反坡施工排水专项方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西中南部铁路通道(瓦塘至汤阴东
段)ZNTJ-10标
DK416+250~DK447+220
范家山隧道出口
(DK426+836~DK430+010) 反坡施工排水专项方案
编制:
复核:
审核:
中铁五局(集团)公司
山西中南部铁路通道ZNTJ-10标项目经理部隧道三队
2010年9月4日
范家山隧道隧道出口
反坡施工排水专项方案
1 工程概况
范家山隧道出口位于泗水河边的东上寨村附近,交通便利,洞身有少量的小村落,有乡村便道通行,交通较为便利。隧道采用单洞双线方案,隧道进口里程为DK419+820,隧道出口里程为DK430+010,隧道全长10190m,最大埋深约260m,最小埋深约55m。隧道平面为直线。隧道纵坡为单面上坡,坡率为:5.1‰。隧道出口施工为下坡。
2 自然地理概况
2.1地理位置以及地形、地貌
隧道处于中低山区,地势起伏较大,地面标高950-1250m,相对高差约200m,隧道进口端位于直接裸露的基岩陡坎上,出口处坡度较缓;隧道洞身部位冲沟较发育,且有常年流水,各冲沟内均可见基岩直接裸露。
2.2气候
线路通过地区属中温带干旱、半干旱气候区。以寒冷干燥,大陆型气候为特征。昼夜温差变化较大,表现为降雨量小,蒸发量大,空气干燥,春秋季节多风,夏季短促而炎热,冬季漫长且严寒。平均气
温9.9℃,极端最高气温38.7℃,极端最低气温-12.6℃;年最大降水量810.0mm,年平均蒸发量1506.3mm;瞬间最大风速13.7m/s,主导风向南风;土壤冰冻期从当年10月下旬到次年的3月下旬,季节最大冻土深度75cm。
2.3水文地质
地表水范家山隧道进口段为下郭都河,隧道出口段为泗水河,河内均常年流水,主要受大气降水补给,水量受季节性降水影响变化较大。地下水主要为基岩裂隙水,由于刘家沟组的泥岩且两组垂直节理发育较发育且能形成贯通的水力通道,因此,在刘家沟组内中厚泥岩段时有泉出露,多为下降泉,且流量较大,勘察期间埋深大于50m,地下水主要依靠大气降水补给。
2.4涌水量计算
涌水量计算:根据Q=2.74*a*W*A A=L*B
式中Q-隧道涌水量(m3/d);a-降水入渗系数;W-区域多年年降雨量(mm);A-隧道通过含水体的地下积水面积(Km2);B-L长度内对隧道两侧的影响宽度(Km)。
根据设计资料计算预测,隧道出口DK430+010~DK428+300段估算最大涌水量为1836m3/d, 隧道出口DK428+300~DK426+800段估算最大涌水量为4900m3/d。
3 排水方案
3.1 隧道反坡排水的特点
反坡施工即向洞内施工前进方向为下坡,洞内水向工作面汇集,需要及时抽排,以防止施工掌子面水积聚过深,影响隧道围岩的稳定
和危及隧道施工的机械设备及施工人员的安全,影响正常的施工生产。
3.2 总体方案
反坡排水,需采用机械排水,设置多级泵站接力排水,工作面积水采用移动式潜水泵抽至就近泵站或临时集水坑内,其余已施工地段隧道渗(涌)水经隧道内侧沟自然汇集到临时集水坑内或泵站水池内,由固定排水泵站将积水经排水管路抽排至上一级排水泵站内,如此由固定式排水泵站接力将洞内积水抽排至洞外,经污水处理池处理后排放,固定式排水泵站水仓容量按5min涌水量设计,并考虑施工和清淤方便综合确定;临时集水坑根据汇水段汇水量大小确定。工作水泵按使用1台,备用1台,检修1台配备,针对隧道涌水量大时要适当增加工作水泵;同时为防止突水,设置利用高压风管作为1套应急排水系统。
3.3 主要的排水系统方式
洞内反坡排水方式,根据坡度、水量和设备情况布置管路和排水泵站,一次或分段接力排出洞外。根据本隧道的实际情况,拟在施工中采用的反坡排水系统布置方式有两种:
3.3.1 集水坑接力式反坡排水
对坡度较大隧道施工对排水电机扬程要求相对较高,所以采用集水坑反坡道排水方式,在隧道施工过程中分段开挖反坡排水沟,在每一段的终点开挖集水坑,设抽水机一台,把积水抽至最后一段反坡,最后一个抽水机将积水排除洞外,采用接力的方式将水抽至洞外的污水沉淀处理池。如下图:
LK-集水坑间距is-线路坡度
图(一):集水坑接力式反坡排水方式示意图
3.3.2 长距离管道配合小集水泵收集式反坡排水
对坡度较缓的隧道反坡道施工排水,适合采用较长距离开挖固定式集水坑作为泵站,用小集水泵将开挖面的积水抽到最近的集水坑内,再用大功率的自动排水系统泵站通过排水管道将水排到洞外。如
洞内平面布置示意图
图(二):长距离采用的反坡排水方式
这种方式的优点是所需抽水机较少,需要开挖的集水坑较少,排水泵站较少,缺点是要安装水管较长,抽水机需要跟随坑道的掘进二次拆迁前移。
4 本工程拟采用的主要排水方案
范家山隧道坡度较缓,采用长距离管道配合小集水泵收集反坡排水,考虑隧道反坡施工较长以及水泵扬程等因素,根据设计估算最大
涌水量在DK430+010~DK428+300段拟设置固定式排水泵站2座,分别设置在DK429+300,DK428+700处, DK428+300~DK426+800段拟设置固定式排水泵站4座,分别设置在DK428+100,DK427+700, DK427+300 ,DK426+900处。实际施工时如遇到涌水量较大时可根据具体情况加密,泵站之间采用Φ200mm排水管长距离输送,前方施工掌子面积水采用临时集水坑来收集积水,小集水泵用Φ80mm消防软管将积水收集并输送至最近的较大的集水泵站内,对两个固定式排水泵站之间积水采用洞内两侧设排水沟加横沟自然汇集至高程较低的集水泵站内,由最后一级排水泵站传递至洞外污水处理池。
5 设备选型配套
5.1 抽水设备型号选型原则
隧道排水主要为隧道渗水,同时需考虑到施工用水。水质除地下水的本身成分外,主要还有岩石、石屑、泥浆,同时还有喷射混凝土的回弹物掺杂物,所以除考虑到需排出的水量外,还应考虑到排水的成分组成。
洞内水量是逐段递增,在各级泵站的水泵选型上,应按照排水能力递增原则自下而上递增选配。
各级泵站排水能力应充分配备,并有一定的储备能力。
隧道施工后通过对洞内水的成分组成分析,其主要水质除地下水的本身成分外,主要还有岩石、石屑、泥浆等成分,泥浆泵考虑选用山西天波制泵公司生产的高效耐磨渣浆泵,扬程70m,流量120m3/h,功率37Kw。隧道内泵站间水量递增较大,为了考虑到在管理、操作维修上的方便,泵站间高差相近,选用型号相同水泵,只是在设备数