【五年级数学】五年级数学1.7数的奇偶性练习题(带答案)
小学数学五年级《奇数与偶数》 练习题(含答案)
《奇数与偶数》练习题(含答案)①偶数±偶书=偶数;偶数±奇数=奇数;奇数±偶数=奇数;奇数±奇数=偶数.②偶书×偶数=偶数;偶数×奇数=偶数;奇数×偶数=偶数;奇数×奇数=奇数.③偶数个偶数相加减还是偶数;偶数个奇数相加减也是偶数;奇数个偶数相加减还是偶数;奇数个奇数相加减还是奇数;【例1】(★)能否从、四个3,三个5,两个7中选出5个数,使这5个数的和等于28.分析:因为3,5,7都是奇数,而且5个奇数的和还是奇数,不可能等于偶数22,所以不能.[巩固]:能否从1、3、5、7、9、11、13、15这8个数中选出3个数来,使它们的和为24?分析:不能,奇数个奇数相加的和为奇数不可能为偶数.【例2】是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=27043?分析:不存在.如果(a-b)、(b-c)中有一个偶数则原式不成立,如果(a-b)、(b-c)为奇数,那么a-c=(a-b)+(b-c)为偶数还是不成立.[拓展]是否存在自然数a、b、c,使得(5a-3b)(5b-3c)(25a-9c)=36342?分析:不存在,(25a-9c)=5(5a-3b)+3(5b-3c),所以如果(5a-3b)、(5b-3c)为奇数,那么(25a-9c)为偶数,所以(5a-3b)、(5b-3c)、(25a-9c)三个数中不可能都是奇数,所以不存在符合条件的a、b、c.[拓展]是否存在自然数a、b、c、d,使得(a-b)(b-c)(c-d)(a-d)=36342?分析:不存在.因为(a-d)=(a-b)+(b-c)+(c-d),所以如果(a-b)、(b-c)、(c-d)、(a-d)这四个数中有三个数是奇数,那么第四个数一定也是奇数,所以(a-b)、(b-c)、(c-d)、(a-d)中偶数不可能单独出现,所以这四个数的积要么是4的倍数,要么是奇数,而36342既不是4的倍数,也不是奇数,所以不可能存在自然数a、b、c、d使等式成立.【例3】(★★★)用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a=2001a×b×c×d-b=2003a×b×c×d-c=2005a×b×c×d-d=2007试说明:符合条件的整数a、b、c、d是否存在.分析:a、b、c、d中如果有一个偶数,那么以偶数作为减数的等式等号左边值应该为偶数,与右边的奇数出现矛盾,如果a、b、c、d都是奇数,那么四条式子的等号左边都是偶数,四条等式都不成立.【例4】(★★★)(圣彼得堡数学奥林匹克)沿着河岸长着8丛植物,相邻两丛植物上所结的浆果数目相差1个.问:8丛植物上能否一共结有225个浆果?说明理由.分析:任何相邻两丛植物上所结的浆果数目相差1个,所以任何相邻两丛植物上所结浆果数目和都是奇数.这样一来,8丛植物上所结的浆果总数是4个奇数之和,必为偶数,所以不可能结有225个浆果.[拓展] 能否将1~16这16个自然数填入4×4的方格表中(每个小方格只填一个数),使得各行之和及各列之和恰好是8个连续的自然数?如果能填,请给出一种填法;如果不能填,请说明理由.分析:不能.将所有的行和与列和相加,所得之和为4×4的方格表中所有数之和的2倍.即为(1+2+3+…+15×16)×2=16×17.而8个连续的自然数之和设为k+(k+1)+(k+2)+(k+3)+(k+4)+(k+5)+(k+6)+(k+7)=8k+28若4×4方格表中各行之和及各列之和恰好是8个连续的自然数,应有8k+28=16×17,即2k+7=4×17 ①显然①式左端为奇数,右端为偶数,得出矛盾.所以不能实现题设要求的填数法.【例5】(★★★)有7只正立的茶杯,要求全部翻过来.规定每次翻动其中6只.试问此事能否办成?若茶杯是10只,每次只翻动7只,又能否把正立的茶杯全部翻过来?分析:(1)每一次操作都只能改变偶数个茶杯的放置状态,被翻过来的茶杯永远是偶数,所以不能将所有正立的茶杯翻过来.(2)能,将10个杯子编号后,分四次将所有杯子全部翻过来.第一次翻编号为1、2、3、7、8、9、10的杯子,第二次翻编号为4、5、6、7、8、9、10的杯子,第三次翻编号为1、2、3、4、5、7、8的杯子,第三次翻编号为1、2、3、4、5、9、10的杯子.[拓展] 有7面时钟,都指向12点,现在做一些操作,每次将其中六面钟往前或往后拨6小时,那么是否有可能将这7面钟都归于6点?分析:这道题与原题无任何区别,过渡到下一拓展.[拓展]有9面时钟,其中有3面指向12点,有三面指向3点,另外三面指向6点,现在做一些操作,每次将其中两面钟往前或往后拨3小时,那么是否有可能将这9面钟都归于6点?分析:不可能,不妨将一面种往前或往后拨3小时称为一个操作,那么将这9面钟归于6点,需要经过奇数个操作,但是,每次都要进行两个操作,因此不可能经过若干次偶数个操作完成技术个操作.操作,每次操作拉一下同一行或同一列灯的开关,请问能否经过若干次操作,使这36盏灯全部亮.分析:不能,每一次改变6盏灯的状态,无论这6盏灯原来的状态如何,等只能增加或减少偶数盏亮着的灯,所以无论拉多少次都不能将这36盏灯全部亮.[拓展]如果36盏灯当中有两盏灯是亮着的,那么是否有可能经过若干次操作,使这36盏灯全部亮.分析:不能,如果两盏灯是亮着,而且经过若干次操作,使这36盏灯全部亮的话,那么原来亮着得灯要拉偶数下,原来不亮的灯要拉奇数下,两盏灯若在同一行(或同一列),那么该行(或该列)被拉的次数,与这两盏灯所在的列(或行)被拉的次数同奇偶,与其他列(或行)被拉的次数的奇偶性质相反,那么其他行(或列)被拉的次数无论是奇数还是偶数,都不能使该行所有灯同熄同亮,若两盏原来两着的灯不同行同列,分析法雷同.【例7】有大、小两个盒子,其中大盒内装1001枚白棋子和1000枚同样大小的黑棋子,小盒内装有足够多的黑棋子。
五年级奥数题及答案:奇数偶数与奇偶性分析问题
五年级奥数题及答案:奇数偶数与奇偶性分析问题五年级奥数题及答案:奇数偶数与奇偶性分析问题编者小语:数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。
这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。
查字典数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:奇数偶数与奇偶性分析问题,可以帮助到你们,助您快速通往高分之路!!奇数偶数与奇偶性分析【奇数和偶数】例1 用l、2、3、4、5这五个数两两相乘,可以得到10个不同的乘积。
问乘积中是偶数多还是奇数多?讲析:如果两个整数的积是奇数,那么这两个整数都必须是奇数。
在这五个数中,只有三个奇数,两两相乘可以得到3个不同的奇数积。
而偶数积共有7个。
所以,乘积中是偶数的多。
例2 有两组数,甲组:1、3、5、7、9……、23;乙组:2、4、6、8、10、……24,从甲组任意选一个数与乙组任意选出一个数相加,能得到______个不同的和。
讲析:甲组有12个奇数,乙组有12个偶数。
甲组中任意一个数与乙组中任意一个数相加的和,必为奇数,其中最大是47,最小是3。
从3到47不同的奇数共有23个。
所以,能得到23个不同的和。
本题中,我们不能认为12个奇数与12个偶数任意搭配相加,会得到12×12=144(个)不同的和。
因为其中有很多是相同的。
【奇偶性分析】例1 某班同学参加学校的数学竞赛。
试题共50道。
评分标准是:答对一道给3分,不答给1分,答错倒扣1分。
请你说明:该班同学得分总和一定是偶数。
讲析:如果50道题都答对,共可得150分,是一个偶数。
每答错一道题,就要相差4分,不管答错多少道题,4的倍数总是偶数。
150减偶数,差仍然是一个偶数。
同理,每不答一道题,就相差2分,不管有多少道题不答,2的倍数总是偶数,偶数加偶数之和为偶数。
1.7数的奇偶性练习题及答案
基础作业不夯实基础,难建成高楼。
(3)第29次接球的是小平,对吗?()2. 填一填。
⑴如果用n表示自然数,那么2n 一定是()数,2n+1 一定是()数。
⑵任意两个奇数的和是()数,差是()数,积是()数。
(3)任意两个偶数的和是()数,差是()数,积是()数。
(4)任意一个奇数和一个偶数的和是()数,积是()数。
3. 晚上要开电灯,淘气一连按了7下开关。
请你说说这时灯是开的?还是关的?如果按下呢?重点难点,一网打尽。
5. 猜一猜,算一算。
F面几道题的结果是奇数还是偶数?第7课时数的奇偶性16 4.翻硬币游戏。
综合提升2567+345 (8758 —999 ( )2+ 4 + 8+ 10 + 12+……+ 98 + 100 ( )1 +2 +3 +4 + ……+ 99 + 100 ()6. 张云按一定的规律画图形(如下图)。
......形。
7. 选卡片游戏。
有15张卡片,其中有3张写着1,有3张写着2,有5张写着3,有4张写着4。
拓展探究举一反三,应用创新,方能一显身手。
8. 按要求填数。
(1 )和为奇数265 + 37 □,□里可填()。
28□+ 268,口里可填()。
(2 )和为偶数265 + 37 □,□里可填()。
28□+ 268,口里可填()。
第7 课时(1 )第3个图形是();第5个图形是();第15个图形是();第25个是()。
(2)图形所在位置是3的奇数倍数的是()形,图形所在位置是3的偶数倍数的是()(1)9. 三个杯子,杯口全部朝上放在桌上。
每次翻动子全部杯口朝下吗?2个杯子,经过若干次翻动,能否使三个杯血屮血4■鮭I的tiUW孑If AT1. (1)提示:单数次是小平,双数次是小玲。
(2)小玲(3)对2. (1)偶奇(2)偶偶奇(3)偶偶偶(4)奇偶3. 开的关的4. 反面正面5. 偶数奇数偶数偶数6. (1)口☆ □ ☆(2)口△7. 略8. (1)0,2,4,6,8 1 ,3,5,7,9(2) 1 ,3,5,7,90 ,2,4,6,89. 不能使3 个杯子的杯口全部朝下。
小学五年级奥数精讲:《奇偶性》习题及答案
小学五年级奥数精讲:《奇偶性》习题及答案小学五年级奥数精讲:《奇偶性》题及其答案一、知识总结:整数按照能不能被2整除,可以分为两类:(1)能被2整除的自然数叫偶数,例如,2,4,6,8,10,12,14,16,…(2)不能被2整除的自然数叫奇数,例如1,3,5,7,9,11,13,15,17,…整数由小到大排列,奇、偶数是交替出现的。
相邻两个整数大小相差1,所以肯定是一奇一偶。
因为偶数能被2整除,所以偶数可以表示为2n的形式,其中n为整数;因为奇数不能被2整除,所以奇数可以表示为2n+1的形式,其中n为整数。
每一个整数不是奇数就是偶数,这个属性叫做这个数的奇偶性。
奇偶数有如下一些重要性质:(1)两个奇偶性相同的数的和(或差)一定是偶数;两个奇偶性不同的数的和(或差)一定是奇数。
反过来,两个数的和(或差)是偶数,这两个数奇偶性相同;两个数的和(或差)是奇数,这两个数肯定是一奇一偶。
(2)奇数个奇数的和(或差)是奇数;偶数个奇数的和(或差)是偶数。
任意多个偶数的和(或差)是偶数。
(3)两个奇数的乘积是奇数,一个奇数与一个偶数的乘积一定是偶数。
(4)若干个数相乘,如果其中有一个因数是偶数,那么积必是偶数;如果所有因数都是奇数,那么积就是奇数。
反过来,如果若干个数的积是偶数,那么因数中至少有一个是偶数;如果若干个数的积是奇数,那么所有的因数都是奇数。
(5)在能整除的情况下,偶数除以奇数得偶数;偶数除以偶数可能得偶数,也可能得奇数。
奇数一定不克不及被偶数整除。
(6)偶数的平方能被4整除;奇数的平方除以4的余数是1。
因为(2n)2=4n2=4×n2,所以(2n)2能被4整除;因为(2n+1)2=4n2+4n+1=4×(n2+n)+1,所以(2n+1)2除以4余1。
(7)相邻两个自然数的乘积必是偶数,其和必是奇数。
(8)如果一个整数有奇数个约数(包孕1和这个数自己),那末这个数一定是平方数;如果一个整数有偶数个约数,那末这个数一定不是平方数。
最新小学数学人教版五年下册奇数与偶数问题练习大全
小学数学人教版五年下册奇数与偶数问题练习大全------------------------------------------作者xxxx------------------------------------------日期xxxx奇数和偶数一、奇数和偶数的性质(一)两个整数和的奇偶性.奇数+奇数=( ),奇数+偶数=( ),偶数+偶数=()一般的,奇数个奇数的和是( ),偶数个奇数的和是( ),任意个偶数的和为( )。
(二)两个整数差的奇偶性。
奇数-奇数=( ),奇数-偶数=( ),偶数-偶数=( ),偶数-奇数=( )。
(三)两个整数积的奇偶性。
奇数*奇数=( ),奇数*偶数=(),偶数*偶数=()一般的,在整数连乘当中,只要有一个因数是偶数,那么其积必为( );如果所有因数都是奇数,那么其积必为( )。
(四)两个整数商的奇偶性。
在能整除的情况下,偶数除以奇数得(),偶数除以偶数可能得( ),也可能得( ),奇数不能被偶数整除。
(五)如果两个整数的和或差是偶数,那么这两个整数或者都是( ),或者都是( )。
(六)两个整数之和与两个整数之差有相同的奇偶性,即A+B、A-B奇偶性相同(A、B为整数).(七)相邻两个整数之和为( ),相邻两个整数之积为( )。
(八)奇数的平方被除余1,偶数的平方是4的倍数。
(九)如果一个整数有奇数个约数,那么这个数一定是完全平方数(1,4,9,16,25……是完全平方数)。
如果一个数有偶数个约数,那么这个数一定不是完全平方数.奇数与偶数练习题一.填空题1。
1+2+3+4+5+……+49+50的结果( )。
(填偶数或奇数)2. 有一列数1,1,2,4,7,13,24,44,81,……,从第4个数开始,每个数都是它前边三个数之和,那么第100个数是( )。
(填偶数或奇数)3.某自然数分别与两个相邻自然数相乘,所得积相差100,某数是( )。
4。
三个相邻偶数的积是四位数***8,这三个相邻偶数是( )。
小学五年级数的奇偶性练习题
小学五年级数的奇偶性练习题一、选择题1. 下列哪个数是偶数?A. 5B. 8C. 11D. 132. 用两个偶数相加,结果一定是偶数。
A. 对B. 错3. 一个数除以2的余数如果是1,那么这个数是奇数。
A. 对B. 错4. 下列哪个数是奇数?A. 12B. 17C. 20D. 24二、填空题1. 用两个奇数相加,结果一定是__________。
2. 用奇数减去偶数,结果一定是__________。
3. 用偶数乘以偶数,结果一定是__________。
4. 如果一个数的个位数是4,那么这个数是__________。
三、判断题判断下列说法是否正确,正确的用“√”表示,错误的用“×”表示。
1. 一个数除以2的余数如果是0,那么这个数一定是偶数。
2. 一个数除以2的余数如果是1,那么这个数一定是奇数。
3. 两个奇数相乘的积一定是奇数。
4. 两个偶数相乘的积一定是偶数。
四、解答题1. 请写出5个连续的奇数。
2. 请写出5个连续的偶数。
3. 请你判断下列每个数是奇数还是偶数,并解释你的判断依据。
a) 37b) 48c) 53d) 62五、应用题小明在一个数列中,他把数列中的每个数都乘以2。
原来的第一个数是5,现在的第一个数是多少?原来的第二个数是12,现在的第二个数是多少?你能找出这个规律吗?六、综合题小华有一行数,第一个数是3,后面的每个数都是前一个数加上2。
请你判断以下每个数是奇数还是偶数,并写出你的判断过程。
3、5、7、9、11、13、15、17注意:对于解答题,请用完整的解题思路和答案。
北师大版-数学-五年级上册-1.7 数的奇偶性
小学-数学-打印版
小学-数学-打印版 课时7
数的奇偶性 1、把奇数涂上红色,偶数涂上黄色。
2、选择。
(
1)相邻两个自然数的和是(
)。
A 奇数 B
偶数 C 合数
(2)既是质数又是偶数的数是( )。
A 4
B 3
C 2
(3)一个数是比20小的奇数,它同时是3和5的倍数这个数是( )。
A 5
B 9
C 15
(4)任意一个奇数与一个偶数的和是( )数,积是( )数。
A 奇数
B 偶数
C 合数
3、不用计算,判断下列算式的结果是奇数还是偶数填在括号内。
989+509 ( ) 261+413 ( )
32468+764 ( ) 688+5432 ( )
4、一枚硬币放在桌面上,开始是正面(数字)朝上,翻动1次后反面朝上,翻动2次后,正面朝上。
(1)当这枚硬币翻动35次后,朝上的是正面还是反面?为什么?
(2)小明说这枚硬币翻动2012次后,硬币反面朝上。
他的说法对吗?为什么?
5.有一列数如下:
3,6,9,12,15,18,21,……
在这列数中,第2000个是奇数还是偶数?为什么?
5. 偶数 在这列数中排序为奇数的数是奇数,排序为偶数的数是是偶数。
数字的奇偶判断练习题
数字的奇偶判断练习题小学数学练习题:数字的奇偶判断一、填入适当的数字,使等式成立。
1. 7 + 5 = 4 + ____2. 8 + 6 = 7 + ____3. 9 + 2 = 10 + ____4. 13 + 3 = 10 + ____5. 15 + 2 = 13 + ____二、判断以下数字是奇数还是偶数。
1. 172. 323. 494. 525. 686. 977. 1048. 115三、填入适当的数字,使等式成立。
1. 7 × 4 = 6 × ____2. 8 × 9 = 7 × ____3. 12 × 3 = 9 × ____4. 14 × 5 = 13 × ____5. 18 × 2 = 17 × ____四、判断以下数字是奇数还是偶数。
1. 212. 363. 474. 485. 666. 957. 1088. 120五、完成下列数列。
1. 2, 4, 6, ____, 102. 11, 13, 15, ____, 193. 23, 26, 29, ____, 354. 40, ____, 46, 49, 525. 57, 60, 63, ____, 69六、将以下数字分为两组,一组是奇数,一组是偶数。
1, 3, 5, 6, 9, 12, 15, 18, 21, 24七、填入适当的数字,使等式成立。
1. 9 ÷ 3 = 8 ÷ ____2. 12 ÷ 6 = 10 ÷ ____3. 16 ÷ 4 = 14 ÷ ____4. 20 ÷ 5 = 17 ÷ ____5. 24 ÷ 6 = 23 ÷ ____八、判断以下数字是奇数还是偶数,并写出它的因数。
1. 272. 423. 554. 645. 72九、填入适当的数字,使等式成立。
奇偶数的五年级奥数题及参考答案
奇偶数的五年级奥数题及参考答案
关于奇偶数的五年级奥数题及参考答案
编者小语:奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的.数学学习习惯的过程。
让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。
这里为大家准备了小学五年级奥数题,希望店铺整理的五年级奥数题及参考答案:奇数与偶数及奇偶性的应用,可以帮助到你们,助您快速通往高分之路!!
一、基本概念和知识
1.奇数和偶数
整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
偶数通常可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
2.奇数与偶数的运算性质
性质1:偶数±偶数=偶数,
奇数±奇数=偶数。
性质2:偶数±奇数=奇数。
性质3:偶数个奇数相加得偶数。
性质4:奇数个奇数相加得奇数。
性质5:偶数×奇数=偶数,
奇数×奇数=奇数。
小学数学奇数偶数练习题
小学数学奇数偶数练习题1. 简介数学是小学生学习的重要科目之一,其中理解奇数和偶数的概念是培养他们逻辑思维和数学能力的基础。
本文将提供一系列有趣的练习题,帮助小学生巩固对奇数和偶数的理解。
2. 基本概念回顾在练习题开始之前,先回顾一下奇数和偶数的基本概念。
奇数:能被2整除余1的数,如1、3、5等。
偶数:能被2整除余0的数,如2、4、6等。
3. 练习题请根据题目要求,判断下面的数是奇数还是偶数,并在括号内写出答案。
a) 7 ( )b) 10 ( )c) 15 ( )d) 22 ( )e) 37 ( )f) 48 ( )g) 51 ( )h) 64 ( )4. 解答a) 7 (奇数)b) 10 (偶数)c) 15 (奇数)d) 22 (偶数)e) 37 (奇数)f) 48 (偶数)g) 51 (奇数)h) 64 (偶数)5. 奇偶数性质下面是关于奇数和偶数性质的一些练习题,请仔细思考并写出答案。
a) 两个奇数的和是奇数还是偶数?b) 两个偶数的和是奇数还是偶数?c) 奇数与偶数的差是奇数还是偶数?d) 偶数与偶数的差是奇数还是偶数?6. 解答a) 两个奇数的和是偶数。
因为两个奇数相加,每个奇数都有1个余数,两个奇数相加后,余数相加为2,而2是偶数。
b) 两个偶数的和是偶数。
因为两个偶数相加,每个偶数都没有余数,所以相加后也没有余数,结果是偶数。
c) 奇数与偶数的差是奇数。
因为奇数与偶数相减,奇数有1个余数,而偶数没有余数,结果仍然有1个余数,所以是奇数。
d) 偶数与偶数的差是偶数。
因为偶数与偶数相减,偶数没有余数,相减后仍然没有余数,结果是偶数。
7. 奇偶性质综合练习下面是一些综合练习题,将考察奇数和偶数的性质,请根据题目要求作答。
a) 某个数字是奇数,加上25之后得到的数是偶数,这个数字是多少?b) 一个数字是偶数,减去10之后仍然是偶数,这个数字是多少?c) 一个数字是偶数,乘以9之后得到的数是奇数,这个数字是多少?8. 解答a) 设这个数字为x。
小学5年级数学奇数与偶数练习题
小学5年级数学奇数与偶数练习题在小学五年级的数学课程中,了解和掌握奇数和偶数的概念是非常重要的。
本文将为大家提供一些关于奇数和偶数的练习题,帮助同学们巩固对奇数和偶数的理解。
练习题一:判断奇偶请判断以下数字是奇数还是偶数:1. 182. 273. 424. 555. 646. 79练习题二:奇偶相加计算以下奇数与偶数之和:1. 3 + 122. 17 + 83. 25 + 144. 39 + 65. 41 + 206. 53 + 16练习题三:奇偶相减计算以下奇数从偶数减去的结果:1. 14 - 72. 26 - 103. 35 - 184. 42 - 165. 55 - 296. 68 - 41练习题四:奇偶乘法计算以下奇数与偶数相乘的结果:1. 7 × 42. 9 × 63. 11 × 84. 15 × 105. 21 × 126. 25 × 16练习题五:奇偶除法计算以下偶数除以奇数的结果(结果保留一位小数):1. 16 ÷ 32. 20 ÷ 53. 24 ÷ 74. 30 ÷ 95. 36 ÷ 116. 40 ÷ 13练习题六:数字填空将下列空格填上适当的数字,使得等式成立:1. __ + 5 = 182. __ × 3 = 423. __ - 6 = 334. __ ÷ 4 = 95. __ × 7 - 14 = 49练习题七:应用题小明有16张纸,他想将这些纸平均分成若干叠(每叠纸张数相同),请问他最多能分成几叠?练习题八:应用题班级里有30个学生,老师要将他们坐成几排,使得每排的学生数相同。
请问老师最多能将学生分成几排?以上练习题旨在帮助小学五年级的同学加深对奇数和偶数的理解,并提高计算能力。
同学们可以通过练习,巩固课堂上所学的知识,并在解题过程中培养逻辑思维和数学思维能力。
小学数学五年级《奇数与偶数》 练习题(含答案)
《奇数与偶数》练习题(含答案)①偶数±偶书=偶数;偶数±奇数=奇数;奇数±偶数=奇数;奇数±奇数=偶数.②偶书×偶数=偶数;偶数×奇数=偶数;奇数×偶数=偶数;奇数×奇数=奇数.③偶数个偶数相加减还是偶数;偶数个奇数相加减也是偶数;奇数个偶数相加减还是偶数;奇数个奇数相加减还是奇数;【例1】(★)能否从、四个3,三个5,两个7中选出5个数,使这5个数的和等于28.分析:因为3,5,7都是奇数,而且5个奇数的和还是奇数,不可能等于偶数22,所以不能.[巩固]:能否从1、3、5、7、9、11、13、15这8个数中选出3个数来,使它们的和为24?分析:不能,奇数个奇数相加的和为奇数不可能为偶数.【例2】是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=27043?分析:不存在.如果(a-b)、(b-c)中有一个偶数则原式不成立,如果(a-b)、(b-c)为奇数,那么a-c=(a-b)+(b-c)为偶数还是不成立.[拓展]是否存在自然数a、b、c,使得(5a-3b)(5b-3c)(25a-9c)=36342?分析:不存在,(25a-9c)=5(5a-3b)+3(5b-3c),所以如果(5a-3b)、(5b-3c)为奇数,那么(25a-9c)为偶数,所以(5a-3b)、(5b-3c)、(25a-9c)三个数中不可能都是奇数,所以不存在符合条件的a、b、c.[拓展]是否存在自然数a、b、c、d,使得(a-b)(b-c)(c-d)(a-d)=36342?分析:不存在.因为(a-d)=(a-b)+(b-c)+(c-d),所以如果(a-b)、(b-c)、(c-d)、(a-d)这四个数中有三个数是奇数,那么第四个数一定也是奇数,所以(a-b)、(b-c)、(c-d)、(a-d)中偶数不可能单独出现,所以这四个数的积要么是4的倍数,要么是奇数,而36342既不是4的倍数,也不是奇数,所以不可能存在自然数a、b、c、d使等式成立.【例3】(★★★)用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a=2001a×b×c×d-b=2003a×b×c×d-c=2005a×b×c×d-d=2007试说明:符合条件的整数a、b、c、d是否存在.分析:a、b、c、d中如果有一个偶数,那么以偶数作为减数的等式等号左边值应该为偶数,与右边的奇数出现矛盾,如果a、b、c、d都是奇数,那么四条式子的等号左边都是偶数,四条等式都不成立.【例4】(★★★)(圣彼得堡数学奥林匹克)沿着河岸长着8丛植物,相邻两丛植物上所结的浆果数目相差1个.问:8丛植物上能否一共结有225个浆果?说明理由.分析:任何相邻两丛植物上所结的浆果数目相差1个,所以任何相邻两丛植物上所结浆果数目和都是奇数.这样一来,8丛植物上所结的浆果总数是4个奇数之和,必为偶数,所以不可能结有225个浆果.[拓展] 能否将1~16这16个自然数填入4×4的方格表中(每个小方格只填一个数),使得各行之和及各列之和恰好是8个连续的自然数?如果能填,请给出一种填法;如果不能填,请说明理由.分析:不能.将所有的行和与列和相加,所得之和为4×4的方格表中所有数之和的2倍.即为(1+2+3+…+15×16)×2=16×17.而8个连续的自然数之和设为k+(k+1)+(k+2)+(k+3)+(k+4)+(k+5)+(k+6)+(k+7)=8k+28若4×4方格表中各行之和及各列之和恰好是8个连续的自然数,应有8k+28=16×17,即2k+7=4×17 ①显然①式左端为奇数,右端为偶数,得出矛盾.所以不能实现题设要求的填数法.【例5】(★★★)有7只正立的茶杯,要求全部翻过来.规定每次翻动其中6只.试问此事能否办成?若茶杯是10只,每次只翻动7只,又能否把正立的茶杯全部翻过来?分析:(1)每一次操作都只能改变偶数个茶杯的放置状态,被翻过来的茶杯永远是偶数,所以不能将所有正立的茶杯翻过来.(2)能,将10个杯子编号后,分四次将所有杯子全部翻过来.第一次翻编号为1、2、3、7、8、9、10的杯子,第二次翻编号为4、5、6、7、8、9、10的杯子,第三次翻编号为1、2、3、4、5、7、8的杯子,第三次翻编号为1、2、3、4、5、9、10的杯子.[拓展] 有7面时钟,都指向12点,现在做一些操作,每次将其中六面钟往前或往后拨6小时,那么是否有可能将这7面钟都归于6点?分析:这道题与原题无任何区别,过渡到下一拓展.[拓展]有9面时钟,其中有3面指向12点,有三面指向3点,另外三面指向6点,现在做一些操作,每次将其中两面钟往前或往后拨3小时,那么是否有可能将这9面钟都归于6点?分析:不可能,不妨将一面种往前或往后拨3小时称为一个操作,那么将这9面钟归于6点,需要经过奇数个操作,但是,每次都要进行两个操作,因此不可能经过若干次偶数个操作完成技术个操作.操作,每次操作拉一下同一行或同一列灯的开关,请问能否经过若干次操作,使这36盏灯全部亮.分析:不能,每一次改变6盏灯的状态,无论这6盏灯原来的状态如何,等只能增加或减少偶数盏亮着的灯,所以无论拉多少次都不能将这36盏灯全部亮.[拓展]如果36盏灯当中有两盏灯是亮着的,那么是否有可能经过若干次操作,使这36盏灯全部亮.分析:不能,如果两盏灯是亮着,而且经过若干次操作,使这36盏灯全部亮的话,那么原来亮着得灯要拉偶数下,原来不亮的灯要拉奇数下,两盏灯若在同一行(或同一列),那么该行(或该列)被拉的次数,与这两盏灯所在的列(或行)被拉的次数同奇偶,与其他列(或行)被拉的次数的奇偶性质相反,那么其他行(或列)被拉的次数无论是奇数还是偶数,都不能使该行所有灯同熄同亮,若两盏原来两着的灯不同行同列,分析法雷同.【例7】有大、小两个盒子,其中大盒内装1001枚白棋子和1000枚同样大小的黑棋子,小盒内装有足够多的黑棋子。
最新小学五年级数的奇偶性练习题及答案
2015小学五年级数的奇偶性练习题及答案基础作业不夯实基础,难建成高楼。
1. 小玲和小平打羽毛球,小玲发球,假如2分钟内两人接球没有间断。
(1)完成下面的表格。
接球顺序接球人第1次小平第2次第3次……第40次第41次(2)第10次接球的是小玲还是小平?()(3)第29次接球的是小平,对吗?()2. 填一填。
(1)如果用n表示自然数,那么2n一定是()数,2n+1一定是()数。
(2)任意两个奇数的和是()数,差是()数,积是()数。
(3)任意两个偶数的和是()数,差是()数,积是()数。
(4)任意一个奇数和一个偶数的和是()数,积是()数。
3. 晚上要开电灯,淘气一连按了7下开关。
请你说说这时灯是开的?还是关的?如果按16下呢?4. 翻硬币游戏。
综合提升重点难点,一网打尽。
5. 猜一猜,算一算。
下面几道题的结果是奇数还是偶数?2567+345 ( )8758-999 ( )2+4+8+10+12+……+98+100 ( )1+2+3+4+……+99+100 ( )6. 张云按一定的规律画图形(如下图)。
☆☆□☆☆△☆☆□☆☆△……(1)第3个图形是();第5个图形是();第15个图形是();第25个是()。
(2)图形所在位置是3的奇数倍数的是()形,图形所在位置是3的偶数倍数的是()形。
7. 选卡片游戏。
有15张卡片,其中有3张写着1,有3张写着2,有5张写着3,有4张写着4。
(1)从中选出两张,这两张的和是偶数,这两张卡片上可能写着什么?(2)从中选出两张,这两张的和是奇数,这两张卡片上可能写着什么?(3) 从中选出两张,这两张的差是奇数,这两张卡片上可能写着什么?拓展探究举一反三,应用创新,方能一显身手。
8.按要求填数。
(1)和为奇数265+37□,□里可填()。
28□+268,□里可填()。
(2)和为偶数265+37□,□里可填()。
28□+268,□里可填()。
9.三个杯子,杯口全部朝上放在桌上。
奇偶性五年级练习题
奇偶性五年级练习题一、填空题1. 345是_______数。
2. 1982是_______数。
3. 12345是_______数。
4. 24680是_______数。
5. 7777是_______数。
二、判断题1. 64是偶数。
()2. 113是奇数。
()3. 13579是偶数。
()4. 246890是奇数。
()5. 10000是偶数。
()三、选择题1. 下列哪个数是偶数?A. 137B. 548D. 9012. 以下哪个数是奇数?A. 720B. 248C. 579D. 3363. 682是偶数,那么它的下一个奇数是多少?A. 681B. 684C. 683D. 6804. 如果一个数的个位数是2、4、6、8或0,那么这个数一定是_______。
A. 奇数B. 偶数5. 2871 + 2048 等于_________。
A. 4919B. 4917D. 4916四、解答题1. 用两个偶数相加,结果是奇数吗?为什么?2. 如果一个数的个位数是9,那么这个数一定是奇数吗?3. 用一个奇数和一个偶数相加,结果是奇数吗?为什么?4. 请写出一个100以内的连续的三个奇数。
5. 请写出一个100以内的连续的四个偶数。
六、附加题(挑战题)1. 在一个有100个人的房间里,每个人都有一个编号,从1到100。
只有一个人的编号是奇数,其他99个人的编号都是偶数。
如果从房间里随机选择两个人,那么他们中有一人的编号为奇数的概率是多少?2. 找出100以内所有的奇数和偶数之间的规律,并用一个简洁的数学公式表示出来。
以上是奇偶性五年级练习题,请根据题目要求完成作业。
奇偶数练习题五年级
奇偶数练习题五年级在我们的日常生活中,数学是一个非常重要的学科。
它不仅帮助我们进行计算,还培养了我们的逻辑思维和分析能力。
在数学中,奇偶数是一个基本的概念,它在解决问题和探索数的规律上起到了重要的作用。
本文将介绍一些奇偶数练习题,供五年级学生进行练习。
练习题一:判断奇偶数1. 9是奇数还是偶数?2. 16是奇数还是偶数?3. 25是奇数还是偶数?4. 30是奇数还是偶数?5. 37是奇数还是偶数?解答:1. 9是奇数。
2. 16是偶数。
3. 25是奇数。
4. 30是偶数。
5. 37是奇数。
练习题二:奇数加偶数计算以下数的和:1. 5 + 122. 7 + 183. 15 + 204. 3 + 14 + 255. 11 + 22 + 33 + 44解答:1. 5 + 12 = 172. 7 + 18 = 253. 15 + 20 = 354. 3 + 14 + 25 = 425. 11 + 22 + 33 + 44 = 110练习题三:奇数减偶数计算以下数的差:1. 15 - 82. 20 - 93. 16 - 54. 37 - 105. 42 - 24 - 6解答:1. 15 - 8 = 72. 20 - 9 = 113. 16 - 5 = 114. 37 - 10 = 275. 42 - 24 - 6 = 12练习题四:奇数乘以偶数计算以下数的积:1. 3 × 42. 5 × 63. 7 × 84. 9 × 105. 11 × 12 × 2解答:1. 3 × 4 = 122. 5 × 6 = 303. 7 × 8 = 564. 9 × 10 = 905. 11 × 12 × 2 = 264练习题五:奇数除以偶数计算以下数的商:1. 15 ÷ 62. 21 ÷ 83. 35 ÷ 104. 30 ÷ 55. 48 ÷ 16 ÷ 2解答:1. 15 ÷ 6 = 2余32. 21 ÷ 8 = 2余53. 35 ÷ 10 = 3余54. 30 ÷ 5 = 65. 48 ÷ 16 ÷ 2 = 1本文提供了一些奇偶数练习题,帮助五年级学生巩固对奇偶数的认识和运算。
五年级奇偶性练习题及答案【三篇】
【 导语】芬芳袭人花枝俏,喜气盈门捷报到。心花怒放看通知,梦想实现今日事,喜笑颜开忆往昔,勤学苦读最美丽。 在学习中学会复习,在运用中培养能力,在总结中不断提高。以下是无忧考为大家整理的《五年级奇偶性练习题及答案【三 篇】》 供您查阅。ห้องสมุดไป่ตู้
【第一篇】
【第二篇】 试题
如右上图所示,将相邻的房间黑、白相间染色。无论从哪个房间开始走,因为总是黑白相间地走过各房间,所以走过的 黑、白房间数最多相差1。而右上图有7黑5白,所以不可能不重复地走遍每一个房间。
2021小学五年级数的奇偶性练习题及答案
2021小学五年级数的奇偶性练习题及答案----90c58463-6ea1-11ec-8bad-7cb59b590d7d基础作业没有坚实的基础,很难建造高层建筑。
1.小玲和小平打羽毛球,小玲发球,假如2分钟内两人接球没有间断。
(1)完成下面的表格。
接球顺序第1次第2次第3次…第40次第41次接球人小平…(2)第10次接球的是小玲还是小平?()(3)第29次接球的是小平,对吗?()2.填一填。
(1)如果用n表示一个自然数,那么2n必须是一个()数,2n+1必须是一个()数。
(2)任意两个奇数之和为()数,差为()数,积为()数。
(3)任意两个偶数之和为()数,差为()数,积为()数。
(4)任意奇数和偶数之和为()数,乘积为()数。
3.晚上要开电灯,淘气一连按了7下开关。
请你说说这时灯是开的?还是关的?如果按16下呢?4.掷硬币游戏。
-----欢迎登陆明师在线浏览更多的学习资讯!-----全面推广重点难点,一网打尽。
5.猜一猜,算一算。
以下问题的结果是奇数还是偶数?2567+345()8758-999()2+4+8+10+12+……+98+100()1+2+3+4+……+99+100()6.张云按一定的规律画图形(如下图)。
☆☆□☆☆△☆☆□☆☆△……(1)第三个数字是();第五个数字是();第15个数字是();25号是()。
(2)如果图形的位置是3的奇数倍,则为()形状;如果图形的位置是3的偶数倍,则为()形状。
7.选择纸牌游戏。
有15张卡片,其中有3张写着1,有3张写着2,有5张写着3,有4张写着4。
(1)从中选出两张,这两张的和是偶数,这两张卡片上可能写着什么?(2)选择其中两个。
这两张牌的总和是奇数。
这两张卡片上写着什么?(3)从中选出两张,这两张的差是奇数,这两张卡片上可能写着什么?扩大勘探举一反三,应用创新,方能一显身手。
8.按要求填数。
(1)和为奇数-----欢迎来到名仕在线浏览更多学习信息-----265+37□,□里可填()。
数字的奇偶判断练习题及答案
数字的奇偶判断练习题及答案
题目一:数字奇偶判断
请判断以下数字是奇数还是偶数,并在题后的括号内写出判断依据。
1. 135 (奇数,因为末位数字5为奇数)
2. 246 (偶数,因为末位数字6为偶数)
3. 509 (奇数,因为末位数字9为奇数)
4. 722 (偶数,因为末位数字2为偶数)
5. 1007 (奇数,因为末位数字7为奇数)
题目二:奇偶性质探究
请回答以下问题:
1. 一个整数的个位是4,这个整数是奇数还是偶数?为什么?
2. 一个数的各位数字之和是18,这个数是奇数还是偶数?为什么?
3. 这个世界上有没有只有一个数字的奇数和偶数?为什么?
答案一:
1. 135 (奇数,因为末位数字5为奇数)
2. 246 (偶数,因为末位数字6为偶数)
3. 509 (奇数,因为末位数字9为奇数)
4. 722 (偶数,因为末位数字2为偶数)
5. 1007 (奇数,因为末位数字7为奇数)
答案二:
1. 一个整数的个位是4,这个整数是偶数。
因为个位数字是4,而
偶数的末位数字可以是0、2、4、6、8中的任意一个。
2. 一个数的各位数字之和是18,这个数是偶数。
因为一个数的个位数字之和为18,则个位数字一定是偶数,而偶数的末位数字可以是0、
2、4、6、8中的任意一个。
3. 这个世界上没有只有一个数字的奇数和偶数。
因为奇数和偶数是
相对的概念,奇数至少有两位数字以上,才能确定其奇偶性质。
五年级数学奇偶性练习题
奇偶性练习一、基础回顾。
1.一个偶数是a,那么a±1是();一个奇数是C,与它相邻的连个偶数是()和()。
2.若m表示一个大于2的偶数,那么与m相邻的两个偶数分别是()和()。
3.若n表示一个大于2的奇数,那么与n相邻且比它大的奇数是()。
4.若a表示一个非0自然数,那么偶数可以表示为(),奇数可以表示为()。
二、偶数+偶数=(),偶数+奇数=(),奇数+奇数=()偶数-偶数=(),偶数-奇数=(),奇数-奇数=()偶数×偶数=(),偶数×奇数=(),奇数×奇数=()三、根据第二题的结论填“奇数”或“偶数”。
200个奇数相加和是(),1001个奇数相加和是()。
2N个奇数相加和是(),2N+1个奇数相加和是()。
(N是任意一个非零自然数)402个偶数相加和是(),533个偶数相加和是()。
2N个偶数相加和是(),2N+1个偶数相加和是()。
(N是任意一个非零自然数)1+39+555+71+91+15+17+19+65+73的和是()。
8+979+488+409+668+784-697结果是()。
随意打开一本书,左右两页的页码和是()。
四、一只小船每天从河的南岸摆渡到北岸,再从北岸摆渡到南岸,多次往返。
已知小船最初在南岸。
1.摆渡15次后,小船在()(填“南岸”或者“北岸”)2.小明说:“摆渡2022次后,小船在北岸。
”他说得()(填“正确”或“错误”)五、7个连续偶数的和294,这里面最大的偶数是(),最小的偶数是()。
解决问题:1.算式1+2+3+4+5+6+……+95的和是奇数还是偶数?2.能不能将1010写成10个连续自然数之和?如:75=3+4+5+6+7+8+9+10+11+12,如果能,把它写出来,不能不能,请说明理由。
3.有12张卡片,其中三张写着1,三张写着3,三张写着5,三张写着7,你能否从中选出5张使他们的和是20。
4.3只杯子杯口朝上放在桌子上,每次翻转其中的2只杯子,使其杯口朝下,能否经过若干次翻转,使3只杯子全部杯口朝下?5.两种饮水器若干个,一种容量12升水另一种容量15升水,153升水恰好装满这些饮水器其中15升容量的有多少个?6.有7盘灯,从1到7编号,开始对2、4、7编号的灯亮着,一个朋友按“1到7,再从1到7”的顺序循环拉开关,一共拉了400下,问:此时哪个编号的灯是亮的?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学1.7数的奇偶性练习题(带答案)
第7时数的奇偶性
基础作业
不夯实基础,难建成高楼。
1 小玲和小平打羽毛球,小玲发球,假如2分钟内两人接球没有间断。
(1)完成下面的表格。
接球顺序接球人
第1次小平
第2次
第3次
……
第40次
第41次
(2)第10次接球的是小玲还是小平?()
(3)第29次接球的是小平,对吗?()
2 填一填。
(1)如果用n表示自然数,那么2n一定是()数,2n+1一定是()数。
(2)任意两个奇数的和是()数,差是()数,积是()数。
(3)任意两个偶数的和是()数,差是()数,积是()数。
(4)任意一个奇数和一个偶数的和是()数,积是()数。
3 晚上要开电灯,淘气一连按了7下开关。
请你说说这时灯是开的?还是关的?如果按16下呢?
4 翻硬币游戏。
综合提升
重点难点,一网打尽。
5 猜一猜,算一算。
下面几道题的结果是奇数还是偶数?
2567+345 ( )
8758-999 ( )
2+4+8+10+12+……+98+100 ( )
1+2+3+4+……+99+100 ( )
6 张云按一定的规律画图形(如下图)。
☆☆□☆☆△☆☆□☆☆△……
(1)第3个图形是();第5个图形是();第15个图形是();第25个是()。
(2)图形所在位置是3的奇数倍数的是()形,图形所在位置是3的偶数倍数的是()形。
7 选卡片游戏。
有15张卡片,其中有3张写着1,有3张写着2,有5张写着3,有4张写着4。
(1)
(2)
(3)
拓展探究
举一反三,应用创新,方能一显身手。
8按要求填数。
(1)和为奇数
265+37□,□里可填()。
28□+268,□里可填()。
(2)和为偶数
265+37□,□里可填()。
28□+268,□里可填()。
9三个杯子,杯口全部朝上放在桌上。
每次翻动2个杯子,经过若干次翻动,能否使三个杯子全部杯口朝下吗?
第7时
1 (1)提示单数次是小平,双数次是小玲。
(2)小玲(3)对
2(1)偶奇(2)偶偶奇(3)偶偶偶(4)奇偶
3 开的关的
4 反面正面
5偶数奇数偶数偶数
6(1)□ ☆ □ ☆ (2)□ △
7略
8(1)0,2,4,6,8 1,3,5,7,9
(2)1,3,5,7,9
0,2,4,6,8
9不能使3个杯子的杯口全部朝下。
提示开始杯口朝上的杯子个数是3,为奇数。
第1次翻动后,杯口朝上的变为1,仍为奇数。
第2次翻动只能有两个杯子改变上下方向,所以杯口朝上的杯子数仍是奇数。
因此无论怎么翻动多少次,杯口朝上的杯子数永远是奇数。