基于IGBT的变频电源设计论文新任务书 (2)

合集下载

IGBT特性研究及驱动缓冲电路设计——毕业论文

IGBT特性研究及驱动缓冲电路设计——毕业论文

武汉理工大学本科生毕业设计(论文)任务书学生姓名专业班级自动化指导教师工作单位自动化学院设计(论文)题目: IGBT特性研究及驱动、缓冲电路设计设计(论文)主要内容:了解和熟悉目前国内外IGBT产品现状和技术现状,分析IGBT结构、工作原理以及工作特性。

研究和设计多种IGBT驱动电路、保护电路,并对比分析。

针对具体一款IGBT FF600R06ME3设计其驱动电路及缓冲电路。

要求完成的主要任务:1.了解研究IGBT的目的以及意义,产品和技术的发展现状;2.IGBT驱动电路的设计;3.IGBT保护、缓冲电路的设计;4. 针对FF600R06ME3 IGBT设计其驱动电路,要求正向开通电压15V,反向截止电压-15V,工作频率≤20K,可驱动IGBT承受导通电流600A,耐压600V。

5.撰写毕业设计论文,字数不低于15000左右;6.完成外文文献翻译2万字符(其中汉字5000字)。

必读参考资料:[1] 王兆安.电力电子技术[m].北京:机械工业出版社,2008.[2] 周志敏.IGBT和IPM及其应用电路[m].北京:人民邮电出版社,2006.[3] 王飞军.IGBT关断特性分析及设计优化问题[D].浙江大学微电子与半导体系,1990.[4] 陈去非.绝缘栅双极晶体管(IGBT)的研究—静态、动态和终端模型及优化设计[D].浙江大学:电力电子技术,1993.[5] 李岳生.IGBT开关磁阻电动机调速系统研究[D].上海工业大学:工业自动化,1994.指导教师签名:系主任签名:院长签名(章):武汉理工大学本科生毕业设计(论文)开题报告目录1.了解研究IGBT的目的以及意义,产品和技术的发展现状; (I)摘要 (1)ABSTRACT (2)1 绪论 (1)引言 (1)课题研究意义 (2)研究现状 (3)1.3.1 产品现状 (3)1.3.2 技术现状 (4)主要研究内容 (5)2 IGBT工作原理及特性研究 (6)IGBT的定义 (6)IGBT的结构和工作原理 (7)2.2.1 IGBT的结构 (7)2.2.2 IGBT的工作原理 (7)IGBT工作特性 (9)2.3.1 静态特性 (9)2.3.2 动态特性 (10)2.3.3 IGBT的开通与关断 (11)3 IGBT驱动及缓冲 (12)IGBT驱动电路的选择 (12)门极驱动的要求及电路设计 (14)3.2.1 栅极驱动电压 (14)3.2.2 对电源的要求 (14)3.2.3 对驱动波形的要求 (15)3.2.4 对驱动功率的要求 (15)3.2.5 栅极电阻 (15)3.2.6 栅极布线要求 (15)3.2.7 隔离问题 (16)典型的门极驱动电路介绍 (16)3.3.1 脉冲变压器驱动电路 (16)3.3.2 光耦隔离驱动电路 (17)3.3.3 驱动模块构成的驱动电路 (17)大功率IGBT驱动保护电路的分类 (18)3.4.1 单一功能型 (19)3.4.2 多功能型 (19)3.4.3 全功能型 (21)大功率IGBT驱动保护电路的功能 (22)3.5.1 隔离功能 (23)3.5.2 死区隔离功能 (23)3.5.3 驱动功率的缓冲功能 (24)针对FF600R06ME3这款IGBT设计的驱动电路 (24)4 IGBT保护电路的设计 (26)IGBT栅极的保护 (26)集电极与发射极间的过压保护 (26)4.2.1 直流过电压 (27)4.2.2 浪涌电压的保护 (27)集电极电流过流保护 (28)过热保护 (29)5 全文总结及展望 (30)致谢 (31)参考文献 (32)摘要全文首先对IGBT的产生和发展过程做了一个大致的介绍,重点突出了IGBT 发展的路线,智能化、模块化成为IGBT发展热点。

单片机毕业论文-基于IGBT的变频电源设计

单片机毕业论文-基于IGBT的变频电源设计

毕业设计(论文)任务书教研室(学科组)主任签字:毕业设计开题报告基于IGBT的变频电源设计系别:班级:学生姓名:指导教师:20 年月日附页:开题报告基于IGBT的变频电源设计一.选题依据:电源设备广泛应用于科学研究、经济建设、国防设施及人民生活等各个方面,是电子设备和机电设备的基础,它与国民经济各个部门相关,在工农业生产中应用的最为广泛。

可以说,凡是涉及电子和电工技术的一切领域都要用到电源设备,它不仅提供优质电能,还对科学技术的发展产生巨大的影响。

所有用电设备对供电电压、频率、功率都有一定的要求。

如一般的电子设备要求电网220V电压的变化在±10%以内频率50Hz供电系统的功率要足够的大,如果达不到这个要求,设备就不能保证正常工作,甚至可能损坏。

一些精密电子仪器对电压稳定、频率、功率的要求更为严格。

变频电源正是为满足负载的稳压、频率、功率需求而产生的,其功能是在输入电压或负载在一定范围内变化时自动保持输出电压、功率基本不变并且频率不随负载的性质而变化。

变频电源已形成了一个独立的技术领域和一个巨大的市场,在工业、科研、国防等各个方面得到越来越广泛的应用。

现在,电源技术的发展使得用新型、高效的开关电源取代传统电源已成为必然。

传统的稳压电源一般都是线性电源,这种电源效率低、体积大。

随着技术的发展,开关电源的开关频率越来越高,使得电源的小型、轻量化成为可能。

电源工作在开关状态,从原理上讲是低损耗的。

本课题设计的基于IGBT的变频电源设计就是用新型的开关电源取代传统电源,其特点就是效率高、体积小、保护完善等。

变频电源的分类:●根据输出波形方式,可分为正弦波、方波、三角波等。

●根据输出功率大小方式,可分为大功率、中功率、小功率等。

二.变频电源组成:电源功能及整体结构市电单相电压(220V)经整流滤波后供给逆变电路,IGBT在驱动信号作用下将整流滤波后的直流电变成一定电压、一定频率的交流电,经隔离滤波后供给负载。

基于IGBT直流斩波电源的设计..

基于IGBT直流斩波电源的设计..
(4)二极管其承受最大反压100V,其承受最大电流趋近于5A,考虑2倍裕量,故需选择 , 的二极管。
(5)电感由上面所选的电阻20欧姆,根据欧姆定律:
(3)
当Uo=80V时,Iomax=4A;
当Uo=50V时,Iomin=2.5A;
根据电感电流连续时电感量临界值条件:
(4)
为了保证负载最小电流电路能够连续,取Io=2.5A来算,可得L=0.125mH,所以只要所取电感L>0.125mH,取L=1mH。
Abstract:Use DC chopper circuit is changed to a different stable DC voltage or adjustable DC voltage. It has very important applications in the power of design. Chopper generally rely on full-controlled device to perform its function. Here I design is based on the step-down chopper circuit IGBT. IGBT is a new type of power semiconductor field control of an automatic shut-off device, set the power MOSFET high-speed performance with low resistance bipolar devices in one, its features are: high input impedance, low control power, control simple circuit withstand current and large. IGBT as an important mainstream high-power electronic devices, has been widely used in household appliances, transportation, power engineering, renewable energy and smart grid category.

基于IGBT的变频电源设计

基于IGBT的变频电源设计

107中国航班科技与发展Science and Technology and Development CHINA FLIGHTS基于IGBT 的变频电源设计王超超 崔茂书 秦世鑫 徐小鹏 上官伟男|中北大学朔州校区摘要:电源在人类的世界里扮演着极其重要的角色,有着特殊而又重要的地位。

不管是在乡村还是在城市,不管是在工业生产还是居家生活,所有的用电设备都离不开电源。

变频电源的发展,不仅满足了不同电子设备不同的用电需求,而且节能效益显著,广泛应用于现代工业化发展中。

硬件开关器件的进步发展,成本的降低以及工业化生产推动了变频电源硬件方面技术的进步:软件控制技术一步步的成熟使得变频电源能够平滑且稳定的输出交流正弦波。

变频电源与理想电源甚为接近,满足用电各个方面的需求。

对变频电源的认识,研究与发展有着实用价值与意义。

关键词:变频电源;SPWM.IGBT;逆变;单片机1 课题目的及意义电源是向电子设备提供功率的装置,称之为电源供应器,它提供用电器中所有部件所需要的电能。

电源功率的大小,电流和电压稳定与否,将会直接影响电器使用的安全工作性能和使用时间的长短。

在我们日常的生活中,电源是一种生产量十分大,通用以及实用性能非常广泛以及随处可见可用的电子产品,实验室的研究、军事国防力量的科技研究、工业化的生产、我们日常生活中的教育教学以及人类的衣食住行都要使用电源,其重要性是无可取代的,其中常见的电源有两类:(1)交流稳压电源:可以提供一个稳定的电压和频率的交流电源,其中包含参数调整谐振型、自耦变比调整型以及开关型交流稳压电源;(2)直流稳压电源:直流稳压电源中涵盖了化学性能的电源、线性比较稳定的电源和开关型的稳定电源。

化学电源就是我们平常生活中所用到的铅酸蓄电池,锂离子电池等,线性稳定电源则是通过调整管之间的电压降实现电压的输出,开关直流型稳压电源则不工作在工频而是在几千赫兹到几兆赫兹之间,功能管工作在饱和区和截止区,即为开和关的状态,因此称为开关电源。

IGBT课程设计论文

IGBT课程设计论文

摘要IGBT(Insulated Gate Bipolar Transistor),也称为绝缘栅双极晶体管,是一种复合了功率场效应管和电力晶体管的优点而产生的一种新型复合器件,它同时具有MOSFET的高速开关及电压驱动特性和双极晶体管的低饱和电压特性及易实现较大电流的能力,既具有输入阻抗高、工作速度快、热稳定性好和驱动电路简单的优点,又具有通态电压低、耐压高和承受电流大的优点,这使得IGBT成为近年来电力电子领域中尤为瞩目的电力电子驱动器件,并且得到越来越广泛的应用。

本文主要介绍了IGBT的结构特性、工作原理和驱动电路,同时简要概括了IGBT模块的选择方法和保护措施等,最后对IGBT的实际典型应用进行了分析介绍,通过对IGBT 的学习,来探讨IGBT在当代电力电子领域的广泛应用和发展前景。

关键词:IGBT;绝缘栅双极晶体管;MOSFET;驱动电路;电力电子驱动器件目录摘要 (I)1 前言 (1)2 IGBT的发展历程 (1)3 IGBT的结构特点和工作原理 (2)4 IGBT的驱动电路和保护 (4)4.1 IGBT对驱动电路的要求 (4)4.2 IGBT实用的驱动电路 (5)4.3 IGBT的保护措施 (8)5 IGBT的工作特性 (11)6 IGBT模块的选择和测试 (12)7 IGBT的应用实例 (15)7.1断路器永磁机构控制器的驱动电路 (15)7.2 变频调速系统 (16)7.3大功率商用电磁炉 (17)8 结论 (17)参考文献 (19)1 前言近年来,新型功率开关器件IGBT已逐渐被人们所认识,IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 与以前的各种电力电子器件相比,IGBI、具有以下特点:高输入阻抗,可采用通用低成本的驱动线路;高速开关特性;导通状态低损耗。

IGBT兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。

基于IGBT的电压型逆变器辅助开关电源的设计

基于IGBT的电压型逆变器辅助开关电源的设计
要求 。
下 面 以逆变 电 源 控 制 回路 供 电 的 开 关 电 源 为 例 ,
介 绍反 激 式 开 关 电 源 的 设 计 方 法 。 该 开 关 电 源 已通 过
检 验并 投 运 。
图 2原边线 圈使用场效应 管的反激半桥 变换器 线路
体 技 术要 求为 :① 输入 电压
一 2 0X ( ± 1 ) ; 2 1 5 V
电 源 技 术
基于 IB G T的 电压 型 逆 变 器 辅 助 开 关 电源 的 设计
邱 进 , 陈轩 恕 ,刘 飞 ,张 冰 ,何 妍
( 网武汉 高压研 究 院 ,湖 北 武汉 国 4 07 ) 3 0 4
[ 要] 介 绍 一 种 实 用 的 电压 型 逆 变 器 辅 助 开 关 电 源 的 工 作 原 理 和 设 计 方 法 。 实验 证 明 , 该 开 关 电 源 工 作 稳 摘
3 3 变 压 器 的 设 计 .
与传 统 线 性 变 压 器 相 比 , 高 频 变 压 器 具 有 体 积
小 、重量 轻 的 优 点 。现 就 本 装 置 中 高 频 变 压 器 的 设 计
说 明如下 。设 计 流程 如 图 3所 示 。 对 于高 频 变 压 器 而 言 , 磁 心 的选 择 尤 为 重 要 。通 常 是 ,高 磁 通 密 度 ,低 磁 通 损 耗 。高 的 居 里 温 度 和 高 渗 透性 是 衡 量 磁 心 好 坏 的 主 要 技 术 指 标 。 通 常 选 用 R2 KB铁 氧 体 材料 制 成 的 E E型 铁 氧 体磁 心 ,其 具 有 品
不 。
电容体 积 减小 ,但 开关 损耗 增 高 ,热 量 增 大 ,散 热 器 体
积 加 大 ;③ 6 输 出 为 :5 4 组 V/ A, 1 V/ A、一 1 V/ 2 2 2 05 . A,3组 1 v/ . A、一 9 0 5 5 o5 V/ . A;④ 输 出纹 波 和 噪

毕业设计 基于IGBT的大功率开关电源设计

毕业设计 基于IGBT的大功率开关电源设计

1 前言电源是各类电子设备的重要组成部分,没有一部高质量的电源,难以保证电子设备的正常工作,由于高频开关电源在重量、体积和效率等方面是线性电源无可比拟,因此在许多领域中得到广泛应用。

线性电源和开关电源各有自己的特点,线性电源的特点是稳定性好、可靠性高、输出电压精度高、输出纹波电压小。

它的不足之处是要求采用工频变压器和滤波器,它们的重量和体积都很大,并且调整管的功耗较大,使得电源的效率大大降低。

相对于线性电源来说,开关电源具有效率高,可靠性和稳定性较好,体积小,重量轻的优点,它对供电电网电压的波动不敏感,在电网电压波动较大的情况下,仍能维持较稳定的输出,因此,开关电源更能满足现代电子设备的要求。

近些年来,由于新型功率器件和开关集成稳压器的出现,以及电力电子变换技术的进步,使开关电源又有了长足发展。

绝缘栅双极型晶体管IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,因此,可以把其看作是MOS输入的达林顿管。

它融和了这两种器件的优点,既具有MOSFET器件驱动简单和快速的优点,又具有双极型器件容量大的优点,因而在现代电力电子技术中得到了越来越广泛的应用。

本系统采用门极可关断功率全控式电力电子器件IGBT,改变其负载两端的直流平均电压的调制方法采用脉冲调宽的方式,即主开关通断的周期保持不变,而每次通电时间可变。

由于IGBT工作在高频与高电压、大电流的条件下,使得它容易损坏,另外,电源作为系统的前级,因为受电网波动、雷击等原因的影响使得它所承受的应力更大,故IGBT 的可靠性直接关系到电源的可靠性。

因而对IGBT的保护设计是电源设计时需要重点考虑的一个环节。

本次设计采用富士公司的EXB841驱动芯片,利用其单电源,模块化,过流检测,保护软关断等优点,通过单片机控制实现大功率开关电源电路的设计。

2.1 方案论述2.1.1方案一图2.1 开关电源电路框图交流电压经过EMI滤波及整流滤波后,得到直流电压加到半桥变换器上,用TLP250去驱动功率IGBT管。

基于IGBT与实时电能监测技术的通用变频器设计

基于IGBT与实时电能监测技术的通用变频器设计

基于IGBT与实时电能监测技术的通用变频器设计本文研究了一种具备实时电能监测功能的低成本通用变频器。

变频控制部分的控制核心采用HT46R232单片机,逆变电路元件采用了IGBT大功率器件,SPWM波形生成算法采用等效面积算法;电能监测部分采用互感器进行电流采样,ATT7022B单片机进行功率计算,MSP430F194单片机作为核心控制部分。

实验结果表明,该变频器在原有的传统变频器基础上可以实时监测电量消耗,并且操作简易、工作可靠、运行安全稳定、数据读取准确,可广泛应用于家用电器和工业设备中。

标签:电能监测;变频;HT46R232;ATT7022B;MSP430F194;IGBT;等效面积算法0 引言国家近期出台了促进节能服务产业发展的相关政策,对企业实施节能改造给予支持,切实加强用能管理,加强对各地区高耗能行业用电量高耗能产品产量等情况的跟踪监测,对能源消费和高耗能产业增长过快的地区合理控制能源供应,切实改变无节制供应能源、使用能源的现象。

为了响应国家绿色中国、节能减排政策号召,创造低碳生活,帮助用户实时监测用电量,本文在分析了变频器基本原理的基础上,设计了一种以HT46R232单片机为控制核心并且能对电能消耗量实时显示的通用变频器。

1 变频器整体构造变频器是指将频率、电压不可控的工频电源在电力半导体器件的通断作用下变换为频率可控的交流电源。

采用交-直-交方式,先把工频交流电源通过整流器转换成直流电源,再把直流电源转换成可控频率、电压的交流电源来供给电动机。

电能监测部分采集用电器的电压、电流、幅值及相位角,进行功率计算,并通过单片机控制和LED进行数据存储和显示。

基于以上原理,本文设计的变频器可分为两部分,第一部分为变频控制部分,第二部分为电能监测部分,其系统的总体设计如图 1 所示。

下面,将分两部分对本设计进行阐述。

2 电能监测部分电能测量部分主要由数据采集模块、功率计量模块、核心控制模块组成。

IGBT升压斩波电路的设计 2解读

IGBT升压斩波电路的设计 2解读

1 设计要求与方案1.1 设计要求利用IGBT 设计一个升压斩波电路。

输入直流电压U d=50V ,输出功率P=300W ,开关频率为5KHz ,占空比10%到50%,输出电压脉率小于10%。

1.2 设计方案根据升压斩波电路设计任务要求设计主电路、驱动电路。

其结构框图如图1所示。

图1在图1结构框图中,控制电路用来产生IGBT 升压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在IGBT 控制端与公共端之间,可以使其开通或关断的信号。

通过控制IGBT 的开通和关断来控制IGBT 升压斩波电路工作。

控制电路中保护电路是用来保护电路,防止电路产生过电流、过电压现象而损坏电路设备。

主电路驱动电路电源触发电路2 升压斩波电路设计方案2.1 升压斩波主电路电路工作原理原理图本设计为直流升压斩波(boost chopper )电路,该电路是本系统的核心。

应为输出电压比较大,故斩波器件选用能够承受大电压和导通内阻小,开关频率高,开关时间小的大功率IGBT 管。

在IGBT 关断时给负载中电感电流提供通道,设置了续流二极管VD 。

斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。

原理图如下图1所示:图1 主电路仿真图左边E 为输入直流50V 电压,右边为U 0斩波电压输出。

I G 为SG3525输出的PWM 斩波信号。

V 为IGBT ,VD 为电力二极管,L 为电感,C 为电容,R 为负载。

原理分析:首先假设电感L 值很大,电容C 值也很大。

当I G 为高电平时,V 导通,50V 电源向L 充电,充电基本恒定为,同时电容C 上的电压向负载R 供电,因C 值很大,基本保持输出电压ou 为恒值,记为oU。

设V 处于通态的时间为o nt,此阶段电感L 上积储的能量为1o n E I t 。

当V 处于段态时E 和L 共同向电容C 充电,并向负载R 提供能量。

设V 处于段态的时间为o t ,则在此期间电感L 释放的能量为01()o f f U E It 。

基于IGBT的变频电源设计资料-中英文

基于IGBT的变频电源设计资料-中英文

英文资料及中文翻译The Design of a Rapid Prototype Platform for ARM BasedEmbedded SystemHardware prototype is a vital step in the embedded system design. In this paper, we discuss our design of a fast prototyping platform for ARM based embedded systems, providing a low-cost solution to meet the request of flexibility and testability in embedded system prototype development. It also encourages concurrent development of different parts of system hardware as well as module reusing.Though the fast prototyping platform is designed for ARM based embedded system, our idea is general and can be applied to embedded system of other types.**Embedded systems are found everywhere, including in cellular telephones, pagers, VCRs, camcorders, thermostats, curbside rental-car check-in devices, automated supermarket stockers, computerized inventory control devices, digital thermometers, telephone answering machines, printers, portable video games, TV set-top boxes -- the list goes on. Demand for embedded system is large, and is growing rapidly.In order to deliver correct-the-first-time products **plex system requirements and time-to-market pressure, design verification is vital in the embedded system design process. A possible choice for verification is to simulate the system being designed. If a high-level model for the system is used, simulation is fast but may not be accurate enough, with a low-level model too much time may be required to achieve the desired level of confidence in the quality of the evaluation. Since debugging of real systems has to take into account the behavior of the target system as well as its environment, runtime information is extremely important. Therefore, static analysis with simulation methods is too slow and not sufficient. And simulation cannot reveal deep issues in real physical system.A hardware prototype is a faithful representation of the final design, guarantying its real-time behavior. And it is also the basic tool to find deep bugs in the hardware. For these reasons, it has become a crucial step in the whole design flow. Traditionally, a prototype is designed similarly to the target system withall the connections fixed on the PCB (printed circuit boards).As embedded systems are getting **plex, the needs for thorough testingbecome increasingly important. Advances in surface-mount packaging and multiple-layer PCB fabrication have resulted in smaller boards and **pact layout, making traditional test methods, e.g., external test probes and "bed-of-nails" test fixtures, harder to implement. As a result, acquiring signals on boards, which is beneficial to hardware testing and software development, becomes infeasible, and tracking bugs in prototype becomes increasingly difficult. Thus the prototype design has to take account of testability. However, simply adding some test points is not enough. If errors on the prototype are detected, such as misconnections of signals, it could be impossible to correct them on the multiple-layer PCB board with all **ponents mounted. All these would lead to another round of prototype fabrication, making development time extend and cost increase.Besides testability, it is important to maintain high flexibility during development of the prototype as design specification changes **mon. **plex systems are often not built from scratch but are assembled by reusing previously designed modules or off-the-**ponents such as processors, memories or peripheral circuitry in order to cope with more aggressive time-to-market constraints. Following the top-down design methodology, lots of effort in the design process is spent on decomposing the customers, requirements into proper functional modules and interfacing them to compose the target system.Some previous research works have suggested that FPLDs (field programmable logic device) could be added to the final design to provide flexibility as FPLDs can offer programmable interconnections among their pins and many more advantages. However, extra devices may increase production cost and power dissipation, weakening the **petition power of the target system. To address these problems, there are also suggestions that FPLDs could be used in hardware prototype as an intermediate approach [1]-[3], whereas this would still bring much additional work to the prototype design. Moreover, modules on the prototype cannot be reused directly. In industry, there have **panies that **mercial solutions based on FPLDs for rapid prototyping [4]. Their products are aimed at SOC (system on a chip)functional verification instead of embedded system design and development.In this paper, we discuss our design of a Rapid Prototyping Platform for ARM based Embedded System, providing a low cost solution to meet the request of flexibility and testability in embedded system prototype development. It also encourages concurrent development of different parts of system hardware as well as module reusing. The rest of the paper is organized as follows. In section 2, we discuss the details of our rapid prototyping platform. Section 3 shows the experimental results, followedby an overall conclusion in section 4.II. THE DESIGN OF A RAPID PROTOTYPING PLATFORMA. OverviewARM based embedded processors are wildly used in embedded systems due to their low-cost, low-power consumption and high performance. An ARM based embedded processor is a highly integrated SOC including an ARM core with a variety of different system peripherals[5]. Many arm based embedded processors, e.g.[6]-[8], adopt a similar architecture as the one shown in Fig.1.The integrated memory controller provides an external memory bus interface supporting various memory chips and various operation modes (synchronous, asynchronous, burst modes). It is also possible to connect bus-extended peripheral chips to the memory bus. The on-chip peripherals may include interrupt controller, OS timer, UART, I2C, PWM, AC97, and etc. Some of these peripherals signals are multiplexed with general-purpose digital I/O pins to provide flexibility to user while other on-chip peripherals, e.g. USB host/client, may have dedicated peripheral signal pins. By connecting or extending these pins, user may use these onchip peripherals. When the on-chip peripherals cannot fulfill the requirement of the target system, extra peripheral chips have to be extended.The architecture of an ARM based embedded system is shown in Fig. 2. The whole system is composed of embedded processor, memory devices, and peripheraldevices. To enable rapid prototyping, the platform should be capable of quickly assembling parts of the system into a whole through flexible interconnection. Our basic idea is to insert a reconfigurable interconnection **posed by FPLD into the system to provide adjustable connections between signals, and to provide testability as well. To determine where to place this module, we first analyze the architecture of the system.The embedded system shown in Fig. 2 can be divided into two parts. One is the minimal **posed of the embedded processor and memory devices. The other is made up of peripheral devices extended directly from on-chip peripheral interfaces of the embedded processor, and specific peripheral chips and circuits extended by the bus.The minimal system is the core of the embedded system, determining its processing capacity. The embedded processors are now routinely available at clock speeds of up to 400MHz, and will climb still further. The speed of the bus connecting the processor and the memory chips is exceeding 100MHz. As pin-to-pin propagation delay of a FPLD is in the magnitude of a few nanoseconds, inserting such a device will greatly impair the system performance.The peripherals enable the embedded system to communicate and interactive with the circumstance in the real world. In general, peripheral circuits are highly modularized and independent to each other, and there are hardly needs for flexible connections between them.Here we apply a reconfigurable interconnection module to substitute the connections between **puter and the peripherals, which enables flexible adjusting of connections to facilitate interfacing extended peripheral circuits and modules. As the speed of the **munication between the peripheralsand the processor is much slower than that in the minimal system, the FPLD solution is feasible.Following this idea, we design the Rapid Prototyping Platform as shown in Fig. 3. We define the interface ICB between the platform and the embedded processor core boar that holds the minimal system of the target embedded system. The interface IPB between the platform and peripheral boards that hold extended peripheral circuits and modules is also defined. These enable us to develop different parts of the target embedded system concurrently and to compose them into a prototype rapidly, and encourage module reusing as well. The two interfaces are connected by a reconfigurable interconnect module. There are also **monly used peripheral modules, e.g. RS232 transceiver module, bus extended Ethernet module, AC97 codec, PCMCIA/CompactFlash Card slot, and etc, on the platform which can be interfaced through the reconfigurable interconnect module to expedite the embedded system development.B. Reconfigurable Interconnect ModuleWith the facility of state-of-arts FPLDs, we design a reconfigure interconnection module to interconnect, monitor and test the bus and I/O signals between the minimal system and peripherals.As the bus accessing obeys specific protocol and has control signals to identify the data direction, the interconnection of the bus can be easily realized by designing a corresponding bus transceiver into the FPLD, whereas the interconnection of the I/Os is **plex. As I/Os are multiplexed with on-chip peripherals signals, there may be I/Os with bi-direction signals, e.g. the signals for on-chip I2C[9] interface, or signals for on-chip MMC (Multi Media Card[10]) interface. The data direction on these pins may alter without anexternal indication, making it difficult to connect them via a FPLD. One possible solution is to design a complex state machine according to corresponding accessing protocol to control the data transfer direction. In our design we assign specific locations on the ICB and IPB interfaces to these bi-direction signals and use some jumpers to directly connect these signals when needed. The problem is circumvented at the expense of losing some flexibility.The use of FPLD to build the interconnection module not only offers low cost and simple architecture for fast prototyping, but also provides many more advantages. First, interconnections can be changed dynamically through internal logic modification and pin re-assignment to the FPLD. Second, as FPLD is connected with most pins from the embedded processor, it is feasible to detect interconnection problems due to design or physical fabricate fault in the minimal system with BST (Boundary-Scan Test, IEEE Standard 1149.1 specification). Third, it is possible to route the FPLD internal signals and data to the FPLD’s I/O pins for quick and easy access without affecting the whole system design and performance. It is even possible to implement an embedded logical analyzer into the FPLD to smooth the progress of the hardware verification and software development.C. Power SupplyPower dissipation has a great impact on system cost and reliability. It is an increasingly important problem in embedded systems designs not only for the portableelectronics industry but in other areas including consumer electronics, industry control, communications, etc. In order to facilitate the design of power supply for the target embedded system, power supply issues have also been considered in the design of the platform.First, the power supplies to the devices on the platform are separated from those to the core board and peripheral expand boards, which makes it more realistic to measure and verify the power dissipation on the platform for the target embedded system. Second, the power supplies for the core board and peripheral expand boards are built on a separate board and connected to the platform through a slot. As a result, it provides flexibility for power system design while speeding up the whole design process.To meet the demand for higher system speed and lower power consumption in **munications and processing, embedded processor vendors use increasingly advanced processing technologies requiring lower core operating voltages, and keep the interface **patible with most low voltage semiconductor devices on market. Consequently, almost every embedded processor requires more than onepower supply, such as power supply for internal logic, for PLLs and oscillators, for memory bus interface, and for other I/Os. Further, different embedded processors may have different requirements on power supply, such as different power supply voltage, power-up sequence, and different strategies to adjust the core voltage in different CPU run mode for minimizing power dissipation.A survey of some widely used ARM based embedded processor suggests that most of them need no more than 3 groups of separated power supply, as shown in Table 1. As the peripherals may require different supply voltages for special purpose, such as +5V for powering the USB ports, we divide the power supply from the power supply slot into 4 separated channels, which is connected to both the core board slot and the peripheral board slot. Each channel of power supplies has a “power good” signal to indicate power output status of the channel, and a shutdown signal to shut the power supply of the channel down. And these signals are directly connected to the core board slot to accommodate the embedded proces sor’s requirement of power-up sequence. In order to enable dynamic voltage adjusting, some control signals are routed to the power supply board by the reconfigurable interconnect module.III. EXPERIMENTAL RESULTSAs the Rapid Prototyping Platform is still under development, we present an example applied with the same considerations in the Rapid Prototyping Platform. It is an embedded system prototype based on Intel XScale PXA255, which is an ARM based embedded processor. The diagram of the prototype is illustrated in Fig. 5(a). The photo is shown in Fig. 5(b), where a Bluetoothmodule is connected to the prototype USB port and a CF LAN card is inserted.The FPGA (an Altera Cyclone EP1C6F256) here offers the same function as the reconfigurable interconnection module shown in Fig. 3. Most of the peripheral devices are expanded to the system through the FPGA, and more peripherals can be easily interfaced when needed. As both of the FPGA and PXA255 support the BST, we can detect faults, e.g. short-circuit and open-circuit faults, on the connections between the two devices by chaining their JTAG ports and performing BST. Here, we use an open source softwarepackage [11] to perform the BST.The FPGA internal signals can be routed to the debugging LED matrix for easy access, which is helpful in some simple testing and debugging. We also insert an embedded logical analyzer, the SignalTap II embedded logic analyzer [12] provided in Altera’s Quartus II software, into the FPGA for handling **plicated situations. With the help of the logical analyzer, we are able to capture and monitor data passing through over a period of time, which expedites the debugging process for the prototype system. Fig. 6 shows the captured **munication between the embedded processor and the USB host module during the initialization process of the Philips ISP1161 USB host chip[13]. It can be seen clearly from the figure that the embedded processor writes **mand code of 0027H to address 01H (the ISP1161’s host **mand port) to access the HcChi pID register, and reads 6120H (the chip’s ID) from address 00H (the ISP1161’s host controller data port).The power supply module of the prototype system is held on a separate board connected to the system via a socket. We designed two power supply modules for the prototype system (shown in Fig. 7). One is a large module providing fixed **posed with simple but low-efficiency linear regulator (the upside one in the Fig. 7), the other is a compact module, capable of dynamic voltage adjusting, made up of complex high-efficiency switch regulator(the downsideone in the Fig. 7). The former module is first used to accommodate the basic power supply requirements during hardware test and relative software development. During the process, the later is developed and refined, and replaced the former one finally. The separation of power supply module from prototype allows refinement of the power supply module without affecting development of other parts of the system.With the help of this flexible prototype, we finished our hardware development and related software development, including boot-loader development, OS (Arm-Linux) transplant, and driver development in about one week.IV. CONCLUSIONIn this paper, we discuss the design of a fast prototyping platform for ARM based embedded systems to accommodate the requirements of flexibility and testability in the prototyping phase of an embedded system development.With the aid of the platform, modules of the target embedded system can be developed simultaneously, and previous modules can be applied to future designs. As a result, develop process is greatly accelerated.Though the fast prototyping platform is designed for ARM based embedded system, our idea is general and can be applied to embedded system of other types.基于ARM的嵌入式系统的速成样机平台设计在嵌入式系统的设计中,硬件模型的设计是非常重要的。

IGBT的变频电源设计

IGBT的变频电源设计
逆变器从1969年发展到今天,经历了几十年的发展过程。其控制方法也出现了许多,大致可以分为:变压和变频控制方法。目前采用较多的是变压中的脉宽调制技术即PWM控制技术,即利用控制输出电压的脉冲宽度,将直流电压调制成等幅宽度可变的交流输出电压脉冲,来控制输出电压的有效值、控制输出电压谐波的分布和抑制谐波。PWM技术可以迅速地控制输出电压,及其有效地进行谐波抑制,它的动态响应好,在输出电压质量、效率等诸方面有着明显的优点。
1 引言
众所周知,我们所使用的市电频率是50Hz,但是,在实际生活中,有时需要的电源频率不是50Hz。电气化铁路是我国铁路发展的方向,25Hz电源是电气化铁路区段信号系统的关键设备。在航空航天领域大量使用的电源是400Hz的电源。由此可以看出在很多场合,需要电源的频率并不是市电所提供的50Hz。结果造就变频电源的产生。在现实生活中变频电源广泛应用于航空、机械、轻工等行业。1969年世界上诞生第一台逆变电源,由于其具有调节特性优良、而且体积小、重量轻、功耗低,在电子和电气领域得到了迅速的推广应用。
(4-1)
式中Vin为单片机的输出高电平是的电压5V,Vd是二极管的压降,Id是二极管端的输入电流。
图4-3光电隔离电路图
由于后级的输入驱动电压一般不能低于12V,否则会造成后极无法正常工作,因此在光耦的三极管输出端为其加18V的电源电压,以保证后级正常工作所需电压。
4
图4-4是驱动电路图。
图4-4 IGBT驱动电路
电路由Q2、Q3和R6组成。由光电隔离电路送来的SPWM波形送入Q2和Q3的基极。当信号为高电平的时候Q3导通,那么Q3的C极和E极相当于是短接的,也就是输出为高电平。当SPWM输出为低电平是Q3截止,Q2导通后极的结电容通过R6和Q2放电,这样就可以加快了输出电路的反应速度。

基于IGBT中频加热电源的研究

基于IGBT中频加热电源的研究

基于IGBT中频加热电源的研究李文江,李雷(辽宁工程技术大学电气工程系,辽宁,阜新,123000)摘要:中频电源已广泛应用于工业加热领域。

结合实际讨论了一种新型晶闸管感应加热电源主电路结构及工作原理,该电源采用成熟的变频技术,由全控型器件构成串联谐振式逆变电路,解决了工频加热效果差和浪费电能等问题。

中频感应加热电源采用IGBT作为开关器件,可工作在10H Z~10KHZ,具有功率调节范围宽、频率变化小的优点,适用于中小功率系统。

关键词:中频电源;感应加热;逆变;串联谐振The research of a mid-frequency heating power supply based on IGBTLi Wen-jiang,Li Lei(Department of Electrical Engineering,Liaoning Technical University,Fuxin 123000,China) Abstract:Medium-frequency power supply has been widely used in industrial heating.The structure and working principle of the main circurt in a novel intermediate frequency induction heating supply are discussed according to practice.This power supply makes use of the frequency changeable technique,and series resonant inverter circuit has been made up by full controlled device.It resolves the low efficiency and wasting power in the work-frequency heating.The IGBT,as the switching device,can work between 10H Z to 10KHZ frequency channel.This method has the advantages of wide area of power modulation and little change of frequency,it adapts to medium power and supply frequency system.Key words:intermediate frequency supply;induction heating;inversion;series resonant中图分类号:TP273 文献标识码:A0 引言工频加热技术与其它各种物理加热技术相比,确实具有较高的效率,但存在一些明显的不足。

基于IGBT的DC-AC变换器设计 毕业设计论文

基于IGBT的DC-AC变换器设计 毕业设计论文

毕业设计(论文)2009 届题目基于IGBT的DC-AC变换器设计专业电子信息工程学生姓名学号指导教师论文字数 12001完成日期2009年 5月6日基于IGBT的DC-AC变换器设计摘要:本文主要论述了基于单片机控制逆变稳压电源的基本原理、结构和设计过程。

在设计中,我们采用PWM逆变控制技术,单片机ATMEGA16输出PWM波,经TLP250驱动模块去驱动IGBT为开关单元的单相电压逆变电路。

我们对ATMEGA16单片机PWM波发生器的使用和编程进行了介绍,还对IGBT的驱动模块TLP250进行了介绍,另外,我们还讨论了IGBT 管的缓冲电路和系统的保护电路,同时分析了系统的软件设计过程。

利用仿真工具软件软件对所设计的电力电子设备进行仿真,有利于缩短产品的设计时间,有利于提高产品的可靠性。

关键字:绝缘栅双极型晶体管,脉宽调制The Design of DC-AC Converter Based on IGBTAbstract:This article chiefly discusses the principle、stucture and design procedure of the inverter regulated power supply which is controlled by signle-chip microcompyter. In this design, we adopt the pwm inveter control technology. The ATMEGA16 exports the pwm wave,the wave is connected to the drive module(TLP250), and the drive module drives the single phase voltage inverter circuits, In this paper, we explain how to use the pwm wave generator ATMEGA16, and then we also explain the IGBT drive module TLP250, after that, we discuss the IGBT buffer circuit and the protective circuits of the system. Finally , we discuss the process of the software design.Putting the simulation software into use in the process of the electric equipments design, it is good to reducing the time of the products design, and it is also benefit to improving the reliability of products.Key words:Insulated Gate Bipolar Transistor(IGBT),Pulse Width Modulation(PWM)目录第一章绪论 (1)1.1 基于IGBT的DC-AC变换器设计的研究背景 (1)1.2 基于IGBT的DC-AC变换器的发展现状 (1)1.3 基于IGBT的DC-AC变换器的研究目的及意义 (1)1.4 基于IGBT的DC-AC变换器的主要研究内容 (2)第二章总体方案设计 (3)2.1 系统方案设计与论证 (3)2.2 系统整体框图 (4)第三章工作原理 (5)3.1 IGBT管的基本原理与其保护 (5)3.1.1 IGBT管的基本原理 (5)3.1.2 IGBT的保护 (5)3.2 逆变电路的基本工作原理 (6)3.3 电力器件的换流方式 (6)3.4 单相电压型逆变电路 (7)3.5 PWM控制技术的基本原理 (8)第四章系统硬件设计 (9)4.1 TLP250驱动电路的设计 (9)4.2 IGBT转换电路的设计 (10)4.3 滤波器电路的设计 (10)第五章系统软件设计 (13)5.1 AVR软件开发工具的介绍 (13)5.2 软件程序 (13)5.2.1 主程序 (13)5.2.2 PWM波形产生 (14)第六章系统参数测试与分析 (17)6.1 输出的PWM波形参数的测试与分析 (17)6.2 其他参数的测试与分析 (18)第七章结论 (19)参考文献 (20)结束语 (21)致谢 (22)附录 (23)附录1:元器件细明表 (23)附录2:系统电路 (24)附录3:主要程序 (25)第一章绪论1.1 基于IGBT的DC-AC变换器设计的研究背景随着工业和科技的发展,对正弦逆变器的性能要求越来越高,正弦逆变电源是将直流电转换为交流电的一种功率转换装置,在工业和民用方面具有广阔的市场。

igbt论文

igbt论文

IGBT(Insulated Gate Bipolar Transistor),绝缘三双极型功率管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。

应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。

IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET 的自然进化。

由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。

虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。

较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。

IGBT基本结构见图1中的纵剖面图及等效电路。

IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。

如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。

基片的应用在管体的P+和N+ 区之间创建了一个J1结。

IGBT是一种功率晶体,运用此种晶体设计之UPS可有效提升产品效能,使电源品质好、效率高、热损耗少、噪音低、体积小与产品寿命长等多种优点。

用于有源电力滤波器的IGBT驱动及保护研究l 前言绝缘栅场效应晶体管(IGBT)作为一种复合型器件,集成了MOSFET的电压驱动和高开关频率及功率管低损耗、大功率的特点,在电机控制、开关电源、变流装置及许多要求快速、低损耗的领域中有着广泛的应用。

本文对应用于有源电力滤波器的IGBT的特性及其专有EXB84l型驱动器的设计进行讨论,并提出一种具有完善保护功能的驱动电路。

有源电力滤波器设计中应用4个IGBT作为开关,并用4个EXB84l组成驱动电路,其原理如图l所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.毕业设计(论文)工作进度计划:
周次
工作内容
早期进入阶段
第一周、第二周
第三、四、五周
第六、七、八、九周
第十、十一、十二周
查找资料、确定方案
设计电路、购买元件
制作电路、程序设计
系统制作、整体调试
总结论文、准备答辩
教研室(学科组)主任签字:
[11]康华光,邹寿彬.电子技术基础(数字部分),北京:高等教育出版社,2003.
[12]秦玲,刘敬波.一种用于D/A转换电路的带隙基准电压源的设计,电子设计应用.2006(5)35-42.
[13]吴国经.单片机应用技术,北京:中国电力出版社,2004.
[14]吴运昌.模拟集成电路原理与应用.广东:华南理工大学出版社,2001.
[15]高吉祥,黄智伟等.数字电子技术.北京:电子工业出版社,2003.
[16]吴金戎.8051单片机实践与应用.北京:清华大学出版社,2002.
[17]李序葆,赵永健.电力电子器件及其应用.北京:机械工业出版社,2003.
[18]王志良.电力电子新器件及其应用技术.北京:国防工业出版社,1995.
天津工程师范学院
毕业设计(论文)任务书
题目
(包括副标题)
基于IGBT的变频电源设计
教师姓名
李杰
职称
副教授
系别
电子工程系
学生姓名
梁贵海
学号
09930020133
Байду номын сангаас班级
应教0201
成果形式
A论文B设计说明书C实物D软件E作品
■□■□□
任务下达时间
2006-10-15
1.毕业设计(论文)课题任务的内容和要求:
(2)主要技术指标:
1将市电220V频率50Hz变换成220V频率400Hz
②侦测短路保护及报警
(3)工艺制作任务:
利用万能板完成每个模块电路的焊接、调试。
(4)设计基本要求:
输出电压220V稳定的400Hz正弦波信号
(5)应收集的文献资料
[1]张燕宾.SPWM变频调速应用技术.北京:机械工业出版社,2003.
[2]钟福金,钱昱明.面积等效法生成SPWM波形的控制算法及软件研究.电气自动化.1999(6),14-18.
[3]童诗白主编.模拟电子技术基础.北京:高等教育出版社,1998.
[4]周志敏,周纪海等.IGBT和IPM及其应用电路.北京:人民邮电出版社,2006.
[5] WU Xunwei,HANG Guoqiang,Massoud Pedram.Low power DC circuits employing AC power supply,SCIENCE IN CHINA (INFORMATION SCIENCES),2002 Vol.45 No.3,232.
[6]陈国呈.PWM变频调速技术.北京:机械工业出版社,1999.
[7]刘瑞新,赵全利等.单片机原理及应用教程.北京:机械工业出版社,2003.
[8]梅丽风,王艳秋等.单片机原理及接口技术.北京:清华大学出版社,2004.
[9]李广弟,朱月秀等.单片机基础.北京:北京航空航天大学出版社,2001.
[10]徐爱钧.8051单片机实践教程,北京:电子工业出版社,2001年.
(包括原始数据、技术要求、工作要求以及图纸、程序、实物等要求)
(1)应完成的主要任务:
利用IGBT将市电220V频率50Hz变换成220V频率400Hz正弦波,用单片机控制SPWM的高低电平的占空比去控制IGBT驱动器从而调整IGBT的开关时间,在得到的电压波形中经过滤波器将其它波形滤除,从而得到一个220V 400Hz的正弦波。将输出的电压经过A/D转换成数字信号传送给单片机,单片机将取得的电压值进行运算去控制SPWM的输出,使最终能输出一个电压稳定的400Hz正弦波信号,并用数码管来监测输出电压。
相关文档
最新文档