江苏省南京市高三数学二轮复习讲座2三角函数二轮复习建议
高三数学第二轮专题复习(4)三角函数
高三数学第二轮专题复习系列(4)三角函数一、本章知识结构:二、高考要求1.理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。
2.掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)3.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
4.会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωχ+φ)的简图、理解A 、ω、 的物理意义。
5. 会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx 表示角。
三、热点分析1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题。
3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4.立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在复习中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度. 四、复习建议应用同角三角函数的基本关任意角的概念 任意角的三角诱导公式 三角函数的图象与计算与化简 证明恒等式 已知三角函数值求和角公式 倍角公式 差角公式 弧长与扇形面积公角度制与弧度应用应用 应用应用本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理能力。
高三数学二轮复习的应对策略
高三数学二轮复习的应对策略高三数学二轮复习必须遵循二轮复习的特点,充分挖掘高考的增长点,寻求急功近利,事半功倍,即时见效的方法和措施,是对知识进行“巩固、完善、综合、提高”的过程,绝不是旧知的简单再现。
巩固,即巩固一轮复习的成果,仍要把夯实三基放在重要位置。
完善,即针对一轮复习时学生中暴露出来的问题进行补救。
综合,即在专题复习和训练中恰当减少单一知识点试题,注重知识间的内在联系,恰当增强问题的综合性和开放性。
提高,即促进学生更深层地认知,领悟数学思想,运用数学方法,提高学生应试的综合素质,如应试心理、审题能力、答题习惯等。
一、夯实三基,巩固一轮复习成果高三一轮复习中暴露出了很多问题,主要原因是基础不扎实。
没有扎实的基础就不可能把知识内化为能力,就不可能在高考中取得好的成绩。
因此,巩固一轮复习成果,进一步夯实三基仍是二轮复习重点解决的问题。
1.提高对知识理解的深刻性和运用数学思想方法的灵活性。
知识的梳理不再是“全、细”的问题,重要的是提升对知识理解的层次性,沟通知识间的内在联系,提炼数学知识中蕴含的数学思想方法,熟悉由课本知识演变出来的常用结论等等。
2.强化运算能力的训练。
不仅要提高数与式运算的速度和准确率,更要有意识地进行运算策略等方面的训练。
3.重视基础题,主攻中档题,突破较难题,强化附加题。
如何落实“20字”方略因校制宜、因生制宜,理科附加题是重要增长点,系列4的复习基于课本题型,防止拓展过度。
4.提高专题复习课的效益(1)用好主资料。
专题复习教学案或以某套高质量的二轮复习资料为主线索,或传承前几届高三的资料,结合本届高三实际情况,对照《高考说明》和《教学要求》改编。
深入研究最近三年江苏省高考数学试题,深入研究教材,善于改编教材例题、习题。
(2)专题以知识性为主。
在深入研究《考试说明》与《教学要求》、考题与样题的基础上,精心选择二轮复习专题,专题应以知识性为主,思想方法篇前移,知识专题篇要一以贯之地渗透数学思想方法,要关注高考的重点与盲点、热点与冷点问题。
高三数学二轮复习有效教学的几点建议
三、选题要准
B、例题选择的可行性。
问题 3:由 f(x) max g (x) min 可得,问题 4,5:则只需把 f(x)和 g(x)的范围 看成集合 A 和 B,则问题 4:A B ,问题 5:B A ,可得 k 的取值范围, 而下面的两个问题则需要学生动手(最好画数轴)分析才能得出答案。 设计相当的巧妙,能很好的培养学生的分析能力,解决问题的能力,当 然我们要根据学生实际情况合理的选择。
问题 1: x 3,3 ,成立,则只需满足:f(x) xax 6 即可,问题 2: 若 x 3,3 , 都有 f(x) g (x) 成立, 则设 F(x)=g(x)-f(x), F(x) min 0 由 求的 k 的取值范围;像这样的问题我们经常可以在近些年的高 考题看到。
内容。
3、在题型示例上,把握命题的方向。
寻找构建命题的形式,把脉训练题的难易度,
从示例中掌握选题的标准,使第二轮精选题 到位与高效,同时使学生认识答题的的规范 性,和得分点的采撷。
一、方向要明
1、在指导思想上,把握二轮复习的方向。
2、在具体要求上,把握二轮复习的主干
内容。
3、在题型示例上,把握命题的方向。
一、方向要明
八个专题
(3)数列。以等差、等比两种基本数列为载体,
考查数列的通项、求和等为重点,掌握特殊化与一 般化的思想方法.注意用函数的观念方法处理数列题 的简便易行。同时也要注意数列与其他知识交汇问 题的训练。 (4)立体几何。此专题注重点线面的关系,用空 间向量解决点线面的问题是重点。突出“空间”、 “立体”。即把线段、线面、面面的位置关系考查 置于某几何体的情景中。几何体以棱柱”、棱锥为 重点。棱柱中又以三棱柱、正方体为重点;棱锥以 一条侧棱或一个侧面垂直于底面为重点,棱柱和棱 锥的结合体也要重视。位置关系以判断或证明垂直 为重点,突出三垂线定理及逆定理的灵活运用。
数学高三二轮复习建议
怀远二中高三二轮复习思路和计划高三数学备课组目前,高三复习一轮临近尾声(文科二质检前结束,理科在三月底基本结束),依照正常的进度,马上要进入到关键的第二轮复习。
对于第二轮复习,我们计划复习开始时间确定为3月底4月初,五月中下旬结束。
到目前为止我们还没有见到2012《考试大纲》,但从各种渠道我们了解的信息是今年《考试大纲》与去年完全一致。
针对2011年试题不仅注意对基础知识的考查,更注重了对能力的考查,许多试题实际上并不难,知识点熟悉,个别题思维量比较大,学生数学素养、临场发挥的水平、以及运用已有知识解答问题的能力。
试题难度高于2010年的难度,考查的知识点、题型、题量保持一贯的稳定性,但是运算量有所增大。
解答题无论在知识点构成上,还是在知识点分值和题目设置上,都和往年虽然大体上相似同时存在一些差异,考题知识点的顺序发生改变(比如对三角函数的考查),但对于学生数学思想方法考查不变,对学生数学素养要求不变。
与之对应《考试大纲》不仅强调对数学基础知识的考查,还要求既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体。
《考试大纲》对“考试内容”的具体要求,我们不难发现,函数、导数、不等式、三角函数、向量、概率与统计、直线与平面、直线与圆锥曲线等是支撑数学学科知识体系的重点内容。
同时对于选修内容应给与足够的重视,复习中我们要以这些知识为主体,理清脉络,选择专题来研究,提升综合能力。
据最新消息,安徽省考试院相关负责人表示,根据新课改方案的要求,安徽省考试院将高度重视,精心筹备高考命题工作,今年高考命题的思路是:“保持高度、降低难度、控制长度、提高区分度”。
这“17字”命题思路很关键,这其中或许透露我省今年高考试题或“降低难度”的信号。
《大纲》在“考试性质”和“考试要求”中都重点强调了对数学基础知识、数学基本思想及基本方法的考查。
在复习中要加强“三基”的落实,尤其是冲刺阶段不要忽略“三基”训练而盲目加大试题的难度。
2023年高考数学二轮复习讲练测 (新高考) 专题02 正余弦定理在解三角形
专题02 正余弦定理在解三角形中的高级应用与最值问题【命题规律】解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.【核心考点目录】核心考点一:倍长定比分线模型 核心考点二:倍角定理 核心考点三:角平分线模型 核心考点四:隐圆问题核心考点五:正切比值与和差问题 核心考点六:四边形定值和最值 核心考点七:边角特殊,构建坐标系核心考点八:利用正、余弦定理求解与三角形的周长、面积有关的问题 核心考点九:利用正、余弦定理求解三角形中的最值或范围【真题回归】1.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==. (1)求ABC 的面积;(2)若sin sin A C =b .3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(2022·全国·高考真题)记ABC的内角A,B,C的对边分别为a,b,c,已知cos sin21sin1cos2A BA B=++.(1)若23Cπ=,求B;(2)求222a bc+的最小值.【方法技巧与总结】1、正弦定理和余弦定理的主要作用,是将三角形中已知条件的边、角关系转化为角的关系或边的关系,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.2、与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin222S ab C ac B bc A===,一般是已知哪一个角就使用哪个公式.3、对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.4、利用正、余弦定理解三角形,要注意灵活运用面积公式,三角形内角和、基本不等式、二次函数等知识.5、正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.6、三角形中的一些最值问题,可以通过构建目标函数,将问题转化为求函数的最值,再利用单调性求解.7、“坐标法”是求解与解三角形相关最值问题的一条重要途径.充分利用题设条件中所提供的特殊边角关系,建立恰当的直角坐标系,选取合理的参数,正确求出关键点的坐标,准确表示出所求的目标,再结合三角形、不等式、函数等知识求其最值.【核心考点】核心考点一:倍长定比分线模型【规律方法】如图,若P 在边BC 上,且满足PC BP λ=,AP m =,则延长AP 至D ,使PD AP λ=,连接CD ,易知AB ∥DC ,且DC c λ=,(1)AD AP λ=+.180BAC ACD ∠+∠=︒.【典型例题】例1.(2022·福建·厦门双十中学高三期中)如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+,若2AC =,3AB =,则||AP 的值为( )A B C D例2.(2021·全国·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.例3.(2022·湖南·宁乡一中高三期中)设a ,b ,c 分别为ABC 的内角A ,B ,C 的对边,AD 为BC 边上的中线,c =1,23BAC π∠=,12sin cos sin sin sin 2c A B a A b B b C =-+.(1)求AD 的长度;(2)若E 为AB 上靠近B 的四等分点,G 为ABC 的重心,连接EG 并延长与AC 交于点F ,求AF 的长度.例4.(2022·广西柳州·高三阶段练习(文))已知2()sin cos f x x x x =,将()f x 的图象向右平移π0<<2ϕϕ⎛⎫ ⎪⎝⎭单位后,得到()g x 的图象,且()g x 的图象关于,06π⎛⎫⎪⎝⎭对称.(1)求ϕ;(2)若ABC 的角,,A B C 所对的边依次为,,a b c ,且182A g ⎛⎫=- ⎪⎝⎭,=1,=2b c ,若点D 为BC 边靠近C 的三等分点,试求AD 的长度.例5.(2022·全国·高三专题练习)在ABC 中,D 为BC 上靠近点C 的三等分点,且1AD CD ==.记ABC 的面积为S .(1)若sin 2sin C B =,求S ; (2)求S 的取值范围.例6.(2022·全国·高三专题练习)已知a ,b ,c 分别是ABC 内角A ,B ,C 所对的边,且满足1cos 2c A b a =-,若P 为边AB 上靠近A 的三等分点,1CP =,求:(1)求C 的值; (2)求2+a b 的最大值.例7.(2022·全国·高三专题练习)在①ANBN=AMN S =△AC AM =这三个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,3B π=,c =8,点M ,N 是BC 边上的两个三等分点,3BC BM =,___________,求AM 的长和ABC 外接圆半径.例8.(2022·湖北·高三期中)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知()sin sin()a c A a B C -=-,b =(1)求角B ;(2)若AC 边上的点D 满足2CD DA =,BD =ABC 的面积.核心考点二:倍角定理 【规律方法】例9.(2022·广西·灵山县新洲中学高三阶段练习(文))在锐角ABC 中,角A B C ,,所对的边为a b c ,,,且()cos 1cos a B b A ⋅=+.(1)证明:2A B =(2)若2b =,求a 的取值范围.例10.(2022·黑龙江·哈师大附中高三阶段练习)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 是ABC 的面积,()222sin SB C a c +=-.(1)证明:A =2C ;(2)若a =2,且ABC 为锐角三角形,求b +2c 的取值范围.例11.(2022·福建龙岩·高三期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知22sin sin sin sin B C A C -=.(1)证明:2B C =;(2)若A 是钝角,2a =,求ABC 面积的取值范围.例12.(2022·江苏·宝应中学高三阶段练习)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =; (2)求4cos a bb B+的最小值.例13.(2022·江苏连云港·高三期中)在ABC 中,AB =4,AC =3. (1)若1cos 4C =-,求ABC 的面积;(2)若A =2B ,求BC 的长.例14.(2022·浙江·绍兴鲁迅中学高三阶段练习)在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且满足()22sin sin sin sin A B B A B -=+.(1)证明:2A B =. (2)求bc 的取值范围.核心考点三:角平分线模型 【规律方法】斯库顿定理:如图,AD 是ABC △的角平分线,则2·AD AB AC BD DC =⋅-,可记忆:中方=上积一下积.【典型例题】例15.(2022·湖北·武汉市武钢三中高三阶段练习)ABC 中,2AB =,1AC =,BD BC λ=,()0,1λ∈. (1)若120BAC ∠=︒,12λ=,求AD 的长度; (2)若AD 为角平分线,且1AD =,求ABC 的面积.例16.(2022·黑龙江齐齐哈尔·高三期中)在锐角ABC 中,内角A B C ,,的对边分别为a b c ,,,且满足cos cos cos c a bC A B+=+ (1)求角C 的大小;(2)若c =A 与角B 的内角平分线相交于点D ,求ABD △面积的取值范围.例17.(2022·江苏泰州·高三期中)在①sin (cos cos )sin sin sin C a B b A a B a A b B +-=+;②22sin sin cos cos B A B B A A -=两个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a b , .(1)求角C 的大小;(2)若∠ACB 的角平分线CD 交线段AB 于点D ,且4,4CD BD AD ==,求△ABC 的面积.例18.(2022·辽宁·东北育才学校高三阶段练习)已知向量()3sin ,cos a x x =,()cos ,cos b x x =-,函数()32f x a b =⋅+. (1)求函数()y f x =的最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ACB 的角平分线交AB 于点D ,若()f C 恰好为函数()f x 的最大值,且此时()CD f C =,求3a +4b 的最小值.例19.(2022·河北·高三阶段练习)已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中=4a ,=3b . (1)若点D 为AB 的中点且=2CD ,求ACB ∠的余弦值;(2)若ACB ∠的角平分线与AB 相交于点E ,当c CE ⨯取得最大值时,求CE 的长.例20.(2022·全国·高三专题练习)在ABC 中,内角,,A B C 的对边分别为,,a b c ,且______.在①cos cos2b C B π⎛⎫-= ⎪⎝⎭;②2ABC S BC =⋅△;③tan tan tan A C A C +=这三个条件中任选一个,补充在上面的问题中,并进行解答. (1)求角B 的大小;(2)若角B 的内角平分线交AC 于D ,且1BD =,求4a c +的最小值.例21.(2022·贵州贵阳·高三开学考试(理))已知ABC 的内角,,A B C 对应的边分别是,,a b c , 内角A 的角平分线交边BC 于D 点, 且 4=AD .若(2)cos cos 0b c A a C ++=, 则ABC 面积的最小值是( )A .16B .C .64D .核心考点四:隐圆问题 【规律方法】若三角形中出现(1)b a λλ=>,且c 为定值,则点C 位于阿波罗尼斯圆上.【典型例题】例22.(2022·全国·高三专题练习(文))阿波罗尼奥斯是与阿基米德、欧几里得齐名的古希腊数学家,以他姓名命名的阿氏圆是指平面内到两定点的距离的比值为常数()0,1λλλ>≠的动点的轨迹.已知在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且sin 2sin A B =,cos cos 3a B b A +=,则ABC 面积的最大值为( )A .3B .C .6D .例23.(2022·全国·高三专题练习)阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山人时期的“数学三巨匠”,以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹.已知在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin A B =,cos cos 2a B b A +=,则ABC ∆面积的最大值为( )AB C .43D .53例24.(2022·全国·高三专题练习)阿波罗尼斯(古希腊数学家,约公元前262—190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿氏圆,现有ABC ,6AC =,sin 2sin C A =,则当ABC 的面积最大时,BC 的长为______.例25.(2022·全国·高三专题练习)阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”,以他名字命名的阿波罗尼斯圆是指平面内到两定点距离之比为定值λ(0,1λλ>≠)的动点的轨迹.已知在ABC 中,角,,A B C 的对边分别为,,a b c ,sin 2sin ,A B =cos cos 2,a B b A +=则ABC 面积的最大值为__________.例26.(2022·全国·高三专题练习)波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有ABC ∆,4,sin 2sin AC C A ==,则当ABC ∆的面积最大时,AC 边上的高为_______________.核心考点五:正切比值与和差问题 【规律方法】例27.(2022·江苏南通·高三期中)在ABC 中,点D 在边BC 上,且AD BD =,记BDCDλ=. (1)当13λ=,π3ADB ∠=,求ABAC ;(2)若tan 2tan BAC B ∠=,求λ的值.例28.(2022·河南焦作·高三期中(文))在锐角ABC 中,,,a b c 分别为角,,A B C 所对的边,2b =,且ABC 的面积2S =.(1)若4sin 5A =,求a ; (2)求tan B 的最大值.例29.(2022·江西·芦溪中学高三阶段练习(理))已知在ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,且222b a c ac =+-,1b =(1)若)tan tan 1tan tan A C A C -=+,求边c 的值; (2)若2a c =,求ABC 的面积.例30.(2022·江西赣州·高三期中(理))在ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,且满足(2)a c BA BC cCB CA -⋅=⋅.(1)求角B 的大小; (2)若tan tan 4tan tan B B A C+=,求sin sin AC 的值.例31.(2022·湖南·高三阶段练习)在ABC 中,内角A ,B ,C 满足22222a b c +=且90B ≠︒. (1)求证:tan 3tan C A =; (2)求111tan tan tan A B C++的最小值.例32.(2022·全国·高三专题练习)已知三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,且222tan tan tan a b c A B Cλλ+=>(1). (1)当,14A a π==,2λ=时,求c 的值;(2)判断ABC 的形状.例33.(2022·湖北·高三开学考试)在ABC 中,内角,,A B C 满足2222sin sin 2sin A B C +=. (1)求证:tan 3tan C A =; (2)求123tan tan tan A B C++最小值.例34.(2022·江苏南京·高三开学考试)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知222222a b a b c c ab -+-=. (1)若4C π=,求A ,B ;(2)若△ABC 为锐角三角形,求2cos ab B的取值范围.例35.(2022·全国·高三专题练习)已知锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若向量(,sin )m a b C =-,(3,sin sin )n c b A B =-+,(0)m n λλ=≠,则1tan 24b Cc +的最小值为( )A B .C D例36.(2022·山西吕梁·高三阶段练习)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且22222a c b +=,则tan tan BC=______.例37.(2022·河南安阳·高三阶段练习(文))在ABC 中,角,,A B C 所对的边分别为,,a b c ,若113tan tan sin B C bc A+=⋅,且()1sin sin 2C B A -=,则22c b -=__________.核心考点六:四边形定值和最值 【规律方法】正常的四边形我们不去解释,只需多一次余弦定理即可,我们需要注意一些圆内接的四边形,尤其是拥有对角互补的四边形,尤其一些四边形还需要引入托勒密定理.勒密定理:在四边形ABCD 中,有AB CD AD BC AC BD ⋅+⋅≥⋅,当且仅当四边形ABCD 四点共圆时,等号成立.【典型例题】例38.(2022·甘肃·兰州西北中学高三期中(理))在四边形ABCD 中,2,3AB BC CD AD ====,则四边形ABCD 面积的最大值为______.例39.(2022·江苏无锡·高三期中)如图,在平面四边形ABCD 中,cos AB BD ABD =∠.(1)判断ABD △的形状并证明;(2)若AB =,BC =,12BC =,求四边形ABCD 的对角线AC 的最大值.例40.(2022·山西忻州·高三阶段练习)在平面四边形ABCD 中,20AB AD ==,π3BAD ∠=,2π3BCD ∠=.(1)若5π12ABC ∠=,求BC 的长; (2)求四边形ABCD 周长的最大值.例41.(2022·黑龙江·齐齐哈尔市实验中学高三阶段练习)已知函数()((1sin cos 1sin cos f x x x x x ⎡⎤⎡⎤=-⋅-⎣⎦⎣⎦.(1)求()f x 的最小正周期T 和单调递减区间;(2)四边形ABCD 内接于⊙O ,BD =2,锐角A 满足314A f ⎛⎫=- ⎪⎝⎭,求四边形ABCD 面积S 的取值范围.例42.(2022·辽宁·朝阳市第一高级中学高三阶段练习)如图,在平面凹四边形ABCD 中,=2AB ,=3BC ,60B ∠=︒.(1)若sin sin AD A CD C =且=1AD ,求凹四边形ABCD 的面积; (2)若120ADC ∠=︒,求凹四边形ABCD 的面积的最小值.例43.(2022·全国·高三阶段练习(理))如图,在平面四边形ABCD 中,AD CD ⊥,()090BAD BCD θθ∠=∠=<<,6AB BC +=.(1)若=2BC AB ,75θ=,求对角线AC 的长;(2)当AD CD =,=3BC 时,求平面四边形ABCD 的面积的最大值及此时θ的值.例44.(2022·上海·华师大二附中高三开学考试)设()()cos sin f x x x ϕ=--,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,已知03f π⎛⎫= ⎪⎝⎭. (1)求()f x 的最小值;(2)已知凸四边形ABCD 中,()114,7AB AC AD f A ====,求ABCD 面积的最大值.核心考点七:边角特殊,构建坐标系 【规律方法】利用坐标法求出轨迹方程 【典型例题】例45.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .若2a +2228b c +=,则ABC △的面积的最大值为______.【解析】:方法1:如图,在ABC ∆中,以线段AB 所在的直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,则,02c A ⎛⎫- ⎪⎝⎭,,02c B ⎛⎫ ⎪⎝⎭,设(,)C x y ,得222c x y ⎡⎤⎛⎫-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦222822c x y c ⎡⎤⎛⎫++=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,整理得222544x y c +=-,当ABC ∆面积最大时0x =,故12ABC S c ∆=⨯=285c =时,ABC ∆.方法2:如图,设AD x =,BD y =,CD h =,由22228a b c ++=,得()()22222(h y h x x +++++2)8y =,即222222()8h x y x y ++++=,又2222x yx y ++222()(2x y x y ++当且仅当x y =时取等号),所以2252()82h x y ++,又1()2ABC S x y h x∆=+=+22y =⨯1)2x y⎤+=⎥⎦15)25x y⎤+⨯⨯⎥⎦2252()25225h x y++(当且仅当)x y+=时,等号成立,即h,将h=与x y=代人222222()8h x y x y++++=中,得x y==⎭.所以ABC∆.方法3:由三角形面积公式,得1sin2ABCS ab C∆=,即()222222211sin1cos44ABCS a b C a b C∆==-,由22228a b c++=,得22282a b c+=-,由余弦定理,得283cos2cCab-=,所以()222222211sin1cos44ABCS a b C a b C∆==-=()22222222831831142416cca b a bab⎡⎤-⎛⎫-⎢⎥⋅-=-⎪⎢⎥⎝⎭⎣⎦()()2222242835161616a b c cc+--=-+(当且仅当a b=时取等号),当285c=时,42516cc-+,取得最大值45,即245ABCS∆,所以ABC∆面积的最大值为(也可以用基本不等式求2ABCS∆的最大值,即42516ABCcS∆=-+()2225165145165c cc-=⋅,所以ABC∆).方法4:在ABC∆中,由余弦定理,得2222cosc a b ab C=+-,由22228a b c++=,得()222222cos8a b a b ab C+++-=,即()22384cosa b ab C+=+,又222a b ab+,所以84cos6ab C ab+,即(32cos)4ab C-,故432cosabC-,又1sin2ABCS ab C∆=,所以2sin32cosABCCSC∆-,令2sin()32cosxf xx=-,(0,)xπ∈,得26cos4()(32cos)xf xx-'=-,令6cos40x-=,得2cos3x=,即当2cos3x=时,sin x=ABC∆.例46.在ABC△中,角A,B,C所对的边分别为a,b,c.若a b==ABC△所在的平面内存在点M ,使得2223MA MB MC +==3,则ABC △的面积的最大值为______.【解析】:以AB 所在直线为x 轴,AB 边的垂直平分线为y 轴,建立如图所示的平面直角坐标系,设(,0)A m -,(,0)B m ,(0,)C n ,(,)M x y ,0m >,0n >.由223MA MB +=,得2222()()3x m y x m y +++-+=,即22232x y m +=-①,又21MC =,故22()1x y n +-=②,其中①式可以看作以(0,0)的圆的轨迹方程,②式可以看作以(0,)n 为圆心,半径为1的圆的轨迹方程,由题意知两圆有公共点,即点M ,则2311(3)2n m -③,又a b =得223m n +=④,由③,④得223016m <,因为ABC S mn ∆=,所以()22223ABCSm n m∆==-,2223924m m ⎛⎫=--+⎪⎝⎭,当22316m =时,2ABC S ∆取得最大值575256,故BC S ∆的最大值核心考点八:利用正、余弦定理求解与三角形的周长、面积有关的问题 【规律方法】与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin 222S ab C ac B bc A ===,一般是已知哪一个角就使用哪个公式.【典型例题】例47.(2022·重庆一中高三期中)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,且满足()22sin cos cos B A C B =-+.(1)证明:a ,b ,c 成等比数列;(2)若a c >且22252a cb +=,ABC ABC 的周长.例48.(2022·山东聊城·高三期中)已知ABC 中,A 、B 、C 所对边分别为a 、b 、c ,且2b a =,3c =. (1)若2π3C =,求ABC 的面积; (2)若2sin sin 1B A -=,求ABC 的周长.例49.(2022·山西·高三阶段练习)在①cos sin c A C =;②()(sin sin )()sin a b A B c C -+=-;③3cos cos b A a B c +=+这三个条件中任选一个,补充在下面的问题中,并解决该问题.问题:在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足___________. (1)求角A 的大小;(2)若D 为线段CB 延长线上的一点,且2,CB BD AD AC ===,求ABC 的面积.例50.(2022·云南云南·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(cos sin )b c A A =-.(1)求角C ;(2)若c =,D 为边BC 的中点,ADC △的面积1S =且B A >,求AD 的长度.例51.(2022·全国·武功县普集高级中学模拟预测(理))如图,△ABC 中,点D 为边BC 上一点,且满足AD CDAB BC=.(1)证明:πBAC DAC ∠+∠=;(2)若AB =2,AC =1,BC =ABD 的面积.核心考点九:利用正,余弦定理求解三角形中的最值或范围 【规律方法】对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.【典型例题】例52.(2022·黑龙江·大庆实验中学高三开学考试)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()2sin 2sin 2sin a c A c a C b B -+-=.(1)求B ;(2)若ABC 为锐角三角形,且2b =,求ABC 周长的取值范围.例53.(2022·宁夏六盘山高级中学高三期中(理))已知向量()cos ,sin a x x =,()3sin ,sin =b x x ,函数()12=⋅-f x a b .将函数()f x 的图像向左平移π4个单位长度后得到函数()g x 的图像.(1)求函数()g x 的零点;(2)若锐角ABC 的三个内角,,A B C 的对边分别是a ,b ,c ,且()1f A =,求b ca+的取值范围.例54.(2022·山东菏泽·高三期中)已知函数()()πsin cos sin π2f x x x x x m ⎛⎫=--+ ⎪⎝⎭.(1)在下列三个条件中选择一个作为已知,使得实数m 的值唯一确定,并求出使函数()f x 在区间[]0,a 上最小值为12-时,a 的取值范围;条件①:()f x 的最大值为1;条件②:()f x 的一个对称中心为7π,012⎛⎫⎪⎝⎭;条件③:()f x 的一条对称轴为π3x =.(2)若12m =-,在锐角ABC 中,若()1f A =,且能盖住ABC 的最小圆的面积为π,求+AB AC 的取值范围.例55.(2022·河南·汝阳县一高高三阶段练习(理))已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,cos sin sin cos a A A B b B =+,且ab .(1)求角C 的大小;(2)若△ABC 为锐角三角形,且2c =,求△ABC 面积的取值范围.例56.(2022·湖南·安仁县第一中学模拟预测)在,ABC 中内角A ,B ,C 所对应的边分别为,,.a b c 已知22cos 2sin sin 12A B A B -⎛⎫-= ⎪⎝⎭ (1)求角C 的大小. (2)若1c =,求ABCS 的最大值.例57.(2022·山东·日照市教育科学研究中心高三期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点D 满足3BD BC =,且0AD AC ⋅=. (1)若b =c ,求A 的值; (2)求B 的最大值.例58.(2022·河南·驻马店市第二高级中学高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知()()22232cos b c b c a abc C -+-=.(1)求tan A ;(2)若b c +=ABC 面积的最大值.例59.(2022·湖北黄冈·高三阶段练习)在①πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭;②S BA CA =⋅;③tan (2)tan c A b c C =-.三个条件中选一个,补充在下面的横线处,并解答问题.在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,ABC 的面积为S ,且满足___________ (1)求A 的大小;(2)设ABC 的面积为D 在边BC 上,且2BD DC =,求AD 的最小值.【新题速递】一、单选题1.(2022·河南驻马店·高三期中(文))在ABC 中,已知30B =︒,1b =,则AB AC ⋅的最小值为( ) A .-1B .14-C .13-D .12-2.(2022·黑龙江·大庆实验中学高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知()()()sin sin sin sin a b A B c C B +-=+,若角A 的内角平分线AD 的长为3,则4b c +的最小值为( )A .21B .24C .27D .363.(2022·山西·高三阶段练习)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .点D 为BC 的中点,π1,3AD B ==,且ABC c =( )A .1B .2C .3D .44.(2022·山东菏泽·高三期中)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos sin 0a C C b c --=,则ABC 外接圆面积与ABC 面积之比的最小值为( ).A B C D5.(2022·湖北·高三期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c tan tan A B =+,下列结论正确的是( ) A .6A π=B .当2a =,4c =时,ABC 的面积为C .若AD 是BAC ∠的角平分线,且AD =112b c+=D .当b c -=ABC 为直角三角形6.(2022·贵州·模拟预测(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,D 是边AB 上一点,CD 平分ACB ∠,且CD =cos cos 2cos a B b A c C +=,则2a b +的最小值是( )A .4+B .6C .3+D .47.(2022·宁夏·银川一中高三阶段练习(理))已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 是锐角三角形,且满足()()0b a a b ac -+-=,若△ABC 的面积2S =,则()()c a b c b a +-+-的取值范围是( )A .()88, B .()0,8C .⎝D .8)8.(2022·重庆·西南大学附中高三阶段练习)已知O 是三角形ABC 的外心,若()2AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin B C +=m 的最大值为( ) A .6 B .65C .145D .3二、多选题9.(2022·江苏南通·高三期中)在圆O 的内接四边形ABCD 中,2AB =,6BC =,4CD DA ==,则( )A .27BD =B .四边形ABCD 的面积为C .12AO BD ⋅=D .16AC BD ⋅=10.(2022·江苏淮安·高三期中)在ABC 中,角A,B,C 所对的边分别为,,a b c ,若2228a b c ++=,则下列四个选项中哪些值可以作为三角形的面积( )AB C D 11.(2022·湖北·高三阶段练习)已知ABC 外接圆的面积为π,内角A ,B ,C 的对边分别为a ,b ,c ,且sin A ,sin B ,sin C 成等比数列,设ABC 的周长和面积分别为P ,S ,则( )A .π03B <≤B .0b <≤C .0P <≤D .0S <≤12.(2022·山西太原·高三期中)已知,,a b c 分别是ABC 内角,,A B C 的对边,cos 0C <,且tan bB c=,则下列结论正确的是( ) A .06B π<<B .sin cos 0BC +=C .5cos cos cos (1,]4A B C ++∈D .5cos cos cos (1,]4A B C ++∈-三、填空题13.(2022·四川成都·高三阶段练习(文))在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若2sin 3tan ,2c B a A a ==;则当角A 最大时,ABC 的面积为______.14.(2022·四川南充·高三期中(文))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若()sin sin2B Ca A Cb ++=,且ABC 内切圆面积为4π,则ABC 周长的最小值是______. 15.(2022·安徽·砀山中学高三阶段练习)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,5sin()cos 06a B b A ππ⎛⎫++-= ⎪⎝⎭,10a =,若点M 满足25BM BC =,且MAB MBA ∠=∠,则AMC 的面积为_________________.16.(2022·全国·高三专题练习)已知A 、B 、C 、D 四点共圆,且AB =1,CD =2,AD =4,BC =5,则P A 的长度为______.四、解答题17.(2022·黑龙江·哈师大附中高三阶段练习)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 是ABC 的面积,()222sin SB C a c +=-.(1)证明:A =2C ;(2)若a =2,且ABC 为锐角三角形,求b +2c 的取值范围.18.(2022·河北·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足)cos cos 2sin a C c A b B +=,且c b >.(1)求角B ;(2)若b =ABC 周长的取值范围.19.(2022·湖北·高三期中)如图,在平面凹四边形ABCD 中,2AB =,3BC =,120ADC ∠=,角B 满足:(1sin cos )(cossin )cos 222B B BB B ++-=.(1)求角B 的大小;(2)求凹四边形ABCD 面积的最小值.20.(2022·湖北襄阳·高三期中)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知sin()cos .B C a B c ++=(1)求角A 的大小;(2)若ABC 为锐角三角形,且6b =,求ABC 面积的取值范围.21.(2022·湖北·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且()2c a a b =+.(1)求证:2C A =;(2)若ABC 为锐角三角形,求sin 3sin B A +的取值范围.22.(2022·安徽·砀山中学高三阶段练习)在ABC 中,sin sin sin sin sin sin sin C B A BA B C-+=+,(1)求角C 的大小;(2)求sin 22πsin 4B B +⎛⎫+ ⎪⎝⎭的取值范围.。
届数学二轮复习第二部分专题篇素养提升文理专题一三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三
第2讲三角恒等变换与解三角形(文理)JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.三角恒等变换是高考的热点内容,主要考查利用各种三角函数公式进行求值与化简,其中二倍角公式、辅助角公式是考查的重点,切化弦、角的变换是常考的内容.2.正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查:(1)边、角、面积的计算;(2)有关边、角的范围问题;(3)实际应用问题.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷9、16三角恒等变换和同角间的三角函数关系求值;利用余弦定理解三角形10Ⅱ卷17解三角形求角和周长的12(文科)KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一三角恒等变换错误!错误!错误!错误!三角恒等变换与求值1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β。
(2)cos(α±β)=cos αcos β∓sin αsin β。
(3)tan(α±β)=错误!。
2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α。
(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)tan 2α=错误!.3.辅助角公式a sin x+b cos x=错误!sin(x+φ)(其中tan φ=错误!)典错误!错误!错误!典例1(1)(2020·全国Ⅱ卷模拟)cos2 40°+2sin 35°sin 55°sin 10°=(A)A.错误!B.错误!C.错误!+错误!D.错误!(2)(2020·宜宾模拟)已知α∈错误!,且3sin2α-5cos2α+sin 2α=0,则sin 2α+cos 2α=(A)A.1B.-错误!C.-错误!或1D.-1(3)已知函数f(x)=错误!cos x cos错误!+sin2错误!-错误!.①求f(x)的单调递增区间;②若x∈错误!,f(x)=错误!,求cos 2x的值.【解析】(1)原式=cos240°+2sin 35°cos 35°sin 10°=cos240°+sin 70°sin 10°=12+12cos 80°+sin 70°sin 10°=错误!+错误!(cos 70°cos 10°-sin 70°sin 10°+2sin 70°sin 10°)=错误!+错误!(cos 70°cos 10°+sin 70°sin 10°)=错误!+错误!cos 60°=34。
2023届高三年级数学第二轮复习计划及策略
2023届高三年级数学第二轮复习计划及策略一、指导思想高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。
强化高中数学主干知识的复习,形成良好知识网络。
整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。
第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.“二轮看水平”概括了第二轮复习的思路,目标和要求。
具体地说,一是要看教师对《考试说明》、《考纲》理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”。
二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展。
三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法。
二、时间安排:1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月22——4月27日。
2.第二阶段是进行选择填空解答三种题型的解题方法和技能专项训练,时间为4月28日——4月30日。
3.第三阶段进行二轮复习备考,学生进行模拟训练,时间为5月1日——5月13日。
三、怎样上好第二轮复习课的几点建议:(一)、明确“主体”,突出重点。
第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位。
如何做好高三数学第二轮复习
高考对学生而言 : 得易者 , 平心 ; 得 中者 , 守神; 抢 难者 , 突破。 中档考点 的试卷分布主要在选 择题第 6 — 1 0 题, 填 空题第 1 4 、 1 5 题, 解答 题第 1 7 、 1 8 、 1 9 题, 主干知 识包括 : 立 体几何 、 解 析几何 、 三角 函数 、 数 列、 概率统计和函数不等式的应用 问题 。为此 , 后 一 阶段一 要坚持 中档题练习 ,二要进行数 学主干性 知 识专题训练 , 重点突破。
2 . 立 足 中 档考 点 . 谋 求较 大 突破
“ 三讲三不讲” , “ 三讲 ” :容易? 昆淆的知识点要讲 , 重 点题型要讲 ,容易解错和产 生的错 因要讲 。“ 三不 讲” : 学生已经会的不讲 , 学生怎么也学不会 的不讲 , 老师看了答案才勉 强会 的不讲 。抛弃一些学生难 以 掌握的非常规解法 ,将课本 中的通性通法实实在在 地讲好讲透。
0
备 考 方 略
如何做好高三数学第二轮复习
■ 赵 小 强 高三第二轮复习是学 生提分最快 的阶段பைடு நூலகம்,如何 制订行之有效的复习方案 , 显得尤为重要。 那 么如何 做好第二轮复习呢? 第二轮复 习应注意哪些问题呢?
一
、
教 学 策 略
1 . 重视 基 础 . 回 归课 本
后 阶段教学应给予课 本中重要 的定理公式和相 关 的典型例题 以足够关注和思 考 ,再次认真研读考 试说 明 , 把准能力及要求 , 瞄准近三年的高考数学试 题, 应根据学生掌握 的实 际情况 , 有针对性地选择 和 整合教学素材 , 绝不 贪多求全 , 力求讲精讲透 。关 于 “ 课本 回归” 内容 的知识梳理 , 专人负责 , 有序发放 。
对高三数学第二轮复习的一点建议
1 突 出重 点 的 专题 复 习课 .
高考 命题 改 革 已经 由“ 识 立 意 ” 能 力 知 向“ 立意” 转变 , 二轮 复 习与第 一轮 复 习教学 有 着 第 本 质 的 区别 , 能零 打碎 敲 , 不 搞成 第 一轮 复习 的 重 复 , 应 突 出思 想 方 法 , 视 知 识 的 交 叉 综 而 重 合 , 在 思 想 方 法 的高 度 按 知识 块 设 计 专 题进 站 行 专 题 复 习. 过 专题 复 习 让 学 生建 立 完 整 的 通 思 维 能力结 构 , 具备 在 高考 中应付 各 种新情 景 , 新 变 化 的 能 力. 题 内 容 可 设 计 为 “ 想 方 法 专 思 篇”“ , 重点 知识 篇 ” 解 题 策略篇 ” 和“ 三种类 型 .
20 0 6年第 5期
数 学教 育研 究
・ 7 4 ・
对 高三数学第二轮复 习的一点建 议
袁 保 金 ( 苏 宁高 学 2 2 ) 江 省睢 级中 20 10
20 0 6届 高 三 数 学 第 一 轮 复 习 马 上 就 要 结 束, 第二轮 复习 即将 开始 . 过 第一 轮 全 面 系统 通 的复习 , 生掌 握 了各单 元 的知识 结 构 , 有 初 学 具 步运用基础 知识解决 问题 的能力 , 但综 合分析 和 解决 问题 的能力还有 待提高. 就需要 经过第 二 这 轮 复习 的来进 行锤炼 , 第二轮 复习有着 承上启 下 的作 用 , 是知 识系统 、 理化 , 条 促进灵 活 运用 的关 键 时期 , 是促 进学 生 能力 发 展 的重 要 阶段. 材 教 的变 化和高考 的改革使 高考试题体 现 出时代性 、 应用 性 、 开放 性 、 探究性 的特点. 由于高 考的提 前 大大 地缩短 了复习时 间 , 因此第二 轮复 习应将 专 题复 习和模拟 训练合二 为一 , 穿插 进行 . 因此 , 本 阶段 复习对讲 练和检测 等要求较 高. 如果 说第 一 轮复 习是“ 由薄到厚” 的知识 积 累 , 么第 二轮 复 那 习就 是“ 由厚 到薄” 的知识提 炼. 俗 话说 “ 轮 看 水 平 ” 就 是看 二 轮 复 习 的 二 , 思路 , 目标 和要 求 是 否 对 路 到 位 , 体 地 说 , 具 一 是要 看 教师 对考 试大 纲和 近几 年考 题 的研读 是 否深 透 , 把握 是 否到 位 , 正 明确“ 真 考什 么” “ 、怎 样 考 ” 做 到 了如 指 掌. , 二是 看 教 师 的讲 解 是 否 能够 突 出重 点 , 握 热 点 , 学 生 学 有新 意 , 把 让 学 有收 获 , 学有 发 展 , 到减 少重 复 , 做 针对性 强 , 使 学生 知识 模糊 的清晰起 来 , 漏 的填补起 来 , 缺 杂 乱 的条理 起 来 , 立 的 联 系起 来 , 孤 形成 系统 化 , 条理 化 完 整 的 知识 结 构 . 是 看 练 习检 测 与 高 三 考是 否对 路 , 到不拔 高 , 降低 , 做 不 难度适 宜 , 重 在训 练基 础知 识 的灵 活运 用和 分析 问题 的思 维
高考数学二轮复习 专题二 三角函数、平面向量与复数 第3讲 平面向量与复数教案-高三全册数学教案
第3讲 平面向量与复数平面向量的概念与线性运算[核心提炼]1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化;2.在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.[典型例题](1)(2019·杭州模拟)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12bB .12a -bC .a +12bD .12a +b(2)(2019·金华市十校联考)已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,点P 满足OP →=14(OA →+OB →+2OC →),则S △PAB S △OAB为( )A .32 B .23C .2D .12(3)(2019·嘉兴七校联考)在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则(λ+1)2+μ2的取值范围为________.【解析】 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .(2)如图,延长CO ,交AB 中点D ,O 是△ABC 的重心,则OP →=14(OA →+OB →+2OC →)=14(2OD →+2OC →)=14(-OC →+2OC →)=14OC →,所以OP =14OC =14×23CD =16CD ;所以DP =DO +OP =13CD +16CD =12CD ,DO =13CD ;所以S △PAB S △OAB =DP DO =12CD13CD =32.(3)因为点E 在射线AD (不含点A )上,设AE →=kAD →(k >0),又BD →=34BC →,所以AE →=k (AB →+BD →)=k ⎣⎢⎡⎦⎥⎤AB →+34(AC →-AB →)=k 4AB →+3k 4AC →, 所以⎩⎪⎨⎪⎧λ=k 4μ=3k4,(λ+1)2+μ2=⎝ ⎛⎭⎪⎫k 4+12+916k 2=58⎝ ⎛⎭⎪⎫k +252+910>1,故(λ+1)2+μ2的取值范围为(1,+∞).【答案】 (1)D (2)A (3)(1,+∞)平面向量的线性运算技巧(1)对于平面向量的线性运算,要先选择一组基底,同时注意共线向量定理的灵活运用. (2)运算过程中重视数形结合,结合图形分析向量间的关系.[对点训练]1.(2019·瑞安市四校联考)设M 是△ABC 边BC 上的点,N 为AM 的中点,若AN →=λAB →+μAC →,则λ+μ的值为( )A.14B.13C.12D.1 解析:选C.因为M 在BC 边上,所以存在实数t ∈[0,1]使得BM →=tBC →. AM →=AB →+BM →=AB →+tBC →=AB →+t (AC →-AB →)=(1-t )AB →+tAC →,因为N 为AM 的中点, 所以AN →=12AM →=1-t 2AB →+t 2AC →,所以λ=1-t 2,μ=t 2,所以λ+μ=1-t 2+t 2=12,故C 正确.2.(2019·宁波诺丁汉大学附中期中考试)在△ABC 中,BC =7,AC =6,cos C =267.若动点P 满足AP →=(1-λ)AB →+2λ3AC →,(λ∈R ),则点P 的轨迹与直线BC ,AC 所围成的封闭区域的面积为( )A .5B .10C .2 6D .4 6解析:选A.设AD →=23AC →,因为AP →=(1-λ)AB →+2λ3AC →=(1-λ)AB →+λAD →,所以B ,D ,P 三点共线. 所以P 点轨迹为直线BC .在△ABC 中,BC =7,AC =6,cos C =267,所以sin C =57,所以S △ABC =12×7×6×57=15,所以S △BCD =13S △ABC =5.3.(2019·高考浙江卷)已知正方形ABCD 的边长为1.当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|的最小值是________,最大值是________.解析:以点A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图,则A (0,0),B (1,0),C (1,1),D (0,1),所以λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →=(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6),所以当⎩⎪⎨⎪⎧λ1-λ3+λ5-λ6=0λ2-λ4+λ5+λ6=0时,可取λ1=λ3=1,λ5=λ6=1,λ2=-1,λ4=1,此时|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最小值0;取λ1=1,λ3=-1,λ5=λ6=1,λ2=1,λ4=-1,则|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最大值22+42=2 5.答案:0 2 5平面向量的数量积 [核心提炼]1.平面向量的数量积的两种运算形式(1)数量积的定义:a ·b =|a ||b |cos θ(其中θ为向量a ,b 的夹角);(2)坐标运算:a =(x 1,y 1),b =(x 2,y 2)时,a ·b =x 1x 2+y 1y 2. 2.平面向量的三个性质(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. [典型例题](1)(2018·高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a与e 的夹角为π3,向量b 满足b 2-4e·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3(2)(2019·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.【解析】 (1)设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A. (2)设b 与c 的夹角为θ,由题b +c =-a , 所以b 2+c 2+2b ·c =1.即cos θ=2k 2-4k +32k 2-4k =1+32(k -1)2-2. 因为|a |=|b +c |≥|b -c |,所以|2k -2|≤1. 所以12≤k ≤32.所以-1≤cos θ≤-12.【答案】 (1)A (2)⎣⎢⎡⎦⎥⎤-1,-12(1)平面向量数量积的计算①涉及数量积和模的计算问题,通常有两种求解思路(ⅰ)直接利用数量积的定义; (ⅱ)建立坐标系,通过坐标运算求解.②在利用数量积的定义计算时,要善于将相关向量分解为图形中模、夹角和已知的向量进行计算.(2)求解向量数量积最值问题的两种思路①直接利用数量积公式得出代数式,依据代数式求最值.②建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值.[对点训练]1.(2019·嘉兴市高考一模)已知平面向量a 、b 满足|a |=|b |=1,a ·b =12,若向量c满足|a -b +c |≤1,则|c |的最大值为( )A .1B . 2C . 3D .2解析:选D.由平面向量a 、b 满足|a |=|b |=1,a ·b =12,可得|a|·|b |·cos 〈a ,b 〉=1·1·cos 〈a ,b 〉=12,由0≤〈a ,b 〉≤π,可得〈a ,b 〉=π3,设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,c =(x ,y ),则|a -b +c |≤1,即有⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫12+x ,y -32≤1,即为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322≤1,故|a -b +c |≤1的几何意义是在以⎝ ⎛⎭⎪⎫-12,32为圆心,半径等于1的圆上和圆内部分,|c |的几何意义是表示向量c 的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.2.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 3解析:选C.如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|·cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2.3.(2019·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.解析:非零向量a ,b 满足:a 2=(5a -4b )·b ,可得a ·b =15(a 2+4b 2)=15(|a |2+4|b |2)≥15·2|a |2·4|b |2=45|a |·|b |,即有cos 〈a ,b 〉=a ·b |a |·|b |≥45·|a |·|b ||a |·|b |=45,当且仅当|a |=2|b |,取得最小值45.答案:45平面向量与其他知识的交汇[核心提炼]平面向量具有代数形式与几何形式的“双重身份”,常与三角函数、解三角形、平面解析几何、函数、数列、不等式等知识交汇命题,平面向量的“位置”为:一是作为解决问题的工具,二是通过运算作为命题条件.[典型例题](1)如图,已知点D 为△ABC 的边BC 上一点,BD →=3DC →,E n (n ∈N *)为边AC 上的列点,满足E n A →=14a n +1·E n B →-(3a n +2)E n D →,其中实数列{a n }中,a n >0,a 1=1,则数列{a n }的通项公式为a n =( )A .3·2n -1-2 B .2n-1 C .3n-1 D .2·3n -1-1(2)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量p =(cos B +sinB ,2sin B -2),q =(sin B -cos B ,1+sin B ),且p ⊥q .①求B 的大小;②若b =2,△ABC 的面积为3,求a ,c .【解】 (1)选D.因为BD →=3DC →,所以E n C →=E n B →+BC →=E n B →+43BD →=E n B →+43(BE n →+E n D →)=-13E n B→+43E n D →.设mE n C →=E n A →,则由E n A →=14a n +1E n B →-(3a n +2)E n D →,得(14a n +1+13m )E n B →-(43m +3a n +2)E n D →=0,则-13m =14a n +1,43m =-(3a n +2),所以14a n +1=14(3a n +2),所以a n +1+1=3(a n +1).因为a 1+1=2,所以数列{a n +1}是以2为首项,3为公比的等比数列,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(2)①因为p ⊥q ,所以p ·q =(cos B +sin B )(sin B -cos B )+(2sin B -2)·(1+sin B )=0,即3sin 2B -cos 2B -2=0,即sin 2B =34,又角B 是锐角三角形ABC 的内角,所以sin B =32,所以B =60°. ②由①得B =60°,又△ABC 的面积为3, 所以S △ABC =12ac sin B ,即ac =4.①由余弦定理得b 2=a 2+c 2-2ac cos B , 又b =2,所以a 2+c 2=8,② 联立①②,解得a =c =2.平面向量与其他知识的交汇点主要体现在与三角函数、立体几何、解析几何,求最值. (1)利用平面向量的知识给出三角函数之间的一些关系,解题的关键还是三角函数的知识.在解析几何中只是利用向量知识给出一些几何量的位置关系和数量关系,在解题中要善于根据向量知识分析解析几何中几何量之间的关系,最后的解题还要落实到解析几何知识上.(2)因为向量是沟通代数、几何的工具,有着极其丰富的实际背景,对于某些代数问题,可构造向量,使其转化为向量问题求解.[对点训练]1.(2019·杭州市高三二模)△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A.54 B.154 C.174D.174解析:选B.以三角形的直角边为坐标轴建立平面直角坐标系,如图所示:则A (0,4),B (3,0),C (0,0),D ⎝ ⎛⎭⎪⎫32,2. 设E (x ,0),则F (0,1-x 2),0≤x ≤1. 所以DE →=⎝ ⎛⎭⎪⎫x -32,-2,DF →=⎝ ⎛⎭⎪⎫-32,1-x 2-2.所以DE →·DF →=94-32x +4-21-x 2=254-3x 2-21-x 2.令f (x )=254-3x 2-21-x 2,当x ≠1时,则f ′(x )=-32+2x1-x 2. 令f ′(x )=0得x =35.当0≤x <35时,f ′(x )<0,当35<x <1时,f ′(x )>0.所以当x =35时,f (x )取得最小值f ⎝ ⎛⎭⎪⎫35=154.当x =1时,f (1)=254-32=194>154,故选B.2.(2019·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]解析:选B.|a |+|b |≥max{|a +b |,|a -b |}=4, (|a |+|b |)2≤|a +b |2+|a -b |2=25,所以|a |+|b |≤5.3.(2019·江苏常州武进区高三上学期期中考试改编)已知数列{a n }中,a 1=2,点列P n (n =1,2,…)在△ABC 内部,且△P n AB 与△P n AC 的面积比为2∶1.若对n ∈N *都存在数列{b n }满足b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,求a 4.解:在线段BC 上取点D ,使得BD =2CD ,则P n 在线段AD 上, 因为b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,所以-12a n +1BP n →=b n AP n →+(3a n +2)CP n →=b n (BP n →-BA →)+(3a n +2)(BP n →-BC →),所以⎝ ⎛⎭⎪⎫-12a n +1-b n -3a n -2BP n →=-b n BA →-32×(3a n +2)BD →.因为A ,P n ,D 三点共线,所以-12a n +1-b n -3a n -2=-b n -32(3a n +2),即a n +1=3a n +2,所以a 2=3a 1+2=8,a 3=3a 2+2=26,a 4=3a 3+2=80.复 数 [核心提炼]1.复数的除法复数的除法一般是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简. 2.复数运算中常见的结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i 1+i =-i.(2)-b +a i =i(a +b i). (3)i 4n=1,i 4n +1=i ,i4n +2=-1,i4n +3=-i.(4)i 4n+i4n +1+i 4n +2+i4n +3=0.[典型例题](1)(2019·杭州学军中学高考模拟)设复数z 满足1+z1-z =i ,则|z |=( )A .1B . 2C . 3D .2(2)设有下面四个命题p 1:若复数z 满足1z∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( ) A .p 1,p 3 B .p 1,p 4C .p 2,p 3D .p 2,p 4(3)(2019·浙江新高考冲刺卷)已知复数z =1+i ,其中i 为虚数单位,则复数1+z +z 2+…+z 2 017的实部为( )A .1B .-1C .21 009D .-21 009【解析】 (1)因为复数z 满足1+z1-z=i ,所以1+z =i -z i ,所以z (1+i)=i -1,所以z =i -1i +1=i ,所以|z |=1,故选A.(2)对于命题p 1,设z =a +b i(a ,b ∈R ),由1z =1a +b i =a -b ia 2+b 2∈R ,得b =0,则z ∈R成立,故命题p 1正确;对于命题p 2,设z =a +b i(a ,b ∈R ),由z 2=a 2-b 2+2ab i ∈R ,得ab =0,则a =0或b =0,复数z 可能为实数或纯虚数,故命题p 2错误;对于命题p 3,设z 1=a +b i(a ,b ∈R ),z 2=c +d i(c ,d ∈R ),由z 1·z 2=(ac -bd )+(ad +bc )i ∈R ,得ad +bc =0,不一定有z 1=z 2,故命题p 3错误;对于命题p 4,设z =a +b i(a ,b ∈R ),则由z ∈R ,得b =0,所以z =a ∈R 成立,故命题p 4正确.故选B.(3)因为z =1+i , 所以1+z +z 2+…+z2 017=1×(1-z 2 018)1-z=z 2 018-1z -1=(1+i )2 018-11+i -1=(2i )1 009-1i =(-1+21 009i )(-i )-i2=21 009+i. 所以复数1+z +z 2+…+z2 017的实部为21 009.故选C.【答案】 (1)A (2)B (3)C复数问题的解题思路(1)以复数的基本概念、几何意义、相等的条件为基础,结合四则运算,利用复数的代数形式列方程或方程组解决问题.(2)若与其他知识结合考查,则要借助其他的相关知识解决问题.[对点训练]1.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z =1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A.2.(2019·金丽衢十二校联考)设z 是复数,|z -i|≤2(i 是虚数单位),则|z |的最大值是( )A .1B .2C .3D .4解析:选C.因为|z -i|≤2,所以复数z 在复平面内对应点在以(0,1)为圆心,以2为半径的圆及其内部.所以|z |的最大值为3.故选C.3.(2019·高考浙江卷)复数z =11+i (i 为虚数单位),则|z |=________.解析:通解:z =11+i =1-i 2=12-i2,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-122=22. 优解:|z |=⎪⎪⎪⎪⎪⎪11+i =1|1+i|=112+12=22.答案:22专题强化训练1.(2019·绍兴诸暨高考二模)已知复数z 满足z (1+i)=2i ,则z 的共轭复数z 等于( )A .1+iB .1-iC .-1+iD .-1-i解析:选B.由z (1+i)=2i ,得z =2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,则z 的共轭复数z =1-i.故选B.2.在等腰梯形ABCD 中,AB →=-2CD →,M 为BC 的中点,则AM →=( ) A.12AB →+12AD → B.34AB →+12AD →C.34AB →+14AD → D.12AB →+34AD → 解析:选B.因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B.3.(2019·嘉兴一中高考模拟)复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),则复数|zi|=( )A.253 B.2C.553D. 5解析:选D.复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),所以z ·(2-i)(2+i)=(3-4i)(2+i),化为:5z =10-5i ,可得z =2-i.则复数|z i |=⎪⎪⎪⎪⎪⎪2-i i =⎪⎪⎪⎪⎪⎪-i (2-i )-i·i=|-1-2i|=|1+2i|=12+22= 5.故选D.4.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则DE →·BF →=( )A .-52B .32C .-4D .-2解析:选C.通过建系求点的坐标,然后求解向量的数量积.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,以A 为坐标原点,AB ,AD 为坐标轴,建立平面直角坐标系,则B (2,0),D (0,2),E (2,1),F (1,2).所以DE →=(2,-1),BF →=(-1,2),所以DE →·BF →=-4.5.(2019·台州市书生中学检测)已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x 、y ,使得AO →=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为( )A.23B.33C.23D.13解析:选A.设线段AC 的中点为点D ,则直线OD ⊥AC .因为AO →=xAB →+yAC →,所以AO →=xAB →+2yAD →.又因为x +2y =1,所以点O 、B 、D 三点共线,即点B 在线段AC 的中垂线上,则AB =BC =3.在△ABC 中,由余弦定理得,cos ∠BAC =32+42-322×3×4=23.故选A.6.在△ABC 中,AB =3,BC =2,∠A =π2,如果不等式|BA →-tBC →|≥|AC →|恒成立,则实数t 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1C .⎝⎛⎦⎥⎤-∞,12∪[1,+∞) D .(-∞,0]∪[1,+∞)解析:选C.在直角三角形ABC 中,易知AC =1,cos ∠ABC =32,由|BA →-tBC →|≥|AC →|,得BA →2-2tBA →·BC →+t 2BC →2≥AC →2,即2t 2-3t +1≥0,解得t ≥1或t ≤12.7.称d (a ,b )=|a -b |为两个向量a ,b 间的“距离”.若向量a ,b 满足:①|b |=1;②a ≠b ;③对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),则( )A .a ⊥bB .b ⊥(a -b )C .a ⊥(a -b )D .(a +b )⊥(a -b )解析:选B.由于d (a ,b )=|a -b |,因此对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),即|a -t b |≥|a -b |,即(a -t b )2≥(a -b )2,t 2-2t a ·b +(2a ·b -1)≥0对任意的t ∈R 都成立,因此有(-2a ·b )2-4(2a ·b -1)≤0,即(a ·b -1)2≤0,得a ·b -1=0,故a ·b -b 2=b ·(a -b )=0,故b ⊥(a -b ).8.(2019·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1,则当max{c ·a ,c ·b }取最小值时,|c |=( )A.255B.223 C.1D.52解析:选A.如图,设OA →=a ,OB =b ,则a =(1,0),b =(0,2), 因为λ,μ≥0,λ+μ=1,所以0≤λ≤1. 又c =λa +μb ,所以c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.所以max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,1. 所以f (λ)min =45,此时λ=45,μ=15,所以c =45a +15b =⎝ ⎛⎭⎪⎫45,25. 所以|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.故选A.9.(2019·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,则(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值为( )A .43+37B .47+3 3C .(43+37)2D .(47+33)2解析:选D.设OA →=a ,OB →=b ,OC →=c ,a -b 与a -c 所成夹角为θ, 则(a -b )2(a -c )2-[(a -b )·(a -c )]2=|AB |2|AC |2-|AB |2|AC |2cos 2θ=|AB |2|AC |2sin 2θ=|AB |2|AC |2sin 2∠CAB =4S 2△ABC , 因为|b |=3,|c |=2,b ·c =3,所以b ,c 的夹角为60°, 设B (3,0),C (1,3),则|BC |=7,所以S △OBC =12×3×2×sin 60°=332,设O 到BC 的距离为h ,则12·BC ·h =S △OBC =332, 所以h =3217,因为|a |=4,所以A 点落在以O 为圆心,以4为半径的圆上, 所以A 到BC 的距离最大值为4+h =4+3217.所以S △ABC 的最大值为 12×7×⎝ ⎛⎭⎪⎫4+3217 =27+332, 所以(a -b )2(a -c )2-[(a -b )·(a -c )]2最大值为4⎝ ⎛⎭⎪⎫27+3322=(47+33)2.故选D.10.(2019·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1,则b 与a -b 的夹角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π3,23πB.⎣⎢⎡⎦⎥⎤2π3,5π6C.⎣⎢⎡⎭⎪⎫2π3,πD.⎣⎢⎡⎭⎪⎫5π6,π 解析:选B.因为|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1, 不妨设|a +b |=1,则|a |=|b |=λ.令OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB ,则平行四边形OACB 为菱形.故有△OAB 为等腰三角形,故有∠OAB =∠OBA =θ,且0<θ<π2.而由题意可得,b 与a -b 的夹角,即OB →与BA →的夹角,等于π-θ,△OAC 中,由余弦定理可得|OC |2=1=|OA |2+|AC |2-2|OA |·|AC |·cos 2θ=λ2+λ2-2·λ·λcos 2θ,解得cos 2θ=1-12λ2.再由33≤λ≤1,可得12≤12λ2≤32,所以-12≤cos 2θ≤12,所以π3≤2θ≤2π3,所以π6≤θ≤π3,故2π3≤π-θ≤5π6,即b 与a -b 的夹角π-θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,5π6.11.(2019·杭州市高考二模)已知复数z =1+a ii (a ∈R )的实部为1,则a =________,|z |=________.解析:因为z =1+a i i =(1+a i )(-i )-i 2=a -i 的实部为1, 所以a =1,则z =1-i ,|z |= 2. 答案:1212.(2019·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.解析:设e 1,e 2的夹角为θ,因为a 在b 上的投影为2, 所以a ·b |b |=(2e 1+e 2)·e 2|e 2|=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2,解得cos θ=12,则θ=π3.a ·b =(2e 1+e 2)·e 2=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2. 答案:2π313.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6,可得|cos α|+2|cos β|≤ 6.①令sin α+2sin β=m ,②①2+②2得4[|cos αcos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1,故a·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案:1214.(2019·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 解析:由AC →=(1,3),BD →=(-3,1)得AC →⊥BD →,且|AC →|=2,|BD →|=2,所以凸四边形ABCD 的面积为12×2×2=2;因为ABCD 为凸四边形,所以AC 与BD 交于四边形内一点,记为M ,则AB →·CD →=(MB →-MA →)(MD →-MC →)=MB →·MD →+MA →·MC →-MB →·MC →-MA →·MD →,设AM →=λAC →,BM →=μBD →,则λ,μ∈(0,1),且MA →=-λAC →,MC →=(1-λ)AC →, MB →=-μBD →,MD →=(1-μ)BD →,所以AB →·CD →=-4μ(1-μ)-4λ(1-λ)∈[-2,0),所以有λ=μ=12时,AB →·CD →取到最小值-2.答案:2 [-2,0)15.(2019·嘉兴一中高考适应性考试)在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.解析:在△ABC 中,∠ACB 为钝角,AC =BC =1,函数f (m )的最小值为32. 所以函数f (m )=|CA →-mCB →| =CA →2+m 2CB →2-2mCA →·CB →=1+m 2-2m cos ∠ACB ≥32, 化为4m 2-8m cos ∠ACB +1≥0恒成立.当且仅当m =8cos ∠ACB8=cos ∠ACB 时等号成立,代入得到cos ∠ACB =-12,所以∠ACB =2π3.所以|CO →|2=x 2CA →2+y 2CB →2+2xyCA →·CB →=x 2+y 2+2xy ×cos 2π3=x 2+(1-x )2-x (1-x )=3⎝ ⎛⎭⎪⎫x -122+14, 当且仅当x =12=y 时,|CO →|2取得最小值14,所以|CO →|的最小值为12.答案:1216.在△OAB 中,已知|OB →|=2,|AB →|=1,∠AOB =45°,若OP →=λOA →+μOB →,且λ+2μ=2,则OA →在OP →上的投影的取值范围是________.解析:由OP →=λOA →+μOB →,且λ+2μ=2, 则OA →·OP →=OA →·⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →=λOA →2+⎝⎛⎭⎪⎫1-λ2OA →·OB →,又|OB →|=2,|AB →|=1,∠AOB =45°, 所以由余弦定理求得|OA →|=1,所以OA →·OP →=λ+⎝ ⎛⎭⎪⎫1-λ2×1×2×22=1+λ2,|OP →|=⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →2= λ2|OA →|2+2λ⎝ ⎛⎭⎪⎫1-λ2OA →·OB →+⎝⎛⎭⎪⎫1-λ22|OB →|2=λ22+2,故OA →在OP →上的投影OA →·OP →|OP →|=1+λ2λ22+2=22·λ+2λ2+4(*). 当λ<-2时,(*)式=-22·(λ+2)2λ2+4=-221+4λλ2+4=-221+4λ+4λ∈⎝ ⎛⎭⎪⎫-22,0; 当λ≥-2时,(*)式可化为22(λ+2)2λ2+4;①λ=0,上式=22;②-2≤λ<0,上式=221+4λ+4λ∈⎣⎢⎡⎭⎪⎫0,22; ③λ>0,上式=221+4λ+4λ∈⎝⎛⎦⎥⎤22,1. 综上,OA →在OP →上的投影的取值范围是⎝ ⎛⎦⎥⎤-22,1.答案:⎝ ⎛⎦⎥⎤-22,1 17.已知OA →,OB →是非零不共线的向量,设OC →=1r +1·OA →+r r +1OB →,定义点集P =⎩⎪⎨⎪⎧K ⎪⎪⎪⎪KB →·KC →|KB →|=KA →·KC→|KA →|,⎭⎪⎬⎪⎫KC →≠0,当K 1,K 2∈P 时,若对于任意的r ≥3,不等式|K 1K 2→|≤c |AB→|恒成立,则实数c 的最小值为________.解析:由OC →=1r +1·OA →+r r +1OB →,可得A ,B ,C 三点共线,由KB →·KC →|KB →|=KA →·KC→|KA →|,可得|KC →|cos ∠AKC =|KC →|cos ∠BKC ,即有∠AKC =∠BKC ,则KC 为∠AKB 的角平分线. 由角平分线的性质定理可知|KA ||KB |=|AC ||BC |=r , 以AB 所在的直线为x 轴,以线段AB 上某一点为原点建立直角坐标系,设点K (x ,y ),A (-a ,0),B (b ,0),所以(x +a )2+y 2(x -b )2+y2=r 2,化简得(1-r 2)x 2+(1-r 2)y 2+(2a +2br 2)x +(a 2-b 2r 2)=0.由方程知K 的轨迹是圆心在AB 上的圆,当|K 1K 2|为直径时最大,方便计算,令K 1K 2与AB 共线,如图,由|K 1A |=r |K 1B |,可得|K 1B |=|AB |r +1,由|K 2A |=r |K 2B |,可得|K 2B |=|AB |r -1,可得|K 1K 2|=|AB |r +1+|AB |r -1=2r r 2-1|AB |=2r -1r|AB |,而易知r -1r ≥3-13=83,即有|K 1K 2|≤34|AB |,即|K 1K 2||AB |≤34,即c ≥⎝⎛⎭⎪⎫|K 1K 2||AB |max =34, 故c 的最小值为34.答案:3418.在△ABC 中,已知C =π6,向量p =(sin A ,2),q =(2,cos B ),且p ⊥q .(1)求角A 的值;(2)若BC →=2BD →,AD =7,求△ABC 的面积.解:(1)因为p ⊥q ,所以p ·q =0⇒p ·q =2sin A +2cos B =0,又C =π6,所以sin A +cos B =sin A +cos ⎝ ⎛⎭⎪⎫5π6-A =0,化简得tan A =33,A ∈(0,π),所以A =π6. (2)因为BC →=2BD →,所以D 为BC 边的中点, 设|BD →|=x ,|BC →|=2x ,由(1)知A =C =π6,所以|BA →|=2x ,B =2π3,在△ABD 中,由余弦定理,得|AD →|2=|BA →|2+|BD →|2-2|BA →|·|BD →|·cos 2π3=(2x )2+x 2-2·2x ·x ·cos 2π3=7,所以x =1,所以AB =BC =2,所以S △ABC =12BA ·BC ·sin B =12×2×2×sin 2π3= 3.19.已知m =(2sin x ,sin x -cos x ),n =(3cos x ,sin x +cos x ),记函数f (x )=m ·n .(1)求函数f (x )的最大值以及取得最大值时x 的取值集合;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若f (C )=2,c =3,求△ABC 面积的最大值.解:(1)由题意,得f (x )=m ·n =23sin x cos x +sin 2x -cos 2x =3sin 2x -(cos 2x -sin 2x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6,所以f (x )max =2;当f (x )取最大值时,即sin ⎝⎛⎭⎪⎫2x -π6=1,此时2x -π6=2k π+π2(k ∈Z ),解得x =k π+π3(k ∈Z ),所以x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+π3,k ∈Z .(2)由f (C )=2,得sin ⎝ ⎛⎭⎪⎫2C -π6=1,又0<C <π,即-π6<2C -π6<11π6,所以2C -π6=π2,解得C =π3,在△ABC 中,由余弦定理c 2=a 2+b 2-2ab cos C ,得3=a 2+b 2-ab ≥ab ,即ab ≤3,当且仅当a =b =3时,取等号,所以S △ABC =12ab sinC =34ab ≤334, 所以△ABC 面积的最大值为334.。
【高三数学】二轮复习:专题二 第1讲 三角函数的图象与性质
)
A.sin x + 3
B.sin 3 -2x
C.cos 2x + 6
D.cos
5
-2x
6
答案 BC
解析 由题中函数图象可知2 =
2π π
+
3 6
x=
2
5π
5π
π
2π
= 2,则 T=π,所以 ω= =
3π
2π
=2,当
π
2π
= 12时,y=-1,所以 2× 12+φ= 2 +2kπ(k∈Z),解得 φ=2kπ+ 3 (k∈Z),所
看图比较容易得出,困难的是求ω和φ,常用如下两种方法
(1)由ω= 2 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或
T
下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
(2)代入图象中已知点的坐标,将一些已知点(最高点、最低点或“零点”)坐
标代入解析式,再结合图象解出ω和φ,若对A,ω的符号或对φ的范围有要求,
高考数学
专题二
第1讲 三角函数的图象与性质
1.“1”的变换
1=sin 2α+cos 2α=cos 2α(1+tan2α).
这是针对函数中的单个变量x
2.三角函数图象变换
而言的
三角函数y=sin ωx的图象向左或向右平移φ(φ>0)个单位长度,得到的图象
对应函数解析式是y=sin[ω(x+φ)]或y=sin[ω(x-φ)],而不是y=sin(ωx+φ)或
以函数的解析式为 y=sin 2 +
高三数学第二轮复习要注意的几个问题
‘
宜 一般 化 成 “ 三 种一 ” 函数 ( 一 个 角 的 一 种 三 角 函
数 的 一 次 形 式 ) 求 解 ,学 生 须 掌 握 三 角 变 换 的 常 见 技 巧 ,三 角代 换 的 实 施 条件 ; ( 4 )解 决 不 等 式 恒 成 立 问题 的常见 方 法有 分 离参 数 法 、最值 法 : ( 5 ) 直 线 与 圆 锥 曲 线 的 位 置 关 系 处 理 有 中 点 弦 法 、 差 分 法 、 焦 点 弦 法 、 公 共 方 程 法 等 。 对 于基 本 问题 , 学 生 还 是 应 该 形 成 较 为 固 定 的 解 题 模 式 , 即 掌 握 通 常
本 例 是 某 地 测 试 卷 填 空 题 的 第 1小 题 , 若 当 大
题 去解 ,由于 费时太 多考 生得不 偿 失 ,因此 有 “ 特 殊 化 ” 的 解 法 , 即 让 直 线
l
~
{ —
, , 十 ,
平 行 轴 ,易 得 p = r , =
变 式 2: 求 数 列 ‘
例 2: 求 数 列 { 变式 : 1 :求 数 列
‘n+ l 】
线 交 抛 物 线 于 P、 ( )两 点 , 若 线 段 P F 与 别是, J 、 q, 则 + 一 1: _
P r ,
的 长 分
} 的 前 n项 和 。 _ _ } 的 前 n项 和 . . } 的 前 凡项 和 c
趣 ,往 往 也 会 讲 一 些 很 巧 妙 的 解 法 迎 合 学 生 。 高 考
的 ~ 个 重 要 导 向 ,就 是 重 视 对 通 性 通 法 的 考 查 , 淡
化 对 技 巧 的 考 查 。 所 以 ,教 师 在 指 导 学 生 复 习 时 , 要 着 重 加 强 通 性 通 法 的 训J 练 和 运 用 ,不 要 ~ 味 追 求 解题 技巧 。
高考数学二轮复习专题讲座1——研究考纲 针对学情 讲究实效(陈辉)
研究考纲 针对学情 讲究实效——09届高三数学二轮复习建议江苏省高淳高级中学 陈 辉今年是我省实施新课程后的第二次高考,分析全省各地的教学和模拟试题情况,都已基本适应新课程的教学要求和我省命题的特点,高三教学的针对性明显加强.二轮复习是夯实基础、提升能力和应试水平的关键阶段,我们认为,重点要做的是研究教学要求、考试说明和江苏命题的特点,把准学情和存在问题,制订明确目标,切实提高二轮复习教学的针对性和实效性.一、把握考试要求,了解命题特点,实现合理选题受课程标准、教学要求、考试说明的限制,我省的教学范围与以往相比有较大变化,一些传统的考试热点淡出,立体几何、解析几何变化尤其明显,与其它省份(包括已实施新课程的省份)的要求也有很大不同,因此,复习资料的选择,例题习题的选用要注意符合要求.目前市场上的许多资料,超教学要求的地方还有不少,无论是教学选用还是指导学生自选,都应有所筛选,以免浪费宝贵时间.各省的考题应有选择地使用,要特别注意将全省各大市、名校的模拟题按章节、按能级分类收集、分层使用.受命题人对考试选拔及数学的感受、认识和理解的影响,我省的高考数学试题有一些明显的特点,如:07、08两年的考题,中、低档题保持足够的比例,难题有竞赛味道,最后两题中字母多、信息量大,要求考生具有一定的信息收集、整理、归纳等处理能力,通过联系已有知识,形成新的结论来解决问题.因此二轮复习应加强中、低档题的训练,确保拿足基本分.并注意培养应对多字母问题的能力、信息处理的能力等.在考查创新意识,探究能力方面,我省考题没有设计新概念、新运算的问题,也没有答案开放型的问题,而是“从数和形的角度,提出具有数学特点的问题,如充要性、存在性、不变形、唯一性等”.例1(08年20题)已知函数f 1(x )=||13p x -,f 2(x )=2·||23p x -(x ∈R ,p 1,p 2为常数).函数f (x )定义为:对每个给定的实数x ,f (x )=⎩⎨⎧>≤).()(),(),()(),(211211x f x f x f x f x f x f (1)求f (x )=f 1(x )对所有实数成立的充分必要条件(用p 1,p 2表示);例2(08年18题)在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R )的图象与两个坐标轴有三个交点,经过这三点的圆记为C .(3)问圆C 是否经过定点(其坐标与b 无关)?证明你的结论.二轮复习中,要注意对这些类型问题的思维方式、解答规范的训练.二、把准学生水平,找到存在问题,提高复习效率二轮复习课堂教学的例题不能被资料牵着鼻子埋走,应校本化,使每个例题、每次练习最适合学生基础和能力水平.通常一轮复习结束时,学生知识结累最多,遗忘程度最大,解题速度最慢,要有计划地帮助学生恢复记忆,提高反应速度.要注意学生练习、考试中暴露的各种问题,特别关注不良习惯,有针对性地加以解决. 例3(期终13题)从等腰直角三角形纸片ABC 上,按图示方式剪下两个正方形,其中BC =2,∠A =90°,则这两个正方形的面积之和的最小值为 ▲ .许多学生直接猜想两正方形边长相等,再计算出结果.例4(期终14题)已知函数f (x )=x +c x的定义域为(0,+∞),若对任意x ∈N *,都有f (x )≥f (3),则实数c 的取值范围是 ▲ .有许多学生的答案是9,主要是对数列的最大、最小项、增减性问题不会处理,直接将数列看成函数来处理,推理过程不是理性的过程.这种“半猜半蒙”的现象,在平时的练习中非常普遍,如不加以解决,必然导致学生基础知识不扎实,知识应用水平不能提高,严重影响学习质量.解答填空题的特殊解法少,一般需通过推理和运算,要求学生理性思考,严谨推理,有利于夯实基础,也有利于解答大题.珍惜每一次考试,通过考试情况的统计,分析知识、思维、应试心理等方面存在的问题,分析教学中存在的不足,设计针对性的练习巩固,提高试卷讲评课的质量.三、注意系统梳理,突出方法归纳,提升解题能力高考要求在知识的交汇点上设计试题,学生大脑中形成清晰的知识网络和纵横联系,是提高反应速度,实现方法优化,增强考试信心的根本保证.“将书读薄”是经验共识,也是有效手段,不容怀疑,不能搁置.注意总结归纳常规题型及相应的基本方法和策略,通过练习达到应用自如的程度. 对高考题中经常出现的一些设问方式(如求变量的值、求变量的取值范围、求最值,是否存在、恒成立,及涉及常用逻辑用词等),归纳相应的思维方式和书写规范,并设计一定量的练习加以巩固.在引导学生掌握数学思想、数学方法的同时,注意一些基本数学观念的培养,如用运动变化观点和对应观点来分析问题.例5(期终18题)已知椭圆C :x 236+y 220=1的左顶点, A B C右焦点分别为A,F,右准线为l,N为l轴x上方,直线AN与椭圆相交于点M.(1)若AM=MN,求证:AM⊥MF.(2)过A,F,N三点的圆与y轴交于P,Q求PQ的最小值.一般来说,在具体的数学问题中,通常要对数学对象进行定量计算或定性分析,而数学对象只有变和不变两种状态,两者之间并不矛盾(如函数是变化的,方程则是函数的特殊情况),数学对象之间也存在必然的联系.养成分析运动变化的状态,研究对应关系的习惯,是提升数学素养,提高解题能力的有效途径.高考题主要是大学教授命制的,他们对中学里的一些解题技巧不会太熟悉,更不会青睐,而是从学科整体价值的高度来命题,以考查基础知识、基本方法、基本思想等必备的数学知识.所以二轮复习不能仅限于题型、套路的训练,要引导学习回到“起点”,认识到“越是陌生的、难的,越是要用基础的东西”这一规律.例5(08年13题)满足条件AB=2,AC=2BC的三角形ABC的面积的最大值是▲.四、优化记忆系统,提高运算能力,获得真正突破在影响水平发挥的诸多因素中,我们不能忽视提取记忆和运算这两个基本环节.无法正确地求解数学问题,常常不是所需的知识不具备,而是记忆系统中的相关知识没有被准确地提取,解答高考题更是如此,所需知识都是考试大纲规定并被反复强化过的.因此,我们通常认为,导致知识不能被提取的原因,从根本上说不是熟练程度的问题,而是数学能力的问题,但这样说似乎笼统、抽象了些,应该可以从记忆系统的角度来考虑,分析有利于提取的有效记忆,寻找实践层面上需要的、操作性强的结论和办法.教育实践表明,数学能力强的学生能把推理或论证的模式记得很牢,而不是去强记一些具体的事实和具体的数据,不是机械记忆,而是对语义结构和对证明方案、基本思路的记忆.数学知识的有效记忆不是“陈述性知识”的简单堆积,而是在深刻理解知识内在联系的基础上,对操作陈述性知识的方法、步骤——“程序性知识”(或称思维程序)的掌握.数学记忆力的本质在于对典型的推理和运算的模式的概括的记忆力.数学知识的有效记忆取决于三个方面的要素,一是具有数学学科特点的记忆结构和记忆内容,记忆的不仅仅知识本身,还需掌握知识的内在联系,以及操作知识的思维程序,二是合适的提示线索,三是足够的记忆强度.实现数学知识有效记忆的途径:1.在理解的基础上记忆,2.重视思维程序的归纳,3.注重多元联系,“数学是研究现实世界数量关系和空间形式的科学,养成将一个对象以数字的、符号的、式子的、图形的形式表示的习惯,可以达到启发思维,开拓思路的目的”.如果对一个知识也能从多个角度去理解,揭示它在不同的领域的不同形式,那么提示线索就能更多,被激活的可能性就会增大.4.重视知识的概括,5.增加一些情节记忆,在知识的学习、记忆过程中,总伴随着一些情节记忆,学习过程中发生的一些事件和身心体验会长久清晰地保留的记忆之中.在回忆某个知识时,大脑中往往先呈现出相关的情节,一些与“印象深刻的事件”有关的知识总是容易唤醒,难以忘记.真正发挥情节记忆的提示作用在于其强度,在于调动学生的更多感觉系统参与到学习活动中来.教学中应注意动脑与动手相结合,学习与实践相结合,注意利用学生的生活经验,注意发挥图片、模型的作用,注意利用机智幽默的语言和“抖包袱”的方式来呈现知识;还可以利用设计陷井、经历“试误”等方式,让学生经历知识探究的艰难历程.达到全身心参与,增强记忆的目的.尽管高考命题控制了运算难度,但运算能力差仍然是影响发挥的主要原因.运算基本要求:运算能力是运算技能与思维能力的结合.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程的思维能力,也包括实施运算中遇到障碍而调整运算.运算能力的考查包括数.的运算和图形..的运算以及估算...数的运算包括数值..的运算与式.子.的运算,以后者为主. 从形式上看,代数变形包括恒等变形和不等变形(放缩).从能力要求上看,代数恒等变形包括有两上层次:化简整理;分解组合.基本的代数运算包括:(1) 有理式的运算:去括号、去分母、合并同类项、提取公因式、配方、因式分解等;(2) 无理式的运算:分母有理化、分子有理化、乘方去根式等;(3) 指数、对数运算、运算法则、换底公式等;(4) 解方程(组)、解不等式.运算能力差主要表现为:1.基本代数运算容易出错,2.对较复杂的代数式,只会用逐步抄写来变形.建议安排基本代数运算的专题,总结运算规律,提高熟练程度;养成对代数式进行观察、对比、分析、推理、联想等习惯,提高运算能力.例6(期终20题)(3)令b n =a n +1 a n,若对任意n ∈N *,都有b n <b n +1,求q 的取值范围.对于二轮复习,我们认为最重要的是,知道考什么?学生有什么?少什么?可能提升什么?那么我们就知道该干什么!就去干什么!2009.2.7。
高三数学二轮复习课件课标专题第讲三角恒等变换与三角函数-精品文档
三角函数、平面向量
Evaluation only. 第6讲 解三角形 ed with Aspose.Slides for .NET 3.5 Client Profile 5.2 第7讲 平面向量 Copyright 2019-2019 Aspose Pty Ltd.
第5讲 三角恒等变换与三角函数
ed with Aspose.Slides for .NET 3.5 Client Profile 5.2
专题二 │ 考情分析预测
Evaluation only. ed with Aspose.Slides for .NET 3.5 Client Profile 5.2 Copyright 2019-2019 Aspose Pty Ltd.
专题二 │ 考情分析预测
考情分析预测
考向预测
该专题是高考重点考查的部分,从最近几年考查的情况看,主要考查三角函数 的图象和性质、三角函数式的化简与求值、正余弦定理解三角形、三角形中的三角 恒等变换、平面向量的线性运算、平面向量的数量积、平面向量的平行与垂直,以 及三角函数、解三角形和平面向量在立体几何、解析几何等问题中的应用.该部分 在试卷中一般是 2~3 个选择题或者填空题,一个解答题,选择题在于有针对性地 考查本专题的重要知识点(如三角函数性质、平面向量的数量积等),解答题一般有 三个命题方向,一是以考查三角函数的图象和性质为主,二是把解三角形与三角函 数的性质、三角恒等变换交汇,三是考查解三角形或者解三角形在实际问题中的应 用.由于该专题是高中数学的基础知识和工具性知识,在试题的难度上不大,一般 都是中等难度或者较为容易的试题.基于这个实际情况以及高考试题的相对稳定 性,我们预测在 2012 年的高考中该部分的可能考查情况如下:
高三数学二轮复习专题 三角函数(公开课)
高三数学二轮复习专题三角函数(公开课)高三数学二轮复习专题三角函数(公开课)一、基础知识回顾三角函数是高中数学中的重要内容之一。
在这个专题中,我们将回顾三角函数的基础知识,包括正弦函数、余弦函数、正切函数等的定义、性质以及相互之间的关系。
1. 三角函数的定义在直角三角形中,我们定义了三角函数的概念。
对于一个角A,定义了三个比值:正弦函数sinA=对边/斜边,余弦函数cosA=邻边/斜边,正切函数tanA=对边/邻边。
2. 三角函数的周期性我们知道,三角函数具有周期性。
例如,正弦函数和余弦函数的周期都是2π,而正切函数的周期是π。
这意味着在一个周期内,三角函数的值是重复的。
这种周期性使得三角函数在实际问题中具有广泛的应用。
3. 三角函数的性质三角函数有许多重要的性质。
例如,正弦函数和余弦函数是偶函数,即f(x)=f(-x);正切函数是奇函数,即f(x)=-f(-x)。
此外,三角函数还具有增减性和界值性质。
二、三角函数的图像与性质下面我们将进一步讨论三角函数的图像与性质。
通过对三角函数图像的分析,我们能够更好地理解三角函数的特点和性质。
1. 正弦函数的图像与性质正弦函数的图像是一条连续的波浪线,振动范围在[-1,1]之间。
正弦函数的图像关于y轴对称,且在0点处取得最小值。
我们可以通过调整系数来改变正弦函数的振幅和周期。
2. 余弦函数的图像与性质余弦函数的图像也是一条连续的波浪线,振动范围也在[-1,1]之间。
与正弦函数不同的是,余弦函数的图像关于x轴对称,且在0点处取得最大值。
同样地,我们可以通过系数调整来改变余弦函数的振幅和周期。
3. 正切函数的图像与性质正切函数的图像是一条连续的曲线,其值在整个实数轴上变化。
正切函数在某些点上没有定义,这些点是函数的奇点。
我们可以通过系数调整来改变正切函数的振幅和周期。
三、三角函数的应用三角函数在实际问题中有广泛的应用。
在这一部分,我们将介绍一些常见的三角函数应用,并通过例题来加深理解。
从三角函数看高三数学的“二轮复习”
从三角函数看高三数学的“二轮复习”作者:张维来源:《考试周刊》2013年第05期以“回归教材掌握基础知识,正确理解基本概念,深刻体会基本思想,灵活运用基本方法”为主旨的第一轮复习已经结束,高三数学将进入第二轮复习阶段.第二轮复习是由“量的积累”到“质的飞跃”即“由厚到薄”的过程,是形成知识系统化、条理化,全面提升能力的关键时期,它承上启下,其效果如何直接关系高考的成败.现以三角函数为例,谈谈第二轮复习的基本方法.一、明确复习重点(一)要深入研究《考试说明》数学高考对知识的要求由低到高分为“了解”、“理解”和“掌握”三个层次.《考试说明》指出:“对基本知识和基本技能的考查,既注意全面又突出重点,对支撑数学学科知识体系的主干知识,考查时保持较高的比例,并达到必要的深度.”通过对《考试说明》研究,三角恒等变换内容已淡化,三角函数的类型也只是正弦、余弦、正切,而三角函数的图像、倍角公式和正余弦定理依然是不变的重点,图像可以适当关注对称性和周期性.(二)要深入分析历年高考试题1.新课标近五年高考理科三角函数试题分析:2.新课标近五年高考文科三角函数试题分析:通过分析,我们可以看出,三角函数题目大多以容易或中等难度的题为主,从题型设计来看,大致是2道小题1道大题(或3道小题);从考查内容来看,主要考查对三角函数有关概念、性质的理解,对基本公式的运用.具体主要有三类:(1)三角式的化简与求值;(2)三角函数的性质与图像;(3)解三角形及其应用.值得指出的是,新课标卷17题多是以解三角形的实际应用出题,但综合各省市试题来看,多以三角函数结合解三角形,可能还结合平面向量.解这类题目,要利用平面向量的运算,用三角公式将函数式化为标准形式:y=Asin(ωx+?准)+B,或y=Acos(ωx+?准)+B,然后结合正余弦定理做出解答.所以,在二轮复习中我们既要加强对《考试说明》的学习,又要加强对高考试题的分析.《考试说明》是高考命题的依据,而高考试题是《考试说明》要求的具体化.二、强化基础知识二轮复习要在形成知识体系上下工夫,注重知识的不断深化,新知识应及时纳入已有知识体系,关注知识之间的内在联系,使模糊的清晰起来,缺失的填补起来,杂乱的条理起来.应构建知识网络,网络应当是立体的、交叉的,单一的线状连接难以适应变化.高考数学历来注重基础知识和基本技能的考查,虽然高考数学试题不可能考查单纯背诵、记忆的内容,不会直接考查课本上的原题,但高考试题大多能在课本上找到它的“根”,不少高考题就是对课本原题的变型、改造及综合.比如2009年新课标文理17题是解三角形的应用,为必修五1.2例2的变式,而2012年的17题更是课本常见的解三角形题型.虽然现在高考试题力求体现新课改理念,但不论怎么新,解题的数学模型仍要以课本上重点数学知识为基础,所以夯实基础仍是重中之重,扎实的数学基础是成功解题、获取高分的关键,要防止忽视基础、专攻难题的不良倾向,真正做到:基本概念清晰明了,基本运算熟练正确,基本方法运用得当,书面表达规范准确.三、提炼思想方法怎样有效提高学生的解题能力?现在提倡高效课堂,有些老师往往着眼于多举例子,似乎学生做题越多越高效.我认为,不着重启发学生思路、推进其思维过程的课堂就不是高效课堂.只有让学生的“脑”和“手”都动起来,并使之在数学方法上有了突破,在数学思维能力上有了提升,才能称为高效.可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是加强学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”.因此,在二轮复习时应对高中数学涉及的四种主要思想方法即“函数与方程”、“数形结合”、“分类讨论”、“等价转化”进行专题研究,并在解题活动中注意提炼,而这些思想方法在各内容中侧重点各有不同.比如三角函数中公式及性质之类的内容较多,“等价转化”和“数形结合”的思想在三角函数这章中贯穿始终.例如:若动直线x=a与函数f(x)=sinx和g(x)=cosx的图像分别交于M、N两点,则|MN|的最大值为( B )A.1B.C.D.2分析:|MN|=|sina-cosa|=| sin(a- )|= |sin(a- )|≤ ,将两点之间的距离转化为三角函数的最值求解,而转化为三角函数的过程则运用了差角正弦公式的转化,体现了转化和数形结合的思想.四、加强专题训练高考命题强调全面考查考生的数学能力.在二轮复习中我主张将历年高考试题按内容分类,经过筛选组成专题让学生练习.但选题时做到既要纵选,又要横选.例如,我在编三角函数资料时,除了把本省近五年高考三角函数试题编出来给学生练习外,还选一些外省的比较新颖的试题让学生练习.例如:(2010年重庆卷文15)如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C,各段弧所在的圆经过同一点P(点P不在C上)且半径相等.设第i 段弧所对的圆心角为α =(i=1,2,3),则cos cos -sin sin = .通过专题训练,使学生学会综合运用所学数学知识、思想和方法对新的信息、情境和设问进行分析与加工,独立思考,研究探索,解决问题,增强实践能力和创新意识.有利于学生了解认识新形势下高考试题,适应高考新要求.五、注重引导学生进行总结与反思每次考试或练习,教师讲评后要引导学生及时总结反思,总结试卷中试题涉及的知识点,采用了哪些解题方法,反思自己错误的原因,要把当时解题思路的误区进行剖析,并补充好的解法.例如:已知α∈(0,π),sinα+cosα= ,求tanα的值.【错点分析】本题利用平方关系求出sinα-cosα的值,再通过解方程组的方法可解得sinα、cosα的值.但在解题过程中忽视了sinαcosα平时做练习题时,我都要求学生把选择题和填空题的主要过程写在试卷上,一是节省草稿纸,高考只一张草稿纸,养成只用一张草稿纸的习惯;二是等以后复习时能知道当时自己的思路误区在哪里,让学生养成整理“错题集”的习惯.只有这样不断地反思,才能真正做到:退一步——触发灵感,进一步——认清本质,串一串——融会贯通,议一议——豁然开朗,从而提高练习的实效.总之,二轮复习绝不是一轮复习的翻版,要将重点放在指导学生“做真题、练真功”上,指导学生全面整理、提炼已有知识并创造性地运用到新问题和新情景中去.如此,方能真正实现“知识的深化”和“能力的活化”.。
高三数学二轮复习方法技巧
高三数学二轮复习方法技巧高三数学二轮复习方法技巧一一是课堂容量问题.提倡增大课堂复习容量.不是追求过多的讲,过多的练,面面俱到,“一网打着满河鱼”,而是重点问题舍得时间,非重点问题敢于取舍,集中精力解决学生困惑的问题,增大思维容量,减少废话,减少不必要的环节,少做无用功。
二是讲练比例问题.第二轮复习容易形成“满堂灌”或“大撒手”,这样都不利于学生学懂会用.每堂课都要精讲精练,分配好讲练时间,一般以30分钟为宜.三是发挥学生主体地位问题.课堂中,有的讲得多,讲得快,学生被动听、机械记,久而久之,学生思维僵化,应变能力差;有的简单提问,过多的板演、笔算,貌似气氛活跃,讲练结合,其实是教师的惰性行为.双边活动的真谛是让学生参与解题活动,参与教学过程,启迪思维,点拔要害.四是讲评的方式方法问题.学情抓不准,讲评随意,对答案式的讲评是影响讲评课效益的大敌.必须做到评前认真阅卷,评中归类、纠错、变式、辩论等方式的结合,要抓错误点,失分点,模糊点,剖析根源,彻底矫正.还可采取“自教自”的办法,让学生讲好解法,讲错误处,展开争论.这种方式,由于是从学生中来到学生中去,极易让学生接受.五是信息反馈问题.系统论的反馈原理指出,任何系统只有通过反馈信息,才能实现控制.提高课堂复习效益,加强信息反馈是必不可少的.两条反馈渠道非抓不可.一条是通过练习或检测搜集信息.近几年,我市采用的“穿插复习法”对信息搜集很有帮助.即在大专题复习过程中,每周穿插一次以选择题为主的定时定量训练,内容以检测刚学过知识为重点,兼顾后继复习内容.这样,既做到了掌握所学知识的巩固程度,又抓住了后继复习的要害,复习便有了针对性.另一条是每两周开好一次学生座谈会,有针对性地选取上、中、下三类学生进行交谈和问卷调查,每位教师先行“诊断”,再集体研讨分析学生的要求和看法,拿出行之有效的措施.高三数学二轮复习方法技巧二高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主。
高三数学第二轮复习策略
高三数学第二轮复习策略(一)1.继续强化对基础知识的理解,掌握抓住重点知识抓住薄弱的环节和知识的缺陷,全面搞好基础知识全面搞好基础知识的复习。
(备考指南与知识点总结)中学数学的重点知识包括:(1)集合、函数与导数。
此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
(2)三角函数、平面向量和解三角形。
此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
(3)数列。
此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
(4)立体几何。
此专题注重点线面的关系,用空间向量解决点线面的问题是重点。
(5)解析几何。
此专题中解析几何是重点,以基本性质、基本运算为目标。
突出直线和圆、圆锥曲线的交点、弦长、轨迹等。
(6)概率与统计、算法初步、复数。
此专题中概率统计是重点,以摸球、射击问题为背景理解概率问题。
(7)不等式、推理与证明。
此专题中不等式是重点,注重不等式与其他知识的整合。
2、对基础知识的复习应突出抓好两点:(1)深入理解数学概念,正确揭示数学概念的本质,属性和相互间的内在联系,发挥数学概念在分析问题和解决问题中的作用。
(2)对数学公式、法则、定理、定律务必弄清其来龙去脉,掌握它们的推导过程,使用范围,使用方法(正用逆用、变用)熟练运用它们进行推理,证明和运算。
3、系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,构造知识网络,从知识的联系和整体上把握基础知识。
例如以函数为主线的知识链。
又如直线与平面的位置关系中“平行”与“垂直”的知识链。
4、认真领悟数学思想,熟练掌握数学方法,正确应用它们分析问题和解决问题。
数学思想和方法的考查必然要与数学知识的考查结合进行,在平时的做题中必须提炼出其中的数学思想方法,并以之指导自己的解题。
数学思想数学在高考中涉及的数学思想有以下四种:(1)分类讨论思想:分类讨论思想是以概念的划分,集合的分类为基础的解题思想,是一种逻辑划分的思想方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
到的是给命题带“帽子”的作用.
基本策略: 三角函数的化简,特别是两角和与差的正弦、
余弦、正切公式应用,是每年高考的必考
内容,而且是重要考查对象。年都有考到,预计
12 仍会做为重点考查。它不仅仅在三角函
数的求值、 性质研究中运用, 在三角形的研究和向量运算中也有运用, 所以三角函数的化简
π 3 个单位长度后,所得
的图象与原图象重合,则 ω 的最小值等于 ____ ____.
说明: 此类题型的考查要求虽然不高,不要深挖,但在二轮复习中还要涉及一点.
基本策略: 1.三角函数图像与性质的问题呈现的形式有三种:
①正面呈现, 给出三角函数解析式,
研究它的性质;②给出函数的一部分性质,研究解析式及其它性质,如例 呈现,给出函数 y=Asin( wx+ ) 的一部分图象,如例 2.
例 4.已知 sin
π1 x+ 6 =4,则 sin
5 6π - x
+ sin
2( 11π- x) 6
的值为
________ .
说明: 本题是由必修 4 课本习题改编, 根据所给角的关系,只需要用诱导公式解决
角和角的关系即可, 不需要用到二倍角公式以及和差角公式, 所以三角化简求值的问题, 首
先应该考虑角与角的关系.
3;③以图象形式
2.根据三角函数的图象求解函数的解析式时,要注意从图象提供的信息确定三角函数
的性质,如最小正周期、 最值, 首先确定函数解析式中的部分系数,再根据函数图象上的特
殊点的坐标适合函数的解析式确定解析式中剩余的字母的值,
同时要注意解析式中各个字母
的范围.
3.在进行图象变换时,必须注意 ω 对平移单位的影响,即由 y= Asin ω x 变化到 y=
基本题型一:三角函数的定义、图象和性质 例 1. 如图, O为坐标原点,点 A, B, C均在⊙ O上,
34 点 A 5, 5 ,点 B在第二象限,点 C(1,0) . (1) 设∠ COA= θ,求 sin2 θ 的值; (2) 若△ AOB为等边三角形,求点 B 的坐标.
说明: 三角函数定义的运用在高考题中出现在三角函数解答题, 由角终边上的点坐标得到三角函数值,再进行三角化简和求值.
三角函数的定义主要是
基本策略: 三角函数的定义建立了角的终边上点的坐标与三角函数之间的关系.
从而实现两者相互
转化。利用三角函数定义可以将角终边上的点坐标转化为相关角的三角函数, 简和求值.
再进行三角化
解题时 要注意 α 角的始边必须与 x 轴正半轴重合,且角的终边与单位圆相交所得点的
坐标才为 (cos α , sin α ) .
Asin( ω x+φ ) 时, 平移量应是
φ ω
;但对
y= Asin(
ω x+ φ ) 进行伸缩变换时,要注意
φ
是不变的.
4.解答三角函数的图象与性质类的试题,变换是其中的核心,把三角函数的解析式通
过变换,化为正弦型、余弦型、正切型函数,然后再根据正弦函数、余弦函数和正切函数的
性质进行研究.
基本题型二:三角函数的化简与求值
(1) 求函数
F(
x)
=
f
(
x)
f
′(x)
+
f
2
(
x)
的最大值和最小正周期;
1+sin 2x (2) 若 f ( x) = 2f ′(x) ,求 cos 2x-sin xcos x的值.
说明 : 向量背景下的三角函数的研究主要方式是所给向量的坐标用三角函数表示,以 向量的数量积构造三角函数, 并且进一步对所得三角函数进行研究. 其中向量仅仅在其中起
的选择,角的选择是三角变换的重要方面,如
β= ( α+β) -α,2α=( α+β) +(α -
β) 等等.( 3)关注角的范围对三角函数 值的重要影响,此也为易错点,后面例 8 有类似问
题。
例 6.已知 a= (sin x, 1) ,b= (1 ,cos x) ,且函数 f ( x) = a· b,f ′(x) 是 f ( x) 的导函数.
例 5.已知
0<α<π2 <β <π, tan
α2 =
1 2,
cos(
β-α)
2 = 10 .
(1) 求 sin α 的值; (2) 求 β 的值.
变式:
π
1
13
若将条件改为:“ 0< β <α < 2 , cosα = 7,cos( α - β ) = 14”,如何求解?
说明: 本题考查:( 1)同角三角函数的基本关系和二倍角公式 的应用; (2) 基本变量角
三角函数二轮复习建议
三角函数内容主要有三块;一是三角函数的化简与求值;二是三角函数的图象和性质; 三是解三角形. 近四年江苏高考中基本上是一至两个小题、 一个大题, 大都是容易题和中等
题,是必须要得分的内容.特别是近两年,三角函数的小题出现在第 生拿分的关键段,更应引起我们足够的重视!
9 题至第 13 题这一学
- 江苏高考数学三角函数考查 情况:
年份
小题
大题
第 1题 第 4题
性质; 5 分 图象、性质; 5 分
15 两角和差 (定义背景) ; 14 分 15 两角和差 、同角求值(向量背景) ; 14
分
第 10 题 分
图象、同角求值; 5 17 应用题:解三角形、 两角和差 、基本不等 式; 14 分
第 13 题 解三角形 ; 5 分 第 7 题 两角和差 、求值; 5 15 解三角形、 两角和差 ; 14 分 分 第 9 题 图象、性质; 5 分
例 2.( 1) [ ·江苏卷 ] 函数 f ( x) = Asin( ω x+ φ )( A, ω ,φ 为常数, A>0,ω >0) 的 部分图象如图所示,则 f (0) 的值是 ________.
π ( 2) [ ·江苏卷 ] 定义在区间 0, 2 上的函数 y=6cos x 的图象与 y=5tan x 的图象 的交点为 P,过点 P作 PP1⊥ x 轴于点 P1,直线 PP1 与 y= sin x 的图象交于点 P2,则线段 P1P2 的长为 ______.
例 2(1)图
例 2( 2)图
说明: 这两小题都为江苏高考题,利用图像考查性质以及求值,已经连续考查三年,需 重视。
π
ππ
例 3.(1)若函数 f ( x) =sin ω x( ω >0) 在区间 0, 3 上单调递增,在区间 3 , 2 上
单调递减,
则 ω = ________.
( 2)设函数
f ( x) =cos ω x( ω>0) ,将 y=f ( x) 的图象向右平移