f(x) = ax,其中x是函数的变量,a是指数函数的基数。

由此可见,a是定义指数函数的一个重要参数,当a增大时,函数值就会增加很多,反之,当a减小时,函数值就会减少很多。

因为指数函数是线性变换的一种,它是处理大规模数据的快速方法有着重要的应用。

另一方面,对数函数指的是可以让数据产生反比例变化的一种函数,定义为:f(x) = logax,其中x是函数的变量,a是指数函数的基数。

由上面的定义可以看出,a对对数函数也是很重要的,同样的,当a增大时,函数值就会减少很多,反之,当a减小时,函数值就会增加很多。

指数函数和对数函数有一个重要的相互关系,只要有一个函数,另一个就可以被逆推出来,例如:y=ax (a指数函数),那么对数函数可以求出:x=logay。

以此类推,只要拿到一个函数,另一个就可以求出来。

指数函数和对数函数也有一些重要的应用。

在统计学中,它们主要用来处理数据的分布情况,例如:使用指数函数可以快速的获取大量样本的统计情况,反之,使用对数函数可以快速的得出比例关系。

此外,指数函数和对数函数还有一些重要的应用,比如在金融数学中可以用来研究投资收益,其中对数函数会有一些特殊的用途,例如:可以用它来计算期权价格,模拟股票价格的涨跌,监测数据间的联系,以及计算复利收益率等等。

另外,在物理学、机械工程等方面,指数函数和对数函数也都有一些重要的用途。

例如:在物理学中,可以使用对数函数来计算电容的容量;在机械工程中可以使用指数函数来计算机械力学中的某些特殊参量。

总而言之,指数函数和对数函数在抽象数学,统计学,金融学,物理学,机械工程等多个专业领域都有着重要的应用价值,以及研究和应用的价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(827)23+-33729
64
的值为( ) A .0 B.89 C.43 D.29 2.(2013·北京模拟)在同一坐标系中,函数y =2x 与y =⎝ ⎛⎭
⎪⎫12x 的图象之间的关系是( ) A .关于y 轴对称 B .关于x 轴对称
C .关于原点对称
D .关于直线y =x 对称
3.(2012·梅州高三质检)已知函数f (x )=a 2-x (a >0且a ≠1),当x >2时,f (x )>1,
则f (x )在R 上( )
A .是增函数
B .是减函数
C .当x >2时是增函数,x <2时是减函数
D .当x >2时是减函数,x <2时是增函数
4.已知实数a ,b 满足等式(12)a =(13
)b ,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .
其中不可能成立的关系式有( )
A .1个
B .2个
C .3个
D .4个
5.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围是( )
A .(-1,+∞)
B .(-∞,1)
C .(-1,1)
D .(0,2)
6.(2013·滨州模拟)设f (x )是定义在R 上的函数,满足条件y =f (x +1)是偶函数,且
当x ≥1时,f (x )=⎝ ⎛⎭⎪⎫12x -1,则f ⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭
⎪⎫13的大小关系是( ) A .f ⎝ ⎛⎭⎪⎫23>f ⎝ ⎛⎭⎪⎫32>f ⎝ ⎛⎭⎪⎫13 B .f ⎝ ⎛⎭⎪⎫23>f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭
⎪⎫32 C .f ⎝ ⎛⎭⎪⎫32>f ⎝ ⎛⎭⎪⎫23>f ⎝ ⎛⎭⎪⎫13 D .f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭⎪⎫32>f ⎝ ⎛⎭
⎪⎫23 7.(2013·潍坊模拟)指数函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值与最小值的差为a 2
,则a =________. 8.函数y =lg(3-4x +x 2)的定义域为M ,当x ∈M 时,求f (x )=2x +2-3×4x 的最大值
为________.
9.给出下列结论:
①当a <0时,(a 2)32=a 3;
②n a n =|a |(n >1,n ∈N *,n 为偶数);
③函数f (x )=(x -2)12-(3x -7)0的定义域是⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫x ⎪⎪⎪ x ≥2且x ≠73; ④若2x =16,3y =127
,则x +y =7. 其中正确的命题序号为________.
10.计算
11.设函数f (x )=a ·2x +a -2
2x +1为奇函数.求:
(1)实数a 的值;
(2)用定义法判断f (x )在其定义域上的单调性.
12.已知函数f (x )=2x -12
|x |. (1)若f (x )=2,求x 的值;
(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.
13.
(1)求常数c 的值;
(2)解不等式f (x )>28+1.
1.函数y =2-log 2x 的定义域是( )
A .(4,+∞)
B .[4,+∞)
C .(0,4]
D .(0,4)
2.(2013·大连模拟)函数f (x )=log 2x 2的图象的大致形状是( )
3.(2012·天津高考)已知a =21.2,b =⎝ ⎛⎭
⎪⎫12-0.2,c =2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b
C .b <a <c
D .b <c <a
4.设2a =5b =m ,且1a +1b
=2,则m =( ) A.10 B .10 C .20 D .100
5.(2012·全国新课标高考)当0<x ≤12
时,4x <log a x ,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭
⎪⎫22,1 C .(1,2) D .(2,2)
6.(2012·湖南高考)已知两条直线l 1:y =m 和l 2:y =82m +1
(m >0),l 1与函数y =|log 2x |的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于C ,D .记线段
AC 和BD 在x 轴上的投影长度分别为a ,b ,当m 变化时,b a
的最小值为( ) A .16 2 B .8 2 C .8 4 D .4 4
7.已知log 23=a ,log 37=b ,则用a ,b 表示log 1456为________.
8.(2012·江西高考改编)若函数f (x )=⎩
⎪⎨⎪⎧
x 2+1,x ≤1lg x ,x >1,则f (f (10))=________. 9.(2012·杭州月考)已知函数f (x )=ln x ,g (x )=lg x ,h (x )=log 3x ,直线y =a (a <0)与这三个函数的交点的横坐标分别是x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是 .
10.已知f (x )=2+log 3x ,x ∈[1,9],求y =[f (x )]2+f (x 2)的最大值及y 取最大值时x
的值.
11.已知f (x )=log 4(4x -1) (1)求f (x )的定义域;
(2)讨论f (x )的单调性;
(3)求f (x )在区间⎣⎢⎡⎦
⎥⎤12,2上的值域. 12.已知f (x )=log a x ,g (x )=2log a (2x +t -2)(a >0,a ≠1,t ∈R ).
(1)当t =4,x ∈[1,2],且F (x )=g (x )-f (x )有最小值2时,求a 的值;
(2)当0<a <1,x ∈[1,2]时,有f (x )≥g (x )恒成立,求实数t 的取值范围. 13.(2013·广东模拟)若函数y =lg(3-4x +x 2
)的定义域为M .当x ∈M 时,求 f (x )=2x +2-3×4x 的最值及相应的x 的值.。

相关文档
最新文档