华师大版八年级数学下册第19章矩形、菱形、正方形单元检测题教师版含答案.docx
华师大版八年级数学下册第19章矩形、菱形、正方形单元检测题教师版含答案.docx
华师大版八年级下册第19章矩形、菱形、正方形单元检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列命题中正确的是( B)A.有一组邻边相等的四边形是菱形 B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形 D.一组对边平行的四边形是平行四边形2.如图,在矩形ABCD中,AC与BD相交于点O,若∠DBC=30°,则∠AOB等于( D)A.120° B.15° C.30° D.60°3.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连结AE,CF,则四边形AECF是( C)A.梯形 B.矩形 C.菱形 D.正方形,第2题图) ,第3题图),第5题图) ,第6题图) 4.一个菱形的周长为8 cm,高为1 cm,则这个菱形的两邻角的度数之比为( D)A.2∶1 B.3∶1 C.4∶1 D.5∶15.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断中不正确的是( D)A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是菱形D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形6.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( D)A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF7.如图,一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是21 cm2,则该矩形的面积为( A)A.60 cm2 B.70 cm2 C.120 cm2 D.140 cm28.如图,正方形ABCD的边长为1,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( C)A.1 B. 2 C.1-22D.2-4,第7题图) ,第8题图),第9题图) ,第10题图)9.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C 的坐标为(m ,32),反比例函数y =k x的图象与菱形对角线AO 交于D 点,连结BD ,当DB⊥x 轴时,k 的值是( D )A .1B .-1 C. 3 D .- 310.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE.将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G ,连结AG ,CF.则下列结论:①△ABG≌△AFG;②BG=CG ;③AG∥CF;④S △EGC =S △AFE ;⑤∠AGB +∠AED=145°.其中正确的个数是( C )A .2B .3C .4D .5二、填空题(每小题3分,共24分)11.如图,在矩形ABCD 中,E 为BC 的中点,且∠AED=90°,AD =10,则AB 的长为__5__.,第11题图) ,第13题图) ,第14题图),第15题图)12.在菱形ABCD 中,对角线AC ,BD 的长分别是6和8,则菱形的周长是__20__.13.如图,▱ABCD 的顶点B 在矩形AEFC 的边EF 上,点B 与点E ,F 不重合,已知△ACD 的面积为3,则图中阴影部分两个三角形的面积和为__3__.14.如图,▱ABCD 的两条对角线AC ,BD 相交于点O ,AB =5,AC =4,BD =2,小明说:“这个四边形是菱形.”他说这话的根据是__对角线互相垂直的平行四边形是菱形__.15.▱ABCD 中,给出下列四个条件:①AC⊥BD;②∠ADC=90°;③BC=CD ;④AC=BD.其中选两个条件能使▱ABCD 是正方形的有__①②、①④、②③、③④__.(填上所有正确结果的序号)16.如图,在矩形纸片ABCD 中,AB =12,BC =5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A′处,则AE 的长为__103__.,第16题图) ,第17题图),第18题图)17.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF ,若菱形ABCD 的边长为2 cm ,∠A=120°,则EF =__3__cm.18.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =kx +b(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B n 的坐标为__(2n -1,2n -1)__.三、解答题(共66分)19.(8分)如图,在矩形ABCD 中,两条对角线AC ,BD 相交于点O ,E 是AC 上的一点,且BO =2AE ,∠AOD=120°,求证:BE⊥AC.解:∵四边形ABCD 是矩形,∴OB =OA ,又∵OB =2AE ,∴AE =OE ,又∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形.又∵AE =OE ,∴BE ⊥AO ,即BE⊥AC20.(8分)如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别是边BC ,AD 的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB =2,求线段AE 的长.解:(1)用SAS 证△ABE≌△CDF (2)∵∠B =60°,∴△ABC 是等边三角形,∴BE =CE =1,AE ⊥BC ,∴AE =AB 2-BE 2=22-12=321.(10分)如图,在正方形ABCD 中,E 是CD 边的中点,AC 与BE 相交于点F ,连结DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连结AE ,试判断AE 与DF 的位置关系,并说明理由.解:(1)△ADC≌△ABC ,△ADF ≌△ABF ,△CDF ≌△CBF (2)AE⊥DF.理由如下:设AE 与DF 相交于点H ,易证△ADF≌△ABF ,∴∠ADF =∠ABF ,再证△ADE≌△BCE ,∴∠DAE =∠CBE ,∵∠ABF +∠CBE =90°,∴∠ADF +∠DAE =90°,∴∠DHA =90°,∴AE ⊥DF22.(9分)如图,CE 是△ABC 外角∠ACD 的平分线,AF∥CD 交CE 于点F ,FG∥AC 交CD 于点G.求证:四边形ACGF 是菱形.解:易证四边形ACGF 是平行四边形,再证AC =AF ,故四边形ACGF 是菱形23.(9分)如图,△ABC 中,AB =AC ,D 是BC 的中点,DE∥AB 交AC 于点E ,DF∥AC 交AB 于点F.(1)求证:四边形AFDE 是菱形;(2)当∠ABC 等于多少度时,四边形AFDE 是正方形?请说明理由.解:(1)易证四边形AFDE 是平行四边形,∵D 为BC 中点,DE ∥AB ,DF ∥AC ,∴DE =12AB ,DF =12AC ,∵AB=AC ,∴DE =DF ,∴四边形AFDE 是菱形 (2)当∠ABC =45°时,四边形AFDE 是正方形,理由略24.(10分)如图,△ABC 中,AB =AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连结DO 并延长到点E ,使OE =OD ,连结AE ,BE.(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.解:(1)∵OA =OB ,OE =OD ,∴四边形AEBD 为平行四边形,∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,即∠ADB =90°,∴四边形AEBD 为矩形 (2)当∠BAC =90°时,四边形AEBD 为正方形,理由如下:∵∠BAC =90°,AD 平分∠BAC ,AD ⊥BC ,∴∠DAB =∠DBA =45°,∴BD =AD ,∴矩形AEBD 为正方形25.(12分)已知,在△ABC 中,∠BAC=90°,∠ABC=45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,连结CF.(1)如图①,当点D 在线段BC 上时,求证:CF +CD =BC ;(2)如图②,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;(3)如图③,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变: ①请直接写出CF ,BC ,CD 三条线段之间的关系;②若正方形ADEF 的边长为2,对角线AE ,DF 相交于点O ,连结OC ,求OC 的长度.解:(1)∵∠BAC =90°,∠ABC =45°,∴∠ACB =∠ABC =45°,∴AB =AC ,可证△BAD≌△CAF (SSS ),∴BD =CF ,∵BC =BD +CD ,∴CF +CD =BC (2)BC =CF -CD (3)①CD -CF =BC ②由题知,∠BAC =90°,∠ABC =45°,∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∵∠BAD =90°-∠BAF ,∠CAF =90°-∠BAF ,∴∠BAD =∠CAF ,又∵AB =AC ,∴△BAD ≌△CAF (SAS ),∴∠ACF =∠ABD ,∵∠ABC =45°,∴∠ABD =135°,∴∠ACF =∠ABD =135°,∴∠FCD =90°,∴△FCD 为直角三角形,∵DE =2,∴DF =2DE =22,∴OC =12DF =2初中数学试卷马鸣风萧萧。
华东师大版八年级下册数学单元过关测卷:第十九章 矩形、菱形与正方形含答案
第十九章矩形、菱形与正方形一、选择题1.矩形具有而一般平行四边形不具有的特征是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分2.菱形ABCD的对角线长分别为6和8,则菱形的面积为()A.12B.24C.36D.483.下列命题中,真命题是()A.对角线互相平分且相等的四边形是矩形B.对角线互相垂直且相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相垂直且相等的四边形是菱形4.如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为()A.1:2B.1:3C.1:D.1:5.如图,菱形ABCD中对角线相交于点O,且OE⊥AB,若AC=8,BD=6,则OE的长是()A.2.5B.5C.2.4D.不确定6.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角7.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为()A.2B.3C.D.68.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4B.8C.10D.129.正方形四边中点的连线围成的四边形(最准确的说法)一定是()A.矩形B.菱形C.正方形D.平行四边形10.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④∠GAE=45°.则正确结论的个数有()A.1B.2C.3D.4二、填空题11.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为________.12.如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=________,菱形ABCD的面积S=________.13.能将三角形面积平分的是三角形的________(填中线或角平分线或高线)14.一个等腰三角形的一个内角为50°,这个等腰三角形的一条腰上的高与底边的夹角是________.15.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD 上的点A′处,则AE的长为________.16.在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为________.17.如图,把一张矩形的纸片对折两次,然后剪下一个角,为了能得到一个正方形,剪口与折痕所成的角是________18.如图,下面是用由形状相同的黑色棋子按一定规律摆成的“H”字.按这样的规律摆下去,摆成第10个“H”字需要________个棋子.三、解答题19.如图,在△ABC中,AB=AC,PE⊥AB,PF⊥AC,CD⊥AB,垂足分别为E、D、F,求证:PE﹣PF=CD.20.如图,点A、F、C、D在同一直线上,AB∥DE,AC=DF,AB=DE.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,AB=8,BC=6,当AF为何值时,四边形BCEF是菱形.21.如图,在△ABC中,AB=AC,D是边BC上一点,DE⊥AB,DF⊥AC,垂足分别是E,F,△AEF∽△ABC.(1)求证:△AED≌△AFD;(2)若BC=2AD,求证:四边形AEDF是正方形.22.如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形(2)判断直线EG是否经过一个定点,并说明理由(3)求四边形EFGH面积的最小值.23.在矩形ABCD中,AD=3,CD=4,点E在CD上,且DE=1.(1)感知:如图①,连接AE,过点E作EF丄AE,交BC于点F,连接AF,易证:△ADE≌△ECF(不需要证明);(2)探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点E作EF⊥PE,交BC于点F,连接PF.求证:△PDE和△ECF相似;(3)应用:如图③,若EF交AB于点F,EF丄PE,其他条件不变,且△PEF的面积是6,则AP的长为________.24.如图,已知一次函数y=x+4与x轴交于点A,与y轴交于点C,一次函数y=﹣x+b经过点C与x轴交于点B.(1)求直线BC的解析式;(2)点P为x轴上方直线BC上一点,点G为线段BP的中点,点F为线段AB的中点,连接GF,取GF的中点M,射线PM交x轴于点H,点D为线段PH的中点,点E为线段AH的中点,连接DE,求证:DE=GF;(3)在(2)的条件下,延长PH至Q,使PM=MQ,连接AQ、BM,若∠BAQ+∠BMQ=∠DEB,求点P 的坐标.参考答案一、选择题1.C2.B3.A4.D5.C6.C7.B8.B9.C10.D二、填空题11.512.1:2;1613.中线14.25°或40°15.16.3或617.4518.52三、解答题19.证明:过C作CG⊥PE于G,∵PE⊥AB,CD⊥AB,CG⊥PE,∴四边形CDEG是矩形,∴CD=EG,∵PF⊥AC,∴∠PFC=90°,∵CG⊥PE,∴∠PGC=90°,∴∠PFC=∠PGC,∵AB=AC,∴∠ABC=∠ACB,∵CG⊥PE,AB⊥PE,∴CG∥AB,∴∠ABC=∠PCG,又∵∠ACB=∠PCF(对顶角相等),∴∠PCG=∠PCF,在△PCG和△PCF中,,∴△PCG≌△PCF(AAS),∴PF=PG,∴PE﹣PG=PE﹣PF=EG=CD,则PE﹣PF=CD.20.(1)证明:∵AB∥DE,∴∠A=∠D,在△BAC和△EDF中,∴△BAC≌△EDF(SAS),∴BC=EF,∠BCA=∠EFD,∴BC∥EF,∴四边形BCEF是平行四边形(2)解:连接BE,交CF于点G,∵四边形BCEF是菱形,∴CG=FG,BE⊥AC,∵∠ABC=90°,AB=8,BC=6,∴AC==10,∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC,∴=,即=,∴CG=3.6,∵FG=CG,∴FC=2CG=7.2,∴AF=AC﹣FC=10﹣7.2=2.8.21.(1)证明:∵△AEF∽△ABC,∴=,∵AB=AC,∴AE=AF,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(2)证明:∵Rt△AED≌Rt△AFD,∴∠EAD=∠FAD,∵AB=AC,∴AD⊥BC,BC=2BD,∵BC=2AD,∴BD=AD,∵AD⊥BC,∴∠ADB=90°,∴∠B=∠BAD=45°,∴∠BAC=2∠BAD=90°,∵∠AED=∠AFD=90°,∴四边形AEDF是矩形,∵AE=AF,∴矩形AEDF是正方形22.(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG,在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形(2)解:直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:∵四边形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG∠AOE=∠COGAE=CG∴△AOE≌△COG(AAS),∴OA=OC,即O为AC的中点,∵正方形的对角线互相平分,∴O为对角线AC、BD的交点,即O为正方形的中心(3)解:设四边形EFGH面积为S,设BE=xcm,则BF=(8﹣x)cm,根据勾股定理得:EF2=BE2+BF2=x2+(8﹣x)2,∴S=x2+(8﹣x)2=2(x﹣4)2+32,∵2>0,∴S有最小值,当x=4时,S的最小值=32,∴四边形EFGH面积的最小值为32cm2.23.(1)证明:感知:如图①.∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠DAE+∠DEA=90°.∵EF⊥AE,∴∠AEF=90°,∴∠DEA+∠FEC=90°,∴∠DAE=∠FEC.∵DE=1,CD=4,∴CE=3.∵AD=3,∴AD=CE,∴△ADE≌△ECF(ASA)(2)证明:如图②.∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠DPE+∠DEP=90°.∵EF⊥PE,∴∠PEF=90°,∴∠DEP+∠FEC=90°,∴∠DPE=∠FEC,∴△PDE∽△ECF;(3)3﹣24.(1)解:∵一次函数y=x+4与x轴交于点A,与y轴交于点C,∴C(0,4),A(﹣5,0).∵一次函数y=﹣x+b经过点C,∴b=4,∴一次函数解析式为y=﹣x+4.(2)证明:如图1中,连接AP.在△APB中,∵PG=GB,AF=FB,∴FG=AP,在△APH中,∵AE=EH,PD=DH,∴DE=AP,∴FG=DE.(3)解:如图2中,延长GF交AQ于K,连接PE.∵GM=MF,∠PMG=∠QMF,PM=MQ,∴△PGM≌△QFM,∴QF=PG=GB,∴∠FQM=∠MPG,∴QF∥PB,∴四边形FGBQ是平行四边形,∴BQ=FG=DE,BQ∥DE,可得△DEH≌△QBH,∴EH=HB=AE,∴H(1,0),设GM=a,则MF=a,PA=4a,∵GK∥AP,PM=MQ,∴AK=KQ,∴MK=2a,FK=a,∴FM=FK,∠MFB=∠AFK,BF=AF,∴△AFK≌△BFM,∴∠FAK=∠MBF,∴BM∥AQ,∴∠BAQ=∠ABM,∵∠BAQ+∠BMQ=∠DEB=∠PAB,∴∠ABM+∠BMQ=∠PAB=∠PHA,∴PA=PH,∵AE=EH,∴PE⊥AH,设AE=EH=x,则EO=x﹣1,EO=OA﹣AE=5﹣x,∴5﹣x=x﹣1,∴x=3,∴PE=EB=6,EO=2,∴P(﹣2,6).。
华东师大版八年级下册数学第19章矩形、菱形、正方形单元测试试题(含答案)
华东师大版八年级下册数学第19章《长方形' 菱形、正方形》单元测试题得分 卷后分 评价一、选择题(每小题4分,共24分)1.下列说法中,正确的是()A.同位角相等C.四条边相等的四边形是菱形 B.对角线相等的四边形是平行四边形D.矩形的对角线一定互相垂直2.如图,在菱形A3CQ 中,已知ZA=60°, A3=5,则△A3D 的周长是( )A. 10B. 12C. 15第2题图D. 20第3题图3.如图,在正方形ABCD 中,点E 是CQ 边上一点,连结AE,交对角线BQ 于点F,连结CF,则图中全等三角形共有( )A. 1对B. 2对C. 3对D. 4对4.有一张矩形纸片A3CQ, AB=2.5, AD= 1.5,将纸片折叠,使AQ 边落在AB 边上,折痕为AE,再将△•以DE 为折痕向右折叠,AE 与BC 交于点F (如图),则CF 的长为( )5.将矩形纸片ABCD 按如图所示方式折叠,得到菱形AECF,若AB=3,则BC 的长为()6.如图,四边形ABCQ 为正方形,E 是CQ 的中点,F 是BC 边上的点,下列条件中,不能推出APLEP 的是()A. ZAPB= ZPECC. ZAPB+ZEPC=9Q° B. P 是BC 的中点D. ZPAD+ ZPED= 1SQ°第6题图第8题图二、填空题(每小题4分,共20分)7. 在△ ABC 中,延长至点Z ),使延长CA 至点E, ft AE=AC,连结CD,DE, BE,则四边形BCDE 是;当四边形BCDE 是矩形时,△ ABC 是 三角形;当四边形BCDE 是菱形时,A ABC M 三角形;当四边形BCDE 是正方形时,△ ABC 是__________三角形.8. 如图,。
是矩形ABCQ 的对角线AC 的中点,M 是AO 的中点,若AB=5, AD=\2,则四边形的周长为.9. 如图,菱形 ABCD 中,AB=4, ZB=60。
华师大版八年级数学下册第19章矩形菱形与正方形检测题(word原卷板答案版)
第19章检测题时间:120分钟满分:120分一、选择题(每题3分,共30分)1.下列说法中,错误的是( )A.平行四边形的对角线互相平分 B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直 D.对角线互相垂直的四边形是菱形2.(上海)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB3.如图,将平行四边形ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是( )A.AF=EF B.AB=EF C.AE=AF D.AF=BE,第3题图) ,第4题图),第5题图) ,第6题图) 4.如图,在△ABC中,AB>BC>AC,小华依下列方法作图,①作∠C的角平分线交AB 于点D;②作CD的中垂线,分别交AC、BC于点E、F;③连结DE、DF.根据小华所作的图,下列说法中一定正确的是( )A.四边形CEDF为菱形 B.DE=DAC.DF⊥CB D.CD=BD5.如图△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,若AE=4 cm,那么平行四边形AEDF周长为( )A.12 cm B.16 cm C.20 cm D.22 cm6.如图,在△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( ) A.2 3 B.3 3 C.4 D.4 37.菱形ABCD的对角线的交点在坐标原点,且AD平行于x轴,若点A的坐标为(-1,2),则点C的坐标为( )A.(1,-2) B.(2,-1) C.(1,-3) D.(2,-3)8.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连结AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( )A.1个 B.2个 C.3个 D.4个,第8题图) ,第9题图),第10题图)9.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂 A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C 到公路l2的距离是( )A.3公里 B.4公里 C.5公里 D.6公里10.(攀枝花)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连结AC交EF于点G,过点G作GH⊥CE于点H,若S△EGH=3,则S△ADF=( ) A.6 B.4 C.3 D.2二、填空题(每小题3分,共24分)11.矩形内有一点P到各边的距离分别为1、3、5、7,则该矩形的最大面积为( ).12.若菱形的一条对角线长为2 cm,面积为2 3 cm2,则它的周长为( ).13.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转到能与△CBP′重合,若PB=3,则PP′=( ).14.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以线段CD、CB为边作▱CDEB,当AD=( )时,▱CDEB为菱形.,第13题图) ,第14题图) ,第15题图)15.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线距离之和PE+PF=( ).16.在矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于点E,若OE∶ED=1∶3,AE =3,则BD=( ).17.如图,在正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF.其中正确的是( ).(只填写序号),第17题图) ,第18题图) 18.如图,在四边形ABCD中,AD∥BC,BC=CD=AC=23,AB=6,则BD的长为( ).三、解答题(共66分)19.(10分)如图,四边形ABCD为菱形,已知A(0,4),B(-3,0).(1)求点D的坐标;(2)求经过点C的反比例函数表达式.20.(10分)已知:如图,在△ABC中,D是BC边上的一点,连结AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连结DF.(1)求证:AF=DC;(2)请问:AD与CF满足什么条件时,四边形AFDC是矩形?并说明理由.21.(10分)如图,在矩形ABCD中,F是BC上一点,连结AF,AF=BC,DE⊥AF,垂足为E,连结DF.求证:(1)△ABF≌△DEA.(2)DF是∠EDC的平分线.22.(12分)如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1 cm 的速度沿射线AC移动,点Q从点C出发以每秒1 cm的速度沿射线CA移动.(1)经过几秒,以P、Q、B、D为顶点的四边形为矩形?(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.23.(12分)如图①,在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN ⊥DM且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是B的中点”改为“M是AB上的任意一点”,其余条件不变(如图②),则结论“MD=MN”还成立吗?如果成立,请证明;如果不成立,请说明理由.24.(12分)(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连结CP,判断四边形CODP的形状并说明理由;(2)如果题目中的矩形变为菱形,结论变为什么?说明理由;(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.。
华师大版八年级数学初二下册:第19章 矩形、菱形与正方形测试题及答案
第19章 矩形、菱形与正方形测试题第20章 第21章一、选择题(每小题3分,共30分)1、关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC 和BD 相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有( )。
(A ) 1个 (B )2个 (C )3个 (D )4个2、若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( )A 、菱形B 、对角线相互垂直的四边形C 、正方形D 、对角线相等的四边形 3、如图1,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A.S 1 > S 2B.S 1 = S 2C.S 1<S 2D.S 1、S 2 的大小关系不确定 4、矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为( )A.3cm 2B. 4cm 2C. 12cm 2D. 4cm 2或12cm 2 5、如图2,菱形花坛 ABCD 的边长为 6m ,∠B =60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( )m B.20m C.22m D.24m6、如图3,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( ) AB. CD.7、如图4,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地. 根据图中数据,计算耕地的面积为( )A .600m 2B .551m 2C .550 m 2D .500m 28、如图5,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是 ( )A.3∶4B.5∶8C.9∶16D.1∶2图4FEDCBA图3图2图19、如图6,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为 ( )A 、36oB 、9oC 、27oD 、18o 10、如图7,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3走2走到正方形O 3KJP 的中心O 4,一共走了31 2 m ,则长方形花坛ABCD 的周长是( )A.36 mB.48mC.96 mD.60 m二、填空题(每小题3分,共30分)11,如图8, 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于___.12,如图9,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).13,如图10,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则PP ′=___.14,已知菱形有一个锐角为60°,一条对角线长为6cm ,则其面积为___cm 2. 15,如图11,在梯形ABCD 中,已知AB ∥CD ,点E 为BC 的中点, 设△DEA 的面积为S 1,梯形ABCD 的面积为S 2,则S 1与S 2的关系为___.16,如图12,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1四边形ABCD 的中点四边形.如果AC =8,BD =10,那么四边形A 1B 1C 1D 1的面积为___.AC图5图7图12A 1B 1C 1D 1 D AB C B图13D CB A 图8 图10图9 N M Q D C B图11E D C BA17,如图13,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为___.18,将一张长方形的纸对折,如图14所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.19、如图15,已知AB ∥DC ,AE ⊥DC ,AE =12,BD =15,AC =20, 则梯形ABCD 的面积为___.20、在直线l 上依次摆放着七个正方形(如图16所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=___.三、解答题21、(8分)如图17,把一张长方形ABCD 的纸片沿EF 折叠后,ED 与BC 的交点为G ,点D 、C 分别落在D ′、C ′的位置上,若∠EFG=55°,求∠AEG 和∠EGB 的度数。
华东师大版2019-2020学年八年级数学下学期第19章 矩形、菱形、正方形 单元测试卷(含答案)
19章矩形、菱形、正方形单元试卷一、选择题 (共1.在平行四边形、矩形、菱形、正方形中,不是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个2.如图,矩形ABCD 中,E 点在DC 上,且AE 平分 BAC ;若DE=4,AC =15,则 AEC 面积为( )A. 15B. 45C. 60D. 303.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( )A.14B.15C.16D.174. 正方形ABCD 的边长为4cm ,则正方形的对角线长为( )A. 4cmB.24cmC.34cmD.32cm5.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是( ) A .20 B .24 C .40 D .486. 小明和小亮在做一道习题,若四边形ABCD 是平行四边形,请补充条件 ,使得四边形ABCD 是菱形.小明补充的条件是AB=BC ;小亮补充的条件是AC=BD ,你认为下列说法正确的是( )A .小明、小亮都正确B .小明正确,小亮错误C .小明错误,小亮正确D .小明、小亮都错误7.如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BF A =30°,那么∠CEF 的度数是( )A .60° B.45° C . 40° D.30°8.如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、DA 、CD 、BC 的中点.若AB =2,AD =4,则图中阴影部分的面积为( )A.3B.4C.6D.89.如图,在正方形ABCD 外侧作等边△ADE ,AC 、BE 相交于点F ,则∠BFC 的度数是( )A.45°B.55°C.60°D.75°10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A.2B.2.2C.2.4D.2.5二、填空题(共6小题,每小题4分,满分24分)11. 已知四边形ABCD中,∠A=∠B=∠C=90°,若再添加一个条件,使得该四边形是正方形,那么这个条件可以是.12. 如图,矩形ABCD的周长是56cm,对角线AC、BD相交于O,△OAB与△OBC周长差是4cm,则矩形ABCD中较短边长是_________cm.13.如图,以正方形ABCD的对角线AC为边长作菱形AEFC,则∠EAF的度数是度.14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.15.如图,在矩形ABCD中,E是AB的中点,连接DE、CE.若AB=6,AD=4,则△CDE的周长为.16.如图,正方形ABCD的边长为8,点M在DC上,且CM=3DM,N是AC上的一动点,则DN+MN的最小值为.三、解答题(共9小题,满分86分)17.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.把△AOB平移到△DEC的位置,求证:四边形OCED是矩形.18.(8分)如图,菱形ABCD的对角线交于点O,AC=16cm,BD=12cm. 求菱形的高DM的长.19.(8分)把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3cm ,BC =5cm ,求EDF S .20.(8分)如图,在 ABCD 中,E ,F 分别是AD ,BC 上的点,EF 垂直平分AC .求证:四边形AECF 是菱形.21.(8分)如图,在正方形ABCD 中,E 是边AB 的中点,F 是边BC 的中点,连结CE 、DF .猜想图中C E 和DF 的关系,并证明你的猜想.22.(10分)如图,AB=CD=ED ,AD=EB ,BE ⊥DE ,垂足为E .(1)求证:△ABD ≌△EDB ;(2)只需添加一个..条件:_______________,可使四边形ABCD 为矩形,并加以证明.23.(10分)如图,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB延长线上一点,且DE =BF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并说明它和图中已有的某一条线段相等(只需说明一组线段相等即可):(1)连接_______;猜想:_________=________;(2)试证明你的猜想.24.(12分)如图,在矩形ABCD 中,对角线AC 与BD 交于点O .设点P 是AB 上的一点,将△OPD 沿边OP 翻折得到△OPG ,若△OPG 与△OPB 重叠部分△OPM 的面积是△PBD 的面积的41. (1)求证:四边形OPGB 是平行四边形;(2)若AD =10,AB =24,求AP 的长.25(14分)如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连接AE,CF .(1)求证:AF=CE ;(2)若AC ⊥EF ,试判断四边形AFCE 是什么样的四边形,并证明你的结论.(3)在第(2)小题中,还需加上一个什么条件,才能使四边形AFCE 成为正方形?不必说明理由.参考答案第19章矩形、菱形、正方形一、选择题1.A. 2. D 3.C 4. B 5. A .6. B 7. D 8. B 9.C 10. C二、填空题11.AB =BC 或AC ⊥BD , 12. 12cm ,13.22.5 ,14.(-5,4) 15.16. 16. 10.三、解答题17.证明:由平移的特征得:CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°.∴平行四边形OCED 是矩形;18. 解:∵四边形ABCD 是菱形 ∴621,821,====⊥BD OB AC AO BD AC , 在Rt △AOB 中,1022=+=OB AO AB∵ABCD 菱形S =BD AC DM AB ⋅=⋅21 ∴12162110⨯⨯=⋅DM ∴6.9=DM cm 19.解:设ED=x ,则AE=5-x由折叠重合可知:A ’E=AE=5-x,A ’D=AB=3cm在Rt △A ’ED 中22'2'ED D A E A =+即222)5(3x x =-+ 解得:517=x 过F 做FH ⊥ED ,垂足为H∵四边形ABCD 是矩形,∴AD ∥BC∴FH=AB=3 ∴)(1051351721212cm FH ED S EDF =⨯⨯=⋅=∆ 20.证明:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∵DE=BF ,∴AE=CF ,∵AE ∥CF ,∴四边形AECF 是平行四边形, ∵AC ⊥EF ,∴四边形AECF 是菱形.21. 猜想CE=DF ,CE ⊥DF证明:∵四边形ABCD 是正方形, ∴AB=BC=CD ,∠EBC =∠FCD =90°. 又∵E 、F 分别是AB 、BC 的中点, ∴BE=CF ,∴△CEB ≌△DFC ,∴CE=DF .∠BCE =∠CDF∵∠BCE +∠ECD=∠FCD =90°∴∠CDF +∠ECD =90°∴CE ⊥DF∴CE=DF ,CE ⊥DF22.(1)证明:在ABD ∆与EDB ∆中, ∵AB=ED ,AD=EB ,BD=DB ; ∴ABD EDB △≌△(S.S.S )(2)添加的条件:AD=BC理由:∵AB=CD ,AD=BC∴ 四边形ABCD 是平行四边形 ∵BE DE ⊥∴︒=∠90E∵ABD EDB △≌△∴︒=∠=∠90E A∴平行四边形ABCD 是矩形23.(1)如图,连接AF ,AF = AE .(2)∵ 四边形ABCD 是菱形,∴AB=AD ,∴ ∠ABD=∠ADB ,∴ ∠ABF=∠ADE.在△ABF 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE BF ADE ABF AD AB∴ △ABF ≌△ADE ,∴AE AF = .24.证明:∵四边形ABCD 是矩形 ∴OB=OD ∴PBD POB POD S S S 21==∆∆ ∵PBD POM S S 41=∆∴POB POM S S 21=∆ ∴PM=MB , 由折叠重合可知:PBD POD POG S S S 21==∆∆ ∴POG POM S S 21=∆ ∴OM=MG∴四边形OPGB 是平行四边形;(2)∵四边形ABCD 是矩形∴090=∠DAB ∴2624102222=+=+=AB AD BD ∴OB=OD=13由(1)得四边形OPGB 是平行四边形; ∴PG=OB=13由折叠重合可知:PD=PG =136910132222=-=-=AD PD AP25.(1)证明:∵AF ∥BE∴CED AFD ∠=∠∵D 是AC 的中点 ∴DC AD = ∵CDE ADF ∠=∠∴ADF ∆≌CDE ∆∴AF CE =(2)若EF AC ⊥,四边形AFCE 是菱形 理由:∵AF ∥CE ,AF=CE ∴ 四边形AFCE 是平行四边形 ∵EF AC ⊥∴平行四边形AFCE 是菱形(3)如AC =EF (答案不唯一)。
华东师大版2019-2020学年八年级数学第二学期第19章 矩形、菱形、正方形 单元测试题(含答案)
19章矩形、菱形、正方形单元试卷一、选择题 (共1.在平行四边形、矩形、菱形、正方形中,不是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个2.如图,矩形ABCD 中,E 点在DC 上,且AE 平分 BAC ;若DE=4,AC =15,则 AEC 面积为( )A. 15B. 45C. 60D. 303.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( )A.14B.15C.16D.174. 正方形ABCD 的边长为4cm ,则正方形的对角线长为( )A. 4cmB.24cmC.34cmD.32cm5.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是( ) A .20 B .24 C .40 D .486. 小明和小亮在做一道习题,若四边形ABCD 是平行四边形,请补充条件 ,使得四边形ABCD 是菱形.小明补充的条件是AB=BC ;小亮补充的条件是AC=BD ,你认为下列说法正确的是( )A .小明、小亮都正确B .小明正确,小亮错误C .小明错误,小亮正确D .小明、小亮都错误7.如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BF A =30°,那么∠CEF 的度数是( )A .60° B.45° C . 40° D.30°8.如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、DA 、CD 、BC 的中点.若AB =2,AD =4,则图中阴影部分的面积为( )A.3B.4C.6D.89.如图,在正方形ABCD 外侧作等边△ADE ,AC 、BE 相交于点F ,则∠BFC 的度数是( )A.45°B.55°C.60°D.75°10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A.2B.2.2C.2.4D.2.5二、填空题(共6小题,每小题4分,满分24分)11. 已知四边形ABCD中,∠A=∠B=∠C=90°,若再添加一个条件,使得该四边形是正方形,那么这个条件可以是.12. 如图,矩形ABCD的周长是56cm,对角线AC、BD相交于O,△OAB与△OBC周长差是4cm,则矩形ABCD中较短边长是_________cm.13.如图,以正方形ABCD的对角线AC为边长作菱形AEFC,则∠EAF的度数是度.14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.15.如图,在矩形ABCD中,E是AB的中点,连接DE、CE.若AB=6,AD=4,则△CDE的周长为.16.如图,正方形ABCD的边长为8,点M在DC上,且CM=3DM,N是AC上的一动点,则DN+MN的最小值为.三、解答题(共9小题,满分86分)17.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.把△AOB平移到△DEC的位置,求证:四边形OCED是矩形.18.(8分)如图,菱形ABCD的对角线交于点O,AC=16cm,BD=12cm. 求菱形的高DM的长.19.(8分)把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3cm ,BC =5cm ,求EDF S .20.(8分)如图,在 ABCD 中,E ,F 分别是AD ,BC 上的点,EF 垂直平分AC .求证:四边形AECF 是菱形.21.(8分)如图,在正方形ABCD 中,E 是边AB 的中点,F 是边BC 的中点,连结CE 、DF .猜想图中C E 和DF 的关系,并证明你的猜想.22.(10分)如图,AB=CD=ED ,AD=EB ,BE ⊥DE ,垂足为E .(1)求证:△ABD ≌△EDB ;(2)只需添加一个..条件:_______________,可使四边形ABCD 为矩形,并加以证明.23.(10分)如图,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB延长线上一点,且DE =BF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并说明它和图中已有的某一条线段相等(只需说明一组线段相等即可):(1)连接_______;猜想:_________=________;(2)试证明你的猜想.24.(12分)如图,在矩形ABCD 中,对角线AC 与BD 交于点O .设点P 是AB 上的一点,将△OPD 沿边OP 翻折得到△OPG ,若△OPG 与△OPB 重叠部分△OPM 的面积是△PBD 的面积的41. (1)求证:四边形OPGB 是平行四边形;(2)若AD =10,AB =24,求AP 的长.25(14分)如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连接AE,CF .(1)求证:AF=CE ;(2)若AC ⊥EF ,试判断四边形AFCE 是什么样的四边形,并证明你的结论.(3)在第(2)小题中,还需加上一个什么条件,才能使四边形AFCE 成为正方形?不必说明理由.参考答案第19章矩形、菱形、正方形一、选择题1.A. 2. D 3.C 4. B 5. A .6. B 7. D 8. B 9.C 10. C二、填空题11.AB =BC 或AC ⊥BD , 12. 12cm ,13.22.5 ,14.(-5,4) 15.16. 16. 10.三、解答题17.证明:由平移的特征得:CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°.∴平行四边形OCED 是矩形;18. 解:∵四边形ABCD 是菱形 ∴621,821,====⊥BD OB AC AO BD AC , 在Rt △AOB 中,1022=+=OB AO AB∵ABCD 菱形S =BD AC DM AB ⋅=⋅21 ∴12162110⨯⨯=⋅DM ∴6.9=DM cm 19.解:设ED=x ,则AE=5-x由折叠重合可知:A ’E=AE=5-x,A ’D=AB=3cm在Rt △A ’ED 中22'2'ED D A E A =+即222)5(3x x =-+ 解得:517=x 过F 做FH ⊥ED ,垂足为H∵四边形ABCD 是矩形,∴AD ∥BC∴FH=AB=3 ∴)(1051351721212cm FH ED S EDF =⨯⨯=⋅=∆ 20.证明:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∵DE=BF ,∴AE=CF ,∵AE ∥CF ,∴四边形AECF 是平行四边形, ∵AC ⊥EF ,∴四边形AECF 是菱形.21. 猜想CE=DF ,CE ⊥DF证明:∵四边形ABCD 是正方形, ∴AB=BC=CD ,∠EBC =∠FCD =90°. 又∵E 、F 分别是AB 、BC 的中点, ∴BE=CF ,∴△CEB ≌△DFC ,∴CE=DF .∠BCE =∠CDF∵∠BCE +∠ECD=∠FCD =90°∴∠CDF +∠ECD =90°∴CE ⊥DF∴CE=DF ,CE ⊥DF22.(1)证明:在ABD ∆与EDB ∆中, ∵AB=ED ,AD=EB ,BD=DB ; ∴ABD EDB △≌△(S.S.S )(2)添加的条件:AD=BC理由:∵AB=CD ,AD=BC∴ 四边形ABCD 是平行四边形 ∵BE DE ⊥∴︒=∠90E∵ABD EDB △≌△∴︒=∠=∠90E A∴平行四边形ABCD 是矩形23.(1)如图,连接AF ,AF = AE .(2)∵ 四边形ABCD 是菱形,∴AB=AD ,∴ ∠ABD=∠ADB ,∴ ∠ABF=∠ADE.在△ABF 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE BF ADE ABF AD AB∴ △ABF ≌△ADE ,∴AE AF = .24.证明:∵四边形ABCD 是矩形 ∴OB=OD ∴PBD POB POD S S S 21==∆∆ ∵PBD POM S S 41=∆∴POB POM S S 21=∆ ∴PM=MB , 由折叠重合可知:PBD POD POG S S S 21==∆∆ ∴POG POM S S 21=∆ ∴OM=MG∴四边形OPGB 是平行四边形;(2)∵四边形ABCD 是矩形∴090=∠DAB ∴2624102222=+=+=AB AD BD ∴OB=OD=13由(1)得四边形OPGB 是平行四边形; ∴PG=OB=13由折叠重合可知:PD=PG =136910132222=-=-=AD PD AP25.(1)证明:∵AF ∥BE∴CED AFD ∠=∠∵D 是AC 的中点 ∴DC AD = ∵CDE ADF ∠=∠∴ADF ∆≌CDE ∆∴AF CE =(2)若EF AC ⊥,四边形AFCE 是菱形 理由:∵AF ∥CE ,AF=CE ∴ 四边形AFCE 是平行四边形 ∵EF AC ⊥∴平行四边形AFCE 是菱形(3)如AC =EF (答案不唯一)。
最新华东师大版八年级数学下册第19章矩形、菱形与正方形 章末测验 含答案
第19章矩形、菱形与正方形一、选择题(每小题3分,共30分)1.菱形不具备的性质是( )A.四条边都相等 B.对角线一定相等C.是轴对称图形 D.是中心对称图形2.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB 的度数为( )A.30° B.60° C.90° D.120°3.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( )A.1 B.2 C.3 D.44.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是( )A.8 B.7 C.4 D.35.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE 绕点E旋转180°得△CFE,则四边形ADCF一定是( )A.矩形 B.菱形 C.正方形 D.梯形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( )A.3∶1 B.4∶1 C.5∶1 D.6∶18.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A.16 B.17 C.18 D.199.如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则( )A.(θ1+θ4)-(θ2+θ3)=30° B.(θ2+θ4)-(θ1+θ3)=40°C.(θ1+θ2)-(θ3+θ4)=70° D.(θ1+θ2)+(θ3+θ4)=180°10.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为( ) A.20 B.24 C.25 D.26二、填空题(每小题3分,共15分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=____度.12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为____.13.已知一个菱形的边长为2,较长的对角线长为23,则这个菱形的面积是____.14.如图,在正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG ⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=____.15.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为____.三、解答题(共75分)16.(8分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连结BE,DF.求证:四边形BFDE是菱形.17.(9分)在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)求证:DF=AB;(2)若∠FDC=30°,且AB=4,求AD.18.(9分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连结BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.。
华东师大版八年级下册数学《第19章矩形、菱形与正方形》单元综合检测试卷(含答案)
18.如图,在四边形 ABCD中, AB=BC= CD= DA , 对角线 AC 与 BD 相交于点 O , 若不增加任何字母 与辅助线,要使四边形 ABCD是正方形,则还需增加一个条件是 ________
24.四边形 ABCD是正方形,对角线 AC, BD 相交于点 O. ( 1)如图 1,点 P 是正方形 ABCD外一点,连接 OP,以 OP 为一边,作正方形 OPMN,且边 ON 与边 BC 相交,连接 AP,BN. ① 依题意补全图 1; ② 判断 AP 与 BN 的数量关系及位置关系,写出结论并加以证明;
三、解答题
21.如图,四边形 ABCD是平行四边形,连接对角线 边形 DEBF是平行四边形.
AC, E、F 是对角线 AC 上两点,满足 AE=CF,求证:四
22.如图,菱形 ABCD中,对角线 AC、 BC 相交于点 O, H 为 AD 边中点,菱形 ABCD的周长为 28,求 OH 的 长?
23.如图,在 ?ABCD中,∠ DAB=60°,点 E, F 分别在 CD, AB 的延长线上,且 AE=AD, CF=CB. ( 1)求证:四边形 AFCE是平行四边形; ( 2)若去掉已知条件 “∠ DAB=∠ 60°,”( 1)中的结论还成立吗?若成立,请写出证明过程;若不成立, 请说明理由.
第 19 章矩形、菱形与正方形
一、选择题
1. 下列命题正确的是(
)
A. 对角线相等的四边形是矩形
B. 对角线互相垂直且相等的四边形是正方形
2020年华师大版数学八年级下学期第19章 矩形、菱形、正方形 单元测试题(含答案)
华师大版数学八年级下册第19章 矩形、菱形、正方形 单元测试题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的 正方形ACEF 的周长为( ) A.14B.15C.16D.172. 若顺次连接四边形ABCD 四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是( ) A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形 3.如图,在矩形ABCD 中,AD =2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN ,若四边形MBND 是菱形,则AMMD等于( ) A.38B.23C.35D.454.如图,将矩形ABCD 沿对角线BD 折叠,使点C 与点C ′重合.若AB =2,则的长为( )A.1B.2C.3D.45.已知:如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、DA 、CD 、BC 的中点.若,,则图中阴影部分的面积为( )A.3B.4C.6D.86.如图所示,将一圆形纸片对折后再对折,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )ABCD7.如图,在菱形中,,∠,则对角线等于( )A .20B .15C .10D .58.如图,小亮用六块形状、大小完全相同的等腰梯形拼成一个四边形,则图中 ∠的度数是( ) A .B .C .D .9.如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D, 交AB 于点E ,且BE =BF .添加一个条件,仍不能证明四边形BECF 为正 方形的是( ) A.BC =AC B.CF ⊥BFC.BD =DFD.AC =BF10. 如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( ) A.AF =AEB.△ABE ≌△AGFC.EF =2D.AF =EF二、填空题(每小题3分,共21分)11.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF ,若菱形ABCD 的边长为 2 cm,∠A =120°,则EF =cm.12.如图,ABCD 是对角线互相垂直的四边形,且OB =OD ,请你添加一个适当的条件 ,使ABCD 成为菱形.(只需添加一个即可)13.已知菱形的边长为5,一条对角线长为8,则另一条对角线长为_________. 14.如图,矩形的对角线,,则图中五个小矩形的周长之和为_______.15.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB =5,AD =12,则四边形ABOM 的周长为 .16.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,且 cm ,则BD 的长为________cm ,BC 的长为_______cm.17.(2015·贵州安顺中考)如图,正方形ABCD 的边长为4,E 为BC 上的一点,BE =1,F 为AB 上的一点,AF =2,P 为AC 上一个动点,则PF +PE 的最小值为.第17题图三、解答题(共49分)18.(8分)(2015·广东中考)如图,在边长为6的正方形ABCD 中, E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG . (1)求证:△ABG ≌△AFG ; (2)求BG 的长.D第16题图第18题图19.(8分)已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并说明它和图中已有的某一条线段相等(只需说明一组线段相等即可):(1)连接____________ ;(2)猜想:______________=_______________;(3)试证明你的猜想.20.(8分)如图,在正方形ABCD中,E、F分别是AB和AD上的点,已知CE⊥BF,垂足为M,请找出图中和BE相等的线段,并说明你的结论.21.(8分)如图,在矩形中,是边上一点,的延长线交的延长线于点,⊥,垂足为,且.(1)求证:;(2)根据条件请在图中找出一对全等三角形,并证明你的结论.22.(9分)已知:如图,在△ABC中,,M为底边BC上任意一点,过点M分别作AB、AC的平行线,交AC于点P,交AB于点Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.23.(8分)(2013·山东青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=时,四边形MENF是正方形(只写结论,不需证明)参考答案1. C 解析:根据菱形的性质得到AB =BC =4,由∠B =60°得到△ABC 是等边三角形,所以AC =4.则以AC 为边长的正方形ACEF 的周长为16.2. D 解析:顺次连接矩形各边中点得到的四边形是菱形;顺次连接菱形各边中点得到的四边形是矩形;顺次连接对角线相等的四边形各边中点得到的四边形是菱形;顺次连接对角线互相垂直的四边形各边中点得到的四边形是矩形.综合考虑,选项D 最恰当.3. C 解析:设AB =x ,AM =y ,则BM =MD =2x -y .在Rt △ABM 中,根据勾股定理有BM 2=AB 2+AM 2,即(2x -y )2=x 2+y 2,整理得3x =4y ,所以x =43y ,故AM MD =423y y y ⨯-=53yy =35. 4.B 解析:因为四边形ABCD 是矩形,所以CD =AB =2.由于沿BD 折叠后点C 与点C ′重合,所以=CD =2.5.B 解析:∵ 矩形ABCD 的面积为,∴ 阴影部分的面积为,故选B .6.C7.D 解析:在菱形中,由∠=,得 ∠.又∵,∴△是等边三角形,∴.8.A解析:观察图形,在等腰梯形的一个上底角顶点处有三个上底角,因而等腰梯形上底角等于,所以.9. D 解析:本题综合考查了直角三角形、线段的垂直平分线的性质与菱形、正方形的判定方法等知识.因为EF 垂直平分BC ,所以BE =EC ,BF =FC.又BE =BF ,所以BE =EC =CF =FB ,所以四边形BECF 为菱形.如果BC =AC ,那么∠ABC =90°÷2=45°,则∠EBF =90°,能证明四边形BECF 为正方形.如果CF ⊥BF ,那么∠BFC =90°,能证明四边形BECF 为正方形.如果BD =DF ,那么BC =EF ,能证明四边形BECF 为正方形.当AC =BF 时,可得AC =BE =EC =AE ,此时∠ABC =30°,则∠EBF =60°,不能证明四边形BECF 为正方形.点拨:判定一个四边形是正方形一般有两种方法:一是先证明它是矩形,再证明一组邻边相等或证明对角线互相垂直;二是先证明它是菱形,再证明有一个角是直角或证明对角线相等.10. D 解析:如图,由折叠得∠1=∠2.∵ AD ∥BC ,∴ ∠3=∠1,∴ ∠2=∠3,∴ AE =AF , 故选项A 正确.由折叠得CD =AG ,∠C =∠G =90°. ∵ AB =CD ,∴ AB =AG .∵ AE =AF ,∴ Rt △ABE ≌Rt △AGF (HL ),故选项B 正确. 设DF =x ,则GF =x ,AF =8-x ,AG =4. 在Rt △AGF 中,根据勾股定理得, 解得x =3, ∴ AF =8-x =5,则AE =AF =5,∴ BE ===3.过点F 作FM ⊥BC 于点M ,则EM =5-3=2.在Rt △EFM 中,根据勾股定理得 EF ==2, 则选项C 正确.∵ AF =5,EF =2,∴ AF ≠EF ,故选项D 错误.第10题图11.解析:本题综合考查了菱形的性质、勾股定理和三角形中位线的性质.连接BD ,AC .∵ 四边形ABCD 是菱形,∴ AC ⊥BD ,AC 平分∠BAD . ∵ ∠BAD =120°,∴ ∠BAC =60°,∴ ∠ABO =90°-60°=30°. ∵ ∠AOB =90°,∴ AO =12AB =12×2=1(cm ).由勾股定理得BO cm ,∴ DO cm.∵ 点A 沿EF 折叠后与O 重合,∴ EF ⊥AC ,EF 平分AO .∵ AC ⊥BD ,∴ EF ∥BD ,∴ EF 为△ABD 的中位线,∴ EF =12BD =12×(cm). 12. OA =OC 或AD =BC 或AD ∥BC 或AB =BC 等(答案不唯一) 解析:本题主要考查了菱形的判定方法,属于条件开放型题目.对角线互相垂直平分的四边形是菱形;四条边都相等的四边形是菱形;有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.13.6 解析:∵ 菱形的两条对角线互相垂直平分,∴ 根据勾股定理,可求得另一条对角线长的一半为3,则另一条对角线长为6. 14.28 解析:由勾股定理得 ,又,,所以所以五个小矩形的周长之和为15. 20 解析:本题考查了矩形的性质、三角形中位线的性质和勾股定理.在Rt △ABC 中,因为AB=5,BC=AD=12,由勾股定理可得AC=13.因为O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,所以OM==2.5,=6.5,,所以四边形ABOM的周长=AB+BO+OM+MA=5+6.5+2.5+6=20.16.4 解析:因为cm,所以cm.又因为,所以cm.,所以(cm).17. 解析:如图,作点E关于直线AC的对称点E′,则BE=DE′,连接E′F,则E′F即为所求.过F作FG⊥CD于G,在Rt△E′FG中,GE′=CD-DE′-CG=CD-BE-BF=4-1-2=1,GF=4,所以E′F===.第17题图18.分析:(1)在△ABG与△AFG中,AG为公共边,根据正方形ABCD的性质及折叠的性质可得AB=AF,∠B=∠AFG=90°,利用两直角三角形全等的判定(HL)可得△ABG≌△AFG.(2)由(1)得,BG=FG, 设BG=FG=x,则Rt△ECG中各边都可以用含x的代数式表示出来,然后利用勾股定理得到关于x的方程,解方程即可.(1)证明:∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB.由折叠的性质可知AD=AF,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF,∴∠AFG=∠B.又AG=AG,∴△ABG≌△AFG(HL).(2) 解:∵△ABG≌△AFG,∴BG=FG.设BG=FG=x,则GC=6-x.∵E为CD的中点,∴CE=DE=EF=3,∴EG=x+3.在Rt△ECG中,,即,解得x=2. ∴BG的长为2.19.分析:观察图形可知应该是连接AF ,可通过证△ABF 和△ADE 全等来实现.解:(1)如图,连接AF . (2).(3)∵ 四边形ABCD 是菱形,∴, ∴ ∠∠,∴ ∠∠.在△ABF 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE BF ADE ABF AD AB ∴ △ABF ≌△ADE ,∴.20.解:和BE 相等的线段是AF .理由如下: 因为四边形ABCD 是正方形, 所以,∠∠°.因为CE ⊥BF ,所以∠∠°.又因为∠∠°,所以∠∠.在△AFB 和△BEC 中, ⎪⎩⎪⎨⎧∠=∠∠=∠=,,,ECB ABF A ABC BC AB所以△≌△,所以AF=BE .21.(1)证明:在矩形ABCD 中,,且,∴.(2)解:△ABF ≌△DEA .证明如下:在矩形ABCD 中,∵ BC ∥AD ,∴ ∠∠.∵ DE ⊥AG ,∴ ∠°. ∵ ∠°,∴ ∠∠.又∵,∴ △ABF ≌△DEA .22.分析:(1)根据平行四边形的性质可得对角相等,对边相等,从而不难求得其周长; (2)根据中位线的性质及菱形的判定说明. 解:(1)∵ AB ∥MP ,QM ∥AC , ∴ 四边形AQMP 是平行四边形,∠∠,∠∠. ∵,∴ ∠∠,∴ ∠∠,∠∠.∴,.∴四边形AQMP的周长.(2)当点M是BC的中点时,四边形APMQ是菱形.理由如下:∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵,∴.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.23. 分析:本题考查了矩形的性质以及菱形和正方形的判定.(1)用SAS证明△ABM和△DCM全等.(2)先证四边形MENF是平行四边形,再证它的一组邻边ME和MF相等.(3)由(2)得四边形MENF是菱形,当它是正方形时,只需使∠BMC是直角,则有∠AMB+ ∠CMD=90°.又∵∠AMB=∠CMD,∴△AMB和△CMD都是等腰直角三角形.(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC.又∵MA=MD,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.理由:∵ CF=FM,CN=NB,∴FN∥MB.同理可得:EN∥MC.∴四边形MENF是平行四边形.∵△ABM≌△DCM,∴MB=MC.又∵ME=12MB,MF=12MC,∴ME=MF.∴平行四边形MENF是菱形.(3)解:2∶1.。
第19章矩形、菱形和正方形单元测试2021-2022学年华东师大版数学八年级下册(word 含答案)
第19章矩形、菱形和正方形单元测试一.单选题(共10题;共30分)1.取四边形ABCD的各边中点E、F、G、H,依次连结EFGH得到四边形EFGH,现知四边形EFGH是菱形,则四边形ABCD的对角线( )A. 相等B. 相等且平分C. 垂直D. 垂直且平分2.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的是()A. AO=CO,BO=DOB. AO=CO=BO=DOC. AO=CO,BO=DO,AC⊥BDD. AO=BO=CO=DO,AC⊥BD3.如图,矩形ABCD中,AE⊥BD垂足为E,若∠DAE=3∠BAE,则∠EAC的度数为()A. 67.5°B. 45°C. 22.5°D. 无法确定4.如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A. (,)B. (,)C. (2,﹣2)D. (,﹣)5.如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(,1),则点B的坐标为()A. (﹣1,+1)B. (﹣1,1)C. (1,+1)D. (﹣1,2)6.下列性质中,正方形具有而菱形不一定具有的性质是()A. 四条边相等B. 对角线互相平分C. 对角线相等D. 对角线互相垂直7.菱形具有而矩形不具有的性质是()A. 对角线互相平分B. 四条边都相等C. 对角相等D. 邻角互补8.在平面中,下列说法正确的是().A. 四边相等的四边形是正方形B. 四个角相等的四边形是矩形C. 对角线相等的四边形是菱形D. 对角线互相垂直的四边形是平行四边形9.如图,ABCD、AEFC都是矩形,而且点B在EF上,这两个矩形的面积分别是S1,S2,则S1,S2的关系是()A. S1>S2B. S1<S2C. S1=S2D. 3S1=2S210.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是()A. 90°B. 80°C. 70°D. 60°二.填空题(共8题;共24分)11.如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是________ .12.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为________.13.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为________.14.设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…根据以上规律,第n个正方形的边长a n=________.15.在四边形ABCD中,∠A=∠B=∠C=∠D,则四边形ABCD是________.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B n的坐标是________ .17.(如图所示)两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.18.如图,正方形ABCD的边长为4,延长CB至点M,使BM=2,过点B作BN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为________.三.解答题(共6题;共36分)19.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积.20.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE等于多少时,四边形CEDF是矩形;②当AE等于多少时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)21.如图所示,在菱形ABCD中,∠BAD=120°,AB=4.求:(1)对角线AC,BD的长;(2)菱形ABCD的面积.22.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF的值。
八年级数学下册《第十九章 矩形、菱形与正方形》单元测试卷-附答案(华东师大版)
八年级数学下册《第十九章 矩形、菱形与正方形》单元测试卷-附答案(华东师大版)一、选择题(共10小题,每小题3分,共30分) 1. 矩形具有而菱形不具有的性质是( ) A .两组对边分别平行 B .对角线相等 C .对角线互相平分D .两组对角分别相等2. 如图,在矩形ABCD 中,若AC =2AB ,则∠AOB 的大小是( )A .30°B .45°C .60°D .90°3. 如图,将平行四边形ABCD 沿AE 翻折,使点B 恰好落在AD 上的点F 处,则下列结论不一定成立的是( )A .AF =EFB .AB =EFC .AE =AFD .AF =BE4. 如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2),若反比例函数y =kx (x>0)的图象经过点A ,则此反比例函数的表达式为( )A .y =3x (x>0)B .y =-3x (x>0)C .y =-6x (x>0)D .y =6x(x>0)5. 如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的F 处,则DE 的长是( )A .3 B.245 C .5 D.89166. 下列选项中能使▱ABCD 成为菱形的是( )A .AB =CD B .AB =BC C .∠BAD =90° D .AC =BD7. 如图,把一张矩形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A .15°或30°B .30°或45°C .45°或60°D .30°或60°8. 如图,菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若BE =EC ,则∠EAF =( )A .75°B .60°C .50°D .45°9. 如图,在矩形ABCD 中,AB =3,AD =4,P 是AD 上一动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF =( )A .3B .4 C.125D .510. 以矩形ABCD 两条对角线的交点O 为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE ⊥AC ,垂足为E.若双曲线y =32x(x >0)经过点D ,则OB·BE 的值为( )A .2B .3 C. 4 D .5二.填空题(共8小题,每小题3分,共24分)11. 如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件:_________使▱ABCD 是菱形. 12. 如图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是__________.13. 如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=50°,则∠2=_______.14. 如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B,D作BF⊥a于点F,DE⊥a 于点E,若DE=8,BF=5,则EF的长为________.15. 如图,在矩形ABCD中,AE=AF,连结EF,过点E作EH⊥EF交DC于点H,过点F作FG⊥EF交BC于点G,连结GH,当AB,AD满足________(数量关系)时,四边形EFGH为矩形.16. 如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线距离之和PE+PF=_______.17. 如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ的周长的最小值为________.18. 如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,P为边BC上一点,且P不与点B,C重合,过P作PE⊥AC于点E,PF⊥BD于点F,连结EF,则EF的最小值等于________.三.解答题(共7小题,66分)19.(8分) 如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF =CD.20.(8分) 如图,在菱形ABCD中,∠ADE=∠CDF.求证:BE=BF.21.(8分) 如图,四边形ABCD为菱形,已知A(0,4),B(-3,0).(1)求点D的坐标;(2)求经过点C的反比例函数表达式.22.(8分) 如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,∠BCD=120°,求四边形AODE的面积.23.(10分) 如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC,交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC=90°时,四边形CDOF是正方形吗?如果是,请说明理由.24.(10分) 如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE折叠至△AFE,延长EF交BC于点G,连结AG.(1)求证:△ABG≌△AFG;(2)求BG的长.25.(14分) 综合探究如图①,图②,四边形ABCD是正方形,M是AB延长线上的一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如图①,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是________;②连结点E与AD边的中点N,猜想NE与BF满足的数量关系是________;③请证明上述的两个猜想;(2)如图②,当点E在AB边上的任意位置时,请你在AD边上找一点N,使得NE=BF,进而猜想此时DE 与EF有怎样的数量关系.参考答案1-5BCCDC 6-10BDBCB11. AD=DC(答案不唯一)12. 613. 50°14. 1315. AB=AD16. 4.817. 618. 4.819. 证明:∵四边形ABCD是矩形,∴∠B=∠C=90°.∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°.∵∠EFB +∠BEF =90°,∴∠BEF =∠CFD.在△BEF 和△CFD 中,⎩⎪⎨⎪⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD.∴BF =CD.20.证明: ∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠A =∠C.在△ADE 和△CDF 中,∵∠A =∠C ,AD =CD ,∠ADE =∠CDF ,∴△ADE ≌△CDF ,∴AE =CF.∵AB =CB ,∴AB -AE =BC -CF ,即BE =BF.21. 解:(1)∵A(0,4),B(-3,0),∴OB =3,OA =4,∴AB =5.∵在菱形ABCD 中,AD =AB =5,∴OD =1,∴D(0,-1).(2)∵BC ∥AD ,BC =AB =5,∴C(-3,-5).设经过点C 的反比例函数表达式为y =kx .把(-3,-5)代入表达式,得k =15,∴y =15x. 22. (1)证明:∵DE ∥AC ,AE ∥BD ,∴四边形AODE 是平行四边形.在菱形ABCD 中,AC ⊥BD ,∴∠AOD =90°,∴四边形AODE 是矩形.(2)解:∵∠BCD =120°,AB ∥CD ,∴∠ABC =180°-120°=60°.∵AB =BC =2,∴△ABC 是等边三角形,∴OA =12×2=1.在菱形ABCD 中,AC ⊥BD ,∴∠AOB =90°,∴由勾股定理得OB = 3.∵四边形ABCD 是菱形,∴OD =OB =3,∴四边形AODE 的面积=OA·OD = 3.23. (1)证明:∵OD 平分∠AOC ,OF 平分∠COB ,∴∠AOC =2∠COD ,∠COB =2∠COF.∵∠AOC +∠COB =180°,∴2∠COD +2∠COF =180°,∴∠COD +∠COF =90°,即∠DOF =90°.∵OA =OC ,OD 平分∠AOC ,∴OD ⊥AC ,即∠CDO =90°.∵CF ⊥OF ,∴∠CFO =90°,∴四边形CDOF 是矩形.(2)解:当∠AOC =90°时,四边形CDOF 是正方形.理由如下:当∠AOC =90°时,∵OA =OC ,OD 平分∠AOC ,∴∠ACO =∠A =45°,∠COD =12∠AOC =45°,∴∠ACO =∠COD ,∴CD =OD.又∵四边形CDOF是矩形,∴四边形CDOF 是正方形.24. (1)证明:∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB.由折叠可知,AD =AF ,∠AFE =∠D =90°,∴∠AFG =90°,AB =AF.∴∠B =∠AFG.又∵AG =AG ,∴Rt △ABG ≌Rt △AFG(H.L.).(2)解:∵△ABG ≌△AFG ,∴BG =FG.设BG =FG =x ,则GC =6-x ,∵E 为CD 的中点,∴EF =DE =CE =3,∴EG =x +3,在Rt △CEG 中,由勾股定理,得32+(6-x)2=(x +3)2,解得x =2,∴BG =2. 25. 解:(1)①DE =EF ②NE =BF ③∵N ,E 分别为AD ,AB 的中点,∴DN =BE ,∴∠NEA =45°,∴∠DEN +∠FEB =45°,又∵FB 平分∠CBM ,∴∠FBM =45°,∴∠FEB +∠EFB =45°,∴∠DEN =∠EFB ,又∵∠DNE =∠FBE =180°-45°=135°,∴△DNE ≌△EBF(AAS),∴DE =EF ,NE =BF(2)在AD 上截取DN =EB ,连结EN ,∴AN =AE ,∴∠ANE =∠AEN =45°,∠DNE =∠EBF =135°,∴∠DEN +∠FEB =45°,而∠EFB +∠FEB =45°,∴∠DEN =∠EFB ,∴△DNE ≌△EBF(AAS),∴NE =BF ,DE =EF。
2020年华师大版数学八年级下册第19章 矩形、菱形、正方形 单元测试题(含答案)
华师大版数学八年级下册第19章矩形、菱形、正方形单元测试题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.16D.172.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN,若四边形MBND是菱形,则AMMD等于()A.38B.23C.35D.454.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则的长为()A.1B.2C.3D.45.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、DA、CD、BC的中点.若,,则图中阴影部分的面积为()A.3B.4C.6D.86.如图所示,将一圆形纸片对折后再对折,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A B CD7.如图,在菱形中,,∠,则对角线等于()A.20 B.15 C.10 D.58.如图,小亮用六块形状、大小完全相同的等腰梯形拼成一个四边形,则图中∠的度数是()A .B .C .D .9.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF10. 如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.AF=AEB.△ABE≌△AGFC.EF =2D.AF=EF二、填空题(每小题3分,共21分)11.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2 cm,∠A=120°,则EF=cm.12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形.(只需添加一个即可)第10题图13.已知菱形的边长为5,一条对角线长为8,则另一条对角线长为_________.14.如图,矩形的对角线,,则图中五个小矩形的周长之和为_______.15.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.16.如图,在矩形ABCD中,对角线AC与BD相交于点O,且cm,则BD的长为________cm,BC的长为_______cm.17.(2015·贵州安顺中考)如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.第17题图三、解答题(共49分)18.(8分)(2015·广东中考)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.ABDO第16题图第18题图19.(8分)已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并说明它和图中已有的某一条线段相等(只需说明一组线段相等即可):(1)连接____________ ;(2)猜想:______________=_______________;(3)试证明你的猜想.20.(8分)如图,在正方形ABCD中,E、F分别是AB和AD上的点,已知CE⊥BF,垂足为M,请找出图中和BE相等的线段,并说明你的结论.21.(8分)如图,在矩形中,是边上一点,的延长线交的延长线于点,⊥,垂足为,且.(1)求证:;(2)根据条件请在图中找出一对全等三角形,并证明你的结论.22.(9分)已知:如图,在△ABC中,,M为底边BC上任意一点,过点M分别作AB、AC的平行线,交AC于点P,交AB于点Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.23.(8分)(2013·山东青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=时,四边形MENF是正方形(只写结论,不需证明)参考答案1. C 解析:根据菱形的性质得到AB=BC=4,由∠B=60°得到△ABC是等边三角形,所以AC=4.则以AC为边长的正方形ACEF的周长为16.2.D解析:顺次连接矩形各边中点得到的四边形是菱形;顺次连接菱形各边中点得到的四边形是矩形;顺次连接对角线相等的四边形各边中点得到的四边形是菱形;顺次连接对角线互相垂直的四边形各边中点得到的四边形是矩形.综合考虑,选项D最恰当.3. C 解析:设AB=x,AM=y,则BM=MD=2x-y.在Rt△ABM中,根据勾股定理有BM2=AB2+AM2,即(2x-y)2=x2+y2,整理得3x=4y,所以x=43y,故AMMD=423yy y⨯-=53yy=35.4.B 解析:因为四边形ABCD是矩形,所以CD =AB=2.由于沿BD折叠后点C与点C ′重合,所以=CD=2.5.B 解析:∵矩形ABCD的面积为,∴阴影部分的面积为,故选B.6.C7.D 解析:在菱形中,由∠= ,得∠.又∵,∴△是等边三角形,∴.8.A 解析:观察图形,在等腰梯形的一个上底角顶点处有三个上底角,因而等腰梯形上底角等于,所以.9. D 解析:本题综合考查了直角三角形、线段的垂直平分线的性质与菱形、正方形的判定方法等知识.因为EF垂直平分BC,所以BE=EC,BF=FC.又BE=BF,所以BE=EC=CF=FB,所以四边形BECF 为菱形.如果BC=AC,那么∠ABC=90°÷2=45°,则∠EBF=90°,能证明四边形BECF为正方形.如果CF⊥BF,那么∠BFC=90°,能证明四边形BECF为正方形.如果BD=DF,那么BC=EF,能证明四边形BECF为正方形.当AC=BF时,可得AC=BE=EC=AE,此时∠ABC=30°,则∠EBF=60°,不能证明四边形BECF为正方形.点拨:判定一个四边形是正方形一般有两种方法:一是先证明它是矩形,再证明一组邻边相等或证明对角线互相垂直;二是先证明它是菱形,再证明有一个角是直角或证明对角线相等.10.D 解析:如图,由折叠得∠1=∠2.∵AD∥BC,∴∠3=∠1,∴∠2=∠3,∴AE=AF, 故选项A正确.由折叠得CD=AG,∠C=∠G=90°. ∵AB=CD,∴AB=AG.∵AE=AF,∴ Rt△ABE≌Rt△AGF(HL),故选项B正确.设DF=x,则GF=x,AF=8-x,AG=4.在Rt△AGF中,根据勾股定理得, 解得x=3,∴AF=8-x=5,则AE=AF=5,∴BE===3.过点F作FM⊥BC于点M,则EM=5-3=2.在Rt△EFM中,根据勾股定理得EF==2, 则选项C正确.∵AF=5,EF=2,∴AF≠EF,故选项D错误.第10题图11. 3解析:本题综合考查了菱形的性质、勾股定理和三角形中位线的性质.连接BD,AC.∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD.∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°-60°=30°.∵∠AOB=90°,∴AO=12AB=12×2=1(cm).由勾股定理得BO=3cm,∴DO=3cm.∵点A沿EF折叠后与O重合,∴EF⊥AC,EF平分AO.∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴ EF=12BD=12×(3+3)=3(cm).12.OA=OC或AD=BC或AD∥BC或AB=BC等(答案不唯一)解析:本题主要考查了菱形的判定方法,属于条件开放型题目.对角线互相垂直平分的四边形是菱形;四条边都相等的四边形是菱形;有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.13.6 解析:∵菱形的两条对角线互相垂直平分,∴根据勾股定理,可求得另一条对角线长的一半为3,则另一条对角线长为6.14.28解析:由勾股定理得,又,,所以所以五个小矩形的周长之和为15. 20 解析:本题考查了矩形的性质、三角形中位线的性质和勾股定理.在Rt△ABC中,因为AB=5,BC=AD=12,由勾股定理可得AC=13.因为O是矩形ABCD的对角线AC的中点,M是AD的中点,所以OM==2.5,=6.5,,所以四边形ABOM的周长=AB+BO+OM+MA=5+6.5+2.5+6=20.16.4 解析:因为cm,所以cm.又因为,所以cm.,所以(cm).17. 解析:如图,作点E关于直线AC的对称点E′,则BE=DE′,连接E′F,则E′F即为所求.过F作FG⊥CD于G,在Rt△E′FG中,GE′=CD-DE′-CG=CD-BE-BF=4-1-2=1,GF=4,所以E′F===.第17题图18.分析:(1)在△ABG与△AFG中,AG为公共边,根据正方形ABCD的性质及折叠的性质可得AB=AF,∠B=∠AFG=90°,利用两直角三角形全等的判定(HL)可得△ABG≌△AFG.(2)由(1)得,BG=FG, 设BG=FG=x,则Rt△ECG中各边都可以用含x的代数式表示出来,然后利用勾股定理得到关于x的方程,解方程即可.(1)证明:∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB.由折叠的性质可知AD=AF,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF,∴∠AFG=∠B.又AG=AG,∴△ABG≌△AFG(HL).(2) 解:∵△ABG≌△AFG,∴BG=FG.设BG=FG=x,则GC=6-x.∵E为CD的中点,∴CE=DE=EF=3,∴EG=x+3.在Rt△ECG中,,即,解得x=2. ∴BG的长为2.19.分析:观察图形可知应该是连接AF ,可通过证△ABF 和△ADE 全等来实现.解:(1)如图,连接AF . (2).(3)∵ 四边形ABCD 是菱形,∴ , ∴ ∠∠,∴ ∠∠.在△ABF 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE BF ADE ABF AD AB ∴ △ABF ≌△ADE ,∴.20.解:和BE 相等的线段是AF .理由如下: 因为四边形ABCD 是正方形, 所以,∠∠°.因为CE ⊥BF ,所以∠∠°.又因为∠∠°,所以∠∠.在△AFB 和△BEC 中, ⎪⎩⎪⎨⎧∠=∠∠=∠=,,,ECB ABF A ABC BC AB所以△≌△,所以AF=BE .21.(1)证明:在矩形ABCD 中,,且,∴.(2)解:△ABF ≌△DEA .证明如下:在矩形ABCD 中,∵ BC ∥AD ,∴ ∠∠.∵ DE ⊥AG ,∴ ∠°. ∵ ∠°,∴ ∠∠.又∵,∴ △ABF ≌△DEA .22.分析:(1)根据平行四边形的性质可得对角相等,对边相等,从而不难求得其周长; (2)根据中位线的性质及菱形的判定说明. 解:(1)∵ AB ∥MP ,QM ∥AC , ∴ 四边形AQMP 是平行四边形,∠∠,∠∠. ∵ ,∴ ∠∠,∴ ∠∠,∠∠.∴,.∴四边形AQMP的周长.(2)当点M是BC的中点时,四边形APMQ是菱形.理由如下:∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵,∴.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.23. 分析:本题考查了矩形的性质以及菱形和正方形的判定.(1)用SAS证明△ABM和△DCM全等.(2)先证四边形MENF是平行四边形,再证它的一组邻边ME和MF相等.(3)由(2)得四边形MENF是菱形,当它是正方形时,只需使∠BMC是直角,则有∠AMB+ ∠CMD=90°.又∵∠AMB=∠CMD,∴△AMB和△CMD都是等腰直角三角形.(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC.又∵MA=MD,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.理由:∵ CF=FM,CN=NB,∴FN∥MB.同理可得:EN∥MC.∴四边形MENF是平行四边形.∵△ABM≌△DCM,∴MB=MC.又∵ME=12MB,MF=12MC,∴ME=MF.∴平行四边形MENF是菱形.(3)解:2∶1.。
华师大八年级下第19章矩形、菱形与正方形单元测试卷含答案
第19章矩形、菱形与正方形单元测试卷一、选择题(每题3分,共30分)1.如图,在矩形OABC中,OA=2,OC=1,把矩形OABC放在数轴上,O在原点,OA在正半轴上,把矩形的对角线OB绕着原点O顺时针旋转到数轴上,点B的对应点为B',则点B'表示的实数是( )A.2B.1C.D.-2.下列命题是真命题的是( )A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形3.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为( )A.14B.15C.16D.174.如图,把一张长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°5.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为( )A. B. C.2 D.46.如图,已知正方形ABED、正方形BCFE,现从A、B、C、D、E、F六个点中任取三点,使得这三个点构成直角三角形的三个顶点,这样的直角三角形有( )A.16个B.14个C.12个D.10个7.如图,在菱形ABCD中,M、N分别在AB、CD上,且AM=CN,MN与AC交于点O,连结BO.若∠DAC=28°,则∠OBC的度数为( )A.28°B.52°C.62°D.72°8.如图,在正方形ABCD外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为( )A.45°B.55°C.60°D.75°9.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A.2B.2.2C.2.4D.2.510.如图所示的矩形是由六个正方形组成的,其中最小的正方形的面积为1,则此矩形的面积为( )A.99B.120C.143D.168二、填空题(每题3分,共24分)11.已知正方形ABCD的对角线AC=,则正方形ABCD的周长为_______________.12.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=______________.13.如图,在平面直角坐标系中,▱MNEF的两条对角线ME、NF交于原点O,点F的坐标是(3,2),则点N的坐标是_____________.14.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则正方形的边长是_____________.15.如图,在矩形ABCD中,点E、F分别是AB、CD的中点,连结DE和BF,分别取DE、BF的中点M、N,连结AM、CN、MN,若AB=2,BC=3,则图中阴影部分的面积为_____________.16.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是_____________.17.如图,已知在正方形ABCD中,延长BC至E,使CE=CA,连结AE交CD 于F,则∠DFE=_____________度.18.在平面直角坐标系中,已知A、B、C三点的坐标分别是A(0,4)、B(-3,0)、C(m,0)(m≠-3).如果存在点D,使得以A、B、C、D为顶点的四边形是菱形,则点m的值等于_____________.三、解答题( 19,20题每题6分,21,22题每题8分,其余每题9分,共46分)19.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连结AG.(1)求证:△ABG≌△AFG;(2)求BG的长.20.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N.若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.21.如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.22.如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC为多少度时,四边形CDOF是正方形?并说明理由.23.如图,在菱形ABCD中,E为边BC的中点,DE与对角线AC交于点M,过点M作MF⊥CD于点F,∠1=∠2.求证:(1)DE⊥BC;(2)AM=DE+MF.24.在▱ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是_____________;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是____________;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.参考答案一、1.【答案】C解:∵四边形OABC是矩形,OC=1,OA=2,∴∠BAO=90°,AB=OC=1.∴在Rt△OAB中,由勾股定理得OB===.∴OB'=OB=.故选C.2.【答案】A3.【答案】C解:∵四边形ABCD是菱形,∴AB=BC.又∵∠B=60°,∴△ABC是等边三角形.∴AC=AB=4.∴以AC为边长的正方形ACEF的周长为4×4=16.4.【答案】D解:如图,设所得四边形为菱形ABCD.则∠CBD=∠ABC,AD∥BC,当∠BAD=120°时,有∠ABC=180°-∠BAD=180°-120°=60°,∴∠CBD=30°.当∠ABC=120°时,有∠CBD=60°.∴剪口与第二次折痕所成角的度数应为30°或60°.故选D.5.【答案】C解:∵AB=8,AD=6,纸片折叠,使得AD边落在AB边上,∴DB=8-6=2,∠EAD=45°.又∵△AED沿DE向右翻折,AE与BC的交点为F,∴AB=AD-DB=6-2=4,△ABF为等腰直角三角形,∴BF=AB=4,∴CF=BC-BF=6-4=2,而EC=DB=2,∴△CEF的面积=×2×2=2.6.【答案】B解:从A、B、C、D、E、F六个点中任取三点,以这三点为顶点可得到14个直角三角形,分别为△ABE、△ADE、△ABD、△BED、△BCE、△CFE、△BCF、△BEF、△ACF、△ADF、△ACD、△CDF、△AEC、△DBF.7.【答案】C 8.【答案】C9.【答案】C解:连结AP,由题意易知∠BAC=90°,根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF 的最小值即为AP的最小值,根据垂线段最短,知AP的最小值等于直角三角形ABC斜边BC上的高.10.【答案】C解:如图,由题意知正方形FGHI的边长为1,设GJ的长度为x,则正方形GJKL的边长为x,正方形LKCM的边长为x,正方形EBJF的边长为x+1,正方形AEIN的边长为x+2,正方形NHMD的边长为x+3.因为四边形ABCD 为矩形,所以AD=BC,所以x+2+x+3=x+1+x+x,解得x=4.所以AB=x+2+x+1=2x+3=11,BC=3x+1=13,所以矩形ABCD的面积为11×13=143.故选C.二、11.【答案】412.【答案】15°解:如图,连结AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,∴∠E=∠DAE.又∵BD=CE,∴CE=CA,∴∠E=∠CAE.∵∠CAD=∠CAE+∠DAE,且易知∠CAD=∠ADB=30°,∴∠E+∠E=30°,∴∠E=15°.13.【答案】(-3,-2)解:要求点N的坐标,根据平行四边形的中心对称性和关于原点对称的点的坐标特征写出点N的坐标.在▱MNEF中,点F和点N关于原点对称,∵点F的坐标是(3,2),∴点N的坐标是(-3,-2).14.【答案】解:观察题图易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为=.15.【答案】3解:由题意易证得△BCN与△DAM全等,△AEM与△CFN全等,所以△BCN 与△DAM的面积相等,△AEM与△CFN的面积相等.又易知▱DFNM与▱BEMN的面积也相等,所以阴影部分的面积其实就是原矩形面积的一半,即×2×3=3.16.【答案】10解:连结DE,交AC于P',连结BP',则当P在P'位置时PB+PE的值最小. ∵四边形ABCD是正方形,∴点B、D关于直线AC对称,∴P'B=P'D,∴P'B+P'E=P'D+P'E=DE.∵BE=2,AE=3BE,∴AE=6,∴AD=AB=8,∴DE===10,故PB+PE的最小值是10.17.【答案】112.5解:由题意易知∠ACB=45°,因为CA=CE,所以∠E=∠CAF=∠ACB=22.5°,所以∠DFE=∠E+∠FCE=22.5°+90°=112.5°.18.【答案】2或-8或3或解:要使以A、B、C、D为顶点的四边形是菱形,则△ABC必定是等腰三角形.分三种情况讨论:①若AB=AC,则m=3;②若AB=BC.则m=2或-8;③若AC=BC,则m=.三、19.(1)证明:∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB. 由折叠的性质可知,AD=AF,∠AFE=∠D=90°,∴AB=AF,∠AFG=90°.∴∠AFG=∠B=90°.又∵AG=AG,∴Rt△ABG≌Rt△AFG(H.L.).(2)解:∵Rt△ABG≌Rt△AFG,∴BG=FG.设BG=FG=x,则GC=6-x,∵E为CD的中点,∴CE=DE=EF=3,∴EG=x+3,在Rt△CEG中,由勾股定理,得32+(6-x)2=(x+3)2,解得x=2,∴BG=2.20.证明:∵AD∥BC,∴∠BAD+∠B=180°,∠BCD+∠D=180°.又∵∠BAD=∠BCD,∴∠B=∠D.∴四边形ABCD是平行四边形.又∵AM⊥BC,AN⊥DC,∴∠AMB=∠AND=90°.在△AMB和△AND中,∴△AMB≌△AND,∴AB=AD.∴四边形ABCD是菱形.21.证明:∵四边形ABCD是正方形,∴AB=BC=CD,∠EBC=∠FCD=90°.又∵E、F分别是AB、BC的中点,∴BE=CF,∴△CEB≌△DFC,∴CE=DF.22.(1)证明:∵OD平分∠AOC,OF平分∠COB,∴∠AOC=2∠COD,∠COB=2∠COF.∵∠AOC+∠COB=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°.∵OA=OC,OD平分∠AOC,∴OD⊥AC,即∠CDO=90°.∵CF⊥OF,∴∠CFO=90°,∴四边形CDOF是矩形.(2)解:当∠AOC=90°时,四边形CDOF是正方形.理由如下:当∠AOC=90°时,∵OA=OC,OD平分∠AOC,∴∠ACO=∠A=45°,∠COD=∠AOC=45°,∴∠ACO=∠COD,∴CD=OD.又∵四边形CDOF是矩形,∴四边形CDOF是正方形.23.证明:(1)∵四边形ABCD是菱形,∴∠BCA=∠ACD,AB∥CD.∴∠1=∠ACD.∵∠1=∠2,∴∠ACD=∠2.∴MC=MD.又∵MF⊥CD,∴∠CFM=90°,CF=CD.∵E为BC的中点,∴CE=BE=BC.∵CD=BC,∴CF=CE.在△CFM和△CEM中,∵∴△CFM≌△CEM.∴∠CEM=∠CFM=90°,即DE⊥BC.(2)如图,延长AB交DE的延长线于点N,∵AB∥CD,∴∠N=∠2,又∵∠BEN=∠CED,BE=CE,∴△BEN≌△CED,∴NE=DE.∵∠1=∠2,∠N=∠2,∴∠1=∠N.∴AM=MN. 又∵NM=NE+ME,∴AM=DE+ME.又由(1)得△CEM≌△CFM,∴ME=MF,∴AM=DE+MF.24.解:(1)四边形EGFH是平行四边形.理由:∵▱ABCD的对角线AC、BD交于点O. ∴点O是▱ABCD的对称中心.∴EO=FO,GO=HO.∴四边形EGFH是平行四边形.(2)菱形(3)菱形(4)四边形EGFH是正方形.理由:∵AC=BD,∴▱ABCD是矩形.∵AC⊥BD,∴▱ABCD是菱形.∴▱ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC. ∵EF⊥GH,∴∠GOF=90°.∴∠BOG=∠COF.∴△BOG≌△COF.∴OG=OF,∴GH=EF.由(1)知四边形EGFH是平行四边形,又∵EF⊥GH,EF=GH.∴四边形EGFH是正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大版八年级下册第19章矩形、菱形、正方形单元检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列命题中正确的是( B)A.有一组邻边相等的四边形是菱形 B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形 D.一组对边平行的四边形是平行四边形2.如图,在矩形ABCD中,AC与BD相交于点O,若∠DBC=30°,则∠AOB等于( D)A.120° B.15° C.30° D.60°3.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连结AE,CF,则四边形AECF是( C)A.梯形 B.矩形 C.菱形 D.正方形,第2题图) ,第3题图),第5题图) ,第6题图) 4.一个菱形的周长为8 cm,高为1 cm,则这个菱形的两邻角的度数之比为( D)A.2∶1 B.3∶1 C.4∶1 D.5∶15.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断中不正确的是( D)A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是菱形D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形6.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( D)A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF7.如图,一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是21 cm2,则该矩形的面积为( A)A.60 cm2 B.70 cm2 C.120 cm2 D.140 cm28.如图,正方形ABCD的边长为1,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( C)A.1 B. 2 C.1-22D.2-4,第7题图) ,第8题图),第9题图) ,第10题图)9.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C 的坐标为(m ,32),反比例函数y =k x 的图象与菱形对角线AO 交于D 点,连结BD ,当DB ⊥x 轴时,k 的值是( D )A .1B .-1 C. 3 D .- 310.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE.将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG ,CF.则下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG ∥CF ;④S △EGC =S △AFE ;⑤∠AGB +∠AED =145°.其中正确的个数是( C )A .2B .3C .4D .5二、填空题(每小题3分,共24分)11.如图,在矩形ABCD 中,E 为BC 的中点,且∠AED =90°,AD =10,则AB 的长为__5__.,第11题图) ,第13题图) ,第14题图),第15题图)12.在菱形ABCD 中,对角线AC ,BD 的长分别是6和8,则菱形的周长是__20__.13.如图,▱ABCD 的顶点B 在矩形AEFC 的边EF 上,点B 与点E ,F 不重合,已知△ACD 的面积为3,则图中阴影部分两个三角形的面积和为__3__.14.如图,▱ABCD 的两条对角线AC ,BD 相交于点O ,AB =5,AC =4,BD =2,小明说:“这个四边形是菱形.”他说这话的根据是__对角线互相垂直的平行四边形是菱形__.15.▱ABCD 中,给出下列四个条件:①AC ⊥BD ;②∠ADC =90°;③BC =CD ;④AC =BD.其中选两个条件能使▱ABCD 是正方形的有__①②、①④、②③、③④__.(填上所有正确结果的序号)16.如图,在矩形纸片ABCD 中,AB =12,BC =5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A ′处,则AE 的长为__103__. ,第16题图) ,第17题图),第18题图)17.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF ,若菱形ABCD 的边长为2 cm ,∠A =120°,则EF =__3__cm.18.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 332…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =kx +b(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B n 的坐标为__(2n -1,2n -1)__.三、解答题(共66分)19.(8分)如图,在矩形ABCD 中,两条对角线AC ,BD 相交于点O ,E 是AC 上的一点,且BO =2AE ,∠AOD =120°,求证:BE ⊥AC.解:∵四边形ABCD 是矩形,∴OB =OA ,又∵OB =2AE ,∴AE =OE ,又∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形.又∵AE =OE ,∴BE ⊥AO ,即BE ⊥AC20.(8分)如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别是边BC ,AD 的中点.(1)求证:△ABE ≌△CDF ;(2)若∠B =60°,AB =2,求线段AE 的长.解:(1)用SAS 证△ABE ≌△CDF (2)∵∠B =60°,∴△ABC 是等边三角形,∴BE =CE =1,AE ⊥BC ,∴AE =AB 2-BE 2=22-12=321.(10分)如图,在正方形ABCD 中,E 是CD 边的中点,AC 与BE 相交于点F ,连结DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连结AE ,试判断AE 与DF 的位置关系,并说明理由.解:(1)△ADC ≌△ABC ,△ADF ≌△ABF ,△CDF ≌△CBF (2)AE ⊥DF.理由如下:设AE 与DF 相交于点H ,易证△ADF ≌△ABF ,∴∠ADF =∠ABF ,再证△ADE ≌△BCE ,∴∠DAE =∠CBE ,∵∠ABF +∠CBE =90°,∴∠ADF +∠DAE =90°,∴∠DHA =90°,∴AE ⊥DF22.(9分)如图,CE 是△ABC 外角∠ACD 的平分线,AF ∥CD 交CE 于点F ,FG ∥AC 交CD 于点G.求证:四边形ACGF 是菱形.解:易证四边形ACGF 是平行四边形,再证AC =AF ,故四边形ACGF 是菱形23.(9分)如图,△ABC 中,AB =AC ,D 是BC 的中点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F.(1)求证:四边形AFDE 是菱形;(2)当∠ABC 等于多少度时,四边形AFDE 是正方形?请说明理由.解:(1)易证四边形AFDE 是平行四边形,∵D 为BC 中点,DE ∥AB ,DF ∥AC ,∴DE =12AB ,DF =12AC ,∵AB =AC ,∴DE =DF ,∴四边形AFDE 是菱形 (2)当∠ABC =45°时,四边形AFDE 是正方形,理由略24.(10分)如图,△ABC 中,AB =AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连结DO 并延长到点E ,使OE =OD ,连结AE ,BE.(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.解:(1)∵OA =OB ,OE =OD ,∴四边形AEBD 为平行四边形,∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,即∠ADB =90°,∴四边形AEBD 为矩形 (2)当∠BAC =90°时,四边形AEBD 为正方形,理由如下:∵∠BAC =90°,AD 平分∠BAC ,AD ⊥BC ,∴∠DAB =∠DBA =45°,∴BD =AD ,∴矩形AEBD 为正方形25.(12分)已知,在△ABC 中,∠BAC =90°,∠ABC =45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,连结CF.(1)如图①,当点D 在线段BC 上时,求证:CF +CD =BC ;(2)如图②,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;(3)如图③,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变: ①请直接写出CF ,BC ,CD 三条线段之间的关系;②若正方形ADEF 的边长为2,对角线AE ,DF 相交于点O ,连结OC ,求OC 的长度.解:(1)∵∠BAC =90°,∠ABC =45°,∴∠ACB =∠ABC =45°,∴AB =AC ,可证△BAD ≌△CAF (SSS ),∴BD =CF ,∵BC =BD +CD ,∴CF +CD =BC (2)BC =CF -CD (3)①CD -CF =BC ②由题知,∠BAC =90°,∠ABC =45°,∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∵∠BAD =90°-∠BAF ,∠CAF =90°-∠BAF ,∴∠BAD =∠CAF ,又∵AB =AC ,∴△BAD ≌△CAF (SAS ),∴∠ACF =∠ABD ,∵∠ABC =45°,∴∠ABD =135°,∴∠ACF =∠ABD =135°,∴∠FCD =90°,∴△FCD 为直角三角形,∵DE =2,∴DF =2DE=22,∴OC =12DF =2初中数学试卷桑水出品。