Analysis of the blasting effect on the electric shove loading efficiency of the open pit

合集下载

香精油中农药残留

香精油中农药残留

Determination of Pesticide Minimum Residue Limits in Essential OilsReport No 3A report for the Rural Industries Research andDevelopment CorporationBy Professor R. C. Menary & Ms S. M. GarlandJune 2004RIRDC Publication No 04/023RIRDC Project No UT-23A© 2004 Rural Industries Research and Development Corporation.All rights reserved.ISBN 0642 58733 7ISSN 1440-6845‘Determination of pesticide minimum residue limits in essential oils’, Report No 3Publication No 04/023Project no.UT-23AThe views expressed and the conclusions reached in this publication are those of the author and not necessarily those of persons consulted. RIRDC shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report.This publication is copyright. However, RIRDC encourages wide dissemination of its research, providing the Corporation is clearly acknowledged. For any other enquiries concerning reproduction, contact the Publications Manager on phone 02 6272 3186.Researcher Contact DetailsProfessor R. C. Menary & Ms S. M. GarlandSchool of Agricultural ScienceUniversity of TasmaniaGPO Box 252-54HobartTasmania 7001AustraliaPhone: (03) 6226 2723Fax: (03) 6226 7609Email: r.menary@.auIn submitting this report, the researcher has agreed to RIRDC publishing this material in its edited form.RIRDC Contact DetailsRural Industries Research and Development CorporationLevel 1, AMA House42 Macquarie StreetBARTON ACT 2600PO Box 4776KINGSTON ACT 2604Phone: 02 6272 4819Fax: 02 6272 5877Email: rirdc@.auWebsite: .auPublished in June 2004Printed on environmentally friendly paper by Canprint.FOREWORDInternational regulatory authorities are standardising the levels of pesticide residues present in products on the world market which are considered acceptable. The analytical methods to be used to confirm residue levels are also being standardised. To constructively participate in these processes, Australia must have a research base capable of constructively contributing to the establishment of methodologies and must be in a position to assess the levels of contamination within our own products.Methods for the analysis for pesticide residues rarely deal with their detection in the matrix of essential oils. This project is designed to develop and validate analytical methods and apply that methodology to monitor pesticide levels in oils produced from commercial harvests. This will provide an overview of the levels of pesticide residues we can expect in our produce when normal pesticide management programs are adhered to.The proposal to produce a manual which deals with the specific problems associated with detection of pesticide residues in essential oils is intended to benefit the essential oil industry throughout Australia and may prove useful to other horticultural products.This report is the third in a series of four project reports presented to RIRDC on this subject. It is accompanied by a technical manual detailing methodologies appropriate to the analysis for pesticide residues in essential oils.This project was part funded from RIRDC Core Funds which are provided by the Australian Government. Funding was also provided by Essential Oils of Tasmania and Natural Plant Extracts Cooperative Society Ltd.This report, an addition to RIRDC’s diverse range of over 1000 research publications, forms part of our Essential Oils and Plant Extracts R&D program, which aims for an Australian essential oils and plant extracts industry that has established international leadership in production, value adding and marketing.Most of our publications are available for viewing, downloading or purchasing online through our website:•downloads at .au/fullreports/index.html•purchases at .au/eshopSimon HearnManaging DirectorRural Industries Research and Development CorporationAcknowledgementsOur gratitude and recognition is extended to Dr. Noel Davies (Central Science Laboratories, University of Tasmania) who provided considerable expertise in establishing procedures for chromatography mass spectrometry.The contribution to extraction methodologies and experimental work-up of Mr Garth Oliver, Research Assistant, cannot be underestimated and we gratefully acknowledge his enthusiasm and novel approaches.Financial and ‘in kind’ support was provided by Essential Oils Industry of Tasmania, (EOT).AbbreviationsADI Average Daily IntakeAGAL Australian Government Analytical Laboratoriesingredientai activeAPCI Atmospheric Pressure Chemical IonisationBAP Best Agricultural PracticesenergyCE collisionDETA DiethylenetriamineECD Electron Capture DetectorionisationESI ElectrosprayFPD Flame Photometric DetectionChromatographyGC GasResolutionHR HighChromatographyLC LiquidLC MSMS Liquid Chromatography with detection monitoring the fragments of Mass Selected ionsMRL Maximum Residue LimitSpectrometryMS MassNRA National Registration AuthorityR.S.D. Relative Standard DeviationSFE Supercritical Fluid ExtractionSIM Single Ion MonitoringSPE Solid Phase ExtractionTIC Total Ion ChromatogramContents FOREWORD (III)ACKNOWLEDGEMENTS (IV)ABBREVIATIONS (V)CONTENTS (VI)EXECUTIVE SUMMARY (VII)1. INTRODUCTION (1)1.1B ACKGROUND TO THE P ROJECT (1)1.2O BJECTIVES (2)1.3M ETHODOLOGY (2)2. EXPERIMENTAL PROTOCOLS & DETAILED RESULTS (3)2.1M ETHOD D EVELOPMENT (3)2.2M ONITORING OF H ARVESTS (42)2.3P RODUCTION OF M ANUAL (46)3. CONCLUSIONS (47)IMPLICATIONS & RECOMMENDATIONS (50)BIBLIOGRAPHY (50)Executive SummaryThe main objective of this project was to continue method development for the detection of pesticide residues in essential oils, to apply those methodologies to screen oils produced by major growers in the industry and to produce a manual to consolidate and coordinate the results of the research. Method development focussed on the effectiveness of clean-up techniques, validation of existing techniques, the assessment of the application of gas chromatography (GC) with detection using electron capture detectors (ECD), flame photometric detectors (FPD) and high pressure liquid chromatography (HPLC) with ion trap mass selective (MS) detection.The capacity of disposable C18 cartridges to separate components of boronia oil was found to be limited with the majority of boronia components being eluted on the solvent front, with little to no separation achieved. The cartridges were useful, however, in establishing the likely interaction of reverse phases (RP) C18 columns with components of essential oils, using polar mobile phases . The loading of large amounts of oil onto RP HPLC columns presents the risk of permanently contaminating the bonded phases. The lack of retention of components on disposable SPE C18 cartridges, despite the highly polar mobile phase, presented a good indication that essential oils would not accumulate on HPLC RP columns.The removal of non-polar essential oil components by solvent partitioning of distilled oils was minimal, with the recovery of pesticides equivalent to that recorded for the essential oil components. However application of this technique was of advantage in the analysis of solvent extracted essential oils such as those produced from boronia and blackcurrant.ECD was found to be successful in the detection of terbacil, bromacil, haloxyfop ester, propiconazole, tebuconazole and difenaconzole. However, analysis of pesticide residues in essential oils by application of GC ECD is not sufficiently sensitive to allow for a definitive identification of any contaminant. As a screen, ECD will only be effective in establishing that, in the absence of a peak eluting with the correct retention time, no gross contamination of pesticide residues in an essential oil has occurred . In the situation where a peak is recorded with the correct elution characteristics, and which is enhanced when the sample is fortified with the target analyte, a second means of contaminant identification would be required. ECD, then, can only be used to rule out significant contamination and could not in itself be adequate for a positive identification of pesticide contamination.Benchtop GC daughter, daughter mass spectrometry (MSMS) was assessed and was not considered practical for the detection of pesticide residues within the matrix of essential oils without comprehensive clean-up methodologies. The elution of all components into the mass spectrometer would quickly lead to detector contamination.Method validation for the detection of 6 common pesticides in boronia oil using GC high resolution mass spectrometry was completed. An analytical technique for the detection of monocrotophos in essential oils was developed using LC with detection by MSMS. The methodology included an aqueous extraction step which removed many essential oil components from the sample.Further method development of LC MSMS included the assessment of electrospray ionisation (ESI) and atmospheric pressure chemical ionisation (APCI. For the chemicals trialed, ESI has limited application. No response was recorded for some of the most commonly used pesticides in the essential oil industry, such as linuron, oxyflurofen, and bromacil. Overall, there was very little difference between the sensitivity for ESI and APCI. However, APCI was slightly more sensitive for the commonly used pesticides, tebuconazole and propiconazole, and showed a response, though poor, to linuron and oxyflurofen. In addition, APCI was the preferred ionisation method for the following reasons,♦APCI uses less nitrogen gas compared to ESI, making overnight runs less costly;♦APCI does not have the high back pressure associated with ionisation by ESI such that APCI can be run in conjunction with UV-VIS without risk of fracturing the cell, which is pressure sensitive. Analytes that ionised in the negative APCI mode were incorporated into a separate screen which included bromacil, terbacil, and the esters of the fluazifop and haloxyfop acids. Further work using APCI in the positive mode formed the basis for the inclusion of monocrotophos, pirimicarb, propazine and difenaconazole into the standard screen already established. Acephate, carbaryl, dimethoate, ethofumesate and pendimethalin all required further work for enhanced ionisation and / or improved elution profiles. Negative ionisation mode for APCI gave improved characteristics for dicamba, procymidone, MCPA and mecoprop.The thirteen pesticides included in this general screen were monocrotophos, simazine, cyanazine, pirimicarb, propazine, sethoxydim, prometryb, tebuconazole, propiconazole, , difenoconazole and the esters of fluroxypyr, fluazifop and haloxyfop.. Bromacil and terbacil were not included as both require negative ionisation and elute within the same time window as simazine, which requires positive ionisation. Cycling the MS between the two modes was not practical.The method validation was tested against three oils, peppermint, parsley and fennel.Detection limits ranged from 0.1 to 0.5 mgkg-1 within the matrix of the essential oils, with a linear relationship established between pesticide concentration and peak height (r2 greater than 0.997) and repeatabilities, as described by the relative standard deviation (r.s.d), ranging from 3 to 19%. The type of oil analysed had minimal effect on the response function as expressed by slope of the standard curve.The pesticides which have an carboxylic acid moiety such as fluazifop, haloxyfop and fluroxypyr, present several complications in any analytical method development. The commercial preparations usually have the carboxylic acid in the ester form, which is hydrolysed to the active acidic form on contact with soil and vegetation. In addition, the esters may be present in several forms, such as the ethoxy ethyl or butyl esters. Detection using ESI was tested. Preliminary results indicate that ESI is unsuitable for haloxyfop and fluroxypyr ester. Fluazifop possessed good ionisation characteristics using ESI, with responses approximately thirty times that recorded for haxloyfop. Poor chromatography and response necessitated improved mobile phase and the effect of pH on elution characteristics was considered the most critical parameter. The inclusion of acetic acid improved peak resolution.The LC MSMS method for the detection of dicamba, fluroxypyr, MCPA, mecoprop and haloxyfop in peppermint and fennel distilled oils underwent the validation process. Detection limits ranged from 0.01 to 0.1 mgkg-1Extraction protocols and LC MSMS methods for the detection of paraquat and diquat were developed. ESI produced excellent responses for both paraquat and diquat, after some modifications of the mobile phase. Extraction methodology using aqueous phases were developed. Extraction with carbonate buffer proved to be the most effective in terms of recovery and robustness. A total ion chromatogram of the LC run of an aqueous extract of essential oil was recorded and detection using a photodiode array detector confirmed that very little essential oil matrix was co-extracted. The low background noise indicated that samples could be introduced directly into the MS. This presented a most efficient and rapid way for analysis of paraquat and diquat, avoiding the need for specialised columns or modifiers to be included in the mobile phase to instigate ion exchange.The adsorbtion of paraquat and diquat onto glass and other surfaces was reduced by the inclusion of diethylenetriamine (DETA). DETA preferentially accumulates on the surfaces of sample containers, competitively binding to the adsorption sites. All glassware used in the paraquat diquat analysis were washed in a 5% solution of 0.1M DETA, DETA was included in all standard curve preparations, oils were extracted with aqueous DETA and the mobile phase was changed to 50:50 DETA / methanol. The stainless steel tubing on the switching valve was replaced with teflon, further improvingreproducibility. Method validation was undertaken of the analysis of paraquat and diquat using the protocols established. The relationship between analyte concentration and peak area was not linear at low concentrations, with adsorption more pronounced for paraquat, such that the response for this analyte was half that seen for diquat and the 0.1 mgkg-1 level.The development of a method for the detection of the dithiocarbamate, mancozeb was commenced. Disodium N, N'-ethylenebis(dithiocarbamate) was synthesised as a standard for the derivatised final analytical product. An LC method, with detection using MSMS, was successfully completed. The inclusion of a phase transfer reagent, tetrabutylammonium hyrdrogen sulfate, required in the derivatisation step, contaminated the LC MSMS system, such that any signal from the target analyte was masked. Alternatives to the phase transfer reagent are now being investigated.Monitoring of harvests were undertaken for the years spanning 1998 to 2001. Screens were conducted covering a range of solvent extracted and distilled oils. Residues tested for included tebuconazole, simazine, terbacil, bromacil, sethoxydim, prometryn, oxyflurofen, pirimicarb, difenaconazole, the herbicides with acidic moieties and paraquat and diquat. Problems continued for residues of propiconazole in boronia in the 1998 / 1999 year with levels to 1 mgkg-1 still being detected. Prometryn residues were detected in a large number of samples of parsley oil.Finally the information gleaned over years of research was collated into a manual designed to allow intending analysts to determine methodologies and equipment most suited to the type of the pesticide of interest and the applicability of analytical equipment generally available.1. Introduction1.1 Background to the ProjectResearch undertaken by the Horticultural Research Group at the University of Tasmania, into pesticide residues in essential oils has been ongoing for several years and has dealt with the problems specific to the analysis of residues within the matrix of essential oils. Analytical methods for pesticides have been developed exploiting the high degree of specificity and selectivity afforded by high resolution gas chromatography mass spectrometry. Standard curves, reproducibility and detection limits were established for each. Chemicals, otherwise not amenable to gas chromatography, were derivatised and incorporated into a separate screen to cover pesticides with acidic moieties.Research has been conducted into low resolution GC mass selective detectors (MSD and GC ECD. Low resolution GC MSD achieved detection to levels of 1 mgkg-1 in boronia oil, whilst analysis using GC ECD require a clean-up step to effectively detect halogenated chemicals below 1mgkg-1.Dithane (mancozeb) residues were digested using acidified stannous chloride and the carbon disulphide generated from this reaction analysed by GC coupled to FPD in the sulphur mode.Field trials in peppermint crops were established in accordance with the guidelines published by the National Registration Authority (NRA), monitoring the dissipation of Tilt and Folicur residues in peppermint leaves and the co-distillation of these residues with hydro-distilled peppermint oils were assessed.Development of extraction protocols, analytical methods, harvest monitoring and field trials were continued and were detailed in a subsequent report. Solvent-based extractions and supercritical fluid extraction (SFE) was found to have limited application in the clean-up of essential oilsIn conjunction with Essential Oils of Tasmania (EOT), the contamination risk, associated with the introduction of a range of herbicides, was assessed through a series of field trials. This required analytical method development to detect residues in boronia flowers, leaf and oil. The methodology for a further nine pesticides was successful applied. Detection limits for these chemicals ranged from 0.002 mgkg-1 to 0.1 mgkg-1. In addition, methods were developed to analyse for herbicides with active ingredients (ai) whose structure contained acidic functional groups. Two methods of pesticide application were trialed. Directed sprays refer to those directed on the stems and leaves of weeds at the base of boronia trees throughout the trial plot. Cover sprays were applied over the entire canopy. For all herbicides for which significant residues were detected, it was evident that cover sprays resulted in contamination levels ten times those occurring as a result of directed spraying in some instances. Chloropropham, terbacil and simazine presented potentially serious residue problems, with translocation of the chemical from vegetative material to the flower clearly evident.Directed spray applications of diuron and dimethenamid presented only low residue levels in extracted flowers with adequate control of weeds. Oxyflurofen and the mixture of bromacil and diuron (Krovar) presented only low levels of residues when used as a directed spray and were effective as both post and pre-emergent herbicides. Only very low levels of residues of both sethoxydim and norflurazon were detected in boronia oil produced in crops treated with directed spray applications. Sethoxydim was effective as a cover spray for grasses whilst norflurazon showed potential as herbicide to be used in combination with other chemicals such as diuron, paraquat and diquat. Little contamination of boronia oils by herbicides with acidic moieties was found. This advantage, however, appears to be offset by the relatively poor weed control. Both pendimethalin and haloxyfop showed good weed control. Both, however, present problems with chemical residues in boronia oil and should only be used as a directed sprayThe stability of tebuconazole, monocrotophos and propiconazole in boronia under standard storage conditions was investigated. Field trials of tebuconazole and propiconazole were established in commercial boronia crops and the dissipation of both were monitored over time. The amount of pesticide detected in the oils was related to that originally present in the flowers from which the oils were produced.Experiments were conducted to determine whether the accumulation of terbacil residues in peppermint was retarding plant vigour. The level recorded in the peppermint leaves were comparatively low. Itis unlikely that terbacil carry over is the cause for the lack of vigour in young peppermint plants.Boronia oils produced in 1996, 1997 and 1998 were screened for pesticides using the analytical methods developed. High levels of residues of propiconazole were shown to persist in crops harvested up until 1998. Field trials have shown that propiconazole residues should not present problems if the fungicide is used as recommended by the manufacturers.1.2 Objectives♦Provide the industry, including the Standards Association of Australia Committee CH21, with a concise practical reference, immediately relevant to the Australian essential oil industry♦Facilitate the transfer of technology from a research base to practical application in routine monitoring programs♦Continue the development of analytical methods for the detection of metabolites of the active ingredients of pesticide in essential oils.♦Validate the methods developed.♦Provide industry with data supporting assurances of quality for all exported products.♦Provide a benchmark from which Australia may negotiate the setting of a realistic maximum residue limit (MRL)♦Determine whether the rate of uptake is relative to the concentration of active ingredient on the leaf surface may establish the minimum application rates for effective pest control.1.3 MethodologyThree approaches were used to achieve the objectives set out above.♦Continue the development and validation of analytical methods for the detection of pesticide residues in essential oils. Analytical methods were developed using gas chromatography high resolution mass spectrometry (GC HR MS), GC ECD, GC FPD and high pressure liquid chromatography with detection using MSMS.♦Provide industry with data supporting assurances of quality for all exported products.♦Coordinate research results into a comprehensive manual outlining practical approaches to the development of analytical proceduresOne aspect of the commissioning of this project was to provide a cost effective analytical resource to assess the degree of the pesticide contamination already occurring in the essential oils industry using standard pesticide regimens. Oil samples from annual harvests were analysed for the presence of pesticide residues. Data from preceding years were collated to determine the progress or otherwise, in the application of best agricultural practice (BAP).2. Experimental Protocols & Detailed ResultsThe experimental conditions and results are presented under the following headings:♦Method Development♦Monitoring of Commercial Harvests♦Production of a Manual2.1 Method DevelopmentMethod development focussed on the effectiveness of clean-up techniques, validation of existing techniques, the assessment of the application of GC ECD and FPD and high pressure liquid chromatography with ion trap MS, MS detection.2.1.1 Clean-up Methodologies2.1.1.i. Application of Disposable SPE cartridges in the clean-up of pesticide residues in essentialoilsLiterature reviews provided limited information with regards to the separation of contaminants within essential oils. The retention characteristics of disposable C18 cartridges were trialed.Experiment 1;Aim : To assess the capacity of disposable C18 cartridges to the separation of boronia oil components. Experimental : Boronia concrete (49.8 mg) was dissolved in 0.5 mL of acetone and 0.4 mL of chloroform was added. 1mg of octadecane was added as an internal standard. A C18 Sep-Pak Classic cartridge (short body) was pre- conditioned with 1.25 mL of methanol, which was passed through the column at 7.5 mLmin-1, followed by 1.25 mL of acetone, at the same flow rate. The boronia samplewas then applied to the column at 2 mLmin-1 flow and eluted with 1.25 mL of acetone / chloroform (5/ 4) and then eluted with a further 2.5 mL of chloroform. 5 fractions of 25 drops each were collected. The fractions were analysed by GC FID using the following parametersAnalytical parameters6890PackardHewlettGCcolumn: Hewlett Packard 5MS 30m, i.d 0.32µmcarrier gas instrument grade nitrogeninjection volume: 1µL (split)injector temp: 250°Cdetector temp: 280°Cinital temp: 50°C (3 min), 10°Cmin-1 to 270°C (7 mins)head pressure : 10psi.Results : Table 1 record the percentage volatiles detected in the fractions collectedFraction 1 2 3 4 5 % components eluting 18 67 13 2636%monoterpenes 15%sesquiquiterpenes 33 65 2%high M.W components 1 43 47 9Table 1. Percentage volatiles eluting from SPE C18 cartridgesDiscussion : The majority of boronia components eluted on the solvent front, effecting minimal separation. This area of SPE clean-up of essential oils requires a wide ranging investigation, varying parameters such as cartridge type and polarity of mobile phase.Experiment 2.Aim : For the development of methods using LC MSMS without clean-up steps, the potential for oil components to accumulate on the reverse phase (RP) column must be assessed. The retention of essential oil components on SPE C18 cartridges, using the same mobile phase as that to be used in theLC system, would provide a good indication as to the risk of contamination of the LC columns withoil components.Experimental: Parsley oil (20-30 mg) was weighed into a GC vial. 200 µL of a 10 µgmL-1 solution (equivalent to 100mgkg-1 in oil) of each of sethoxydim, simazine, terbacil, prometryn, tebuconazoleand propiconazole were used to spike the oil, which was then dissolved in 1.0 mL of acetonitrile. The solution was then slowly introduced to the C18 cartridge (Waters Sep Pac 'classic' C18 #51910) using a disposable luer lock, 10 mL syringe, under constant manual pressure, and eluted with 9 mLs of acetonitrile. Ten, 1 mL fractions were collected and transferred to GC vials. 1mg of octadecane was added to each vial and the samples were analysed by GC FID under the conditions described in experiment 1.The experiment was repeated using C18 cartridges which had been pre-conditioned with distilled waterfor 15 mins. Again, parsley oil, spiked with pesticides was eluted with acetonitrile and 5 x 1 mL fractions collected.Results: The majority of oil components and pesticides were eluted from the C18 cartridge in the firsttwo fractions. Little to no separation of the target pesticides from the oil matrix was achieved. Table2 lists the distribution of essential oil components in the fractions collected.Fraction 1 2 3 4 5 % components eluting 18 67 13 2663%monoterpenes 15%sesquiquiterpenes 33 65 2%high M.W components 1 43 47 9water conditioned% components eluting 35 56 8 12%monoterpenes 3068%sesquiquiterpenes 60 39 1 0%high M.W components 0 50 42 7Table 2. Percentage volatiles eluting for SPE C18 cartridgesFigure 1 shows a histogram of the percentage distribution of components from the oil in each of the four fractions.Figure 1. Histogram of the percentage of volatiles of distilled oils in each of four fraction elutedon SPE C18 cartridges (non-preconditioned)Figure 2. Histogram of the percentage of volatiles of distilled oils in each of four fraction elutedon SPE C18 cartridges (preconditioned)Discussion : The chemical properties of many of the target pesticides, including polarity, solubility in organic solvents and chromatographic behaviour, are similar to the majority of essential oil components. This precludes the effective separation of analytes from such matrices through the use of standard techniques, where the major focus is pre-concentration of pesticide residues from water or water based vegetative material. However, this experiment served to provide a good indication that under HPLC conditions, where a reverse phase C18 column is used in conjunction with acetonitrile / water based mobile phases, essential oil components do not remain on the column.。

雅思阅读考试中遇到生词问题的克服方法指导

雅思阅读考试中遇到生词问题的克服方法指导

雅思阅读考试中遇到生词问题的克服方法指导怎样克服阅读生词?雅思阅读考试中,无论复习的多好,雅思阅读生词总是一道坎。

这里面有一些是专业的词汇,有些事自己未能复习到的高频词,遇到这一些雅思阅读生词该怎么办呢?1. 下定义法这个方法在考试中的运用还是很普遍的,多用于描述一个新专业,新领域,新单词。

而且在文章首段出现的频率最高,因为文章首段通常都是为本文话题或标题下定义。

例:Archaeologyis partly the discovery of the treasures of the past, partly the careful workof the scientific analyst, partly the exercise of the creative imagination.(“The Nature And Aims of Archaeology”) 从“is”这个词不难发现后面的部分都是为archaeology下定义:对过去财物的发掘,细致的科学分析,创造力的想象------考古学(以-ology为后缀都是表示某门学科)。

例:Theseasonal impact of day length on physiological responses is calledphotoperiodism. (“The effects of light on plant and animal species”) “is called”的前半句也起了解释说明的作用:日长的生理反应称为光周期的季节性影响。

2. 符号法无论是考试中还是剑桥系列,我们常发现某个单词或词组,乃至句子的前后常会出现一些特殊符号,比如:破折号(—),冒号(:),小括号(),引号(“”)。

这些符号都是帮助大家猜测生词的clue, 它们的前后通常都是对生词的解释和说明。

例:Generally,the rates have been modest (lower than bank rates). ( “Micro-Enterprise Creditfor Street Youth”) 括号里的部分是对其前面的modest做说明,即比银行的利息低一些。

双孔聚能爆破煤层裂隙扩展贯通机理

双孔聚能爆破煤层裂隙扩展贯通机理

双孔聚能爆破煤层裂隙扩展贯通机理郭德勇1)✉,赵杰超1),朱同功2),张 超1)1) 中国矿业大学(北京)应急管理与安全工程学院,北京 100083 2) 平顶山天安煤业股份有限公司十矿,平顶山 467000✉通信作者,E-mail :***************.cn摘 要 针对双孔聚能爆破孔间煤层裂隙扩展贯通问题,基于对双孔爆破应力波叠加效应的分析,建立双孔聚能爆破数值分析模型,研究双孔同时起爆时应力波的传播特征、煤体的应力状态、煤体裂隙扩展贯通规律以及应力波叠加效应对裂隙扩展的影响. 结果表明,应力波叠加效应致使两爆破孔中间截面上部分区域及其邻域内形成均压区,迫使部分径向裂隙转向,主导爆生裂隙空白带的形成;两爆破孔间的定向裂隙相互贯通后,爆生气体相互作用促进贯通区裂隙的扩展并贯穿空白带. 同时,结合煤层深孔聚能爆破现场试验发现,在两爆破孔外侧,应力波叠加效应促进裂隙的扩展,该作用随着远离爆破孔呈先增加后减小之势;在两爆破孔之间,应力波叠加效应抑制部分区域裂隙的扩展,致使两爆破孔之间不同位置处煤层增透效果有起伏变化.关键词 聚能爆破;双孔爆破;裂隙扩展;煤层增透;瓦斯抽采分类号 TD712Crack propagation and coalescence mechanism of double-hole cumulative blasting in coal seamGUO De-yong 1)✉,ZHAO Jie-chao 1),ZHU Tong-gong 2),ZHANG Chao 1)1) School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China 2) Pingdingshan Tian’an Coal Co. Ltd., Pingdingshan 467000, China✉Corresponding author, E-mail: ***************.cnABSTRACT This paper focuses on the radius of coal failure zones under cumulative blasting with shaped charge. Based on theanalysis of the mutual superposition effect of the explosion stress waves during the simultaneous detonation of two blastholes, a numerical analysis model of the double-hole cumulative blasting with linear shaped charge was established. Additionally, the propagation characteristics of the stress wave during the simultaneous detonation of two blastholes, stress state of the coal body,mechanism of coal crack propagation and coalescence, and influence of the stress wave superposition effect on crack propagation were evaluated. Results show that the stress wave superposition effect induces the formation of a pressure equalization zone in the partial region of the middle section of the two blastholes and its adjacent regions. This occurrence forces the radial cracks of the two blastholes to turn, and they cannot connect with each other, leading to the formation of a gap blank zone between the two blastholes. After the directional cracks generated under cumulative blasting load coalesce, the collision of the explosive gases produced from the two blastholes further promotes the expansion of the cracks in the directional crack coalescence zone and eventually penetrates the gap blank zone. Field test results of deep-hole cumulative blasting in coal seams show that the explosion stress waves from the blastholes in the opposite side promotes the propagation of the blasting-induced crack on the left or right side of the two blastholes. This propagation first increases and then decreases as it moves away from the blasthole. Between the two blastholes, the stress wave superposition effect from收稿日期: 2020−05−19基金项目: 国家自然科学基金联合基金资助项目(U1704242);国家自然科学基金资助项目(41430640)工程科学学报,第 42 卷,第 12 期:1613−1623,2020 年 12 月Chinese Journal of Engineering, Vol. 42, No. 12: 1613−1623, December 2020https:///10.13374/j.issn2095-9389.2020.05.19.001; the two blastholes inhibits the propagation of the cracks in some areas, resulting in a W-like fluctuation in the degree of improvement of the gas drainage effect at different positions in the area between the two blastholes.KEY WORDS cumulative blasting;double-hole blasting;crack propagation;improved seam permeability;coal seam gas drainage爆破技术具有工艺简便、工程地质适应性强的特点,在隧道掘进、路堑开挖、矿山开采和水利水电等工程领域应用广泛,并取得了良好的社会和经济效益[1−5]. 随着爆破工程规模的增大,爆破技术得到更广泛的应用,在工程实践中通常采用双孔或多孔连续起爆方式来提高施工速度[6],如此以来,爆炸应力波叠加损伤断裂效应对爆破致裂效果的影响逐渐增大[7−12]. 近年来,该问题成为相关专家学者关注的焦点. 闫长斌[13]通过开展岩体损伤声波测试试验,研究了声波在爆破损伤岩体中的衰减特性,借助岩体声学特性来探索岩体爆破累积损伤效应. 费鸿禄和范俊华[14]采用声波测试技术研究了边坡岩体在爆破载荷下的累计损伤效应. 朱振海等[15]采用动光弹实验研究了双孔同时起爆时应力波的传播特征及其对裂隙扩展的影响. 杨仁树等[16]通过开展动态焦散线实验研究了不同切槽模式下双孔同时起爆时裂隙的扩展贯通及裂隙尖端应力强度因子变化特征. 李清等[17]采用动态焦散线系统分别研究了不同装药量、间距的双孔切缝药包爆破时爆生裂隙的扩展规律. 魏晨慧等[18]研究了岩层节理角度和地应力对双孔爆破裂隙扩展规律的影响. 已有研究多是通过波速测试获取爆破后混凝土块/岩体内部损伤情况,然而,由于混凝土块/岩体内部结构的复杂性,该方法不能定量研究爆生裂隙的发育特征;可以采用相似试验方法,忽略有机玻璃与岩石内部结构的差异性,通过观察有机玻璃在切缝药包爆破载荷下的破坏情况来间接反映爆破载荷下岩石材料的响应特征,虽能获得较为直观的爆生裂隙分布特征,但却难以深入探讨爆生裂隙的扩展机理,对双孔聚能爆破载荷下爆破裂隙扩展贯通机制的认识仍十分有限. 相比于岩石,煤体结构更为复杂,而相关研究较少.本文在分析双孔爆破爆炸应力波叠加效应的基础上,基于煤矿现场试验参数,采用ANSYS/LS-DYNA构建双孔聚能爆破数值分析模型,模拟研究了双孔聚能爆破过程中爆炸应力波的传播特征、煤体单元的力学性质和煤层裂隙的扩展机制.同时,结合现场试验研究了双孔聚能爆破载荷下煤层裂隙扩展及分布特征.1 双孔爆破应力波叠加效应分析聚能装药起爆后,爆炸冲击波在破碎煤体过程中快速衰减,至压碎区(粉碎区)边缘,冲击波衰减为压缩应力波,其强度已难以引起煤体的压缩破坏[19]. 然而,煤体在应力波作用下将同时发生径向压缩变形和伴生的切向拉伸变形,由于煤体具有抗拉强度远小于其抗压强度的特点,当拉伸应力强度大于煤体的动态抗拉强度时煤体将破裂而产生径向裂隙[20−21]. 双孔同时起爆时,煤体内的动态应力场将因应力波的相互干涉而改变,致使局部应力集中或降低,从而影响煤体裂隙的扩展效果.若将聚能爆破激起的应力波在径向(切向)上产生的压应力(拉应力)假定为σr(σθ),则σθ=(μ/(1−μ))σr,其中μ为煤体的泊松比. 当相邻两爆破孔同时起爆时,在两爆破孔中间截面MN上的任意点m或n,其应力状态如图1所示.如图1(a)所示,当两应力波正交时(α=±45°),两波在正交点m处相互作用所产生的主应力为:由于μ≤0.5,则式(1)非负. 正交点m处将不再出现拉应力,两个主应力的值相等,并在该点邻域内形成恒均压区.当两应力波斜交时(−90°<α<90°且α≠0°,α≠±45°),取两束应力波夹角的平分线分别为X和Y轴,则二者方向与斜交点n处产生的主应力方向相同,且X轴平行于两爆破孔连接线,Y轴垂直于两爆破孔连接线,如图1(b)所示. 1#爆破孔在n点产生的径向应力和切向应力分别为σr n1和σθn1,经坐标变换后沿X、Y轴方向的应力分量分别为:双孔同时起爆时,两爆破孔的应力波在n点产生的应力沿X、Y轴方向的分量大小和方向均相同,而剪应力分量大小相同、方向相反. 因此,1#爆破孔和2#爆破孔激起的应力波在n点叠加后沿X、Y轴方向的主应力分别为:· 1614 ·工程科学学报,第 42 卷,第 12 期其中,基于煤体的物理力学条件,若取μ=0.201,则系数k 1、k 2随夹角变化而变化的特征如图2所示.由图2可知,当−63.41°<α<63.41°,且α≠0°、α≠±45°,X 轴方向的主应力为压应力;当−90°<α<−63.41°或63.41°<α<90°时,X 轴方向的主应力为拉应力. 当−26.67°<α<26.67°,且α≠0°,Y 轴方向的主应力为拉应力;当−90°<α<−26.67°或26.67°<α<90°时,Y 轴方向的主应力为压应力. 因此,在−63.41°<α<−26.67°或26.67°<α<63.41°时,由于X 、Y 轴方向的主应力均为压应力,该区域及其邻域内将形成均压区.综上可知,相邻两个爆破孔同时起爆时,爆炸应力波相互叠加,将导致两爆破孔中间截面上部分区域及其邻域内形成均压区,抑制爆生裂隙的扩展.2 煤层深孔聚能爆破双孔同时起爆数值分析2.1 模型构建基于煤层深孔聚能爆破工程试验参数,采用ANSYS/LS-DYNA 构建双孔聚能爆破数值分析模型,模型由聚能药卷、空气和煤体3部分组成,采用流‒固耦合算法. 模型整体尺寸为1600 cm×1600 cm×0.5 cm ,如图3所示. 为满足深孔聚能爆破的条件,分别在所构建模型的前表面和后表面上设置Z 轴方向约束.炸药采用MAT_HIGH_EXPLOSIVE_BURN 模型,其爆轰压力P可用JWL 状态方程表示[22]式中:V 为相对体积;E 0为初始内能;A 、B 、γ1、γ2、ω为与炸药类型有关的常数. 煤矿许用乳化炸药的参数及其JWL 状态方程参数分别为:ρ0=1140 kg·m −3,D 0=3200 m·s −1,A =146.1 GPa ,B =10.26 GPa ,γ1=7.177,γ2=2.401,ω=0.069,E 0=4.19 GPa.由于冲击载荷下煤体的应变率效应显著,因此煤体模型选用MAT_PLASTIC_KINEMATIC (随动塑性硬化材料模型). 聚能爆破载荷下,煤体的变形破坏以压剪破坏和拉伸破坏为主,当所受压应力P c (或拉应力P s )满足P c ≥P max (或P s ≤P min )时,煤体将破裂失效[22]. 其中,P max 和P min 分别为图 1 两束应力波的正交(a )、斜交(b )干涉Fig.1 Orthogonal (a) and oblique (b) interferences of the pressure waves图 2 斜交干涉时系数k 1和k 2的变化曲线Fig.2 Oblique interference of the stress waves图 3 煤层深孔聚能爆破数值分析模型Fig.3 Numerical model of cumulative blasting with linear shaped charge in a coal seam郭德勇等: 双孔聚能爆破煤层裂隙扩展贯通机理· 1615 ·煤体破坏的最大抗压强度和最小抗拉强度(拉应力取负值).2.2 爆炸应力波的传播特征相邻爆破孔同时起爆时爆炸应力波的传播与干涉过程如图4所示,聚能爆破后爆炸应力波自起爆点沿径向向外传播. t=1555 μs时,两爆破孔产生的爆炸应力波相遇碰撞形成压应力集中区(见图4(a)). 随后,爆炸应力波继续沿径向向外传播,由图4(b)可知,爆炸应力波叠加之后应力强度明显高于其它部分. 分析认为,爆炸应力波传播至应力波叠加区时,原爆炸应力波的残余应力与新到达的爆炸应力波相互作用而导致应力强度增加.对比图4(b)和图4(c)可知,随着应力波传播距离的增加,新到达应力波的强度不断衰减,原爆炸应力波的残余应力也不断衰减,二者叠加后应力波的应力强度减弱. t=3250 μs时,爆炸应力波到达另一个爆破孔(见图4(d)),此后,爆炸应力波继续向外传播直至消失.(a)Pressure/MPa34.5730.8527.1423.4219.7115.9912.288.574.851.14−2.58(b)Pressure/MPa33.3329.7426.1522.5618.9715.3811.798.204.611.02-2.57(c)Pressure/MPa35.5031.6927.8824.0820.2716.4612.668.855.041.24-2.57(d)Pressure/MPa37.3733.3829.3825.3921.3917.413.49.415.421.42-2.57图 4 煤层深孔聚能爆破双孔同时起爆时应力波的传播与干涉过程. (a)t=1555 μs;(b)t=1710 μs;(c)t=1930 μs;(d)t=3250 μsFig.4 Stress wave propagation and interference process during the simultaneous detonation of two blastholes: (a) t=1555 μs; (b) t=1710 μs; (c) t= 1930 μs; (d) t=3250 μs2.3 距两爆破孔相同距离连线上煤体单元应力分析在相邻两爆破孔中间截面MN上选取如图5所示的3个测点单元,根据聚能爆破过程中各个测点单元应力变化特征绘制了各个测点单元的应力变化曲线,如图6所示.图 5 煤层深孔聚能爆破模型中各个测点单元位置分布Fig.5 Position distribution of each measuring point in the cumulative blasting model由图6可以看出,相邻两个爆破孔的应力波(压力波)相互叠加过程中,No.2测点单元仅表现为压缩应力状态,而No.1和No.3测点单元均表现为拉伸应力和压缩应力的混合应力状态,表明在应力波叠加效应影响下,No.2测点单元邻域内将形成均压区. 随着应力波的传播,应力波的叠加效应逐渐减弱,当超过3000 μs,No.2测点单元呈现为拉伸应力和压缩应力的混合应力状态.2.4 聚能爆破煤体裂隙扩展特征相邻两聚能爆破孔同时起爆后煤层裂隙扩展03691212No.2No.1Pa图 6 煤层深孔聚能爆破双孔齐爆时各个测点单元应力(爆炸压力)变化曲线Fig.6 Pressure curve of each measuring point during the simultaneous detonation of two blastholes· 1616 ·工程科学学报,第 42 卷,第 12 期过程如图7所示. t=2500 μs时,左右两个爆破孔的爆生裂隙扩展特征相似:两爆破孔周围爆生裂隙的发育扩展程度基本一致,在两爆破孔连线方向均出现明显的径向裂隙(将两爆破孔连线方向上的径向裂隙称为“定向裂隙”). t=2925 μs时,两爆破孔的定向裂隙相互贯通,并在定向裂隙贯通区出现垂直方向的裂隙,而在定向裂隙贯通区的上部和下部区域均未出现明显的宏观裂隙. 对比图7(a)和(c)可知,在两爆破孔的左右两侧区域,任一爆破孔的径向裂隙发育扩展均比较明显;而在两爆破孔之间区域,除定向裂隙实现相互扩展贯通之外,其他径向裂隙的发育扩展程度不大,但是出现了数条非连续裂隙. 对比图7(c)和(d)可知,在两爆破孔的左侧和右侧区域,任一爆破孔径向裂隙的扩展方向均出现了一定程度的转向:左爆破孔径向裂隙的扩展方向向两爆破孔左侧偏转,右爆破孔径向裂隙的扩展方向向两爆破孔右侧偏转,从而使两爆破孔左侧和右侧区域内的裂隙密度增加. 在两爆破孔之间区域,左爆破孔径向裂隙扩展方向向左侧扩展,右爆破孔径向裂隙的扩展方向向右扩展,致使两爆破孔的径向裂隙难以贯通;但是,该区域内非连续裂隙的数目明显增多,且由定向裂隙贯通区向外扩展的垂直方向裂隙得到了明显的扩展.(a)(b)(c)(d)图 7 煤层深孔聚能爆破相邻两孔同时起爆后裂隙扩展贯通过程. (a)t=2500 μs;(b)t=2925 μs;(c)t=3085 μs;(d)t=6000 μsFig.7 Expansion and penetration process of coal seam fractures during the simultaneous detonation of two blastholes: (a) t = 2500 μs; (b) t = 2925 μs;(c) t = 3085 μs; (d) t = 6000 μs综上分析,相邻两个爆破孔同时起爆时,应力波的叠加效应将改变两爆破孔之间区域内径向裂隙的扩展方向(定向裂隙除外),致使这些径向裂隙难以朝着初始扩展方向继续扩展贯通,从而形成爆生裂隙空白带. 聚能爆破能够定向积聚爆轰能量从而形成定向裂隙[23−25],两爆破孔的定向裂隙相互贯通后在贯通区上部和下部形成垂直方向裂隙,垂直方向裂隙的不断发育与扩展分叉,最终贯穿爆生裂隙空白带,消除了相邻双孔齐爆爆生裂隙空白带对煤层增透效果的影响.相关研究表明[26],由于爆炸应力波的叠加作用,两爆破孔连线区域煤体破碎为较小颗粒,而在其他区域裂隙数量较少、长度较短,如图8所示.对比图8与图7(d)可知,聚能爆破定向集聚爆轰能量促使爆生裂隙定向扩展,有效解决了双孔同时起爆时爆炸能量在两爆破孔之间过度集中的问题,避免了部分区域煤体的过度破碎,促进了图 8 煤层深孔普通爆破相邻两孔同时起爆后裂隙扩展特征[26] Fig.8 Propagation characteristics of coal seam fractures under double deep-hole blasting[26]郭德勇等: 双孔聚能爆破煤层裂隙扩展贯通机理· 1617 ·煤体裂隙的发育与扩展.2.5 聚能爆破爆炸应力波对裂隙扩展的影响为进一步研究相邻两个聚能爆破孔同时起爆时应力波叠加效应对裂隙扩展的影响,模拟了应力波对裂隙扩展的影响,如图9所示. 对比图9(a)和(b)可知,左右两个爆破孔的定向裂隙C-A扩展过程中裂隙尖端的应力场与来自邻近爆破孔的应力波相互叠加,将促使定向裂隙的扩展与分叉. 对比图9(b)~(f)中径向裂隙C-B可知,来自临近爆破孔的应力波与裂隙尖端的应力场相互叠加之后,裂隙尖端的应力场发生显著变化,致使裂隙继续扩展过程中逐渐偏离了初始方向,左爆破孔的径向裂隙向两爆破孔左侧扩展,右爆破孔的径向裂隙向两爆破孔右侧扩展. 对比图9(c)~(e)可知,临近爆破孔的应力波传播过后,裂隙空白带内逐渐出现非连续裂隙C-C,表明裂隙空白带内残余应力与临近爆破孔应力波的压缩应力相互叠加,增大了煤体质点的拉伸应力导致煤体质点被拉伸破坏,而应力波强度随着其向外传播不断衰减,煤体质点的拉伸应力强度逐渐降低,当拉伸应力小于煤体的动态抗拉强度时裂隙扩展终止,从而形成了非连续裂隙. 对比图9(c)~(f)可知,定向裂隙贯通后,贯通区上部和下部逐渐出现了垂直方向裂隙C-D,表明定向裂隙扩展贯通为爆生气体提供了通道,爆生气体在贯通区相互碰撞促进了裂隙的发育与扩展从而形成了垂直方向裂隙.(a)(b)(c)(d)(e)(f)图 9 煤层深孔聚能爆破相邻两孔同时起爆过程中应力波对两爆破孔之间裂隙扩展的影响. (a)t=1955 μs;(b)t=2320 μs;(c)t=2965 μs;(d)t= 3085 μs;(e)t=4355 μs;(f)t=5630 μsFig.9 Effect of the stress wave on crack propagation between two blastholes during the simultaneous detonation of two blastholes: (a) t=1955 μs;(b) t=2320 μs;(c) t=2965 μs;(d) t=3085 μs;(e) t=4355 μs;(f) t=5630 μs由图10可知,来自相邻爆破孔的应力波传播过后,两爆破孔左侧和右侧径向裂隙C-F以及上部和下部径向裂隙C-E的扩展方向均发生显著的变化,表明来自相邻爆破孔的应力波与裂隙尖端应力场相互叠加后改变了裂隙尖端合应力的方向,主导了径向裂隙C-E和C-F的转向.综上,两相邻爆破孔同时起爆时应力波叠加效应是促进两爆破孔左右两侧径向裂隙定向扩展的关键因素,同时也是抑制两爆破孔之间径向裂隙(定向裂隙除外)扩展贯通的重要因素.3 工程应用试验3.1 试验区瓦斯地质条件以平煤股份十矿己15.16-24130工作面中间煤巷为深孔聚能爆破致裂增透试验区,该工作面垂深980 ~ 1185 m,地质构造相对简单,煤层倾角较小. 所采己15、16煤层属二叠系下统山西组,煤层瓦斯压力和瓦斯含量较高,最大瓦斯压力为3.2 MPa,最大瓦斯含量为12.5 m3·t−1,煤层透气性系数约为0.052~0.076 m2·MP·a−2·d−1,是典型的高瓦斯低透气性煤层.· 1618 ·工程科学学报,第 42 卷,第 12 期3.2 试验钻孔设计根据试验区瓦斯地质条件,设计了如图11所示的试验钻孔布置方案,分别考察单孔爆破和双孔齐爆条件下的煤层致裂增透效果. 其中,双孔齐爆的爆破孔间隔分为5和9 m 2种. 试验过程中先施工考察孔,并将各个考察孔连接到矿井瓦斯抽采系统,待考察孔内瓦斯体积分数稳定后连续监测记录爆破前煤层瓦斯抽采效果,一周后开始施工爆破孔,爆破后继续监测记录各个考察孔内瓦斯体积分数及纯流量的变化.图 11 煤层深孔聚能爆破试验钻孔布置示意图(单位:m). (a)单孔爆破;(b)双孔间隔5 m齐爆;(c)双孔间隔9 m齐爆Fig.11 Trial borehole layout of deep-hole cumulative blasting (unit: m): (a) single-hole blasting; (b) simultaneous explosion of two blastholes at 5-m intervals; (c) simultaneous explosion of two blastholes at 9-m intervals3.3 试验效果分析根据试验期间各个考察孔内瓦斯体积分数及纯流量监测结果,对比分析了单孔起爆和间隔为5 m 的双孔同时起爆对煤层瓦斯抽采效果的影响,绘制了聚能爆破前后各个考察孔内瓦斯体积分数及纯流量变化特征图(见图12). 其中,D i表征D i1和D i2的合体,D i1和D i2两个考察孔在同一时刻瓦斯体积分数(瓦斯纯流量)的平均值为V i(F i)(i=1, 2, 3, 4).由图12可知,爆破后煤层瓦斯抽采效果得到明显的提高,爆破后各个考察孔内瓦斯体积分数、纯流量较爆破前增幅明显,且距离爆破孔越近,增幅越大. 但是,受起爆方式的影响,爆破后煤层瓦斯抽采效果存在一定的差异:在双孔齐爆条件下,爆破后各个考察孔内平均瓦斯体系分数及纯流量增幅均大于单孔爆破,随着远离爆破孔,双孔爆破和单孔爆破对应的各个考察孔内平均瓦斯体积分数及纯流量增幅的差值(净增长量)均呈先增大、后减小的趋势. 相比于距离爆破孔更近的D1考察孔,D2、D3考察孔受距离较近爆破孔的影响相对较小,裂隙发育程度相对较低,当距离较远爆破孔的爆炸应力波传播至此处时,应力波叠加效应对裂隙扩展的促进作用更明显.综上可知,双孔爆破能够有效地促进两爆破孔外侧煤层裂隙的发育扩展,提高爆破增透效果.随着远离爆破孔,双孔爆破叠加效应对裂隙扩展的促进作用呈先增加后减小的趋势.为研究双孔爆破应力叠加效应对两孔之间煤层裂隙扩展的影响,开展了如图11(c)所示的煤层深孔聚能爆破双孔同时起爆试验,分析了试验期间各个考察孔内瓦斯抽采参数的变化特征,绘制了如图13所示的爆破孔两侧相同距离的D1和D7、D2和D6考察孔内瓦斯体积分数及纯流量的对比图.由图13可知,针对D1和D7考察孔,聚能爆破前后瓦斯体积分数及纯流量变化规律均基本一致,聚能爆破后D1和D7考察孔内平均瓦斯体积分数增幅分别为163.9%和163.5%,平均瓦斯纯流量增幅分别为177.1%和177.9%. 针对D2和D6考(a)(b)(c)图 10 煤层深孔聚能爆破相邻两孔同时起爆过程中应力波对两爆破孔左侧和右侧的裂隙扩展影响. (a)t=3085 μs;(b)t=4355 μs;(c)t=5630 μs Fig.10 Effect of the stress wave on crack propagation on the left and right side of two blastholes during the simultaneous detonation of two blastholes: (a) t=3085 μs; (b) t=4355 μs; (c) t=5630 μs郭德勇等: 双孔聚能爆破煤层裂隙扩展贯通机理· 1619 ·· 1620 ·工程科学学报,第 42 卷,第 12 期图 12 煤层深孔聚能爆破前后各个考察孔内瓦斯体积分数及纯流量变化规律. (a~b)单孔爆破;(c~d)双孔爆破;(e~f)单/双孔对比Fig.12 Variations in gas volume fraction and gas pure flow in each test hole before and after cumulative blasting: (a−b) single-hole blasting; (c−d) double-hole blasting; (e−f) single-/double-hole blasting comparison图 13 煤层深孔聚能爆破后各个考察孔内瓦斯体积分数(a)及纯流量(b)对比图Fig.13 Comparison of gas volume fraction (a) and gas pure flow (b) in each test hole察孔,聚能爆破前后瓦斯体积分数及纯流量变化表现出一定的差异性:聚能爆破后D2和D6考察孔内平均瓦斯体积分数增幅分别为133.9%、123.2%,平均瓦斯纯流量增幅分别为142.1%和135.2%,两爆破孔外侧相同距离处考察孔内瓦斯体积分数及纯流量的增幅均更大. 爆生裂隙(定向裂隙除外)扩展过程中,来自另一个爆破孔的爆炸应力波促使爆生裂隙的扩展方向发生转变,导致该区域煤体裂隙的扩展受到抑制,制约了该区域煤层瓦斯抽采效果的提高.图14为两爆破孔之间D71~D72考察孔内瓦斯体积分数及纯流量波动曲线. 爆破前各个考察孔内平均瓦斯体积分数、纯流量均相差不多,而爆破后各个考察孔内平均瓦斯体积分数存在一定的差异:自考察孔D71至考察孔D72,各个考察孔内平均瓦斯体积分数及纯流量均呈规律性波动. 位于两爆破孔中间位置的D5考察孔,比D61和D62考察孔离爆破孔更远,但D5考察孔内平均瓦斯体积分数或瓦斯纯流量明显高于D61和D62考察孔.在两爆破孔中心连线上,来自另一个爆破孔的爆炸应力波非但没有抑制裂隙的扩展,还将促进该方向上裂隙的扩展与分叉,当两爆破孔引起的煤体裂隙在该方向上贯通后,高压爆生气体在贯通区(通常为两爆破孔中间位置)相互作用促进了贯通区煤体裂隙的扩展,提高了该区域煤层的透气性;同时也在一定程度上弱化了双孔同时起爆过程中爆炸应力波相互叠加对部分区域煤体裂隙扩展的抑制作用.图 14 煤层深孔聚能爆破后两爆破孔之间各个考察孔内瓦斯体积分数(a)及纯流量(b)对比图Fig.14 Comparison of gas volume fractions (a) and gas pure flow (b) in each observation hole between two blastholes综上所述,煤层深孔聚能爆破双孔齐爆过程中,两爆破孔之间爆生裂隙的扩展方向在相邻爆破孔的爆炸应力波作用下发生转变,致使部分区域煤体裂隙扩展受限. 然而,来自相邻爆破孔的爆炸应力波非但没有抑制两爆破孔中心连线上爆生裂隙的扩展,还将促进该方向上裂隙的扩展与分叉,在两爆破孔的裂隙贯通区,爆生气体相互碰撞进一步促进了该区域裂隙的发育与扩展,大幅提高了煤层透气性,从而使两爆破孔之间不同考察孔内平均瓦斯体积分数及纯流量的增幅呈规律性波动.4 结论(1)相邻两爆破孔同时起爆时爆炸应力波的叠加效应致使两爆破孔中间截面上部分区域及其邻域内形成均压区,迫使两爆破孔之间径向裂隙(定向裂隙除外)的扩展方向发生转变,难以朝着初始方向继续扩展贯通,这是导致两爆破孔之间部分区域形成裂隙空白带的关键因素.(2)聚能爆破定向积聚爆轰能量致裂煤体形成定向裂隙,两爆破孔的定向裂隙相互贯通后为爆生气体提供运移通道,爆生气体相互作用致使贯通区煤体进一步破裂形成垂直方向裂隙,垂直方向裂隙的不断发育扩展,最终贯穿裂隙空白带,避免了两爆破孔之间煤体的过度破碎,提高了爆破致裂效果.(3)聚能爆破致裂增透工程试验发现,双孔齐爆条件下不同位置处应力波叠加效应对裂隙扩展的影响存在一定差异:在两爆破孔外侧,应力波叠加效应将促进裂隙的扩展,且该作用随着远离爆破孔呈先增加、后减小的趋势;而在两爆破孔之间,应力波叠加效应对裂隙扩展具有一定的抑制作用,降低了部分区域煤层增透的效果,致使不同考察孔内平均瓦斯体积分数及纯流量的增幅呈规律性波动.郭德勇等: 双孔聚能爆破煤层裂隙扩展贯通机理· 1621 ·。

the tyndall effect thus implies

the tyndall effect thus implies

the tyndall effect thus implies“The Tyndall Effect”is a phenomenon often observed in everyday life, in which the scattering of light by suspended particles in a medium leads to the appearance of a visible beam of light. In this article, we will explore the underlying principles behind the Tyndall Effect and delve into its implications in various fields.Firstly, let us understand the basic concept of the Tyndall Effect. Named after the 19th-century physicist John Tyndall, this effect occurs when light encounters particles within a medium, causing some of the light rays to scatter in different directions. The scattered light is then reflected or refracted, creating a visible beam or cone of light. This phenomenon is most noticeable when a beam of light passes through a cloudy liquid or a dusty room, where suspended particles are abundant.To comprehend why the Tyndall Effect occurs, we must delve into the behavior of light waves. Light is composed of electromagnetic waves, which consist of alternating electric and magnetic fields. When light interacts with particles in a medium, such as smoke particles or water droplets, the electric and magnetic fields can induce a dipole moment within the particles. As a result of thisinteraction, the light waves are scattered in various directions.The intensity and color of the scattered light depend on the size of the particles and the wavelength of light. If the particles are larger than the wavelength of incident light, the scattered light will contain various colors, resulting in white light. However, if the particles are smaller than the wavelength of light, the scattering will be more pronounced for shorter wavelengths, such as blue and violet light. This explains why the scattered light appears blue, while the transmitted light through the medium appears yellow or red, as blue light is scattered more strongly in the atmosphere.Now that we have grasped the fundamental principles of the Tyndall Effect, let us explore its implications in various fields. One significant area where the Tyndall Effect is commonly observed is in atmospheric science. This phenomenon plays a crucial role in the scattering of sunlight in the Earth's atmosphere, giving rise to the blue color of the sky. As sunlight encounters tiny molecules and particles in the atmosphere, the shorter blue and violet wavelengths of light are scattered more efficiently, creating the appearance of a blue sky.Additionally, the Tyndall Effect has significant applications in the field of medical diagnostics. This effect is often exploited in technologies such as turbidimetry and nephelometry, which measure the concentration of suspended particles in a liquid sample. By analyzing the scattered light, these techniques allow healthcare professionals to identify abnormalities or monitor the progress of certain diseases, such as kidney disorders or bacterial infections.Furthermore, the Tyndall Effect has numerous applications in industrial processes. For instance, in the field of cosmetics, manufacturers use this phenomenon to create shimmering or sparkling effects in products. By incorporating finely suspended particles that scatter light, such as mica or titanium dioxide, cosmetics can enhance the perceived appearance of skin or add an iridescent quality to lipsticks or nail polishes.In conclusion, the Tyndall Effect is a fascinating phenomenon that arises from the scattering of light by suspended particles in a medium. This effect has implications in various fields, ranging from atmospheric science to medical diagnostics and industrialapplications. By understanding the underlying principles behind the Tyndall Effect, we can appreciate the beauty of everyday occurrences and harness its potential in diverse areas of research and development.。

现场混装乳化炸药爆破破岩机理分析及其工程应用

现场混装乳化炸药爆破破岩机理分析及其工程应用

第35卷第4期2020年12月矿业工程研究Mineral Engineering ResearchVol.35No.4Dec.20200oi:1043522/j.c56i.l674-5276.2020.04401现场混装乳化炸药爆破破岩机理分析及其工程应用卢军!,马元军(葛洲坝易普力四川爆破工程有限公司,四川成都610000)摘要:为提高现场混装乳化炸药爆破效果,以某石灰石矿为背景,采用理论分析方法研究其爆轰波、爆破冲击波及爆破压缩波的作用机理,计算得到其对爆破大块率的影响,并提出合适的布孔方式及孔网参数.研究表明:某石灰石矿山采用现场混装乳化炸药爆破时,炮孔中的爆轰压力为10.04GPa,炸药对周边岩体的爆破初始冲击压力为1349GPa,爆破冲击压力及拉伸应力对岩体的影响区域分别为14,14m;采用梅花形布孔,孔网参数设置为5mx4m时,爆破块度分布更集中,块度破碎更充分,大块率较参数优化前降低1347%.关键词:现场混装乳化炸药;爆破冲击;孔网参数;布孔方式;大块率中图分类号:TD2354文献标志码:A文章编号:1672-9102(2020)04-0001-05Mechanism Analysis and Engineering Application of Blasting Fragmentation for On-sitt Mixed Emulsion ExplosivesLu Jun,MaYuanjun(Gezhouba Explosive Sichuan Blasting Engineering Co.,Ltd.,Chengdu610000,China)Abstract:In order to improve the blasting effect of on-site mixed emulsion explosive,taking a limestone mine as the reseerch background,the action mechanism of detonation wave,blasting shock wave and blasting compression wave are studied by theoreticcl analysit method.The influence of blasting bouldeo ratio is obtained by celculation,the appropaaie I io I c arrangemeni mode and I o I c network parametera are proposed.R cu O s show that the detonation passua in the blast hok is10.04GPa and the initim impact pressure on surrounding rock mass is1349GPa.The aree of impact pressure and hnsile stress on rock masses is14and1.1m especthely. When plum blossom shaped holes are used and the hcOe network parametere are set at5mX4m,the blasting fraamentation distriVuhon is more concentrated and the fragmentation is more sufficient,the block ratio is decreesed by13.47%compared with that before optimization.Keywords:on-site mixed emulsion explosives%blasting impact%hcOe network parametere%hcOe arangement%block ratio自1627年,奥地利人葛期帕尔•温德首次将炸药应用于煤矿开采以来,经过几百年的发展,爆破法已成为矿山开采最主要的方法[1].伴随着爆破法的推广应用,工业炸药也陆续更新换代,最初的黑火药,逐步由代那买特、硝铵炸药所替代•硝铵炸药由于安全、可靠、威力大,特别是现场混装乳化炸药生产工艺简单,其制造、运输、使用等环节均为炸药半成品,无雷管、机械等感度,安全可靠,且生产工艺高效、环保,因此广泛应用于露天大型矿山爆破开采.收稿日期:2020-08-16通信作者$E-maiV****************2矿业工程研究2020年第35卷现场混装乳化炸药流动性大,主要呈耦合装药结构,其配方可以根据矿岩的性质调整,因此研究其与矿岩匹配性对于爆破效果提升至关重要.国内外大量学者分别从现场混装乳化炸药原材料性质'$,3(、配方'#旳、装药结构'7,8]等方面研究了其对爆破效果的影响,并提出了针对性的措施•但是针对现场混装乳化炸药爆区爆破参数的设计仍采用传统的经验公式⑼,对于现场混装乳化炸药破岩机理及影响范围研究较少,相关爆破参数的优选理论支撑不足•基于此,本文以某石灰石矿山为背景,研究现场混装乳化炸药爆破应力波传播规律,分析其破岩机理,为爆破参数的优化提供理论依据・1现场混装乳化炸药爆轰冲击性能分析某石灰石矿山采用现场混装乳化炸药进行爆破作业,工艺简单.首先在地面集中制备站制备水相(硝酸铵水溶液)、油相(柴油及乳化剂)、敏化剂(亚硝酸钠),然后将水相、油相、敏化剂分别装入BCRH-15型现场混装乳化炸药车的不同罐体内,现场混装乳化炸药车进入爆破区域后,通过螺杆泵将水相、油相搅拌均匀,形成W/O型抗水乳胶基质,输入炮孔时添加敏化剂,10~15min后现场混装乳化炸药在炮孔中敏化发泡,成为具备爆炸性能的乳化炸药•具体配比:水相溶液中!(硝酸铵):!(水)=82%:18%,油相溶液中!柴油):!(SP-80)=80%:20%,敏化剂中!(亚硝酸钠):!(水)=25%:75%,炸药密度为1.15g/cm3,水相吸晶点温度为63°C.现场混装乳化炸药装药完成后,在起爆具爆炸能作用下,炸药爆炸并以较快的速度达到爆轰,其爆轰波传播过程符合ZND模型,如图1所示.爆轰波在炮孔传播过程中,以D表示爆轰波速度,以p H,P h,“H,$H,e H及P o,P o,"0,$0,%)分别表示爆轰产物及炸药的密度、压力、运动速度、温度和比热力学能(如图1所示)•在爆轰波传播过程中,爆轰波阵面前后单位质量炸药遵循质量、动量及能量守恒定律'10(:&H'&0=(e H-e0)+(*H-*0);(1)p(")==P((2)P h_P0=p(D~"0)("h-"0)-(3)式中:&0,&h分别为炸药、爆轰产物单位质量热力学能,E*0,*h分别为炸药、爆轰产物单位质量的化学能,J.采用Microtrap孔内爆速仪对现场混装乳化炸药爆速进行测试,得到"=6051.6m/s.将相关参数代入式(1)~式(3),可得现场混装乳化炸药爆轰压力ph=10.04GPa.1—爆轰产物;2—反应区;3—现场混装乳化炸药;4—压力曲线;5—(C-J)面;6—冲击波面图1柱状耦合装药爆轰ZND模型2现场混装乳化炸药爆破应力波传播特征2.1爆轰波对岩体初始冲击荷载现场混装乳化炸药装入炮孔后呈流体状,根据应力波传播特征,爆轰波在炮孔壁发生透射及反射,透射波向岩体内部继续传播,反射波则在爆轰产物中传播,如图2所示.透射波向岩体深处传播,对周边岩体产生动力扰动,因此,研究爆轰波对岩体的冲击荷载实际上就是研究爆轰波作用于孔壁的透射波的冲击荷载.第#期卢军,等:现场混装乳化炸药爆破破岩机理分析及其工程应用31—爆轰产物;2—现场混装乳化炸药;3—炮孔壁;4—爆轰波头;5—入射波;6—反射波;7—透射波图2柱状装药爆轰波冲击荷载透射波均遵循质量、动量和能量守恒,参照式(1)~式(3),得到透射波压力(岩体初始冲击荷载)为1+N-—式中:P2为爆轰波对岩体初始冲击荷载,MPa;N为比例系数,该石灰石属中风化灰岩,取1.2;P s为岩体密度,取2670kg/m3;为岩体中弹性波波速,取4644m/s.将相关参数代入式!4),计算得到p=13.79GPa.2.2现场混装乳化炸药爆破应力波衰减规律炸药爆炸后,产生大量高温高压气体作用于炮孔周边的岩体,在距炮孔中心较近的范围内(—7.0),岩体变形过程复杂,呈类似流体变形状态,在该区域内,高温高压气体的能量快速释放,影响范围较小•在r#7R a附近,爆轰波产生的冲击波在岩体中很快形成陡峭的波阵面[11],具有较高的冲击压力,冲击波继续传播的过程中,冲击压力开始衰减,当冲击荷载衰减至小于岩体抗压强度时,冲击压力转换为压缩应力,压缩应力对岩体压缩产生拉应力,压缩应力小于岩体抗压强度,不会使岩体产生破坏,但是因压缩产生的拉应力大于岩体抗拉强度,促使岩体出现拉伸破坏.根据文献[10,11]爆破应力波衰减理论公式,分别得到爆破压缩应力P及切向拉应力#的特征方程:P2二);(5式中:P为压缩应力,MPa;为径向压应力,MPa;#为初始冲击压力,MPa;-为比距离;$为压力衰减指数,爆破冲击波的衰减指数$#3;A r为爆破应力计算点与爆轰波波阵面的相对距离,!r=r-7R%,其中r 为爆破应力计算点距炮孔中心的距离,m;R%为炮孔半径,.%=0.069m.式中:#为切向拉应力,MPa;"为岩石泊松比,取0.28.将相关参数代入式!5)~式(7),得到爆破压应力、拉应力与距炮孔中心距离的反比关系如图3所示.现场混装乳化炸药爆破后,首先产生爆破冲击压力,爆破冲击波压力P由13.79GPa迅速衰减至40.20MPa (图3a所示),衰减的距离为1.0m,此后爆破冲击波继续衰减形成爆破压缩波,爆破压缩波压应力小于岩体抗压强度,不会对岩体产生破坏,但是压缩产生横向拉应力,导致岩体破坏,拉应力由6.9MPa逐步衰减至2.0MPa时(图3b所示),拉应力对岩体不再产生破坏,拉应力破岩范围为1.1m,爆破应力破岩范围为2.1m.4矿业工程研究2020年第35卷3工程应用3.1方案优化根据经验,某石灰石矿爆破孔排距设计范围为(4~6) mx ( 3~5) m ,为提高爆破效果,一般采用大孔距、 小排距•选取几种典型的爆破参数及炮孔布置形式进行混装乳化炸药破岩机理分析.不同的布孔方式下爆破应力破岩范围如图4所示.当孔排距为5 mX4 m 时,梅花形布孔方式对比长方 形布孔,相邻炮孔起爆后,中间区域未受冲击,且拉裂的区域较小并呈狭长分布,该区域产生爆破大块率的 概率较小,更利于控制爆破块度.(a )梅花形布孔(b )长方形布孔图4不同布孔方式爆破应力破岩范围当炮孔采用梅花形布孔时,不同孔排距导致相邻炮孔间未受扰动区域面积各不相同,如图5所示.当孔排 距6 mX4 m 时(如图5a ),相邻炮孔间未受扰动的区域最大,大块率发生概率最大;当孔排距4 mX4 m 时(如 图5c ),相邻炮孔破裂区域重叠,可能导致炮孔爆炸能更多应用于岩石过度破碎,产生大量粉矿,不利于铲装; 当孔排距5mX4 m 时(如图5b ),能量利用率最高,且炮孔间岩石破碎较充分,发生大块率概率较小.(a) 6 m X 4 m (b) 5 m x 4 m图5不同爆破参数爆破应力破岩范围4m(c) 4 m x 4 m因此,基于现场混装乳化炸药爆破应力破岩机理,采用孔排距为5 mX4 m 的梅花形布孔方式,更利于 充分破岩, 提高爆破效果.第4期卢军,等:现场混装乳化炸药爆破破岩机理分析及其工程应用53.2应用效果分析为进一步直观对比分析不同孔网参数条件下混装乳化炸药爆破时,该石灰石矿大块率的分布特征,选 取常用的6 mX4 m 和优化推荐的5 mX4 m 孔网参数进行爆破效果对比分析,爆破单耗均取04 kg/m 3.进 行混装乳化炸药装药并起爆后,利用爆破块度软件对爆堆表面大块率进行分析,如图6所示.(a)原参数爆破块度 (b)优化后爆破块度图6爆破参数优化前后岩石爆破块度对2种爆破参数起爆后大块率进行分析后,其爆破块度累计质量百分比如图7所示.参数优化前后,爆破块度 在矿山要求的10 - 100 mm 内所占比例分别为72.13%, 8244%,超过100 mm 的所占比例分别为27.47% ,1440%. 由此可见,基于现场混装乳化炸药破岩机理,优化爆破孔 网参数后,爆破块度分布更集中,大块率降低13.57%.4结论1)分析并计算得到现场混装乳化炸药耦合柱状装药结构爆轰压力及其对周边岩体爆破冲击压力,为现场混装 乳化炸药爆轰能定量计算及配方优化提供了思路.00O O O OO OOO O987654321 %、£0皿*径44除图7参数优化前后爆破块度对比2)现场混装乳化炸药爆破冲击压力随着应力波向外传播,冲击压力逐步衰减为压缩应力,冲击压力对周边岩体产生冲击破碎,压缩产生的拉应力对周边岩体产生拉裂破碎.3)研究表明梅花形布孔较长方形布孔爆破效果更佳,针对某石灰石矿提出了梅花形布孔适合的孔网 参数,有效降低了爆破大块率.参考文献:[1] 李有良,郝志坚,姜庆洪.工业炸药生产技术'M ].北京:北京理工大学出版社,2015.[2] 卢文川,孟昭禹,马军,等.乳化剂和油相材料对现场混装乳化炸药基质稳定性的影响'J ].爆破器材,2019,48(6) $7-12.[3] 张家田,高锡敏,黄胜松.混装乳化炸药敏华助剂对爆破效果的影响研究'J ].采矿技术,2020,20(5):161-163.[4] 李杰,刘露,赵明生,等.基于混装乳化炸药配方调整改善爆破效果的研究[J].矿业研究与开发,2020,40(5) $27-31.[5] Huang S S , Zhao M S , Zhang Y P , st aO Experimental Study on the Performance oO on-site Mixed Emulsion Explosives andRock Impedancc Matching [ J ]. American Journal oO Scientific Research and Essays , 2020,5( 26) : 1-7.[6] 黄麟,田丰,田惺哲,等.抗低温地下混装乳化炸药工艺配方研究[J ].工程爆破,2018,24(5):35-39.[7] 余红兵,赵明生,周桂松,等.混装乳化炸药不同孔径水孔装药结构研究'J ].爆破,2018,35(4):104-123.[8] 李斌,马元军,胡劲松,等.某铁矿大孔径中深孔爆破装药结构对比试验[J ].现代矿业,2019,35( 12):117-119.[9] 汪旭光.爆破手册'M ].北京:冶金工业出版社,2010.[10] 戴俊.岩石动力学特征与爆破理论'M ] 4匕京:冶金工业出版社,2014.[11] 杨仁树,丁晨曦,王雁冰,等.爆炸应力波与爆生气体对被爆介质作用效应研究[J ].岩石力学与工程学报,2016,35(s2) :3501-3505.。

爆破减震研究论文

爆破减震研究论文

第27卷 第1期2010年3月爆 破 BLAST I NG Vol .27 No .1 Mar .2010 DO I :10.3963/j .issn .1001-487X .2010.01.004爆破振动安全判据研究综述3罗 忆,卢文波,陈 明,舒大强(武汉大学水资源与水电工程科学国家重点实验室,武汉430072)摘 要: 简要回顾了国内外爆破振动安全判据的发展历程,综合分析了岩石高边坡和地下洞室围岩的爆破振动破坏机理、动力稳定性评价方法和爆破振动对新浇混凝土影响等方面的研究现状与进展,介绍了国内矿山、水电及核电行业采用的有关建(构)筑物、岩石高边坡、地下洞室围岩、基岩以及新浇混凝土的主要爆破振动安全判据标准,并与国外相关标准进行比较。

分析讨论了以往爆破振动破坏机理研究中存在的问题以及现有爆破安全判据中的不足,如未对爆破地震波作用下岩体中波的传播问题和边坡动力响应问题的不同破坏机理加以区分,现有爆破振动安全判据中未对振动频率和持续时间的影响加以考虑等。

关键词: 爆破振动; 安全判据; 质点峰值振动速度; 频率中图分类号: T D235.4+1 文献标识码: A 文章编号: 1001-487X (2010)01-0014-09Vi ew of Research on Safety Cr iter i on of Bl asti n g Vi brati onLUO Yi,LU W en 2bo,CHEN M ing,SHU D a 2qiang(State Key Laborat ory of W ater Res ources and Hydr opower Engineering Science,W uhan University,W uhan 430072,China )Abstract: The devel opment of the safety criteri on of blasting vibrati on is briefly revie wed .The state and advanceis intr oduced and analyzed in the mechanis m of failure or da mage induced by blasting vibrati on,the analysis methods of dynam ic stability f or r ock sl opes and surr ounding r ock mass of undergr ound caverns under blasting vibrati on,and the influence of blasting vibrati on on early 2aged concrete,etc .The safety criteria of blasting vibrati on f or high r ock sl ope,undergr ound caverns,foundati on r ock mass and early 2aged concrete adop ted by m ining industry,hydr opower and nuclear power engineering in China are p resented,and compared with those e mp l oyed abr oad .Main p r oble m s ex 2ist in the study of the da mage mechanis m induced by blasting vibrati on and deficiencies of the currently adop ted safe 2ty criteria are analyzed and discussed,such as there is made no distinguish bet w een the different da mage mechanics induced by the p r opagati on of blasting seis m ic in r ock mass and by the dyna m ic res ponse of r ock sl ope,and the a 2dop ted safety criteria without considering the influence of vibrati on frequency and durati on and s o on .Key words: blasting vibrati on;safety criteri on;peak particle vel ocity;frequency收稿日期:2009-11-12作者简介:罗 忆(1984-),男,武汉大学水电学院博士研究生,主要从事与爆破开挖相关的岩石动力学问题方面的研究工作,E 2mail:alliela w@qq .com 。

应力波和爆生气体共同作用下裂隙区范围研究

应力波和爆生气体共同作用下裂隙区范围研究

应力波和爆生气体共同作用下裂隙区范围研究费鸿禄;洪陈超【摘要】为了得到更加符合实际的裂隙区范围计算公式,从理论上分析研究了在空气不耦合装药条件下裂隙区范围的计算方法.选取2号岩石乳化炸药和4种典型的岩石参数值,对基于初始损伤和粉碎区存在的岩石裂隙区半径进行了计算,并在此基础上运用阿贝尔原理和岩石止裂条件考虑了爆生气体准静态作用下裂隙的二次扩展.研究结果表明:粉碎区范围的大小会对裂隙半径极大值产生较大影响,并且当岩石初始损伤达到0.7 ~0.8时,裂隙区半径受到的影响程度达到最大;得到了应力波动作用和爆生气体准静态作用下裂隙区半径计算公式.%In order to get more realistic formula of fracture zone range,the calculation method was studied theoretically under the condition of non-coupling charging.By applying No.2 rock-emulsion explosive and four kinds of typical rock parameter values,the rock fracture zone radius was calculated based on the initial damage and crushing zone.According to the Abel principle and rock crack arrest conditions,the detonation gas quasi-static crack under the action of blasting secondary extensions was considered.The results show that the size of the grinding zone made great influences on the maximum value of crack radius,and the fracture zone was influenced most when the initial damage of the rock reached up to 0.8 ~ 0.7.Finally,the calculation formula under the stress wave and the quasi-static action of the explosion gas was obtained.【期刊名称】《爆破》【年(卷),期】2017(034)001【总页数】5页(P33-36,107)【关键词】不耦合装药;初始损伤;爆生气体;准静态;二次扩展【作者】费鸿禄;洪陈超【作者单位】辽宁工程技术大学爆破技术研究院,阜新123000;辽宁工程技术大学爆破技术研究院,阜新123000【正文语种】中文【中图分类】TD235控制爆破技术已经被广泛的应用于矿山、井下采矿等爆破工程中,其中炮孔空气不耦合装药是控制爆破工程当中最常用的装药方式。

Influence of blasting on the properties of weak intercalation

Influence of blasting on the properties of weak intercalation

Influence of blasting on the properties of weak intercalationof a layered rock slopeXiao-lin Song1,2), Ji-chun Zhang1), Xue-bin Guo3), and Zheng-xue Xiao3)1) School of Civi1 Engineering, Southwest Jiaotong University, Chengdu 610031, China2) Traction Power State Key Laboratory, Southwest Jiaotong University, Chengdu 610031, China3) School of Environmental Engineering, Southwest University of Science and Technology, Mianyang 621002, China(Received 2008-02-09)Abstract: A precondition for correctly analyzing the stability of a slope and designing its bracing structure is to study and determine the influence of excavation blasting on the properties of weak intercalation in the layered rock slope. On the basis of in-situ stratifica-tion-cracking blasting tests, the properties of weak intercalation were investigated using the LS-DYNA3D program. The displace-ment distribution and compactness of weak intercalation at different positions away from the charge center and their various laws are discussed. The critical displacement of stratification-cracking (0.1 mm) was obtained, and an approximate expression of compactness were deduced. Furthermore, through the simulation of a layered rock blasting under the same geological conditions, the stratifica-tion-cracking effect of deep-hole blasting on the properties of weak intercalation was compared with that of short-hole blasting, and the influencing differences, in addition to their causes, were analyzed. The results indicated that the blasting cavity of weak intercala-tion in short-hole blasting with a radius of 40 mm was nearly a circle, whose radius was about 28.7 cm; whereas in deep-hole blasting with a radius of 150 mm, the shape of the blasting cavity was different from that in short-hole blasting, the radius of the cavity be-hind the charge (89.1 cm) was further smaller than those of the other three (138.7 cm), and there were sharp crinkles on the surface of weak intercalation. When the distance from the charge center (DCC) was less than 40 and 150 cm in short-hole and deep-hole blast-ing, respectively, the displacement of weak intercalation was reduced remarkably with the increase in DCC.Key words: rock slope; bench blasting; numerical simulation; intercalation[This study was financially supported by the National Natural Science Foundation of China (No.50574076 and No.50838006).]1. IntroductionThe blasting technique is widely used in mining production and in rock excavation for cutting a slope. However, it has many negative effects on the stability of the slope, such as causing a partial or entire strati-fication-cracking in the rock slope, breaking the integ-rity of rock mass, reducing the self-stability of rock mass, or decreasing the sliding resistance of the slope. It is very easy to cause a layered landslide and to lead the formed slope to landslide or collapse. Therefore, it not only delays the construction time, but also in-creases the cost of the project and makes it more dif-ficult in bracing than expected. The layered landslide caused by the excavation blasting in engineering is basically attributed to the shortage of the cognition and studies in the discipline of blasting stratifica-tion-cracking and the weakening of weak intercalation; thus it is hard to formulate the related slope design and engineering practice in theory.The blasting theory aimed at layered rock mass has been investigated overseas since around 1950 [1-4], whereas the corresponding theory has been studied from the beginning of the 1980s in China [5-12]. The investigators consider that discontinuities, such as joints and bedding planes, have an important influence on the propagation of the blasting-stress waves and the fragmentation of rock mass, which are due to the cracking of the discontinuities and the shearing of layers against each other under the explosion load. In recent years, through the in-situ excavation-blasting tests of layered limestone slopes, Wu and Zhang [13-14] discovered that the stratification-cracking8 International Journal of Minerals, Metallurgy and Materials, Vol.16, No.1, Feb 2009range of rock masses caused by 40-cm and 100-cm hole bench-blasting extends to 1.9-2.5 m and 7-15 m, respectively, but that caused by 40-cm hole smooth-blasting is only 1.3-1.9 m, which indicates that there is a close correlation among the stratifica-tion-cracking effects, the explosion gases or explosion pressure, and the amount of charge. For bench blasting in the layered rock mass with a weak intercalation, the erosion and impulse caused by explosion gases may influence the properties of the weak intercalation so much that the stratification-cracking of rock mass oc-curs and the density of the weak intercalation in-creases within a certain range. However, it is not clear how the geometric configuration and the physical properties of the weak intercalation in the stratifica-tion-cracking range are influenced by blasting; there-fore, it is very hard to reduce the strength of weak in-tercalation quantitatively in the stability analysis of slopes. In combination with the results of the in-situ tests and aimed at answering the above-mentioned questions, the effects of blasting on the properties of the weak intercalation were studied in this article us-ing the dynamic finite element method (FEM).2. Model and its parameters2.1. General situation of the in-situ stratifica-tion-cracking blasting testThe tests were carried out at the spot of DK376+80-DK376+120 sections in the Yuhuai rail-way. Here, the slope rock was dolomite-limestone, with a rather high rigidity and with well-developed bedding planes. The thickness of rock formation was 0.3-3.0 m, and the obliquity was 15-35q. The bedding joints were poor in perviousness and a few of them had a seam of cohesive soil. There was no naked fis-sure on the surface of the bedding joint, which had a good integrity. The parameters of the rock and the weak intercalations are listed in Table 1.The depth of the shot hole was 1.3-1.5 m, the amount of the hole charge was 0.3 kg in the test, and the stratification-cracking range of rock mass ex-tended to 2.10-2.35 m under the same amount of charge.2.2. Modeling and the parameters usedBased on the real parameters of small-bench blast-ing in layered rock slope, the numerical model was set up with the similarity ratio of 1:1. To be convenient for modeling, a square hole with the side length of 35.5 mm was adopted to replace the circular hole of 40 mm in diameter according to the area equality principle. In addition, the charge length (21.7 cm)can be calculated by the charge amount (0.3 kg) and its density (1000kg/m3). The stemming length was 1.2 m,the inclination angle of the slope was 20q, and theweak intercalation was the cohesive soil with a thick-ness of 5 mm.The SOLID164 element was selected in the FEM model, in which the multimaterial fluid-solid coupling method was used. Moreover, a symmetry boundarywas used on the symmetry section. There are 49308 nodes and 45160 solid elements in this model, and theshape and the mesh of the element are illustrated inFig. 1. The termination time of calculation is 5 ms.Table 1. Physical and mechanical parameters of rock andweak intercalationsParameters RockCohesivesoilU / (kg m ) 2460 1800E d / GPa 60μ 0.200.35c / kPa 17.500 0.018c / MPa 160E50 / GPa 52G / MPa 16f 0.70I q 35Note: density;E d dynamic elastic modulus of rock;μ Poisson’s ratio;c cohesive force; c compressive strength; E50 elastic modulus of rock mass; G shear strength;f friction coefficient; Iinternal friction angle.1212(1)e(1R V R VEP A BR V R V VZ Z Z,where A, B, R1, R2, and are the material constants;X.L. Song et al., Influence of blasting on the properties of weak intercalation of a layered rock slope 9and P , V , and E 0 are the pressure, the initial relative volume, and the initial internal energy, respectively [15-17]. The parameters of the charge are listed in Ta-ble 2.U / (kg m )1000D / (m s 1) 3800 A / GPa 214.4 B / GPa 0.182 R 1 4.2Z0.9 E 0 / GPa 0.15Note: and D are the density and detonation velocity of the charge, respectively.3. Results and analyses of numerical simula-tion3.1. Displacement distribution of weak intercala-tionTo investigate the effects of erosion, impulse, and compaction of weak intercalation, it is very essential to research the motion and the displacement of the weak intercalation under the influence of explosion gases. With the increase in calculating time, the im-pulse of weak intercalation increases. During a very short time (less than 500 μs), the shape of the blasting cavity shown in Fig. 3 is approximately circular, with a radius of 28.7 cm, which suggests that it is feasible to use a square charge instead of a circular one ac-cording to the principle of section area equality.Fig. 3. Displacement isoline of weak intercalation around the blast hole. Generally speaking, with the increase in the dis-tance away from the charge center (DCC), the relative displacement between the particles decreases gradu-ally until it becomes quite small, which indicates that the weak intercalation is not compressed anymore, that is to say, it is in a condition without any effect. Moreover, because the rock formation on the top of the weak intercalation is bent upward, caused by the explosion gases, which leads to the gases wedging into the interface between the weak intercalation and rock mass, the weak intercalation slips along the lay-ers. The explosion compression not only causes the weak intercalation behind the charge to impulse backward, but also causes it to protrude downwards, thus the weak intercalation near the blasting cavity does not lie at one level; this phenomenon is shown in Fig. 3.The displacement curve of the weak intercalation along the symmetry surface and DDC is shown in Fig.4.10 International Journal of Minerals, Metallurgy and Materials, Vol.16, No.1, Feb 2009the displacement is more than the critical value, a relative motion occurs between the weak intercalation and the rock mass. Hence, the cohesive force between them can be regarded as zero, and the internal friction angle decreases. However, it is essential to carry out a further study on the decreasing degree of the internal friction angle.3.2. Compaction degree of weak intercalation During the blasting process, the mass of weak in-tercalation remains constant while the volume be-comes small because of the high explosion pressure; therefore, the density increases and the weak interca-lation is compacted. To study the compaction degree of weak intercalation, assuming that (1) the weak in-tercalation impulses along a near-circle by the explo-sion pressure, (2) the displacement along the direction of the charge axes is neglected.If the DCCs of the beginning-end and the back-end in the calculated section are r and R , respectively, their corresponding displacements are s (r ) and s (R ), respectively. The density before blasting is U 0, and it becomes U after blasting. Based on the law of mass conservation, U 0 can be calculated by22021()()12r R r s R s r R RU U(1)where m 0/U U U is defined as the compactness of weak intercalation. Obviously, within a certain range,there is s (r )>s (R ), so U m >1. The bigger the U m , the more compacted the weak intercalation.The compaction degree at a position 14.7 cm away from the charge is U m ˙6.12. That is, the density here is 6 times greater than that before blasting. And, when the DCC (38.2 cm) is 20 times longer than the charge radius, the compaction degree is 1.2. Therefore, the explosion gas has a remarkable compression effect on weak intercalation.3.3. Analyses of the influence of deep-hole blasting on the properties of weak intercalationDeep-hole blasting is widely used in excavations, and its effect on the properties of weak intercalation is an important problem to be solved. The basic parame-ters of the deep-hole blasting model include the fol-lowing: charge diameter, 150 mm; charge amount, 120 kg; charge length, 6.6 m; stemming length, 4.4 m; subdrill length, 1 m; bench height, 10 m.The numerical results of deep-hole blasting indicate that the shape of the blasting cavity in weak intercala-tion is nearly a circle. The maximum displacement ofthe weak intercalation (the radius of the blasting cav-ity) at the back of the charge is less than that in the other three directions. In addition, there are sharp crinkles along the longitudes on the surface of the weak intercalation (shown in Fig. 5), which notably differs from the cavity shape in short-hole blasting. The cavity radius behind the charge (89.1 cm) is much smaller than the other three (138.7 cm), and there are sharp crinkles on the cover of the weak in-tercalation, whereas the blasting cavity radius of the weak intercalation in short-hole blasting (28.7 cm) is 14 times that of the charge (40 mm), which is in agreement with the results mentioned in Ref. [18] that the blasting cavity radius in soil is 12-25 times that of the charge radius. The stratification-cracking range in deep-hole blasting, determined by the critical dis-placement of 0.1 mm, is 16 m, which is wider than that in short-hole blasting. These results show that the compaction properties of the weak intercalation are remarkably different from those in short-hole blasting.Fig. 5. Displacement distribution near the charge.The relationship between the displacement of weak intercalation along the symmetry surface and the DCC in deep-hole blasting is shown in Fig. 6. The maxi-mum displacement of 89.1 cm is marked clearly, whereas, it is 28.7 cm in short-hole blasting. The in-fluence range of deep-hole blasting is remarkably wider than that of short-hole blasting. The displace-ment of deep-hole blasting reduces gradually, and it is 10% more than the maximum displacement when the DCC is 50 cm, whereas it decreases to less than 10% in short-hole blasting when the DCC is approximately 30 cm. This indicates that the influence range of deep-hole blastingon weak intercalation is quite wide.X.L. Song et al., Influence of blasting on the properties of weak intercalation of a layered rock slope 11The difference between deep-hole blasting and short-hole blasting is due to the difference in the charge amount. The charge amount in deep-hole blasting is much more than that in short-hole blasting; therefore, the pressure of the deep-hole blasting gas is higher and the resulting deformation is more acute. The more the charge amount increases, the more en-ergy the blasting has, and the acuter the deformation is.4. Conclusions(1) Through numerical simulations, the displace-ment-distribution properties of weak intercalation in a layered slope, affected by deep-hole blasting and short-hole blasting were obtained, and the differences between them were analyzed. The blasting cavity of weak intercalation in short-hole blasting with a radius of 40 mm is nearly a circle with a radius of about 28.7 cm; whereas in deep-hole blasting with a hole of 150 mm in diameter, the blasting cavity is different from that in short-hole blasting, and the cavity radius be-hind the charge (89.1 cm) is less than the other three (138.7 cm). In addition, there are sharp crinkles along the longitude on the surface of weak intercalation. With the increase in DCC, the displacement of weak intercalation decreases gradually; when the DCC is less than 40 cm in short-hole blasting and 100 cm in deep-hole blasting, the displacement of weak interca-lation reduces remarkably with the increase in DCC. (2) The critical displacement of stratifica-tion-cracking (0.1 mm) in this geological condition was obtained, by which the stratification-cracking ranges in short-hole and deep-hole blasting were de-termined to be 2 and 16 m, respectively.(3) The approximate expression for compactness by blasting was deduced as22m 2021()()12r R r s R s r R RU U U.(4) The compactness of deep-hole blasting is muchgreater than that of short-hole. The compactness of weak intercalation near the charge is comparatively great and the decrease rate is great, too.(5) The simulated results are in good agreement with the experimental ones.References[1] L. Obert and W.I. Duvall, Generation and Propagation ofStrain Waves in Rock , Part I , US Bureau of Mines, 1950, p.RI4583.[2] R.L. Ash, Influence of Geological Discontinuities on RockBlasting [Dissertation], University of Minnesota, Min-neapolis, Minnesota, 1973, p.289.[3] A.S. Paine and C.P. Please, An improved model of frac-ture propagation by gas during rock blasting—some ana-lytical results, Int. J. Rock Mech. Min. Sci., 31(1994), No. 6, p.669.[4] S.H. Cho and K. Kaneko, Rock fragmentation control inblasting. Mater. Trans., 45(2004), No.5, p.1722.[5] Z.G. Yang and A.C. Rustan, The influence from a primarystructure on fragmentation, [in] Proceedings of the 1st In-ternational Symposium on Rock Fragmentation by Blast-ing , Lulea, 1983, p.581.[6] X.B. Li, Influence of the structural weakness planes in therock mass on the propagation of stress waves, Explos. Shock Waves (in Chinese), 13(1993), No.4, p. 334.[7] M.Y. Wang and Q.H. Qian, Attenuation law of explosivewave propagation in cracks (in Chinese), Chin. J. Geotech. Eng., 17(1995), No.2, p.42.[8] W.B. Lu and Z.Y. Tao, A study of fracture propagationvelocity driven by the gases of the explosion products, Explos. Shock Waves (in Chinese), 14(1994), No.3, p.264. [9] J.C. Zhang, Research on the fragment-size model forblasting in jointed rock mass, [in] Proceedings of the 5th International Symposium on Rock Fragmentation by Blasting , Montreal, 1996, p.19.[10] J.C. Zhang, Damage mechanism of blasting in jointedrock masses and its fragment size model, Chin. J. Nonfer-rous Met. (in Chinese), 9(1999), No.3, p.666.[11] N. Li, P. Zhang, Q.W. Duan, et al ., Dynamic damagemodel of the rock mass medium with microjoints, Int. J. Damage Mech., 12(2003), No.2, p.163.[12] Y.Q. Yu, X.D. Qiu, and X.L. Yang, The mechanismanalyses of bedded rock blasting damage and fracture, J. of China Coal Soc. (in Chinese), 29(2004), No.4, p.409. [13] X.J. Cao, Q.S. Wu, and J.C. Zhang, Testing study on thecontrol standard of vibration for layered rock slope blast-ing, Chin. J. Rock Mech. Eng. (in Chinese), 22(2003), No.11, p.1924.[14] Q.S. Wu, J.C. Zhang, X.J. Cao, et al ., Test and study oflamination effect caused by blasting of cutting slope in layered rock masses, China Railway Sci. (in Chinese), 25(2004), No.3, p.50.[15] J. Yang, Q.K. Jin, and F.L. Huang, The Theoretical Mod-els and the Numerical Calculation of Rock Blasting (in Chinese), Science Press, Beijing, 1999.[16] D.W. Zhong, An application study on numerical simula-tion in pre-splitting blasting, Blasting (in Chinese), 18(2001), No.3, p.8.[17] D.Y. Shi, Y.C. Li, and S.M. Zhang, The Explicit DynamicAnalysis Based on ANSYS/LS-DYNA8.1 (in Chinese), Tsinghua University Press, Beijing, 2005.[18] J. Hengrych, The Dynamics of Explosion and its Use (inChinese), Science Press, Beijing, 1987。

爆炸冲击波作用下的金属板损伤P_I图仿真

爆炸冲击波作用下的金属板损伤P_I图仿真
Abstract The different damage levels of targets can be expressed by different P-I diagrams. P-I diagrams, which are very important in the estimation of the blasting effect on targets, also provide a basis for the design of protective structures. Targets can be represented by metal plates with a certain thickness, and with the reflected parameters, the reflected pressure-impulse criterion can be used to assess the damage caused by the blast. This paper combines the analytical and numerical methods to obtain the P-I diagrams of a certain metal plate. Using the finite element analysis software ANSYS/LS -DYNA, the numerical model is built, where the process of TNT column blasting above the metal plate is simulated. The variations of pressure and impulse are studied, for different mass of TNT and the blast distance. With the obtained P -I diagrams, the coefficients affected by the boundary condition of the experiments are studied. The results of the experiments and simulations are found in good agreement, which validates the numerical model. Keywords blast load; pressure-impulse diagrams; numerical methods; analytical formulae; plates

水平成层围岩光面爆破施工技术

水平成层围岩光面爆破施工技术

水平成层围岩光面爆破施工技术丁辉【摘要】以山西中南部铁路通道红木沟隧道为例,通过理论分析水平成层围岩地质对光面爆破的影响,在施工过程中进行实践总结,对水平成层围岩光面爆破的参数设计、选择原则及调整、优化等进行了阐述,为今后类似地质隧道的爆破开挖提供了案例借鉴和数据参考。

%Taking Hongmugou Tunnel in central and southern Shanxi railway as an example,through theoretical analysis of the effect of horizontal stratified surrounding rock on smooth surface blasting,the practical experience is summarized in con-struction process,and the parameters design of smooth surface blasting for surrounding rock with horizontal layers,the se-lection principles and the adjustment and optimization are introduced to provide references for the future similar geological tunnel blasting excavation.【期刊名称】《铁道建筑技术》【年(卷),期】2014(000)011【总页数】4页(P46-48,76)【关键词】隧道;水平成层围岩;光面爆破【作者】丁辉【作者单位】中国铁建港航局集团有限公司第三工程分公司山东青岛 266000【正文语种】中文【中图分类】TD235.374;U455.41 引言目前钻爆法开挖,依然是我国矿山隧道最主要的施工方法,而光面爆破技术,作为一种有效控制隧道超欠挖的开挖方法,在隧道施工中被广泛推广。

冲击地压巷道“卸-支”协同防控理念与实现路径

冲击地压巷道“卸-支”协同防控理念与实现路径

㊀第49卷第4期煤炭科学技术Vol 49㊀No 4㊀㊀2021年4月CoalScienceandTechnology㊀Apr.2021㊀移动扫码阅读鞠文君,孙刘伟,刘少虹,等.冲击地压巷道 卸-支 协同防控理念与实现路径[J].煤炭科学技术,2021,49(4):90-94 doi:10 13199/j cnki cst 2021 04 011JUWenjun,SUNLiuwei,LIUShaohong,etal.Ideaandimplementationof stressrelief-supportreinforcement coop⁃erativecontrolinrockburstroadway[J].CoalScienceandTechnology,2021,49(4):90-94 doi:10 13199/j cnki cst 2021 04 011冲击地压巷道 卸-支 协同防控理念与实现路径鞠文君1,2,孙刘伟3,刘少虹1,2,王书文4,杜涛涛1,2(1.中煤科工开采研究院有限公司,北京㊀100013;2.煤炭科学研究总院开采研究分院,北京㊀100013;3.煤炭工业规划设计研究院有限公司,北京㊀100120;4.中国中煤能源集团有限公司,北京㊀100120)摘㊀要:针对煤层爆破卸压造成冲击地压巷道支护失效㊁大变形等问题,采用现场试验和研究分析的方法,揭示了爆破对巷道支护的损伤效应,提出了冲击地压巷道 爆破卸压-支护加固 协同防控理念原则及实现路径㊂结果表明:煤层爆破具有 增塑㊁降载㊁耗能 的卸压减冲作用,但也会产生 围岩劣化㊁支护衰减㊁结构失稳㊁巷道变形 等不利影响㊂坚持爆破卸压解危优先㊁巷道损伤最低的防控理念, 卸-支 辩证统一,协同双效㊂一旦爆破对支护造成过大损伤,需要进行补强支护,重塑稳定的巷道支护结构和承载能力㊂ 卸-支 协同防控原则包括:归一原则㊁统筹原则㊁精准原则㊁有序原则㊂ 卸-支 协同防控实现路径为:确定巷道冲击危险区域 煤层爆破卸压设计 爆破卸压施工与监测 爆破卸压效果及围岩损伤效应评价 爆破参数优化及巷道支护重塑㊂关键词:冲击地压;爆破卸压;损伤效应;支护加固;协同控制;结构重塑中图分类号:TD324㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:0253-2336(2021)04-0090-05Ideaandimplementationof stressrelief-supportreinforcementcooperativecontrolinrockburstroadwayJUWenjun1,2,SUNLiuwei3,LIUShaohong1,2,WANGShuwen4,DUTaotao1,2(1.CCTEGCoalMiningResearchInstitute,Beijing㊀100013,China;2.CoalMiningandDesigningBranch,ChinaCoalResearchInstitute,Beijing㊀100013,China;3.Planning&DesignResearchInstituteofCoalIndustry,Beijing㊀100120,China;4.ChinaNationalCoalGroupCorporation,Beijing㊀100120,China)收稿日期:2020-10-02;责任编辑:王晓珍基金项目:国家重点研发计划资助项目(2017YFC0804209);国家自然科学基金资助项目(51704155)作者简介:鞠文君(1965 ),男,内蒙古赤峰人,研究员,博士生导师,博士,中国煤炭科工集团二级首席科学家,现任中煤科工开采研究院有限公司副总经理㊂E-mail:Juwenjun@tdkcsj.comAbstract:Aimingattheproblemsofrockburstroadwaysupportfailureandlargedeformationcausedbycoalseamblasting,fieldtestsandre⁃searchanalysiswereusedtorevealthedamageeffectofblastingonroadwaysupport,andthecooperativecontrolprincipleandimplementationof blastingstressrelief-supportreinforcement forrockburstroadwaywereproposed.Theresultsshowthat:coalseamblastingstressreliefhastheeffectsof plasticizing,loadreductionandenergyconsumption ,butitalsohastheadverseeffectssuchas surroundingrockdeterio⁃ration,supportattenuation,structuralinstabilityandroadwaydeformation .Adheringtothepreventionandcontrolconceptofblastingstressreliefandminimizingroadwaydamage,dialecticalunifyof relief-support andsynergisticdoubleeffects.Oncetheblastingcausesexcessivedamagetothesupport,reinforcementsupportisneededtoreshapethestableroadwaysupportstructureandbearingcapacity.Thecollaborativecontrolprinciplesof relief-support include:theprincipleofunity,theprincipleofoverallplanning,theprincipleofprecision,andtheprincipleoforder.Therealizationpathofcollaborativepreventionandcontrolof relief-support isasfollows:determiningtheroadwayimpactriskarea-coalseamblastingstressreliefdesign-blastingstressreliefconstructionandmonitoring-blastingstressreliefeffectandsurroundingrockdam⁃ageeffectevaluation-blastingparameteroptimizationandroadwaysupportstructurereconstruction.Keywords:rockburst;blastingstressrelief;damageeffect;supportreinforcement;cooperativecontrol;structurereconstruction09鞠文君等:冲击地压巷道 卸-支 协同防控理念与实现路径2021年第4期0㊀引㊀㊀言我国煤矿冲击地压灾害85%发生在回采巷道[1],破坏性强㊁危害性大,主要原因是巷道近场高应力区煤岩体所受载荷超过其强度极限,积聚的弹性应变能瞬间释放导致巷道剧烈破坏㊂因此,通过卸压解除围岩的高应力状态,或加强支护提高围岩抗冲击能力,成为巷道冲击地压防控的两大重要途径㊂锚杆支护是目前最为有效的抗冲击支护形式[2],作为主动支护形式,锚杆通过施加预紧力主动提供支护阻力,实现早期承载;锚杆支护具备良好的延展性,在与围岩同步变形中保持一定的支护阻力,能适应冲击地压巷道变形大㊁破坏突然的特点;锚杆支护具备较高的支护强度,有能力对围岩施加高强度㊁持续的控制强化作用;锚杆㊁锚索与配套的托盘㊁钢带㊁金属网等支护构件组合成一体,协调一致,相互策应,与围岩共同形成稳定的抗冲击承载结构㊂采取工程方法弱化巷道周围煤岩层,可以控制巷道围岩应力,从而达到维护巷道稳定的目的[3]㊂巷道围岩弱化方法有顶板预裂爆破㊁大孔径钻孔㊁水压致裂等多种形式㊂煤层爆破卸压通过煤体内部爆破致裂调整巷道两帮围岩应力状态,是我国冲击地压灾害局部防治最为普遍的方法[4],但实际应用中,爆破后巷道出现支护系统失效,承载能力降低,断面收缩等现象[5-6]㊂由此看来, 爆破卸压 与 支护加固 既对立又统一,如何实现两者的协同双效防控冲击地压是非常重要的研究课题㊂笔者通过现场试验揭示爆破对巷道支护的损伤效应,提出冲击地压巷道 卸-支 协同防控理念原则及实现路径,为巷道冲击地压防治提供新思路㊂1㊀爆破卸压减冲作用及对巷道支护的损伤效应分析1.1㊀煤层爆破卸压现场试验为研究煤层爆破卸压减冲效果及对巷道支护的损伤效应,在内蒙古平庄能源股份有限公司古山煤矿开展了井下试验研究㊂采用不同的装药量㊁不同钻孔深度在巷道两帮煤层中进行爆破试验,评判煤层爆破卸压效果,分析煤层爆破对锚杆工作阻力㊁巷道围岩结构等的影响㊂1)煤层爆破卸压减冲效果验证㊂采用钻屑法,通过对爆破卸压前后距爆破孔1.5m处巷帮煤屑量称重,分析爆破对巷道两帮垂直应力的影响㊂不同孔深处钻屑量随装药量的变化情况如图1所示㊂药量4kg时钻屑量整体变化不明显,药量6kg时钻屑量下降约1kg/m,药量8kg时钻屑量下降约1.5kg/m,说明爆破后巷帮煤体应力降低,应力降低幅度与装药量正相关㊂图1㊀不同装药量爆破卸压前后钻屑量变化对比Fig.1㊀Cuttingsvolumecomparisonbeforeandafterblastingpressurereliefwithdifferentchargequantity2)爆破对锚杆工作阻力的影响㊂采用锚杆无损检测仪测定锚杆杆体的工作阻力变化情况,如图2所示㊂随着爆破装药量的增大,锚杆工作阻力损失率均有不同程度的升高,但是变化幅度不同:装药量4㊁6kg时锚杆工作阻力的平均损失率为4.6%㊁20%,装药量为8kg时,锚杆工作阻力的平均损失率跃升至55%㊂锚杆工作阻力损失率还与距离爆破点的远近有关,距离越近锚杆工作阻力损失率越大㊂图2㊀锚杆工作阻力损失率与爆破药量的关系曲线Fig.2㊀Curvesbetweenlossrateofworkingresistanceofboltandchargeofblasting3)爆破对巷道围岩裂隙的影响㊂采用矿用电子钻孔电视成像仪对巷道围岩浅部煤体结构进行实际观测,对比爆破前后巷道浅部围岩裂隙分布特征㊂以装药量8kg爆破试验为例,爆破前后,巷道帮部裂隙区分布情况如图3所示㊂爆破前,局部巷道浅部围岩裂隙区宽度已经大于支护结构宽度,说明现有支护水平已经不能够较好控制巷道围岩的裂隙发育[6],巷道围岩稳定性较低㊂爆破后,巷道浅部围岩裂隙区的宽度进一步增192021年第4期煤炭科学技术第49卷图3㊀爆破帮巷道裂隙分布对比Fig.3㊀Comparisonofcrackdistributioninblastingside大,巷道围岩的整体性进一步降低,试验区域内围岩不稳定性升高㊂1.2㊀爆破卸压的减冲作用煤层爆破卸压的减冲作用表现在以下3个方面:1)增塑㊂相比于完整煤体的脆性破坏,爆破后的煤体由于径向裂隙的存在,整体结构发生改变,强度降低,变形特性呈现明显 塑化 特征,导致煤的冲击倾向性大幅减弱㊂2)降载㊂巷道帮部应力峰值区是冲击地压高危区域,在该区域爆破后,巷帮集中应力峰值减小,峰值点向巷旁外侧转移,分布形态由单峰变为低双峰分布[7](图4)㊂图4㊀煤层爆破卸压巷帮应力分布曲线Fig.4㊀Stressdistributioncurveofcoalseamblastingroadway3)耗能㊂煤层内部爆破形成大面积裂隙区,裂隙区煤岩块体组成耗能结构[8],积聚弹性能的能力降低,消耗弹性能的能力增强㊂爆破卸压过程中,围岩震动和变形,释放掉部分弹性能㊂冲击地压发生时,爆破裂隙区被冲击载荷压缩并发生塑性变形,吸收大量冲击能,并可在空间上散射冲击波,降低局部冲击波的强度㊂1.3㊀爆破对巷道支护的损伤作用煤层爆破致裂劣化深部围岩的同时,爆破应力波也会对巷道浅部围岩造成损伤㊁破坏,煤层爆破对巷道支护围岩损伤作用归纳为以下4个方面:1)煤体强度弱化,承载能力下降㊂巷道破裂区内围岩煤岩体强度低,内部裂隙发育,当爆破应力波作用在破裂区和塑性区边界时发生明显的反射和折射,压应力波会转变为拉应力波[9],因此破裂区边界上煤岩体受到拉应力波和压应力波综合作用下发生破裂,导致破裂区边界扩张,破裂区内部裂隙在拉应力波和压应力波的作用下,裂隙发育程度增加,煤岩体的整体强度降低,承载能力下降㊂2)锚杆锚固力降低或失效㊂爆破应力波导致锚杆与围岩黏结受损,锚固能力降低甚至失效[10]㊂同时,由于锚固范围内的煤岩体强度降低,也会导致锚杆锚固能力的降低㊂3)巷道围岩承载结构损伤㊂锚杆与围岩形成具备良好承载能力的锚固承载结构[11-12],爆破应力波会降低支护结构的整体强度,甚至可能造成支护结构的失稳,导致支护系统承载能力的下降㊂4)巷道变形明显㊂爆破导致围岩煤岩体强度降低,原有支护系统的承载能力受损,在围岩应力及冲击载荷的作用一下,巷道产生明显的收缩变形㊂2㊀爆破卸压-支护加固协同防控理念煤巷冲击地压防治应以不发生冲击地压事故为目的,在爆破卸压与巷道承载能力保护存在矛盾的情况下,应坚持以下理念:优先考虑爆破卸压,确保巷道不发生强烈冲击地压㊂但同时也要考虑爆破对巷道造成的损伤作用,尽量使巷道损伤程度降至最低㊂一旦爆破对支护造成过大损伤,就需要对巷道立即进行补强支护,重塑稳定的巷道支护结构和能力㊂爆破卸压-支护加固须协同配合,最终目标是消除冲击危险,提升巷道抗冲击能力[13],满足安全生产要求㊂冲击地压巷道爆破卸压-支护加固协同防控要遵守以下原则:1)归一原则㊂巷道冲击地压防控以阻止冲击地压发生为统一目标㊂对于潜在强冲击危险巷道,无论采取爆破卸压还是补强加固措施,其目标是一致的㊂2)统筹原则㊂当采取煤层爆破卸压进行冲击地压防治时,需合理设计爆破和支护参数,在达到卸压防冲的同时,保证巷道的承载能力满足要求㊂爆破与支护需要统筹考虑,达到协同双效,不可顾此失彼㊂3)精准原则㊂煤层爆破卸压主要针对巷道两29鞠文君等:冲击地压巷道 卸-支 协同防控理念与实现路径2021年第4期帮弹塑性交界区域,并且爆破深度至少要穿过支承压力峰值区,而巷道支护的主要区域为巷道浅部破碎区及局部塑性区,爆破卸压钻孔装药段要处于锚杆加固范围之外,避免爆破直接对支护区域造成影响,降低爆破对支护的损伤效应㊂巷道补强加固重在补足薄弱点,形成完整稳定的抗冲击承载结构㊂4)有序原则㊂依据工程条件,合理安排爆破与支护的时间㊁空间顺序㊂工作面回采前需对冲击危险性进行评价,提早对潜在冲击危险区进行爆破卸压处理,必要时进行补强支护;当回采过程中监测到强冲击危险时,首先需要爆破卸压,解除冲击危险后,根据需要对受损巷道进行补强加固;对于巷道维护状况很差的巷道,先采取加固措施,再行爆破和补强支护㊂3㊀爆破卸压-支护加固协同防控的实现路径㊀㊀为实现冲击地压巷道爆破卸压-支护加固协同防控,可按以下路径进行:确定巷道冲击地压危险区域;进行煤层爆破卸压设计:爆破施工与工程监测;爆破卸压效果及围岩损伤效应评价;优化爆破参数及受损巷道补强加固㊂1)冲击危险区域判定㊂冲击危险区域判定是冲击地压针对性防治的基础,目前国内外学者从理论层面提出了多种冲击危险性评价方法,推荐采用基于震波CT原位探测技术[14-15],确定回采巷道冲击危险区域㊂2)煤层爆破卸压设计㊂爆破卸压的关键参数包括爆破孔深度㊁爆破孔间距㊁爆破装药量㊂采用钻屑法或应力监测方法分析巷道围岩应力分布特征,确定巷帮应力峰值区域,爆破深度要不小于支承应力峰值距煤壁的长度;爆破孔间距:煤层爆破后形成的粉碎区及破裂区相互贯通,形成完全卸压带:根据应力集中程度和变化调整爆破装药量㊁时间㊁空间参数等[16]㊂3)煤层爆破卸压施工与监测㊂依据爆破卸压设计制定作业规程,在井下实施㊂采用微震监测㊁应力监测或钻屑法对爆破卸压效果进行检验,采用锚杆受力监测㊁钻孔窥视等方法,对爆破卸压区域支护系统及围岩裂隙扩展情况进行监测㊂4)爆破卸压效果及围岩损伤效应评价㊂分析工程监测数据,对爆破卸压效果及围岩损伤效应进行评价分级[17]㊂5)爆破参数优化及补强加固㊂基于评价结果,对爆破卸压参数进行优化,并对爆破损伤巷道进行针对性补强加固,再造稳定巷道支护体系,实现协同双效防冲目的㊂4㊀结㊀㊀论1)煤层爆破卸压是我国冲击地压灾害局部防治最为普遍的方法,其作用体现在3个方面:①煤体力学性质塑化从而降低冲击倾向性;②降低巷帮应力集中,转移和均化应力分布;③释放掉分围岩存储弹性能,提升围岩耗能特性㊂煤层爆破卸压减冲机制可归纳为:增塑-降载-耗能㊂2)煤体爆破可能导致巷道周边围岩强度降低,巷道原有承载结构破坏,锚杆锚固力降低甚至失效,巷道变形增大㊂煤层爆破卸压的损伤作用归纳为:围岩劣化-结构失稳-支护衰减-巷道变形㊂3)煤巷冲击地压防治以不发生冲击地压事故为首要目标,优先考虑爆破卸压防控冲击地压㊂但同时要使巷道损伤程度降至最低㊂一旦爆破对支护造成过大损伤,就需要进行补强支护,重塑稳定的巷道支护结构和能力㊂爆破卸压-支护加固须协同配合,最终目标是消除冲击危险,提升巷道抗冲击能力,满足安全生产要求㊂4)巷道冲击地压爆破卸压-支护加固协同防控原则为:①归一原则:巷道冲击地压防控以阻止冲击地压发生为统一目标㊂②统筹原则:爆破与支护需要统筹考虑,达到协同双效,不可顾此失彼㊂③精准原则:煤层爆破卸压与巷道补强加固,坚持问题导向,辨证施策,精准设计,监测施工㊂④有序原则:依据工程条件,合理安排爆破与支护的时间㊁空间顺序㊂5)冲击地压巷道爆破卸压-支护加固协同防冲可按以下路径进行:确定回采巷道冲击危险区域 煤层爆破卸压设计 煤层爆破卸压施工与监测 爆破卸压效果及围岩损伤效应评价 爆破参数优化及巷道支护重塑㊂参考文献(References):[1]㊀齐庆新,潘一山,李海涛,等.煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J].煤炭学报,2020,45(5):1567-1584.QIQingxin,PANYishan,LIHaitao,etal.Theoreticalbasisandkeytechnologyofpreventionandcontrolofcoal-rockdynamicdis⁃astersindeepcoalmining[J].JournalofChinaCoalSociety,2020,45(5):1567-1584.[2]㊀鞠文君.冲击矿压巷道锚杆支护原理分析[J].煤矿开采,2009,14(3):59-61.JUWenjun.Analysisofsupportingprinciplesofanchored-boltinroadwaywithburstdanger[J].CoalMiningTechnology,2009,14(3):59-61.392021年第4期煤炭科学技术第49卷[3]㊀鞠文君,郑建伟.巷道维护的应力控制理论与技术[C]//刘峰.中国煤炭科技四十年.北京:应急管理出版社,2020:167-184.[4]㊀潘俊锋,宁㊀宇,秦子晗,等.基于冲击启动理论的深孔区间爆破疏压技术[J].岩石力学与工程学报,2012,31(7):1414-1421.PANJunfeng,NINGYu,QINZihan,etal.Dredgingtechnologyofpressurewithdeepholeintervalblastingbasedontheoryofrockburststart-up[J].ChinsesJournalofRockMechanicsandEngi⁃neering,2012,31(7):1414-1421.[5]㊀刘少虹,潘俊锋,毛德兵,等.爆破动载下强冲击危险巷道锚杆轴力定量损失规律的试验研究[J].煤炭学报,2016,41(5):1120-1128.LIUShaohong,PANJunfeng,MAODebing,etal.Experimentre⁃searchonaxialforcequantitativelosslawofanchorboltinblastinginhighimpactdangerroadway[J].JournalofChinaCoalSociety,2016,41(5):1120-1128.[6]㊀康红普,吴拥政,何㊀杰,等.深部冲击地压巷道锚杆支护作用研究与实践[J].煤炭学报,2015,40(10):2225-2233.KANGHongpu,WUYongzheng,HEJie,etal.Rockboltingper⁃formanceandfieldpracticeindeeproadwaywithrockburst[J].JournalofChinaCoalSociety,2015,40(10):2225-2233.[7]㊀王书文.千秋煤矿爆破卸压防治冲击地压技术研究[D].北京:煤炭科学研究总院,2011.[8]㊀窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005,30(5):690-695.DOULinming,LUCaiping,MOUZonglong,etal.Intensityweake⁃ningtheoryforrockburstanditsapplication[J].JournalofChinaCoalSociety,2005,30(5):690-695.[9]㊀高明仕,窦林名,张㊀农.冲击矿压巷道围岩控制的强弱强力学模型及其应用分析[J].岩土力学,2008,29(2):359-364.GAOMingshi,DOULinming,ZHANGNong,etal.Strong-soft-strongmechanicalmodelforcontrollingroadwaysurroundingrocksubjectedtorockburstanditsapplication[J].RockandSoilMe⁃chanics,2008,29(2):359-364.[10]㊀潘一山,齐庆新,王爱文,等.煤矿冲击地压巷道三级支护理论与技术[J].煤炭学报,2020,45(5):1585-1594.PANYishan,QIQingxin,WANGAiwen,etal.Theoryandtech⁃nologyofthreelevelssupportinbump-proneroadway[J].JournalofChinaCoalSociety,2020,45(5):1585-1594.[11]㊀付玉凯,鞠文君,吴拥政,等.高冲击韧性锚杆吸能减冲原理及应用研究[J].煤炭科学技术,2019,47(11):68-75.FUYukai,JUWenjun,WUYongzheng,etal.Studyonprincipleapplicationofenergyabsorptionandbumpreductionofhighimpacttoughnessrockbolt[J].CoalScienceandTechnology,2019,47(11):68-75.[12]㊀焦建康,鞠文君,吴拥政,等.动载冲击地压巷道围岩稳定性多层次控制技术[J].煤炭科学技术,2019,47(12):10-17.JIAOJiankang,JUWenjun,WUYongzheng,etal.Multi-layercontroltechnologiesforsurroundingrockstabilityofdynamic-loadingrockburstroadway[J].CoalScienceandTechnology,2019,47(12):10-17.[13]㊀鞠文君.冲击矿压巷道支护能量校核设计法[J].煤矿开采,2011,16(3):81-83.JUWenjun.Energycheckingdesignmethodofroadwaywithrock⁃burstdanger[J].CoalMiningTechnology,2011,16(3):81-83.[14]㊀王书文,毛德兵,杜涛涛,等.基于地震CT技术的冲击地压危险性评价模型[J].煤炭学报,2012,37(S1):1-6.WANGShuwen,MAODebing,DUTaotao,etal.RockbursthazardevaluationmodelbasedonseismicCTtechnology[J].JournalofChinaCoalSociety,2012,37(S1):1-6.[15]㊀孙刘伟,鞠文君,潘俊锋,等.基于震波CT探测的宽煤柱冲击地压防控技术[J].煤炭学报,2019,44(2):377-383.SUNLiuwei,JUWenjun,PANJunfeng,etal.Rockburstpreven⁃tiontechnologybasedonseismicCTdetectioninwidesectioncoalpillar[J].JournalofChinaCoalSociety,2019,44(2):377-383.[16]㊀刘少虹,潘俊锋,刘金亮,等.基于卸支耦合的冲击地压煤层卸压爆破参数优化[J].煤炭科学技术,2018,46(11):21-29.LIUShaohong,PANJunfeng,LIUJinliang,etal.Optimizationofblastingparametersforrockburstcoalseambasedonpressurere⁃leaseandsupportcoupling[J].CoalScienceandTechnology,2018,46(11):21-29.[17]㊀孙刘伟.煤巷爆破卸压-支护加固协同防冲技术研究[D].北京:煤炭科学研究总院,2020.49。

工程管理专业英语3

工程管理专业英语3
各具特色。
8
Compaction and Grading 压实和平整场地 19. The function of compaction equipment is to produce higher density in soil mechanically. 压实设备旳作用就是经过机械使土产生跟高旳密度。 20.The basic forces used in compaction are static weight, kneading, impact and vibration. 在压实过程中使用旳基本力是静重力、捏合力、冲击力和震 动力。 21. The degree of compaction that may be achieved depends on the properties of soil, its moisture content, the thickness of the soil layer for compaction and the method of compaction. 可能到达旳压实度取决于土质、土旳含水量、所压实土层旳 厚度以及压实旳措施。
26. The degree of difficulty depends on physical characteristics of the rock type to be excavated, such as grain size, planes of weakness, weathering, brittleness and hardness. 这项工作旳难以程度依赖于要开挖旳岩石类型旳物理性质。 例如粒径大小、软弱位面、风化度、脆度和硬度。
反铲挖土机
铲Байду номын сангаас/正铲
打桩机
6

汉英(铁路科技词汇中英文互译系统)更新

汉英(铁路科技词汇中英文互译系统)更新

Access The dispatching access via the switch in straight direction The receiving access via the switch in straight direction Former structural Insulation joint Open-circuit track circuit Spacing Interlocking Screw fastening Disturbance of disordered current Stick closely Railway bridge and culvert Limits invading Double-jumper Outer locking switch Accordingly responsed Throat area One-to-multi The maximum limited working electricity voltage for transferring frequency track circuit Wing rail Circuitous access The receiving end should be established on the tip-end of the branch of the switch track circuit, which connects with the arrival-departure line Main track and arrival-departure line Main-body signaling post Automatic inter-station block
catenary; semi-auto-tensioned catenary

浅究影响露天边坡爆破原因及完善措施

浅究影响露天边坡爆破原因及完善措施

浅究影响露天边坡爆破原因及完善措施摘要:边坡爆破工程是一个复杂的系统工程,通常是多个因素同时影响边坡爆破效果,因此应该综合考虑,综合采用探地雷达技术、孔内照相技术、精确炮孔定位技术和先进的爆破器材等措施,改善爆破效果,降低爆破对边坡稳定性的不利影响,确保边坡的长期稳定。

分析了影响露天边坡爆破质量的因素并有针对性地提出了合理的改善爆破效果的措施。

关键词:爆破工程;露天边坡;装药结构;爆破效果;改进措施abstract: slope blasting engineering is a complicated system engineering, is usually more factors affect both slope blasting effect, so it should be considered synthetically, using ground-penetrating radar technique, hole camera technology, precise hole positioning technology and advanced blasting equipment and other measures, improve the blasting effect, reduce blasting on slope stability adverse effects, to ensure the long-term stability of slope. analysis of the impact of open pit slope blasting quality factors and puts forward reasonable suggestion for improving blasting effect.key words: blasting engineering; slope; charge; blasting effect; improvement measures中图分类号:td235文献标识码: a 文章编号:2095-2104(2012)10-0020-021岩体条件和边坡参数对爆破效果的影响1.1岩体条件对边坡爆破效果的影响自然界的岩体都是由断层、软弱夹层、节理等天然断面相互组合形成的具有初始损伤特征的各向异性的地质体。

液氧气体爆破的操作流程

液氧气体爆破的操作流程

液氧气体爆破的操作流程1.准备爆破设计方案并获得相关许可。

Prepare blasting design and obtain relevant permits.2.检查液氧气体爆破装置和设备,确保运行正常。

Inspect the liquid oxygen blasting device and equipment to ensure they are functioning properly.3.确定爆破区域的安全范围,并进行必要的封锁和警示。

Determine the safe zone of the blasting area and carry out necessary closures and warnings.4.将液氧气体注入爆破孔内,确保注入完全。

Inject liquid oxygen into the blasting hole to ensure complete filling.5.设置引爆装置,并确保安全距离。

Set up the detonation device and ensure a safe distance.6.远离爆破现场,发出爆破信号。

Stay away from the blasting site and initiate the blasting signal.7.检查爆破后的安全情况,确保没有人员伤亡。

Inspect the safety situation after blasting to ensure no casualties.8.清理爆破现场并进行安全复核。

Clean up the blasting site and conduct a safety recheck.9.撤离爆破区域,解除封锁和警示。

Evacuate the blasting area and remove closures and warnings.10.汇报爆破情况,并整理相关记录。

煤矿开采中松动爆破的应用

煤矿开采中松动爆破的应用

2021年第5期2021年5月松动爆破在煤矿开采中的应用提升了煤矿企业的开采效率,加快了企业获取经济效益的速度。

本次所研究的案例中煤矿位于开滦矿务局,矿名为“马家沟煤矿”,是一个中型产量的矿井。

根据矿井实际开采状况,采用巷道放顶煤法,试验区域内总共12层煤,试验长度为170m 。

此次放顶煤的长度约为130m ,倾斜长度为26.6m 。

该区域范围内的煤层结构比较复杂,煤层厚度在6.0~8.7m 之间,平均厚度为7.0m 。

1松动爆破在煤矿开采中的参数设定1.1确定最小抵抗线煤矿爆破过程中,需要先安装炸药,用于破碎煤层煤体。

从具体效果来看,其可以被划分为压碎圈、松动圈和振动圈3个层次,其中,松动圈范围内所产生的爆破冲击最为明显,比较容易形成裂隙体。

因此,本次在确定最小抵抗线时,可以先根据爆破的应力波作用原理计算松动圈的半径[1]。

计算公式如下:R p =[vp /(1-v )S t ]1/a r b ,(1)a =2-v /(1-v ),(2)p =Q a D i 2(r c /r b )6n /8,(3)式(1)~(3)中,R p 为松动圈的半径,m ;v 为岩石的泊松比;p 为应力波的初始径向应力峰值,MPa ;S t 为抗拉强度,MPa ;a 为应力波的衰减系数;r b 为炮眼的半径,m ;Q a 为装药的密度,kg/m ;D i 为炸药的爆炸速度,m/s ;r c 为装药的半径,mm ;n 为压力增大的倍数,通常取8~11。

本次试验中将松动圈的半径作为最小抵抗线。

此时,可以将试验数据均代入上述公式中,得到松动圈的半径为1.2m ,可以确定试验中的最小抵抗线也是1.2m 。

1.2确定炮眼密集系数炮眼密集系数可以用字母“m ”来表示,选择合适的炮眼密集系数,能够确保炸药与煤岩之间的抗拉强度恰到好处,但如果m 的取值比较高,则会出现药孔连心线的叠加拉应力比煤岩抗拉强度低的情况,无法形成具有贯通状态的裂隙,炮眼之间也会遗留下不会爆的隔墙,在完成爆破工作以后,曲面呈现锯齿状,此时可以利用三角形炮眼和宽孔距的方式进行炮眼布置[2],具体如图1所示。

爆破作用下影响矿柱稳定性的多因素联合分析

爆破作用下影响矿柱稳定性的多因素联合分析

孔径为 40 mmꎬ孔深为 2. 7 mꎬ炮孔间距为 80 mmꎬ排
图 1 矿区平面图
Fig. 1 Planar of mining area
距为 90 mmꎮ 单孔药量为 1. 8 kgꎬ 总药量为 21. 6
kgꎮ 装药长度为 1. 9 mꎬ填塞长度为 0. 8 mꎮ
矿区矿体主要赋存于乌拉山岩群角闪斜长片麻
[ 分类号] TD235
Combined Analysis of Multiple Factors Affecting the Stability of Pillars under
Blasting Loads
HU Gang ① ꎬ FEI Honglu ① ꎬ GUO Yuxin ② ꎬ WANG Zhenda ③
2023 年 8 月 爆破作用下影响矿柱稳定性的多因素联合分析 胡 刚ꎬ等
性ꎻ李小双等 [8] 通过矿山压力平面应力相似模拟试
验台ꎬ进行了房柱采矿法下矿柱稳定性及采场结构
参数优化的相似试验ꎻ于清军等
[9]
采用 Abaqus 数值
模拟软件ꎬ分析了落矿冲击作用下矿柱的稳定性ꎬ并
59
程量小ꎬ出矿产能较高ꎮ 针对不同阶段多个矿房进
行了数组爆破振动监测试验ꎮ 以第 7 阶段 733 矿房
第 1 组监测试验为例ꎬห้องสมุดไป่ตู้点布置如图 2 所示ꎮ
提出最佳设计方案ꎻJiang 等 [10] 建立了矿柱的结构
力学模型ꎬ确定了总能量的数学公式ꎬ推导了矿柱失
稳时临界载荷的估算分析方法ꎻ熊晓勃等 [11] 通过钒
①Institute of Blasting Techniqueꎬ Liaoning Technical University ( Liaoning Fuxinꎬ 123000)

搬迁沙田污处理厂往岩洞

搬迁沙田污处理厂往岩洞

搬遷沙田污水處理廠往岩洞為促進香港嘅可持續發展,政府現正多管齊下積極開拓土地資源,當中發展岩洞係一個創新可行嘅方案。

渠務署正就搬遷沙田污水處理廠往岩洞計劃進行詳細勘測同埋設計,工程完成後,將可以騰空污水處理廠現址,作重新發展同其他有利民生用途,同時提升社區嘅生活環境。

現時嘅沙田污水處理廠,佔地28公頃,服務60多萬沙田同馬鞍山區居民,係全港最大嘅二級污水處理廠,亦係一項非常重要嘅基建設施,保障住吐露港同維多利亞港嘅水質。

將來嘅岩洞污水處理廠會位於現址旁邊嘅亞公⻆女婆山。

呢個位置不但地質堅固,非常適合建造大型岩洞,更加係最能滿足其他各方面考慮,包括交通、環境、配套工程等等嘅一個妥善方案。

為咗令岩洞污水處理廠係功能運作等等各個方面都有良好嘅表現,渠務署嘅工程團隊正積極研究採用先進技術,並進行相關測試,致力優化項目嘅設計。

日後嘅岩洞污水處理廠,將會係一個配備精良同先進嘅設施。

家庭問:搬遷計劃會唔會影響我哋嘅日常生活?答:渠務署已經依據<<環境影響評估條例>>,就搬遷計劃完成咗環境影響評估,並且制定咗相關嘅緩解措施; 當中主要嘅課題,包括空氣質素、氣味、噪音、水質、廢物管理、生態、景觀及視覺、潛在安全風險、文化遺產同健康影響等等。

環境影響評估報告預計可以係2016上半年供公眾查閱。

配合環境影響評估,渠務署亦都已經訂定咗詳細嘅環境監察同審核計劃,確保會有效咁減免同控制所有潛在嘅環境影響,居民嘅日常生活可以如常進行。

單車手 (黃蘊瑤) 問:將來嘅污水處理廠會唔會傳出異味,影響我哋?答:就氣味控制方面,搬遷計劃帶嚟嘅好處會係非常明顯,因為岩洞係最佳嘅天然屏障,將污水處理設施完全覆蓋,加上係岩洞內嘅氣味源頭會加以密封,再利用除味裝置將空氣預先過濾,因此係岩洞通風口嘅空氣已經係經過淨化。

此外,通風口嘅位置更係利用咗實驗室嘅風洞測試,對當區嘅風速同風向做咗詳細分析而釐定嘅。

透過以上多重措施,日後嘅岩洞污水處理廠將唔會對附近社區構成氣味問題。

高含水岩石爆破参数试验研究及优化

高含水岩石爆破参数试验研究及优化

高含水岩石爆破参数试验研究及优化罗旬良;磨季云;池恩安;李玉能【摘要】Through several field tests,the influences of water medium on blasting construction technology and blasting effect were discussed statistically.The field test parameters of high water cut rock blasting were determined by combining the theory of failure range of water medium decoupling charge and the blasting manual.Four groups of field experiments were conducted,distance between holes and row spacing were given as 3 m×2.5 m,3.5 m×3 m, 4 m×3.5 m,4.5 m×4m,respectively.Meanwhile,the block yield and the toe yield were used as the basis for the blasting effects.The experimental results showed that the blasting effect is the best on the condition 3.5 m×3 m.Un-der this blasting parameter,the explosive specific charge is only 0.312 kg/m3,which is lower than that of the general rock blasting.%通过长期的现场实践,统计分析水介质对爆破施工工艺、爆破效果的影响.结合现有水介质不耦合装药岩石破坏范围理论及《爆破手册》确定高含水岩石爆破现场试验参数,以孔距(a)×排距(b)为3m× 2.5m、3.5m×3m、4×3.5m、4.5m×4m进行四组现场试验,并以大块率、根底率作为试验效果分析的判别依据.试验结果表明:孔距(a)×排距(b)为3.5m×3m时爆破效果最佳;在此爆破参数下,含水岩石炸药单耗仅为0.312 kg/m3,相对一般岩石爆破较低.【期刊名称】《爆破》【年(卷),期】2017(034)004【总页数】7页(P85-90,95)【关键词】高含水岩石;现场试验;块度分析;根底率;参数优化【作者】罗旬良;磨季云;池恩安;李玉能【作者单位】武汉科技大学,武汉430081;贵州新联爆破工程集团有限公司,贵阳550000;武汉科技大学,武汉430081;贵州新联爆破工程集团有限公司,贵阳550000;贵州贵安新联爆破工程有限公司,贵阳550000【正文语种】中文【中图分类】TD235随着贵州省经济建设的持续推进,建设工程中将有大量的基坑工程需要爆破施工。

无需预先测速的微震震源定位的数学形式及震源参数确定_董陇军

无需预先测速的微震震源定位的数学形式及震源参数确定_董陇军

• 2058 •
岩石力学与工程学报
2011 年
errors of source coordinate position;and the larger is up to 24.27 m. Secondly,with the signal of blasting effect as simulation source,the blasting experiments were carried out in Dongguashan copper mine;a deep-level mine in
收稿日期:2011–04–22;修回日期:2011–06–14 基金项目:国家自然科学基金资助项目(10872218,50934006);国家重点基础研究发展计划(973)项目(2010CB732004) 作者简介:董陇军(1984–),男,2007 年毕业于中南大学采矿与岩土工程专业,现为博士研究生,主要从事岩石动力学、采矿与岩土工程灾害控制方 面的研究工作。E-mail:csudlj@
微震震源空间位置是微震监测技术研究的重要 参数,长期以来,对微震震源定位方法、提高对微 震源定位的准确性和精度的研究,一直是微震监测 技术研究的重要内容。震源定位方法很多,主要包 括几何方法、物理方法与数学方法等。震源定位方 法在国内外都有大量的研究[25-41],特别是随着计算 机的迅速兴起,Geiger 的思想被广泛用于地震定位 工作。B. R. Lienert 等[26]在此基础上进一步得到 HYPOCENTER 算法;G. D. Nelson 和 J. E. Vidale[27] 也改进了 HYPOINVERSE,提出了三维速度模型下 的 QUAKE3D 方法。后来被 J. Pujol[28-29]改进了参数 分离的 PMLE 方法。1976 年,R. S. Crosson[30]提出 该联合反演理论。K. Aki 等[31-32]将地球内部横向非 均匀速度结构网格化,提出了三维速度结构与震源 联合反演的理论。但是用单一方程组联合反演,需 要巨大的运算量,G. Pavlis 等[33-34]用参数分离法进 行改进,使耦合着的速度参数和震源参数分别求解, 大大提高了运算效率。W. Spence[35]给出了相对定位 法的详细阐述。C. Lomnitz 等[36-37]使用空间域内的 定位方法进行远震定位。1957 年,C. Romney[38]提 出台偶时差近震定位法,A. Tarantola 等[39-40]提出了 Bayesian 定位方法的严格公式及解。以上定位方法, 绝大多数都是基于因变量为到时或因变量为到时差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档