2020年全国高考数学(理)压轴专题考点通用解法特训-专题10 解密解析几何中乘积或比值问题
专题3.2 动点轨迹成曲线,坐标关系是关键-2020届高考数学压轴题讲义(解答题)(解析版)
【题型综述】1.动点轨迹问题解题策略一般有以下几种:(1)直译法:一般步骤为:①建系,建立适当的坐标系;②设点,设轨迹上的任一点P(x ,y);③列式,列出动点P 所满足的关系式;④代换,依条件式的特点,选用距离公式、斜率公式等将其转化为x ,y 的方程式,并化简;⑤证明,证明所求方程即为符合条件的动点轨迹方程.(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程; (3)代入法(相关点法):动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而变化,并且Q (x 0,y 0)又在某已知曲线上,则可先用x ,y 的代数式表示x 0,y 0,再将x 0,y 0代入已知曲线得要求的轨迹方程;(4)参数法:当动点P (x ,y )坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x ,y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程. 2.解轨迹问题注意:(1)求点的轨迹与求轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等.(2)要验证曲线上的点是否都满足方程,以方程解为坐标点是否都在曲线上,补上在曲线上而不满足方程解得点,去掉满足方程的解而不再曲线上的点.【典例指引】类型一 代点法求轨迹方程例1 【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。
(1) 求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=。
证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F 。
因此点P 的轨迹方程为222x y +=。
(2)由题意知()1,0F -。
设()()3,,,Q t P m n -,则()()3,,1,,33OQ t PF m n OQ PF m tn =-=---⋅=+-, ()(),,3,OP m n PQ m t n ==---。
2020年高考全国1卷数学,多种方法解析压轴题(全)
2020年高考全国1卷数学,多种方法解析压轴题(全)2020年高考全国1卷理科数学全方位解析第10题
2020年高考全国1卷理科数学从两个不同视角解析第11题
2020年高考全国1卷文科数学从两个不同视角解析第11题
2020年高考全国1卷理科数学全方位解析第12题
2020年高考全国1卷文科数学全方位解析第12题
2020年高考全国1卷理科数学从三个不同视角解析第15题
2020年高考全国1卷文科数学全方位解析第15题
2020年高考全国1卷文科数学从两个不同方向解析第16题
2020年高考全国1卷理科数学从两个不同方向解析第16题
2020年高考全国1卷理科数学多种方法解析第19题
2020年高考全国1卷理科数学从五个不同方向解析第20题第(2)问
2020年高考全国1卷文科数学多种方法解析第20题第(2)问
2020年高考全国1卷理科数学多种方法解析第21题第(2)问
2020年高考全国1卷文科数学从五个不同方向解析第21题第(2)问。
2020年高考数学试题分类汇编解析几何精品
2 2c :xy、选择题22 c cc1.(重庆理8)在圆x y 2x 6y 0内,过点E (0,1)的最长弦和最短弦分别是物线顶点的坐标为五、解析几何AC和BD,则四边形ABCDW 面积为A. 5.2B. 10.2C. 15,2 D . 20.22 2 C 1 :与 戛 1(a> b>0) C 1:x 2 2.(浙江理8)已知椭圆 a b 与双曲线 2匕14有公共的焦点,C1的一条渐近线与以C 1的长轴为直径的圆相交于 A ,B两点,若C 1恰好将线段AB 三等分, 2aA.B. a 213C .b2iD. b 23.(四川理 210)在抛物线y x ax5(a 乒0)上取横坐标为 X i2的两点,过这两点引一条割线, 有平行于该割线的一条直线同时与抛物线和圆5x 2 5y 236相切,则抛A. (2, 9) B . (°, 5)C. (2,9)D. (1, 6)【解析】由知的割线的坐标(4,11 4a),(2,2 a 1),K 2a,设直线方程为4. (a 2)x2y xy (a (陕西理 2A . y5.(山东36 b 2b,则 51 (2 a)2ax 5b 6 a 2)x b2)设抛物线的顶点在原点, 8x B . y 28x理8 )已知双曲线(2, 9)准线方程为2C . y2 2 2,2a b4x 1(a> 0, 2,则抛物线的方程是D . y2 4xb> 0)的两条渐近线均和圆2 2 c:x y 6x 5 0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为1或3A. 222或皂D. 3 2cos AFB =D.(B. 3 或 22x2y_ 12x2 y_2 x 2匕1 2x2工154B. 4 5C. 3 6D. 63F案】 A(全国新课标理7)已知直线 l 过双曲线C 的一个焦点,且与 C 的对称轴垂直,l 与C 交于A. 6. A, B 两点,|ABI 为C 的实轴长的2倍,C 的离心率为(A)抵 (B)后(C) (D) 37.(全国大纲理 10)已知抛物线 2C : y4x的焦点为F,直线y2x 4与C 交于A, B 两点.则A. 53B. 5C.D.8.(江西理 9)若曲线C I:2x与曲线C2:y(y mx m ) 0有四个不同的交点,则实数 m 的取值范围是A.(B.,0) U (0,C.[ 9.(湖南理 5) 设双曲线y9的渐近线方程为3x 2y 0,则a 的值为A. 4【答案】CD. 110.(湖北理 4)将两个顶点在抛物线2px(p °)上, 另一个顶点是此抛物线焦点的正三角形个数记为 A. n=0【答案】C11.(福建理 n, 7) PF 1 : F 1F 2 : 则B. n=1 C .n=2 D. n设圆锥曲线 r 的两个焦点分别为PF 2=4:3:2,则曲线r 的离心率等于F1, F2,若曲线r 上存在点P 满足【答案】A12.(北京理8)设A。
全国通用2020-2022年三年高考数学真题分项汇编专题10解三角形
10 解三角形1.【2022年全国甲卷】沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB是以O为圆心,OA为半径的圆弧,C是的AB中点,D在AB 上,CD⊥AB.“会圆术”给出AB的弧长的近似值s的计算公式:s=AB+CD2OA.当OA=2,∠AOB=60°时,s=()A.11−3√32B.11−4√32C.9−3√32D.9−4√32【答案】B【解析】【分析】连接OC,分别求出AB,OC,CD,再根据题中公式即可得出答案. 【详解】解:如图,连接OC,因为C是AB的中点,所以OC⊥AB,又CD⊥AB,所以O,C,D三点共线,即OD=OA=OB=2,又∠AOB=60°,所以AB=OA=OB=2,则OC=√3,故CD=2−√3,所以s=AB+CD2OA =2+(2−√3)22=11−4√32.故选:B.2.【2021年甲卷文科】在ABC 中,已知120B =︒,AC 2AB =,则BC =( )A .1 BC D .3【答案】D 【解析】 【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D. 【点睛】利用余弦定理及其推论解三角形的类型: (1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角; (3)已知三角形的两边与其中一边的对角,解三角形.3.【2021年乙卷理科】魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A 【解析】 【分析】利用平面相似的有关知识以及合分比性质即可解出. 【详解】 如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而 DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而 CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差. 故选:A. 【点睛】本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.4.【2020年新课标3卷理科】在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A .19B .13C .12D .23【答案】A 【解析】 【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC +-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅ 2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB = 由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A. 【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.5.【2022年全国甲卷】已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当AC AB取得最小值时,BD =________.【答案】√3−1−1+√3 【解析】 【分析】设CD =2BD =2m >0,利用余弦定理表示出AC 2AB 2后,结合基本不等式即可得解.【详解】设CD =2BD =2m >0,则在△ABD 中,AB 2=BD 2+AD 2−2BD ⋅ADcos ∠ADB =m 2+4+2m , 在△ACD 中,AC 2=CD 2+AD 2−2CD ⋅ADcos ∠ADC =4m 2+4−4m , 所以AC 2AB 2=4m 2+4−4m m 2+4+2m =4(m 2+4+2m)−12(1+m)m 2+4+2m=4−12(m+1)+3m+1≥42√(m+1)⋅3m+1=4−2√3,当且仅当m +1=3m+1即m =√3−1时,等号成立, 所以当ACAB 取最小值时,m =√3−1. 故答案为:√3−1.6.【2021年乙卷文科】记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,60B =︒,223a c ac +=,则b =________.【答案】【解析】 【分析】由三角形面积公式可得4ac =,再结合余弦定理即可得解. 【详解】由题意,1sin 2ABCSac B === 所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得b =(负值舍去).故答案为:7.【2020年新课标1卷理科】如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】 【分析】在ACE 中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值. 【详解】AB AC ⊥,AB =1AC =,由勾股定理得2BC =,同理得BD BF BD ∴==在ACE 中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF △中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.8.【2022年全国乙卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知sinCsin (A −B )=sinBsin (C −A ). (1)若A =2B ,求C ; (2)证明:2a 2=b 2+c 2 【答案】(1)5π8;(2)证明见解析. 【解析】 【分析】(1)根据题意可得,sinC =sin (C −A ),再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得sinC (sinAcosB −cosAsinB )=sinB (sinCcosA −cosCsinA ),再根据正弦定理,余弦定理化简即可证出. (1)由A =2B ,sinCsin (A −B )=sinBsin (C −A )可得,sinCsinB =sinBsin (C −A ),而0<B <π2,所以sinB ∈(0,1),即有sinC =sin (C −A )>0,而0<C <π,0<C −A <π,显然C ≠C −A ,所以,C +C −A =π,而A =2B ,A +B +C =π,所以C =5π8.(2)由sinCsin (A −B )=sinBsin (C −A )可得,sinC (sinAcosB −cosAsinB )=sinB (sinCcosA −cosCsinA ),再由正弦定理可得, accosB −bccosA =bccosA −abcosC ,然后根据余弦定理可知,12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2),化简得:2a 2=b 2+c 2,故原等式成立.9.【2022年全国乙卷】记△ABC 的内角A,B,C 的对边分别为a,b,c ,已知sinCsin(A −B)=sinBsin(C −A).(1)证明:2a2=b2+c2;(2)若a=5,cosA=2531,求△ABC的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc,从而可求得b+c,即可得解.(1)证明:因为sinCsin(A−B)=sinBsin(C−A),所以sinCsinAcosB−sinCsinBcosA=sinBsinCcosA−sinBsinAcosC,所以ac⋅a2+c2−b22ac −2bc⋅b2+c2−a22bc=−ab⋅a2+b2−c22ab,即a2+c2−b22−(b2+c2−a2)=−a2+b2−c22,所以2a2=b2+c2;(2)解:因为a=5,cosA=2531,由(1)得b2+c2=50,由余弦定理可得a2=b2+c2−2bccosA,则50−5031bc=25,所以bc=312,故(b+c)2=b2+c2+2bc=50+31=81,所以b+c=9,所以△ABC的周长为a+b+c=14.10.【2022年新高考1卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知cosA1+sinA =sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.【答案】(1)π6;(2)4√2−5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cosA1+sinA =sin2B1+cos2B化成cos(A+B)=sinB,再结合0<B <π2,即可求出;(2)由(1)知,C =π2+B ,A =π2−2B ,再利用正弦定理以及二倍角公式将a 2+b 2c 2化成4cos 2B +2cos 2B−5,然后利用基本不等式即可解出.(1)因为cosA1+sinA =sin2B1+cos2B =2sinBcosB 2cos 2B=sinBcosB ,即sinB =cosAcosB −sinAsinB =cos (A +B )=−cosC =12,而0<B <π2,所以B =π6;(2)由(1)知,sinB =−cosC >0,所以π2<C <π,0<B <π2,而sinB =−cosC =sin (C −π2),所以C =π2+B ,即有A =π2−2B .所以a 2+b 2c 2=sin 2A+sin 2Bsin 2C=cos 22B+1−cos 2Bcos 2B=(2cos 2B−1)2+1−cos 2Bcos 2B=4cos 2B +2cos 2B−5≥2√8−5=4√2−5.当且仅当cos 2B =√22时取等号,所以a 2+b 2c 2的最小值为4√2−5.11.【2022年新高考2卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1−S 2+S 3=√32,sinB =13.(1)求△ABC 的面积; (2)若sinAsinC =√23,求b .【答案】(1)√28(2)12 【解析】 【分析】(1)先表示出S 1,S 2,S 3,再由S 1−S 2+S 3=√32求得a 2+c 2−b 2=2,结合余弦定理及平方关系求得ac ,再由面积公式求解即可; (2)由正弦定理得b 2sin 2B=acsinAsinC ,即可求解. (1)由题意得S 1=12⋅a 2⋅√32=√34a 2,S 2=√34b 2,S 3=√34c 2,则S 1−S 2+S 3=√34a 2−√34b 2+√34c 2=√32,即a 2+c 2−b 2=2,由余弦定理得cosB =a 2+c 2−b 22ac,整理得accosB =1,则cosB >0,又sinB =13,则cosB =√1−(13)2=2√23,ac =1cosB =3√24,则S △ABC =12acsinB =√28; (2)由正弦定理得:b sinB =a sinA =csinC ,则b 2sin 2B =a sinA ⋅c sinC =acsinAsinC =3√24√23=94,则b sinB =32,b =32sinB =12. 12.【2021年新高考1卷】记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠. 【答案】(1)证明见解析;(2)7cos 12ABC ∠=. 【解析】 【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论. (2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理, 得sin sin ,22b c R ABC C R==∠, 因为sin sin BD ABC a C ∠=,所以22b cBD a R R⋅=⋅,即BD b ac ⋅=. 又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+-=,①在BCD △中,222()3cos 23ba b b a C +-=⋅.② 由①②得2222223()3b a b c a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3c a =或32ca =, 当22,33c c ab ac ===时,222()733cos =622c c c ABC c c ∠⋅+-=⋅(舍去).当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠. 所以7cos 12ABC ∠=. [方法二]:等面积法和三角形相似 如图,已知2AD DC =,则23ABD ABC S S =△△, 即21221sin sin 2332b ac AD A B BC ⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠, 故有ADB ABC ∠=∠,从而ABD C ∠=∠. 由2b ac =,即b ca b =,即CA BA CB BD=,即ACB ABD ∽, 故AD ABAB AC=,即23bc c b =,又2b ac =,所以23c a =, 则2227cos 212c a b ABC ac +-==∠. [方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==.在ADB △中,由正弦定理得sin sin AD BDABD A=∠.又ABD C ∠=∠,所以s 3sin n 2i C b A b=,化简得2sin sin 3C A =. 在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =. 在ABC 中,由余弦定理,得222222242793cos 221223a a a a c b ABC ac a +--⨯∠+===. 故7cos 12ABC ∠=. [方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a aDE EC BE ===.在BED 中,2222()()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c +-=∠.因为cos cos ABC BED ∠=-∠, 所以2222222()()3322233a c ba cb ac ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=, 即3c a =或32a c =.下同解法1.[方法五]:平面向量基本定理 因为2AD DC =,所以2AD DC =. 以向量,BA BC 为基底,有2133BD BC BA =+. 所以222441999BD BC BA BC BA =+⋅+, 即222441cos 999b ac c ABC a ∠=++, 又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③ 由余弦定理得2222cos b a c ac ABC =+-∠, 所以222cos ac a c ac ABC =+-∠④ 联立③④,得2261130a ac c -+=.所以32a c =或13a c =.下同解法1. [方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动. 设()(),33B x y x -<<,则229x y +=.⑤ 由2b ac =知,2BA BC AC ⋅=,9=.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =,代入⑥式得||||3a BC c BA b =====,由余弦定理得2227cos 212a c b ABC ac +-∠==.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.13.【2021年新高考2卷】在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【答案】(1(2)存在,且2a =. 【解析】 【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果; (2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值. 【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c Cab,所以,C 为锐角,则sin C ==因此,11sin 4522ABC S ab C ==⨯⨯△ (2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈,故2a =.14.【2020年新课标1卷文科】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin AC C . 【答案】(1(2)15︒. 【解析】 【分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论;(2)方法一 :将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B =(2)[方法一]:多角换一角 30A C +=︒,sin sin(30)A C C C ∴=︒-1cos sin(30)2C C C =+=+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒, 3045,15C C ∴+︒=︒∴=︒.[方法二]:正弦角化边 由正弦定理及150B =︒得22sin sin sin ====a c b R b A C B .故sin ,sin 22==a cA C b b.由sin A C +=a .又由余弦定理得22222cos =+-⋅=+b a c ac B a 2+c ,所以()222()2=++a a c ,解得a c =. 所以15=︒C . 【整体点评】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.其中第二问法一主要考查三角恒等变换解三角形,法二则是通过余弦定理找到三边的关系,进而求角.15.【2020年新课标2卷理科】ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【解析】 【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b cA B C===以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为3+[方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c.令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()b c +=所以ABC周长的最大值为3+ 【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题. 16.【2020年新课标2卷文科】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ; (2)若b c -=,证明:△ABC 是直角三角形. 【答案】(1)3A π=;(2)证明见解析【解析】 【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出; (2)根据余弦定理可得222b c a bc +-=,将b c -=代入可找到,,a b c 关系, 再根据勾股定理或正弦定理即可证出. 【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -=②, 将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =, 故222b a c =+, 即ABC 是直角三角形. 【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.17.【2020年新高考1卷(山东卷)】在①ac sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解. 【详解】[方法一]【最优解】:余弦定理由sin 3sin AB 可得:ab=(),0a b m m =>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =. 若选择条件①:据此可得:2ac m =⨯==1m ∴=,此时1c m ==.若选择条件②:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==sin 3c A m ==,则:c m ==若选择条件③: 可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在. [方法二]:正弦定理 由,6C A B C ππ=++=,得56A B π=-. 由sin 3sin A B,得5sin 6B B π⎛⎫-= ⎪⎝⎭,即1cos 2B B B =,得tan B =.由于0B π<<,得6B π=.所以2,3b c A π==.若选择条件①:由sin sin a c A C=,得2sin sin 36a cππ=,得a =.解得1,c b a ===.所以,选条件①时问题中的三角形存在,此时1c =. 若选择条件②: 由sin 3c A =,得2sin33c π=,解得c =,则b c == 由sin sin a c A C=,得2sin sin 36a cππ=,得6a ==.所以,选条件②时问题中的三角形存在,此时c =. 若选择条件③:由于=c 与b c =矛盾,所以,问题中的三角形不存在. 【整体点评】方法一:根据正弦定理以及余弦定理可得,,a b c 的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;方法二:利用内角和定理以及两角差的正弦公式,消去角A ,可求出角B ,从而可得2,,36b c A B C ππ====,再根据选择条件即可解出.。
2020年高考数学解答题压轴题考法深度揭秘 - 专题10 导数及其综合应用
2020年高考数学解答题压轴题考法深度揭秘专题十、函数与导数的综合问题函数与导数的压轴试题,在每年的高考中属于必考内容,其命题方向主要有三个:一是围绕函数的性质考查函数的单调性、极值、最值、曲线的切线等问题展开;二是围绕函数与方程、探索方程根的个数、不等式的证明、不等式成立等问题展开,此类压轴试题难度较大,逻辑推理能力较强,不可小视;三是围绕函数、数列与不等式交汇问题展开,在考查利用导数研究函数单调性、最值等问题的同时,考查不等式的证明及数列求和等.考法01 利用导数确定或应用函数的单调性、极值与最值(2013·广东理,21,14分)设函数f (x )=(x -1)e x -kx 2(k ∈R ).(1)当k =1时,求函数f (x )的单调区间;(2)当k ∈⎝ ⎛⎦⎥⎤12,1时,求函数f (x )在[0,k ]上的最大值M .【知识揭秘】 揭秘1:作差法证明k ∈⎝ ⎛⎦⎥⎤12,1时,ln 2k <k ;揭秘2:作差法比较f (k )与f (0)的大小,通过构造函数,求最值和0比较大小.【思维揭秘】 (1)利用导数的运算法则即可得出f ′(x ),令f ′(x )=0,即可得出实数根,通过列表即可得出其单调区间;(2)利用导数的运算法则求出f ′(x ),令f ′(x )=0得出极值点,得出单调区间,比较区间端点与极值点即可得到最大值.【解析揭秘】 (1)当k =1时,f (x )=(x -1)e x -x 2,则f ′(x )=x e x -2x =x (e x -2).令f ′(x )=0可得x =0或x =ln 2.当x <0时,f ′(x )>0;当0<x <ln 2时,f ′(x )<0;当x >ln 2时,f ′(x )>0,所以函数f (x )的单调递增区间是(-∞,0),(ln 2,+∞);单调递减区间是(0,ln 2).(2)对f (x )=(x -1)e x -kx 2求导可得f ′(x )=e x +(x -1)e x -2kx =x (e x -2k ).因为k ∈⎝ ⎛⎦⎥⎤12,1,所以2k ∈(1,2].令f ′(x )=0可得x =0或x =ln 2k ,显然0<ln 2k ≤ln 2,而ln 2<1.则当0<x <ln 2k 时,f ′(x )<0;当x >ln 2k 时,f ′(x )>0,所以函数f (x )的单调递增区间是(ln 2k ,+∞),单调递减区间是(0,ln 2k ).令g (k )=ln 2k -k ,则g ′(k )=1k -1=1-k k ≥0, 又当k =1时,g ′(k )=0,所以g (k )在⎝ ⎛⎦⎥⎤12,1上递增,所以g (k )≤ln 2-1=ln 2-ln e<0, 从而ln 2k <k ,所以ln 2k ∈[0,k ]. 所以当x ∈(0,ln 2k )时,f ′(x )<0; 当x ∈(ln 2k ,k )时,f ′(x )>0,所以M =max{f (0),f (k )}=max{-1,(k -1)e k -k 3}. 令h (k )=(k -1)e k -k 3+1,则h ′(k )=k (e k -3k ), 令φ(k )=e k -3k ,则φ′(k )=e k -3≤e -3<0, 所以φ(k )在⎝ ⎛⎦⎥⎤12,1上递减.而φ⎝ ⎛⎭⎪⎫12·φ(1)=⎝ ⎛⎭⎪⎫e -32(e -3)<0,所以存在k 0∈⎝ ⎛⎦⎥⎤12,1使得φ(k 0)=0,且当k ∈⎝ ⎛⎭⎪⎫12,k 0时,φ(k )>0;当k ∈(k 0,1)时,φ(k )<0,所以h (k )在⎝ ⎛⎭⎪⎫12,k 0上单调递增,在(k 0,1)上单调递减.因为h ⎝ ⎛⎭⎪⎫12=-12e +78>0,h (1)=0,所以h (k )≥0在⎝ ⎛⎦⎥⎤12,1上恒成立,当且仅当k =1时取等号.综上,函数f (x )在[0,k ]上的最大值M =(k -1)e k -k 3.1.(2016·“江淮十校”联考,21,12分)已知函数f (x )=ln x +x 2-ax (a∈R ).(1)若a =3,求函数f (x )的极值;(2)若f (x )是增函数,求实数a 的取值范围. 1.解:(1)当a =3时,f (x )=ln x +x 2-3x (x >0),令f ′(x )=1x +2x -3=(x -1)(2x -1)x =0,则x 1=12,x 2=1.极大值为f ⎝ ⎛⎭⎪⎫12=ln 12-54,极小值为f (1)=-2.(2)f ′(x )=1x +2x -a =2x 2-ax +1x≥0在(0,+∞)上恒成立,即2x 2-ax +1≥0,即a ≤2x 2+1x =2x +1x .因为2x +1x ≥22,当且仅当2x =1x ,即x =22时等号成立,∴a ≤2 2.2.(2016·四川成都一模,21,12分)已知函数f (x )=-12ax 2+(1+a )x -ln x (a ∈R ).(1)当a >0时,求函数f (x )的单调递减区间;(2)当a =0时,设函数g (x )=xf (x ).若存在区间[m ,n ]⊆⎣⎢⎡⎭⎪⎫12,+∞,使得函数g (x )在[m ,n ]上的值域为[k (m +2)-2,k (n +2)-2],求实数k 的取值范围.2.解:(1)f ′(x )=-ax +1+a -1x =-(x -1)(ax -1)x (x >0).当a =1时,f ′(x )≤0,f (x )单调递减;当a >1时,1>1a ,由f ′(x )<0,可得x >1或0<x <1a ;当0<a <1时,1<1a ,由f ′(x )<0,可得0<x <1或x >1a .综上可得,当a =1时,f (x )的减区间为(0,+∞);当a >1时,f (x )的减区间为(1,+∞),⎝ ⎛⎭⎪⎫0,1a ;当0<a <1时,f (x )的减区间为⎝ ⎛⎭⎪⎫1a ,+∞,(0,1).(2)当a =0时,设函数g (x )=xf (x )=x 2-x ln x , 则g ′(x )=2x -ln x -1(x >0), 则g ″(x )=2-1x =2x -1x (x >0),当x ≥12时,g ″(x )≥0,g ′(x )为增函数,因此g ′(x )≥g ′⎝ ⎛⎭⎪⎫12=ln 2>0,g (x )为增函数,g (x )在区间[m ,n ]⊆⎣⎢⎡⎭⎪⎫12,+∞上递增.因为g (x )在[m ,n ]上的值域是[k (m +2)-2,k (n +2)-2], 所以g (m )=k (m +2)-2, g (n )=k (n +2)-2,12≤m <n ,则g (x )=k (x +2)-2在⎣⎢⎡⎭⎪⎫12,+∞上至少有两个不同的正根. k =g (x )+2x +2, 令F (x )=g (x )+2x +2=x 2-x ln x +2x +2,求导得,F ′(x )=x 2+3x -2ln x -4(x +2)2⎝ ⎛⎭⎪⎫x ≥12. 令G (x )=x 2+3x -2ln x -4⎝ ⎛⎭⎪⎫x ≥12,则G ′(x )=2x +3-2x =(2x -1)(x +2)x ,所以G (x )在⎣⎢⎡⎭⎪⎫12,+∞上递增,G ⎝ ⎛⎭⎪⎫12<0,G (1)=0,当x ∈⎣⎢⎡⎭⎪⎫12,1时,G (x )<0,所以F ′(x )<0;当x ∈(1,+∞)时,G (x )>0,所以F ′(x )>0,所以F (x )在⎣⎢⎡⎭⎪⎫12,1上递减,在(1,+∞)上递增,所以F (1)<k ≤F ⎝ ⎛⎭⎪⎫12,所以k ∈⎝⎛⎦⎥⎤1,9+2ln 210.考法02 利用导数确定或应用方程根的个数(2016·甘肃兰州模拟,21,12分)已知函数f(x)=a(x-1)-2ln x(a ∈R).(1)当a=1时,求函数f(x)的单调区间;(2)若函数f(x)在区间(0,1)上无零点,求a的取值范围.【知识揭秘】揭秘1:a=1时,f(x)=x-1-2ln x,定义域为(0,+∞),由f(x)的单调区间,进而得出使f′(x)>0,f′(x)<0的x的取值范围.揭秘2:由f(x)=a(x-1)-2ln x知f(1)=0,f(x)在(0,1)上无零点⇒方程f(x)=0在(0,1)上无解,而f(x)在(0,1)上有定义.因此,只需求f(x)在(0,1)上f(x)>0或f(x)<0恒成立的a的取值范围,亦即f(x)>f(1)或f(x)<f(1).【思维揭秘】(1)先求定义域,再求f′(x),解不等式f′(x)>0,f′(x)<0即可.(2)x→0时,f(x)→+∞,f(1)=0,分a≤0,a>0两种情况讨论,求解f(x)在(0,1)使f(x)>0且f(x)<0的a的取值范围.【解析揭秘】(1)当a=1时,函数f(x)=x-1-2ln x,其定义域为(0,+∞),f′(x)=1-2x=x-2x.由f′(x)>0得x>2;由f′(x)<0得0<x<2,故f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由f(x)=a(x-1)-2ln x,则f(1)=0.(1)当a≤0时,x∈(0,1)得x-1<0,-2ln x>0,得f(x)=a(x-1)-2ln x>0恒成立,即a≤0符合题意.(2)当a>0时,f′(x)=a-2x=ax-2x=ax⎝⎛⎭⎪⎫x-2a.①当a≤2时,即2a≥1时,由f′(x)<0得0<x<2a,即f(x)在(0,1)上单调递减,故f(x)>f(1)=0,满足对∀x∈(0,1),f(x)>0恒成立.故此时f(x)在(0,1)上无零点,符合题意.②当a >2时,即0<2a <1时,由f ′(x )>0得x >2a ,由f ′(x )<0得0<x <2a ,即f (x )在⎝ ⎛⎭⎪⎫0,2a 上单调递减,在⎝ ⎛⎭⎪⎫2a ,1上单调递增,此时f ⎝ ⎛⎭⎪⎫2a <f (1)=0,而x →0时,f (x )→+∞,函数f (x )图象如图所示.故在⎝ ⎛⎭⎪⎫0,2a 上存在x 0使f (x 0)=0.令g (a )=e a -a ,当a >2时,g ′(a )=e a -1>e 2-1>0恒成立. 故函数g (a )=e a -a 在(2,+∞)上单调递增, ∴g (a )>g (2)=e 2-2>0, 即e a>a >2,∴0<1e a <1a <2a <1,而f ⎝ ⎛⎭⎪⎫1e a =a ⎝ ⎛⎭⎪⎫1e a -1-2ln 1e a =a e a +a >0,故当a >2时,f ⎝ ⎛⎭⎪⎫1e a ·f ⎝ ⎛⎭⎪⎫2a <0,即∃x 0∈⎝ ⎛⎭⎪⎫1e a ,2a ,使得f (x 0)=0成立,所以a >2时,f (x )在(0,1)上有零点,不符合题意. 综上,a 的取值范围是{a |a ≤2}.1.(2016·江苏南通一模,20,16分)已知函数f (x )=a +x ln x (a ∈R ).(1)求函数f (x )的单调区间;(2)试求函数f (x )的零点个数,并证明你的结论. 1.解:(1)由函数f (x )=a +x ln x (a ∈R ),得f ′(x )=12x(ln x +2).令f ′(x )=0,得 x =e -2.列表如下:e -2). (2)由(1)可知,f (x )min =f (e -2)=a -2e -1.①当a >2e -1时,由f (x )≥f (e -2)=a -2e -1>0,得函数f (x )的零点个数为0. ②当a =2e -1时,f (x )>f (e -2)=0. 此时,函数f (x )的零点个数为1.③当a <2e -1时,f (x )min =f (e -2)=a -2e -1<0.a .a ≤0时,因为当x ∈(0,e -2]时,f (x )=a +x ln x <a ≤0,所以,函数f (x )在区间(0,e -2]上无零点;另一方面,因为f (x )在[e -2,+∞)单调递增,且f (e -2)=a -2e -1<0,又e -2a ∈(e -2,+∞),且f (e -2a )=a (1-2e -a )>0,此时,函数f (x )在(e -2,+∞)上有且只有一个零点.所以,当a ≤0时,函数f (x )零点个数为1.b .0<a <2e -1时,因为f (x )在[e -2,+∞)上单调递增,且f (1)=a >0,f (e -2)=a -2e -1<0,所以,函数f (x )在区间(e -2,+∞)有且只有1个零点;另一方面,因为f (x )在(0,e -2]上是单调递减,且f (e -2)=a -2e -1<0,又e4a ∈(0,e -2),且f (e -4a )=a -4a e 2a >a -4a ⎝ ⎛⎭⎪⎫2a 2=0(当x >0时,e x >x 2成立).此时,函数f (x )在(0,e -2)上有且只有1个零点.所以,当0<a <2e -1时,函数f (x )零点个数为2.综上所述,当a >2e -1时,f (x )的零点个数为0;当a =2e -1或a ≤0时,f (x )的零点个数为1;当0<a <2e -1时,f (x )的零点个数为2.2.(2016·河南普通高中适应性联考,21,12分)已知函数f (x )=a -1x -ln x ,其中a 为常数.(1)若f (x )=0恰有一个解,求a 的值;(2)若函数g (x )=a -1x -2(x -p )x +p-f (x )-ln p ,其中p 为常数,试判断函数g (x )的单调性;(3)若f (x )恰有两个零点,x 1<x 2,求证:x 1+x 2<3e a -1-1. 2.解:(1)令f ′(x )=1-xx 2=0,解得x =1.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞)且f (1)=a -1为最大值.当f (1)=0时,即a =1时,f (x )=0恰有一个解x =1;当f (1)<0时,即a <1时,f (x )=0无解;当f (1)>0时,即a >1时,e -a <1<e a ,f (e -a )<0,f (e a )<0,故f (x )=0有两个解.综上,若f (x )=0恰有一个解,则a =1. (2)g (x )=ln x -2(x -p )x +p-ln p ,定义域x >0且常数p >0.求导得g ′(x )=(x -p )2x (x +p )2≥0,且只有有限个零点,因此g (x )在定义域(0,+∞)上单调递增.(3)证明:由(1)知,若f (x )=0恰有两个零点,则a >1且等价于xf (x )=0有两个零点.令h (x )=ax -1-x ln x (x >0), h ′(x )=a -1-ln x ,令h ′(x )=0, 则x =e a -1,记p =e a -1,函数h (x )两个零点满足x 1<p <x 2.当0<x <p 时,h (x )<h (p )=0,即ax 1-1=x 1ln x 1<2x 1(x 1-p )x 1+p+x 1ln p ,整理得x 21-(3p -1)x 1+p >0.当x >p 时,h (x )>h (p )=0,同理可得x 22-(3p -1)x 2+p <0,因此x 22-(3p -1)x 2+p <x 21-(3p -1)·x 1+p , 所以x 22-x 21<(3p -1)(x 2-x 1),即x 1+x 2<3e a -1-1.考法03 利用导数证明不等式考查角度1 利用导数证明不等式(2016·河北衡水模拟,21,12分)已知函数f(x)=2(a+1)ln x-ax,g(x)=12x2-x.(1)若函数f(x)在定义域内为单调函数,求实数a的取值范围;(2)证明:若-1<a<7,则对于任意x1,x2∈(1,+∞),x1≠x2,有f(x1)-f(x2)g(x1)-g(x2)>-1.【知识揭秘】揭秘1:f(x)在定义域内为单调函数⇒f′(x)≥0或f′(x)≤0在定义域内恒成立.揭秘2:先判断g(x)在(1,+∞)上的单调性,再将待证不等式转化为简单的不等式证明问题,进而构造辅助函数利用导数研究其单调性最终获得证明.【思维揭秘】(1)先求出函数定义域,再求f′(x)≥0或f′(x)≤0在定义域上恒成立的解.(2)g(x)=12x2-x⇒g(x)=12(x-1)2-12在(1,+∞)上单调递增⇒设x1>x2>1时,g(x1)>g(x2)⇒g(x1)-g(x2)>0,f(x1)-f(x2)g(x1)-g(x2) >-1⇔f(x1)-f(x2)>-(g(x1)-g(x2))⇔f(x1)+g(x1)>f(x2)+g(x2)⇒只要证明函数f(x)+g(x)在(1,+∞)上单调递增即可.【解析揭秘】(1)函数f(x)=2(a+1)ln x-ax的定义域为(0,+∞),f′(x)=2(a+1)x-a=-ax+2(a+1)x,令m(x)=-ax+2(a+1).因为函数y=f(x)在定义域内为单调函数,所以f′(x)≥0或f′(x)≤0恒成立,即m(x)=-ax+2(a+1)≥0或≤0恒成立,当a=0时,m(x)=2>0,f′(x)>0,y=f(x)在定义域内为单调递增函数;当a>0时,m(x)=-ax+2(a+1)为减函数,只需m(0)=2(a+1)≤0,即a≤-1,不符合要求;当a<0时,m(x)=-ax+2(a+1)为增函数,只需m(0)=2(a+1)≥0即可,即a≥-1,解得-1≤a<0,此时y=f(x)在定义域内为单调递增函数.综上所述,a∈[-1,0].(2)证明:g(x)=12x2-x=12(x-1)2-12在(1,+∞)上单调递增,不妨设x1>x2>1,则g(x1)>g(x2),则f(x1)-f(x2)g(x1)-g(x2)>-1等价于f(x1)-f(x2)>-(g(x1)-g(x2))等价于f(x1)+g(x1)>f(x2)+g(x2).设h(x)=f(x)+g(x)=12x2+2(a+1)ln x-(a+1)x,则h′(x)=x+2(a+1)x-(a+1)≥2x·2(a+1)x-(a+1)=2-(a+1-2)2.由于-1<a<7,故h′(x)>0,即h(x)在(1,+∞)上单调递增,从而当1<x2<x1时,有f(x1)+g(x1)>f(x2)+g(x2)成立,所以f(x1)-f(x2)g(x1)-g(x2)>-1.考查角度2 利用导数比较大小(2013·陕西理,21,14分)已知函数f(x)=e x,x∈R.(1)若直线y=kx+1与f(x)的反函数的图象相切,求实数k的值;(2)设x>0,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数;(3)设a<b,比较f(a)+f(b)2与f(b)-f(a)b-a的大小,并说明理由.【知识揭秘】 揭秘1:根据反函数的定义f (x )=e x ,x ∈R 的反函数为y =ln x ;揭秘2:对t (x )=x +2+(x -2)e x 进行二次求导,得出t (x )>0,进而得出结论. 【思维揭秘】 (1)利用导数的几何意义,可求解;(2)分析清楚函数的单调性及极值,讨论确定曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数;(3)作差后对式子变形后构造新函数,利用函数的单调性进行大小比较.【解析揭秘】 (1)f (x )的反函数为g (x )=ln x . 设直线y =kx +1与g (x )=ln x 相切于点P (x 0,y 0), 则⎩⎪⎨⎪⎧kx 0+1=ln x 0,k =g ′(x 0)=1x 0⇒x 0=e 2,k =e -2. (2)当x >0,m >0时,曲线y =f (x )与曲线y =mx 2(m >0)的公共点个数即方程f (x )=mx 2根的个数.由f (x )=mx 2⇒m =e x x 2,令h (x )=e x x 2⇒h ′(x )=e x(x -2)x 3,则h (x )在(0,2)上单调递减, 在(2,+∞)上单调递增,所以h (2)=e 24是y =h (x )的极小值且是最小值.所以对曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数,讨论如下:当m ∈⎝ ⎛⎭⎪⎫0,e 24时,无公共点;当m =e 24时,有1个公共点;当m ∈⎝ ⎛⎭⎪⎫e 24,+∞时,有2个公共点.(3)f (a )+f (b )2-f (b )-f (a )b -a =(b -a +2)·f (a )+(b -a -2)·f (b )2(b -a )=(b -a +2)·e a +(b -a -2)·e b 2(b -a )=(b -a +2)+(b -a -2)·e b -a 2(b -a )·e a .令t (x )=x +2+(x -2)·e x ,x >0,则t′(x)=1+(1+x-2)·e x=1+(x-1)·e x.t′(x)的导函数t″(x)=(1+x-1)·e x=x·e x>0,所以t′(x)在(0,+∞)上单调递增,且t′(0)=0.因此t′(x)>0,t(x)在(0,+∞)上单调递增,而t(0)=0,所以在(0,+∞)上,t(x)>0.因为当x>0时,t(x)=x+2+(x-2)·e x>0且a<b,所以(b-a+2)+(b-a-2)·e b-a2·(b-a)·ea>0,所以当a<b时,f(a)+f(b)2>f(b)-f(a)b-a.1.(2016·河南中原名校一模,21,12分)已知函数f(x)=ax+ln x.(1)若函数f(x)在区间[1,e]上的最小值是32,求a的值;(2)当a=1时,设F(x)=f(x)+1+ln xx,求证:当x>1时,F(x)2e x-1>e+1x e x+1.1.解:(1)因为f′(x)=x-ax2,且x∈[1,e],则①当a≤1时,f′(x)≥0,函数f(x)在[1,e]上单调递增,其最小值为f(1)=a≤1,这与函数在[1,e]上的最小值是3 2相矛盾;②当1<a<e时,函数f(x)在[1,a)上有f′(x)<0,单调递减;在(a,e]上有f′(x)>0,单调递增,∴函数f(x)的最小值为f(a)=ln a+1=32,解得a= e.③当a≥e时,f′(x)≤0,函数f(x)在[1,e]上单调递减,其最小值为f(e)=1+a e≥2,与最小值是32相矛盾.综上所述,a的值为 e.(2)证明:要证F(x)2e x-1>e+1x e x+1,即证F(x)e+1>2e x-1x e x+1.当a=1时,F(x)=1+1x+ln x+ln xx,F′(x)=-1x2+1x+1-ln xx2=x-ln xx2,令φ(x)=x-ln x,则φ′(x)=1-1x=x-1x.当x>1时,φ′(x)>0,φ(x)单调递增;当0<x<1时,φ′(x)<0,φ(x)单调递减,∴φ(x)在x=1处取得唯一的极小值,即为最小值,即φ(x)≥φ(1)=1>0,∴F′(x)>0,∴F(x)在(0,+∞)上是增函数,∴当x>1时,F(x)为增函数,故F(x)>F(1)=2,故F(x)e+1>2e+1.令h(x)=2e x-1x e x+1,则h′(x)=2·e x-1(x e x+1)-(x e x+1)′e x-1(x e x+1)2=2e x-1(1-e x)(x e x+1)2.∵x>1,∴1-e x<0,∴h′(x)<0,即h(x)在(1,+∞)上是减函数,∴x>1时,h(x)<h(1)=2e+1,∴F(x)e+1>2e+1>h(x),即F(x)e+1>2e x-1x e x+1,∴F(x)2e x-1>e+1x e x+1.2.(2016·山东日照模拟,21,12分)已知函数f(x)=(ax2+2x-a)e x,g(x)=1 2f(ln x),其中a∈R,e=2.718 28…为自然对数的底数.(1)若函数y=f(x)的图象在点M(2,f(2))处的切线过坐标原点,求实数a的值;(2)若f(x)在[-1,1]上为单调递增函数,求实数a的取值范围;(3)当a =0时,对于满足0<x 1<x 2的两个实数x 1,x 2,若存在x 0>0,使得g ′(x 0)=g (x 1)-g (x 2)x 1-x 2成立,试比较x 0与x 1的大小.2.解:(1)∵f (x )=(ax 2+2x -a )e x , f ′(x )=[ax 2+2(a +1)x +2-a ]e x , 则f ′(2)=(7a +6)e 2,f (2)=(3a +4)e 2.∴函数y =f (x )的图象在点M (2,f (2))处的切线为y -f (2)=(7a +6)e 2(x -2). ∵切线过坐标原点, ∴0-f (2)=(7a +6)e 2(0-2), 即(3a +4)e 2=2(7a +6)e 2,∴a =-811. (2)f ′(x )=[ax 2+2(a +1)x +2-a ]e x ,要使f (x )在[-1,1]上为单调递增函数,只要ax 2+2(a +1)x +2-a ≥0. 令Γ(x )=ax 2+2(a +1)x +2-a ,①当a =0时,Γ(x )=2x +2,在[-1,1]内Γ(x )≥Γ(-1)=0, ∴f ′(x )≥0,∴函数f (x )在[-1,1]上为单调递增函数.②当a >0时,Γ(x )=ax 2+2(a +1)x +2-a 是开口向上的二次函数,其对称轴为x =-⎝ ⎛⎭⎪⎫1+1a <-1,∴Γ(x )在[-1,1]上单调递增.为使f (x )在[-1,1]上单调递增,必须Γ(x )min = Γ(-1)=-2a ≥0,∴a ≤0,而此时a >0,产生矛盾. ∴此种情况不符合题意.③当a <0时,Γ(x )=ax 2+2(a +1)x +2-a 是开口向下的二次函数,为使f (x )在 [-1,1]上单调递增,必须f ′(x )≥0,即Γ(x )≥0在[-1,1]上恒成立, ∴Γ(1)≥0,∴2a +4≥0, 又a <0,∴-2≤a <0.综合①②③,得实数a 的取值范围为[-2,0]. (3)g (x )=12f (ln x )=x ln x , g ′(x )=ln x +1.∵对于满足0<x 1<x 2的实数x 1,x 2,存在x 0>0,使得g ′(x 0)=g (x 1)-g (x 2)x 1-x 2成立,∴ln x 0+1=g (x 1)-g (x 2)x 1-x 2,即ln x 0+1=x 1ln x 1-x 2ln x 2x 1-x 2,∴ln x 0-ln x 1=x 1ln x 1-x 2ln x 2x 1-x 2-1-ln x 1=x 2ln x 1-x 2ln x 2+x 2-x 1x 1-x 2=ln x 1x 2+1-x 1x2x 1x 2-1.设φ(t )=ln t +1-t ,其中0<t <1, 则φ′(t )=1t -1>0,∴φ(t )在区间(0,1)上单调递增, φ(t )<φ(1)=0. ∵0<x 1<x 2, ∴0<x 1x 2<1,∴φ⎝ ⎛⎭⎪⎫x 1x 2=ln x 1x 2+1-x 1x 2<0.又x 1x 2-1<0,∴ln x 0-ln x 1>0,即x 0>x 1.考法04 根据不等式的成立情况求参数的取值范围(2013·课标Ⅰ理,21,12分)已知函数f (x )=x 2+ax +b ,g (x )=e x (cx+d ),若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.【知识揭秘】 揭秘1:由已知及导数的几何意义,f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4,解四元一次方程组;揭秘2:ln k 与-2的大小比较需要解对数不等式,然后分类讨论. 【思维揭秘】 (1)根据曲线y =f (x )和曲线y =g (x )都过点P (0,2),可将P (0,2)分别代入到y =f (x )和曲线y =g (x )上,再利用在点P 处有相同的切线y =4x +2,对曲线y =f (x )和曲线y =g (x )进行求导,列出关于a ,b ,c ,d 的方程组求解;(2)构造函数F (x )=kg (x )-f (x ),然后求导,判断函数F (x )的单调性,通过分类讨论确定k 的取值范围.【解析揭秘】 (1)由已知得f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ).而⎩⎨⎧f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知f (x )=x 2+4x +2,g (x )=2e x (x +1). 设F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2, 则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1.令F ′(x )=0,即2(x +2)(k e x -1)=0,得 x 1=-ln k ,x 2=-2. ①若-1≤k <e 2,则-2<x 1≤0, 从而当x ∈(-2,x 1)时,F ′(x )<0; 当x ∈(x 1,+∞)时,F ′(x )>0,即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增, 故F (x )在[-2,+∞)上有最小值为F (x 1). 而F (x 1)=2x 1+2-x 21-4x 1-2=-x 1(x 1+2)≥0,故当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).②若当k=e2,则F′(x)=2e2(x+2)(e x-e-2).当x>-2时,F′(x)>0,即F(x)在(-2,+∞)上单调递增,而F(-2)=0,故当且仅当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围为[1,e2].1.(2016·广西南宁模拟,21,12分)已知函数f(x)=1x+a ln x(a≠0,a∈R).(1)若a=1,求函数f(x)的极值和单调区间;(2)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.1.解:(1)因为f′(x)=-1x2+ax=ax-1x2.当a=1时,f′(x)=x-1 x2.令f′(x)=0,得x=1,又f(x)的定义域为(0,+∞),f′(x),f(x)随x的变化情况如下表:x(0,1)1(1,+∞) f′(x)—0+f(x)↘极小值↗所以x=1f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)因为f′(x)=-1x2+ax=ax-1x2,且a≠0,令f′(x)=0,得x=1a,若在区间[1,e]上存在一点x0,使得f(x0)<0成立,其充要条件是f(x)在区间[1,e]上的最小值小于0即可.①当a<0时,f′(x)<0对x∈(0,+∞)成立,所以f(x)在区间[1,e]上单调递减,故f (x )在区间[1,e]上的最小值为f (e)=1e +a ln e =1e +a . 由1e +a <0,得a <-1e , 即a ∈⎝ ⎛⎭⎪⎫-∞,-1e . ②当a >0时,若e≤1a ,则f ′(x )≤0对x ∈[1,e]成立,所以f (x )在区间[1,e]上单调递减, 所以f (x )在区间[1,e]上的最小值为f (e)=1e +a ln e =1e +a >0, 显然,f (x )在区间[1,e]上的最小值小于0不成立; 若1<1a <e ,即1>a >1e 时,则有所以f (x )在区间[1,e]上的最小值为f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a ,由f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a =a (1-ln a )<0,得1-ln a <0,解得a >e ,即a ∈(e ,+∞)舍去;若0<1a <1,即a >1,即有f (x )在[1,e]递增,可得f (1)取得最小值,且为1,f (1)>0,不成立.综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-1e .2.(2016·辽宁沈阳一模,21,12分)已知函数f (x )=x ln x -a2x 2-x +a (a ∈R )在其定义域内有两个不同的极值点.(1)求a 的取值范围;(2)记两个极值点分别为x 1,x 2,且x 1<x 2.已知λ>0,若不等式e 1+λ<x 1·x λ2恒成立,求λ的取值范围.2.解:(1)f ′(x )=ln x -ax ,由题意得,函数f (x )的定义域为(0,+∞),所以方程f ′(x )=0在(0,+∞)有两个不同根,即方程ln x -ax =0在(0,+∞)有两个不同根.令g (x )=ln x -ax ,从而转化为函数g (x )有两个不同零点, 而g ′(x )=1x -a =1-ax x (x >0).若a ≤0,可见g ′(x )>0在(0,+∞)上恒成立,所以g (x )在(0,+∞)上单调增, 此时g (x )不可能有两个不同零点.若a >0,在0<x <1a 时,g ′(x )>0,在x >1a 时,g ′(x )<0,所以g (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,从而g (x )极大值=g ⎝ ⎛⎭⎪⎫1a =ln 1a -1.又因为在x →0时,g (x )→-∞,在x →+∞时,g (x )→-∞,于是只须g (x )极大值>0,即ln 1a -1>0,所以0<a <1e .综上所述,0<a <1e . (2)因为e 1+λ<x 1·x λ2等价于1+λ<ln x 1+λln x 2.由(1)可知x 1,x 2分别是方程ln x -ax =0的两个根,即ln x 1=ax 1,ln x 2=ax 2. 所以原式等价于1+λ<ax 1+λax 2=a (x 1+λx 2). 因为λ>0,0<x 1<x 2, 所以原式等价于a >1+λx 1+λx 2.又由ln x 1=ax 1,ln x 2=ax 2作差得, ln x 1x 2=a (x 1-x 2),即a =ln x 1x2x 1-x 2, 所以原式等价于ln x 1x 2x 1-x 2>1+λx 1+λx 2.因为0<x 1<x 2,原式恒成立, 即ln x 1x 2<(1+λ)(x 1-x 2)x 1+λx 2恒成立.令t =x 1x 2,t ∈(0,1),则不等式ln t <(1+λ)(t -1)t +λ在t ∈(0,1)上恒成立.令h (t )=ln t -(1+λ)(t -1)t +λ,又h ′(t )=1t -(1+λ)2(t +λ)2=(t -1)(t -λ2)t (t +λ)2,①当λ2≥1时,可见t ∈(0,1)时,h ′(t )>0,所以h (t )在t ∈(0,1)上单调递增. 又h (1)=0,h (t )<0在t ∈(0,1)恒成立,符合题意.②当λ2<1时,可见t ∈(0,λ2)时,h ′(t )>0,t ∈(λ2,1)时,h ′(t )<0, 所以h (t )在t ∈(0,λ2)时单调递增,在t ∈(λ2,1)时单调递减. 又h (1)=0,所以h (t )在t ∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e 1+λ<x 1·x λ2恒成立,只需λ2≥1.又λ>0,所以λ≥1.考法05 导数与数列、不等式等知识的综合问题(2016·黑龙江哈尔滨模拟,21,12分)设函数f (x )=ln x -px +1.(1)求函数f (x )的极值点;(2)当p >0时,若对任意的x >0,恒有f (x )≤0,求p 的取值范围;(3)证明:ln 2222+ln 3232+…+ln n 2n 2<2n 2-n -12(n +1)(n ∈N ,n ≥2).【知识揭秘】 揭秘1:函数f (x )的极值点,即在定义域内使f ′(x )=0的点. 揭秘2:f (x )≤0⇔f (x )max ≤0.揭秘3:先令p =1,由(2)知,当x >0时,ln x -x +1≤0,从而ln n 2≤n 2-1,结合裂项求和及放缩法即可得证.【思维揭秘】 (1)先求函数f (x )的定义域,再讨论满足f ′(x )=0的点,在定义域内根据导数符号的变化情况来确定极值点;(2)要使f (x )≤0恒成立,只需函数f (x )的最大值小于等于零即可;(3)令p =1,结合(2)得到ln x ≤x -1⇒n ∈N ,n ≥2时,lnn 2≤n 2-1⇒ln n 2n 2≤n 2-1n 2=1-1n 2,再根据1n 2>1n (n +1)放缩求证.【解析揭秘】 (1)∵f (x )=ln x -px +1, ∴f (x )的定义域为(0,+∞), f ′(x )=1x -p =1-px x .当p ≤0时,f ′(x )>0,f (x )在(0,+∞)上无极值点; 当p >0时,令f ′(x )=0,得x =1p .当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:从上表可以看出,当p >0时,f (x )在(0,+∞)上有唯一的极大值点x =1p . (2)当p >0时,f (x )在x =1p 处取得极大值f ⎝ ⎛⎭⎪⎫1p =ln 1p ,此极大值也是f (x )在(0,+∞)上的最大值,要使f (x )≤0在x >0时恒成立,只需f ⎝ ⎛⎭⎪⎫1p =ln 1p ≤0,∴p ≥1,即p 的取值范围为[1,+∞).(3)证明:令p =1,由(2)知,当x >0时,ln x -x +1≤0, ∴ln x ≤x -1.∵n ∈N ,n ≥2,∴ln n 2≤n 2-1,∴ln n 2n 2≤n 2-1n 2=1-1n 2,∴ln 2222+ln 3232+…+ln n 2n 2 ≤⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫1-132+…+⎝ ⎛⎭⎪⎫1-1n 2 =(n -1)-⎝ ⎛⎭⎪⎫122+132+…+1n 2 <(n -1)-⎣⎢⎡⎦⎥⎤12×3+13×4+…+1n (n +1) =(n -1)-⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1n +1=(n -1)-⎝ ⎛⎭⎪⎫12-1n +1=2n 2-n -12(n +1).即ln 2222+ln 3232+…+ln n 2n 2<2n 2-n -12(n +1)(n ∈N ,n ≥2).【名师点睛】 使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上构造正负相消是此法的根源与目的.有关数列的不等式的证明要注意两点:一:灵活构造函数,通过函数的单调性、极值、最值等得出不等式,再通过此不等式赋值得出数列中的初始不等式,进而利用不等式的性质证明.二:对数列不等式需对中间过程及最后结果进行适当放缩,转化为熟悉的数列求和问题.1.(2016·湖南长沙联考,21,12分)已知函数f (x )=x (1+a ln x )x -1(x >1).(1)若g (x )=(x -1)2f ′(x )在(1,+∞)是增函数,求实数a 的取值范围; (2)当a =1时,若f (x )>n 恒成立,求满足条件的正整数n 的最大值;(3)求证:(1+1×3)×(1+3×5)×…×[1+(2n -1)(2n +1)]>e 2n -32.1.解:(1)f ′(x )=ax -a ln x -a -1(x -1)2所以g (x )=ax -a ln x -a -1, 由g ′(x )=a -a x =a (x -1)x≥0⇒a ≥0,所以a >0时,g (x )在(1,+∞)上单调递增;又a =0时,g (x )=-1为常函数,不具有单调性,故a >0.(2)a =1时,g (x )=x -ln x -2, g (3)=3-ln 3-2=ln e3<0, g (4)=4-ln 4-2=ln e 24>0. 设g (b )=0,则b ∈(3,4),因为此时g (x )在(1,+∞)上单调递增,可知当x ∈(1,b )时,g (x )<0;当x ∈(b ,+∞)时,g (x )>0, 所以当x ∈(1,b )时,f ′(x )<0; 当x ∈(b ,+∞)时,f ′(x )>0,所以当x =b 时,f (x )min =f (b )=b (1+ln b )b -1,g (b )=0,所以b -ln b -2=0,即b -1=ln b +1,所以f (b )=b . 因为b ∈(3,4),所以f (b )∈(3,4),所以n ≤3, 故满足条件的正整数n 的最大值为3.(3)证明:由(2)知,当a =1时,f (x )>3恒成立,即x (1+ln x )x -1 >3,1+lnx >3(x -1)x ,ln x >3(x -1)x -1=2-3x (x >1). 令x =1+(2n -1)(2n +1), ln[1+(2n -1)(2n +1)] >2-31+(2n -1)(2n +1)>2-3(2n -1)(2n +1)=2-32⎝ ⎛⎭⎪⎫12n -1-12n +1, ln(1+1×3)>2-32⎝ ⎛⎭⎪⎫11-13,…,ln[1+(2n -1)(2n +1)]>2-32⎝ ⎛⎭⎪⎫12n -1-12n +1,以上n 个式子相加得:ln(1+1×3)+ln(1+3×5)+…+ln[1+(2n -1)(2n +1)]>2n -32⎝ ⎛⎭⎪⎫1-12n +1 >2n -32,ln(1+1×3)×(1+3×5)×…×[1+(2n -1)(2n +1)]>2n -32,即(1+1×3)×(1+3×5)×…×[1+(2n -1)(2n +1)]>e 2n -32.2.(2016·江西上饶模拟,21,12分)已知函数f (x )=x sin x +cos x (x >0). (1)当x ∈(0,2π)时,求f (x )的极值;(2)记x i 为f (x )的从小到大的第i (i ∈N *)个极值点,证明:1x 22+1x 23+…+1x 2n<29(n ≥2,n ∈N ).2.解:(1)f ′(x )=sin x +x cos x -sin x =x cos x ,x ∈(0,2π). 令f ′(x )=0,得x =π2或3π2.∴f (x )在⎝ ⎛⎭⎪⎫0,π2或⎝ ⎛⎭⎪⎫3π2,2π上单调递增,在⎝ ⎛⎭⎪⎫π2,3π2上单调递减, f (x )极小值=f ⎝ ⎛⎭⎪⎫3π2=3π2sin 3π2+cos 3π2=-3π2,f (x )极大值=f ⎝ ⎛⎭⎪⎫π2=π2sin π2+cos π2=π2.(2)证明:∵f ′(x )=0,x >0, ∴x i =(2n -1)π2, ∴94×1x 2i =⎣⎢⎡⎦⎥⎤3(2n -1)π2<1(2n -1)2, ∴94⎝ ⎛⎭⎪⎫1x 22+1x 23+…+1x 2n <132+152+…+1(2n -1)2 <11×3+13×5+15×7+…+1(2n -3)(2n -1)=12⎝ ⎛11-13+13-⎭⎪⎫15+15-17+…+12n -3-12n -1=12⎝⎛⎭⎪⎫1-12n -1=12-14n -2<12, ∴1x 22+1x 23+…+1x 2n<49×12=29(n ≥2,n ∈N ). 3.(2016·陕西西安模拟,21,12分)设函数f (x )=e x -ax -1. (1)若函数f (x )在R 上单调递增,求a 的取值范围; (2)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0;(3)求证:对任意的正整数n ,都有⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭⎪⎫n n +1n +1<1. 3.解:(1)由题意得f ′(x )=e x -a ≥0对x ∈R 均成立,且e x >0, 故a 的取值范围是a ≤0.(2)证明:由a >0及f ′(x )=e x -a 可得函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故函数f (x )的最小值为g (a )=f (ln a )=e ln a -a ln a -1=a -a ln a -1, 则g ′(a )=-ln a ,故当a ∈(0,1)时,g ′(a )>0,当a ∈(1,+∞)时,g ′(a )<0,所以g (a )在(0,1)上单调递增,在(1,+∞)上单调递减.则g (a )在x =1处取得极大值,也为最大值.又g (1)=0,故g (a )≤0.(3)证明:由(2)可知当a =1时,总有f (x )=e x -x -1≥0,当且仅当x =0时,等号成立.当x >0时,总有e x >x +1, 所以(x +1)n +1<(e x )n +1=e (n +1)x .令x +1=1n +1,即x =-n n +1,可得⎝ ⎛⎭⎪⎫1n +1n +1<e -n ;令x +1=2n +1,即x =-n -1n +1,可得⎝ ⎛⎭⎪⎫2n +1n +1<e -(n -1);令x +1=3n +1,即x =-n -2n +1,可得⎝ ⎛⎭⎪⎫3n +1n +1<e -n -2;……令x +1=n n +1,即x =-1n +1,可得⎝ ⎛⎭⎪⎫n n +1n +1<e -1.以上各式相加得⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭⎪⎫n n +1n +1<e -n +e -(n -1)+e -(n -2)+…+e -1=e -n (1-e n )1-e =e -n -11-e =1-e -n e -1<1e -1<1,故对任意的正整数n ,都有⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭⎪⎫n n +1n +1<1成立.。
解析几何-2020年高考数学(理)【热点·重点·难点】专练(解析版)
解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用. 【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1.0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算. 【考查题型】选择,填空,解答题【限时检测】(建议用时:55分钟)1.(2019·福建三明一中高三月考)已知1F ,2F 为椭圆2222:1,(0)x y C a b a b+=>>的左、右焦点,过原点O 且倾斜角为30︒的直线l 与椭圆C 的一个交点为A ,若12AF AF ⊥,122F AF S ∆=,则椭圆C 的方程是( )A .22184x y +=B .22182x y +=C .22162x y +=D .22164x y +=【答案】C 【解析】 【分析】先由题意,不妨设点(),A x y 位于第一象限,根据12AF AF ⊥,得到1212==OA F F c ,根据OA 与x 轴正方向的夹角为30︒,得到1,2⎫⎪⎪⎝⎭A c ,从而由122F AF S ∆=求出2c =,)A,得到22311a b+=,224a b -=,联立,即可求出结果. 【详解】因为过原点O 且倾斜角为30︒的直线l 与椭圆C 的一个交点为A , 不妨设点(),A x y 位于第一象限,因为12AF AF ⊥,所以12AF F ∆为直角三角形,因此1212==OA F F c ; 又OA 与x 轴正方向的夹角为30︒,所以3cos302==x OA c ,1sin 302==y OA c ,即1,22⎛⎫ ⎪ ⎪⎝⎭A c c ;所以12112222F AF S c c ∆=⋅⋅=,解得:2c =,所以)A ;因此22311a b+=①, 又2224a b c -==②,由①②解得:2262a b ⎧=⎨=⎩,因此所求椭圆方程为22162x y +=.故选:C【名师点睛】本题主要考查求椭圆的标准方程,熟记椭圆的标准方程,以及椭圆的简单性 质即可,属于常考题型.2.(2019·贵州高三月考(理))已知抛物线2:4C y x =的焦点为F ,Q 为抛物线上一点,连接PF 并延长交抛物线的准线于点P ,且点P |2||=PQ QF ,则直线PF 的方程为( )A 0y -=B 0y +C 0y -=0y +D .10x -= 【答案】D【解析】根据P 的纵坐标为负数,判断出直线PF 斜率大于零,设直线PF 的倾斜角为θ,根据抛物线的定义,求得cos θ的值,进而求得θ,从而求得tan θ也即直线PF 的斜率,利用点斜式求得直线PF 的方程. 【详解】由于P 的纵坐标为负数,所以直线PF 斜率大于零,由此排除B,C 选项.设直线PF 的倾斜角为θ.作出抛物线24y x =和准线1x =-的图像如下图所示.作QA PA ⊥,交准线1x =-于A 点.根据抛物线的定义可知QF QA =,且QFx AQP θ∠=∠=.依题意|2||=PQ QF ,故在直角三角形PQA 中cos QA QF PQ PQ θ===π6θ=,故直线PF 的斜率为πtan6=,所以直线PF 的方程为)01y x -=-,化简得10x -=.故选:D.。
解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)
十年高考真题精解解析几何十年树木,百年树人,十年磨一剑。
本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。
三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。
(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一: 圆锥曲线的基础性质(2019新课标I 卷T10理科).已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2013新课标Ⅰ卷T4理科)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013新课标Ⅰ卷T10理科)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +(2015新课标I 卷T14理科)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014新课标Ⅰ卷T4理科)已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. B. 3 C.m D.3m(2011新课标I 卷T14理科)在平面直角坐标系xoy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C的方程为.(2012新课标I 卷T10文科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =C 的实轴长为(A (B ) (C )4 (D )8轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|. =±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方程标准方程 (>0) (a>0,b>0) px y 22=参数方程(t 为参数) 范围 ─a x a ,─b y b |x| a ,y R x 0中心原点O (0,0) 原点O (0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b) (a,0), (─a,0) (0,0)对称轴x 轴,y 轴;长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0)12222=+b y a x b a >12222=-by a x 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222)0,2(p F双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. (2)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. (3)共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为. 抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下. (2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设222a y x ±=-x y ±=2=e λ=-2222b y a x λ-=-2222b y a x 02222=-by a x )0(2222≠=-λλb y a x 02222=-b y a x 0=±b y a x )0(2222≠=-λλby a xA(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221p x AF p x x +==(AF 叫做焦半径).二、考向题型研究二: 简单的离心率求解问题(2019新课标I 卷T10文科)双曲线C :﹣=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C的离心率为( ) A .2sin40° B .2cos40°C .D .(2016新课标I 卷T5文科)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34(2011新课标I 卷T7理科)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A ,B 两点,|AB|为C 的实轴长的2倍,则C 的离心率为( ) A .B .C .2D .3(2012新课标I 卷T4文科)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45一、直接求出或求出a 与b 的比值,以求解。
2020年普通高等学校招生全国统一考试压轴(一)数学(理)试题解析
绝密★启用前2020年普通高等学校招生全国统一考试压轴(一)数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.已知集合{1A y y ==,{}30B x x =-≤,则A B =I () A .[]1,2B .[]1,3C .[]2,3D .()2,+∞ 答案:B首先分别化简集合A ,B ,再求交集即可.解: {{}11A y y y y ==+=≥,{}{}303B x x x x =-≤=≤,所以[]1,3A B ⋂=.故选:B.点评:本题主要考查集合的交集运算,同时考查了函数的值域,属于简单题.2.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式,设复数cossin 33z i ππ=+,则3z 等于()A .122-B .1-C .122--D .122-+ 答案:B 根据欧拉公式得到3i z e π=,再计算3z 即可.解: 由题意得3cossin 33i z i e πππ=+=, 333()cos sin 1i i z e e i ππππ====-+. 故选:B点评:本题主要考查三角函数求值问题,同时复数的概念,属于简单题.3.月形是一种特殊的平面图形,指有相同的底,且在底的同一侧的两个弓形所围成的图形.月形中的一种特殊的情形是镰刀形,即由半圆和弓形所围成的图形(如下图),若半圆的半径与弓形所在圆的半径之比为1:2,现向半圆内随机取一点,则取到镰刀形中的一点的概率为()A.423 3-B.2313-C.3πD.31π-答案:B首先设半圆半径为r,分别计算半圆的面积和弓形的面积,再代入几何概型公式计算即可.解:如图所示:设半圆半径为r,半圆面积为22rπ,221(2)3OO r r r=-=弓形面积为()2221122233623r r r r rππ⨯⨯-⨯=-,概率为2222232312332rr rrπππ-+=-.故选:B点评:本题主要以数学文化为背景考查几何概型,同时考查学生的逻辑思维能力,属于中档题. 4.数列{}n a的前几项是:0、2、4、8、12、18、24、32、49、50⋅⋅⋅其规律是:偶数项是序号平方再除2;奇数项是序号平方减1再除2.如图所示的程序框图是为了得到该数列的前100项而设计的,那么在两个判断框中,可以先后填入()A .n 是偶数?,100n ≤?B .n 是奇数?,100n ≤?C .n 是偶数?,100n <?D .n 是奇数?,100n <?答案:A模拟程序框图的运行过程,结合输出的条件,即可得到答案.解:根据偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,可知第一个框应该是“n 是偶数?”;执行程序框图,当101100n =>结束,所以第二个框应该填100n ≤?.故选:A点评:本题主要考查程序框图的应用问题,解题时应模拟程序框图的运行过程,属于简单题.5.已知数列{}n a 的前n 项和为n S ,且对任意*N n ∈都有21n n S a =-,设2log n n b a =,则数列{}n b 的前6项之和为()A .11B .16C .10D .15答案:D首先根据21n n S a =-得到12n n a -=,代入2log n n b a =,再计算数列{}n b 的前6项之和即可.解:因为21n n S a =-,当1n =时,11121S a a =-=,所以11a =.当2n ≥时,1n n n a S S -=-,所以121(21)n n n a a a -=---,即12n n a a -=. 所以数列{}n a 是以1为首项,以2为公比的等比数列,所以12n n a -=,12log 21n n b n -==-,11(2)1n n b b n n --=---=,所以数列{}n b 是以0为首项,以1为公差的等差数列,数列{}n b 的前6项之和为1656152b d ⨯+= 故选:D点评: 本题主要考查由n S 求通项公式n a ,同时考查了等差数列的求和,属于中档题.6.声音中包含着正弦函数.音的四要素:音调、响度、音长和音色都与正弦函数的参数有关.我们平时听到的音乐不只是一个音在响,是由基音和许多个谐音的结合,其函数可以是()11sin sin 2sin 323f x x x x =++,则()f x 的图象可以是() A . B .C .D . 答案:D首先根据()f x 为奇函数,排除C ,根据42f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,排除B ,根据()11111=236f x <++,排除A ,排除法即可得到答案. 解:因为()f x 的定义域为R ,1111()sin()sin(2)sin(3)sin sin 2sin 3()2323f x x x x x x x f x -=-+-+-=---=-, 所以()f x 为奇函数,排除C.1432f π⎛⎫=+ ⎪⎝⎭,223f π⎛⎫= ⎪⎝⎭,故42f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,排除B ; 因为()11111=236f x <++,而A 选项的()max 2f x =,排除A. 故选:D点评: 本题主要考查根据解析式判断函数的图象,同时考查了函数的奇偶性,特值法以及函数的最值,属于中档题.7.过双曲线M :()22210y x b b -=>的左顶点A 作斜率为1的直线l ,若l 与双曲线的渐近线分别交于B 、C 两点,且54OB OA OC =+u u u r u u u r u u u r ,则双曲线的离心率是()ABCD答案:B首先设出直线l 的方程为1y x =+,与渐近线方程联立得到1(,)11b B b b -++,1(,)11b C b b --.根据54OB OA OC =+u u u r u u u r u u u r 得到32b =,再计算离心率即可. 解:由题可知(1,0)A -,所以直线l 的方程为1y x =+.因双曲线M 的两条渐近线方程为y bx =或y bx =-.由1y bx y x =-⎧⎨=+⎩,解得1(,)11b B b b -++;同理可得1(,)11b C b b --. 又()1,0OA =-u u u r ,1,11b OB b b ⎛⎫=- ⎪++⎝⎭u u u r ,1,11b OC b b ⎛⎫= ⎪--⎝⎭u u u r。
压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。
2020届全国卷1理科数学高考“压轴题题型解法”大纲(李老师编)
3.线性回归和类线性回归(大数据整体计算型)
难
4.极坐标与参数方程的几何意义法(求长度、长度之积/和)
难
5.新定义、新材料阅读理解题
难
6.类比推理和演绎推理
难
难
3.不规则锥体的外接球(万能公式,见于杂志)
难
4.1向量的四心问题(性质秒杀)
难
4.2角平分线定理
难
5.向量的奔驰定理(公式秒杀)
难
6.解三角形(共边型、共角型、整体法型)
难
7.解三角形求动态参数(数形结合法、基本不等式法、三角函数法)
难
8.三角函数高难度化简与变换(函数求参数题(构建法+分类讨论法)
难
3.2构建函数的恒成立、存在性问题(单边构建、双边构建)
难
4.极值点偏移题(左偏移、右偏移、拉格朗日中值定理)
难
5.零点、交点、根的存在性问题(判断、个数、分布)
难
6.恒成立、存在性问题(特殊点型、隐零点型、虚假点型)
难
7.函数模型与缩放题(指数、对数:直接,裂项,并项,加强)
难
模块
2020全国卷1卷压轴考点和题型明细
难度
数列
1.数学归纳法
难
2.数列放缩类型和数列不等式的证明
难
3.数列递推
难
4.探索数列中的存在性(最大最小整数型、数列函数交汇型)
难
模块
2020全国卷1卷压轴考点和题型明细
难度
其他
1.可行域问题(生活应用综合型、动态型)
难
2.排列组合题(综合型、至少至多型)
2020全国卷1卷压轴考点和题型明细
难度
圆锥曲线
1.对称性问题
解析几何-2020年高考数学(理)二轮专项复习
专题08 解析几何平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题.在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题.§8-1 直角坐标系【知识要点】1.数轴上的基本公式设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是d (A ,B )=|AB |=|x 2-x 1|.2.平面直角坐标系中的基本公式设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-==A ,B 两点的中点M (x ,y )的坐标公式是⋅+=+=2,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是.)()()(||),(212212212z z y y x x AB B A d -+-+-==【复习要求】1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题.2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式.【例题分析】例1 解下列方程或不等式:(1)|x-3|=1;(2)|x-3|≤4;(3)1<|x-3|≤4.略解:(1)设直线坐标系上点A,B的坐标分别为x,3,则|x-3|=1表示点A到点B的距离等于1,如图8-1-1所示,图8-1-1所以,原方程的解为x=4或x=2.(2)与(1)类似,如图8-1-2,图8-1-2则|x-3|≤4表示直线坐标系上点A到点B的距离小于或等于4,所以,原不等式的解集为{x|-1≤x≤7}.(3)与(2)类似,解不等式1<|x-3|,得解集{x|x>4,或x<2},将此与不等式|x-3|≤4的解集{x|-1≤x≤7}取交集,得不等式1<|x-3|≤4的解集为{x|-1≤x<2,或4<x≤7}.【评析】解绝对值方程或不等式时,如果未知数x的次数和系数都为1,那么可以利用绝对值的几何意义来解绝对值方程或不等式.|x-a|的几何意义:表示数轴(直线坐标系)上点A(x)到点B(a)的距离.例2 已知矩形ABCD及同一平面上一点P,求证:P A2+PC2=PB2+PD2.解:如图8-1-3,以点A为原点,以AB为x轴,向右为正方向,以AD为y轴,向上为正方向,建立平面直角坐标系.图8-1-3设AB =a ,AD =b ,则 A (0,0),B (a ,0),C (a ,b ),D (0,b ),设P (x ,y ), 则22222222))()(()(b y a x y x PC PA -+-++=+=x 2+y 2+(x -a )2+(y -b )2,22222222))(())((b y x y a x PD PB -+++-=+=x 2+y 2+(x -a )2+(y -b )2,所以P A 2+PC 2=PB 2+PD 2.【评析】坐标法是解析几何的一个基本方法,非常重要.坐标法中要注意坐标系的建立,理论上,可以任意建立坐标系,但是坐标系的位置会影响问题解决的复杂程度,适当的坐标系可以使解题过程较为简便.例3 已知空间直角坐标系中有两点A (1,2,-1),B (2,0,2).(1)求A ,B 两点的距离;(2)在x 轴上求一点P ,使|P A |=|PB |;(3)设M 为xOy 平面内的一点,若|MA |=|MB |,求M 点的轨迹方程.解:(1)由两点间的距离公式,得.14)21()02()21(||222=--+-+-=AB(2)设P (a ,0,0)为x 轴上任一点,由题意得222)10()20()1(++-+-a,即a 2-2a +6=a 2-4a +8,解得a =1,所以P (1,0,0).40)2(2++-=a(3)设M (x ,y ,0),则有整理可得x -2y -1=0.所以,M 点的轨迹方程为x -2y -1=0. 【评析】由两点间的距离公式建立等量关系,体现了方程思想的应用.练习8-1一、选择题1.数轴上三点A ,B ,C 的坐标分别为3,-1,-5,则AC +CB 等于( )A .-4B .4C .-12D .122.若数轴上有两点A (x ),B (x 2)(其中x ∈R ),则向量的数量的最小值为( )A .B .0C .D . 3.在空间直角坐标系中,点(1,-2,3)关于yOz 平面的对称点是( )A .(1,-2,-3)B .(1,2,3)C .(-1,-2,3)D .(-1,2,3)4.已知平面直角坐标内有三点A (-2,5),B (1,-4),P (x ,y ),且|AP |=|BP |,则实数x ,y 满足的方程为( )A .x +3y -2=0B .x -3y +2=0C .x +3y +2=0D .x -3y -2=0二、填空题5.方程|x +2|=3的解是______;不等式|x +3|≥2的解为______.6.点A (2,3)关于点B (-4,1)的对称点为______.7.方程|x +2|-|x -3|=4的解为______.8.如图8-1-4,在长方体ABCD -A 1B 1C 1D 1中,|DA |=3,|DC |=4,|DD 1|=2,A 1C 的中点为M ,则点B 1的坐标是______,点M 的坐标是______,M 关于点B 1的对称点为______. ,4)0()2()10()2()1(22222+-+-=++-+-y x y x AB 214141-图8-1-4三、解答题9.求证:平行四边形ABCD满足AB2+BC2+CD2+DA2=AC2+BD2.10.求证:以A(4,3,1),B(7,1,2),C(5,2,3)三点为顶点的三角形是一个等腰三角形.11.在平面直角坐标系中,设A(1,3),B(4,5),点P在x轴上,求|P A|+|PB|的最小值.§8-2 直线的方程【知识要点】1.直线方程的概念如果以一个方程的解为坐标的点都在某条直线上,且这条直线上点的坐标都是这个方程的解,那么这个方程叫做这条直线的方程...........,这条直线叫做这个方程的直线2.直线的倾斜角和斜率x轴正向与直线向上的方向所成的角叫做这条直线的倾斜角....并规定,与x轴平行或重合的直线的倾斜角为零度角.因此,倾斜角α 的取值范围是0°≤α <180°.我们把直线y =kx +b 中的系数k 叫做这条直线的斜率...设A (x 1,y 1),B (x 2,y 2)为直线y =kx +b 上任意两点,其中x 1≠x 2,则斜率 倾斜角为90°的直线的斜率不存在,倾斜角为α 的直线的斜率k =tan α (α ≠90°).3.直线方程的几种形式点斜式:y -y 1=k (x -x 1);斜截式:y =kx +b ;两点式:一般式:Ax +By +C =0(A 2+B 2≠0).4.两条直线相交、平行与重合的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则(1)l 1与l 2相交A 1B 2-A 2B 1≠0或 (2)l 1与l 2平行(3)l 1与l 2重合 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,截距分别为b 1,b 2,则l 1与l 2相交k 1≠k 2;l 1∥l 2k 1=k 2,b 1≠b 2;l 1与l 2重合k 1=k 2,b 1=b 2.5.两条直线垂直的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2A 1A 2+B 1 B 2=0. 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,则l 1⊥l 2k 1k 2=-1.⋅--=1212x x yy k );,(2121121121y y x x x x x x y y y y =/=/--=--⇔)0(222121=/=/B A B B A A ⇔⎪⎪⎩⎪⎪⎨⎧=/=/=≠-≠-=-).0(;00,0222212121211221211221C B A C C B B A A C A C A B C C B B A B A 或或而⇔⎪⎩⎪⎨⎧=/==≠===).0();0(,,222212*********C B A C C B B A A C C B B A A 或λλλλ⇔⇔⇔⇔⇔6.点到直线的距离点P (x 1,y 1)到直线l :Ax +By +C =0的距离d 的计算公式【复习要求】1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式:点斜式、两点式及一般式,体会斜截式与一次函数的关系.2.掌握两条直线平行与垂直的条件,点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系,能用解方程组的方法求两直线的交点坐标.【例题分析】例1(1)直线的斜率是______,倾斜角为______;(2)设A (2,3),B (-3,2),C (-1,-1),过点C 且斜率为k 的直线l 与线段AB 相交,则斜率k 的取值范围为______.略解:(1)直线可以化简为 所以此直线的斜率为,倾斜角 (2)如图8-2-1,设直线AC 的倾斜角为α ,图8-2-1因为此直线的斜率为,所以 设直线BC 的倾斜角为β ,因为此直线的斜率为 ⋅+++=2211||B A C By Ax d 082=-+y x 082=-+y x ,22822+-=x y 22-;22tan arc π-=α341213=++=AC k ;34tan =α,231312-=+-+=BC k所以 因为直线l 与线段AB 相交,所以直线l 的倾斜角θ 满足α ≤θ ≤β ,由正切函数图象,得tan θ ≥tan α 或tan θ≤tan β,故l 斜率k 的取值范围为.【评析】(1)求直线的斜率常用方法有三种:①已知直线的倾斜角α,当α≠90°时,k =tan α; ②已知直线上两点的坐标(x 1,y 1),(x 2,y 2),当x 1≠x 2时,k =; ③已知直线的方程Ax +By +C =0,当B ≠0时,k =. (2)已知直线的斜率k 求倾斜角α 时,要注意当k >0时,α =arctan k ;当k <0时,α =π-arctan |k |.例2 根据下列条件求直线方程:(1)过点A (2,3),且在两坐标轴上截距相等;(2)过点P (-2,1),且点Q (-1,-2)到直线的距离为1.解:(1)设所求直线方程为y -3=k (x -2),或x =2(舍),令y =0,得x =2-(k ≠0);令x =0,得y =3-2k , 由题意,得2-=3-2k ,解得k =或k =-1, 所以,所求直线方程为3x -2y =0或x +y -5=0;(2)设所求直线方程为y -1=k (x +2)或x =-2,当直线为y -1=k (x +2),即kx —y +(2k +1)=0时,由点Q (-1,-2)到直线的距离为1,得=1,解得, ⋅-=23tan β]23,[],34[-∞+∞∈ k 1212x x y y --BA -k3k 3231|122|2++++-k k k 34-=k所以,直线,即4x +3y +5=0符合题意; 当直线为x =-2时,检验知其符合题意.所以,所求直线方程为4x +3y +5=0或x =-2.【评析】求直线方程,应从条件出发,合理选择直线方程的形式,并注意每种形式的适应条件.特别地,在解题过程中要注意“无斜率”,“零截距”的情况.例3 已知直线l 1:(m -2)x +(m +2)y +1=0,l 2:(m 2-4)x —my -3=0,(1)若l 1∥l 2,求实数m 的值;(2)若l 1⊥l 2,求实数m 的值.解法一:(1)因为l 1∥l 2,所以(m -2)(-m )=(m +2)(m 2-4),解得m =2或m =-1或m =-4,验证知两直线不重合,所以m =2或m =-1或m =-4时,l 1∥l 2;(2)因为l 1⊥l 2,所以(m -2)(m 2-4)+(-m )(m +2)=0,解得m =-2或m =1或m =4.解法二:当l 1斜率不存在,即m =-2时,代入直线方程,知l 1⊥l 2;当l 2斜率不存在,即m =0时,代入直线方程,知l 1与l 2既不平行又不垂直; 当l 1,l 2斜率存在,即m ≠0,m ≠-2时,可求l 1,l 2,如的斜率分别为k 1=-,k 2=,截距b 1=-,b 2=, 若l 1∥l 2,由k 1=k 2,b 1≠b 2,解得m =2或m =-1或m =-4,若l 1⊥l 2,由k 1k 2=-1,解得m =1或m =4综上,(1)当m =2或m =-1或m =-4时,l 1∥l 2;(2)当m =-2或m =1或m =4时,l 1⊥l 2.【评析】两条直线平行与垂直的充要条件有几个,但各有利弊.简洁的(如解法一)相互之间易混淆,好记的要注意使用条件(如解法二,易丢“无斜率”的情况),解题过程中要注03534=---y x 22-+m m m m 42-21+m m3-意正确使用.例4 已知直线l 过两直线l 1:3x -y -1=0与l 2:x +y -3=0的交点,且点A (3,3)和B (5,2)到l 的距离相等,求直线l 的方程.【分析】所求直线l 有两种情况:一是l 与AB 平行;二是点A ,B 在l 的两侧,此时l 过线段AB 的中点.解:解方程组得交点(1,2),由题意,当①l 与AB 平行;或②l 过A ,B 的中点时.可以使得点A ,B 到l 的距离相等. ①当l ∥AB 时,因为,此时,即x +2y -5=0; ②当l 过AB 的中点时,因为AB 的中点坐标为所以 即l :x -6y +11=0.综上,所求的直线l 的方程为x +2y -5=0或l :x -6y +11=0.例5 已知直线l 1:y =kx +2k 与l 2:x +y =5的交点在第一象限,求实数k 的取值范围. 解法一:解方程组,得交点 由题意,得,解得 解法二:如图8-2-2,由l 1:y =k (x +2),知l 1过定点P (-2,0),⎩⎨⎧=-+=--03013y x y x 215323-=--=AB k )1(212:--=-x y l ),25,4(M ,1412252:--=--x y l ⎩⎨⎧=++=52y x k kx y ),1255,125(+--+-k k k k ⎪⎪⎩⎪⎪⎨⎧>+-->+-012550125k k k k ⋅<<250k图8-2-2由l 2:x +y =5,知l 2坐标轴相交于点A (0,5),B (5,0),因为 由题意,得 【评析】在例4,例5中,要充分利用平面几何知识解决问题,体会数形结合的思想与方法;要会联立两个曲线(直线)的方程,解方程得到曲线的交点,体会方程思想.例6 如图8-2-3,过点P (4,4)的直线l 与直线l 1:y =4x 相交于点A (在第一象限),与x 轴正半轴相交于点B ,求△ABO 面积的最小值.图8-2-3解:设B (a ,0),则 将y =4x 代入直线l 的方程,得点A 的坐标为 则△ABO 的面积 所以当a =6时,△ABO 的面积S 取到最小值24.练习8-2一、选择题1.若直线l 的倾斜角的正弦为,则l 的斜率k 是( ) ,0,252005==+-=BP AP k k ⋅<<250k ),4(4044:---=-x a y l ),3)(34,3(>--a a a a a ,121)611(3234212+--=-⨯⨯=a a a a S 53A .B .C .或D .或 2.点P (a +b ,ab )在第二象限内,则bx +ay -ab =0直线不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.“”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 4.若直线与直线2x +3y -6=0的交点位于第一象限,则l 的倾角的取值范围( )A .B .C .D . 二、填空题5.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1∥l 2,则a =_______.6.已知点A (3,0),B (0,4),则过点B 且与A 的距离为3的直线方程为_______.7.若点P (3,4),Q (a ,b )关于直线x -y -1=0对称,则a +2b =_______.8.若三点A (2,2),B (a ,0),C (0,b ),(ab ≠0)共线,则的值等于_______. 三、解答题9.已知点P 在直线2x +3y -2=0上,点A (1,3),B (-1,-5).(1)求|P A |的最小值;(2)若|P A |=|PB |,求点P 坐标.10.若直线l 夹在两条直线l 1:x -3y +10=0与l 2:2x +y -8=0之间的线段恰好被点P (0,1)平分,求直线l 的方程. 43-4343-433434-21=m 3:-=kx y l )3π,6π[)2π,3π()2π,6π(]2π,6π[ba 11+211.已知点P到两个定点M(-1,0)、N(1,0)距离的比为,点N到直线PM的距离为1.求直线PN的方程.§8-3 简单的线性规划问题【知识要点】1.二元一次不等式(组)所表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面区域中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(开半平面),且不含边界线.不等式Ax+By+C≥0所表示的平面区域包括边界线(闭半平面).(2)由几个不等式组成的不等式组所表示的平面区域,是指各个不等式组所表示的平面区域的公共部分.(3)可在直线Ax+By+C=0的某一侧任取一点,一般地取特殊点(x0,y0),从Ax0+By0+C的正(或负)来判断Ax+By+C>0(或Ax+By+C<0)所表示的区域.当C≠0时,常把原点(0,0)作为特殊点.(4)也可以利用如下结论判断区域在直线哪一侧:①y>kx+b表示直线上方的半平面区域;y<kx+b表示直线下方的半平面区域.②当B>0时,Ax+By+C>0表示直线上方区域,Ax+By+C<0表示直线下方区域.2.简单线性规划(1)基本概念目标函数:关于x,y的要求最大值或最小值的函数,如z=x+y,z=x2+y2等.约束条件:目标函数中的变量所满足的不等式组.线性目标函数:目标函数是关于变量的一次函数.线性约束条件:约束条件是关于变量的一次不等式(或等式).线性规划问题:在线性约束条件下,求线性目标函数的最大值或最小值问题.最优解:使目标函数达到最大值或最小值的点的坐标,称为问题的最优解.可行解:满足线性约束条件的解(x ,y )叫可行解.可行域:由所有可行解组成的集合叫可行域.(2)用图解法解决线性规划问题的一般步骤:①分析并将已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数,求出最优解;⑥实际问题需要整数解时,应适当调整确定最优解.【复习要求】1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【例题分析】例1 (1)若点(3,1)在直线3x -2y +a =0的上方,则实数a 的取值范围是______;(2)若点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则实数a 的取值范围是______. 解:(1)将直线化为 由题意,得,解得a <-7. (2)由题意,将两点代入直线方程的左侧所得符号相反,则(3×3-2+a )[3×(-4)-12+a ]<0,即(a +7)(a -24)<0,所以,实数a 的取值范围是(-7,24).例2 (1)如图8-3-1,写出能表示图中阴影部分的不等式组;,223a x y +=23231a +⨯>图8-3-1(2)如果函数y =ax 2+bx +a 的图象与x 轴有两个交点,试在aOb 坐标平面内画出点(a ,b )表示的平面区域.略解:(1) (2)由题意,得b 2-4a 2>0,即(2a +b )(2a -b )<0,所以或,点(a ,b )表示的平面区域如图8-3-2.图8-3-2【评析】除了掌握二元一次不等式表示平面区域外,还应关注给定平面区域如何用不等式表示这个逆问题.例3 已知x ,y 满足求:(1)z 1=x +y 的最大值;(2)z 2=x -y 的最大值;(3)z 3=x 2+y 2的最小值;,02210⎪⎩⎪⎨⎧≥+-->≤y x y x ⎩⎨⎧<->+0202b a b a ⎩⎨⎧>-<+0202b a ba ⎪⎩⎪⎨⎧≤--≥+-≥-+.033,042,022y x y x y x(4)的取值范围(x ≠1). 略解:如图8-3-3,作出已知不等式组表示的平面区域.图8-3-3易求得M (2,3),A (1,0),B (0,2).(1)作直线x +y =0,通过平移,知在M 点,z 1有最大值5;(2)作直线x -y =0,通过平移,知在A 点,z 2有最大值1;(3)作圆x 2+y 2=r 2,显然当圆与直线2x +y -2=0相切时,r 2有最小值,即z 3有最小值 (4)可看作(1,0)与(x ,y )两点连线的斜率,所以z 4的取值范围是(-∞,-2]∪[3,+∞).【评析】对于非线性目标函数在线性约束条件下的最值问题,要充分挖掘其目标函数z 的几何意义.z 的几何意义常见的有:直线的截距、斜率、圆的半径等.例4 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件则z =10x +10y 的最大值是( )(A)80 (B)85 (C)90 (D)95略解:由题意,根据已知不等式组及可得到点(x ,y )的可行域.14-=x yz 2)52(;541-x y ⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x ⎩⎨⎧≥≥00y x如图8-3-4.图8-3-4作直线x +y =0,通过平移,知在M 点,z =10x +10y 有最大值,易得 又由题意,知x ,y ∈N ,作适当调整,知可行域内点(5,4)可使z 取最大值,所以,z max =10×5+10×4=90,选C .【评析】实际问题中,要关注是否需要整数解.例5 某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?解:设此工厂每日需甲种原料x 吨,乙种原料y 吨,则可得产品z =90x +100y (千克).由题意,得上述不等式组表示的平面区域如图8-3-5所示,阴影部分(含边界)即为可行域.图8-3-5作直线l :90x +100y =0,并作平行于直线l的一组直线与可行域相交,其中有一条直),29,211(M ⎪⎩⎪⎨⎧≥≥≤+≤+⇒⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,2045,1232.0,0,2000400500,600015001000y x y x y x y x y x yx线经过可行域上的M 点,且与直线l 的距离最大,此时目标函数达到最大值.这里M 点是直线2x +3y =12和5x +4y =20的交点,容易解得M ,此时z 取到最大值 答:当每天提供甲原料吨,乙原料吨时,每日最多可生产440千克产品. 例6 设函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.(1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域;(2)试利用(1)所得的区域,求f (-2)的取值范围.解:(1)∵f (-1)=a -b ,f (1)=a +b ,∴即如图8-3-6,在平面直角坐标系aOb 中,作出满足上述不等式组的区域,阴影部分(含边界)即为可行域.图8-3-6(2)目标函数f (-2)=4a -2b .在平面直角坐标系aOb 中,作直线l :4a -2b =0,并作平行于直线l 的一组直线与可行域相交,其中有一条直线经过可行域上的B 点,且与直线l 的距离最大,此时目标函数达到最大值.这里B 点是直线a -b =2和a +b =4的交点,容易解得B (3,1),此时f (-2)取到最大值4×3-2×1=10.)720,712(71290⨯.440720100=⨯+712720⎩⎨⎧≤+≤≤-≤.42,21b a b a ⎪⎪⎩⎪⎪⎨⎧<+≥+≤-≥-.4,2,2,1b a b a b a ba同理,其中有一条直线经过可行域上的C 点,此时目标函数达到最小值.这里C 点是直线a -b =1和a +b =2的交点,容易解得 此时f (-2)取到最小值 所以5≤f (-2)≤10. 【评析】线性规划知识是解决“与二元一次不等式组有关的最值(或范围)问题”的常见方法之一.练习8-3一、选择题1.原点(0,0)和点(1,1)在直线x +y -a =0的两侧,则a 的取值范围是 ( )A .a <0或a >2B .a =0或a =2C .0<a <2D .0≤a ≤22.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值是( )A .-1B .1C .2D .-23.已知x 和y 是正整数,且满足约束条件则z =2x +3y 的最小值是( )A .24B .14C .13D .11.54.根据程序设定,机器人在平面上能完成下列动作:先从原点O 沿正东偏北α 方向行走-段时间后,再向正北方向行走一段时间,但α 的大小以及何时改变方向不定.如图8-3-7.假定机器人行走速度为10米/分钟,设机器人行走2分钟时的可能落点区域为S ,则S 可以用不等式组表示为( )图8-3-7),21,23(C .5212234=⨯-⨯⎪⎩⎪⎨⎧≥≤-≤+.72,2,10x y x y x )2π0(≤≤αA .B .C .D .二、填空题 5.在平面直角坐标系中,不等式组表示的平面区域的面积是______.6.若实数x 、y 满足,则的取值范围是______. 7.点P (x ,y )在直线4x +3y =0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是______.8.若当实数x ,y 满足时,z =x +3y 的最小值为-6,则实数a 等于______.三、解答题9.如果点P 在平面区域内,点Q (2,2),求|PQ |的最小值.10.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%(),可能的最大亏损率分别为30%和10%( ⎩⎨⎧≤≤≤≤200200y x ⎩⎨⎧≥+≤+2040022y x y x ⎪⎩⎪⎨⎧≥≥≤+0040022y x y x ⎪⎩⎪⎨⎧≤≤≥+202020y x y x ⎪⎩⎪⎨⎧≤≥+-≥-+20202x y x y x ⎪⎩⎪⎨⎧≤>≤+-2001x x y x x y ⎪⎩⎪⎨⎧≤≥+≥+-a x y x y x 005⎪⎩⎪⎨⎧≥-+≤-+≥+-0102022y x y x y x %100⨯=投资额盈利额盈利率投资额亏损额亏损率=),投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投多少万元,才能使可能的盈利最大?11.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0.(1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域; (2)试利用(1)所得的区域,指出a 的取值范围.§8-4 圆的方程【知识要点】1.圆的方程(1)标准方程:(x -a )2+(y -b )2=r 2(r >0),其中点(a ,b )为圆心,r 为半径. (2)一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),其中圆心为,半径为2.点和圆的位置关系设圆的半径为r ,点到圆的圆心距离为d ,则 d >r 点在圆外; d =r 点在圆上; d <r 点在圆内. 3.直线与圆的位置关系(1)代数法:联立直线与圆的方程,解方程组,消去字母y ,得关于x 的一元二次方程,则%100⨯)2,2(ED --21.422F E D -+⇔⇔⇔>0方程组有两解直线和圆相交; =0方程组有一解直线和圆相切;<0方程组无解直线和圆相离.(2)几何法(重点):计算圆心到直线的距离d ,设圆的半径为r ,则 d <r 直线和圆相交; d =r 直线和圆相切; d >r 直线和圆相离. 4.圆与圆的位置关系设两圆的半径分别为R ,r (R ≥r ),两圆的圆心距为d (d >0),则 d >R +r 两圆相离; d =R +r 两圆外切; R -r <d <R +r 两圆相交; d =R -r 两圆内切; d <R -r 两圆内含. 【复习要求】1.掌握圆的标准方程与一般方程,能根据条件,求出圆的方程.2.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系,解决一些简单问题. 【例题分析】例1根据下列条件,求圆的方程: (1)一条直径的端点是A (3,2),B (-4,1);(2)经过两点A (1,-1)和B (-1,1),且圆心在直线x +y -2=0上; (3)经过两点A (4,2)和B (-1,3),且在两坐标轴上的四个截距之和为2.【分析】求圆的方程,可以用待定系数法.若已知条件与圆心、半径有关,则设圆的标准方程,如第(2)问.若已知条件与圆心、半径关系不大,则设圆的一般方程,如第(3)问.∆⇔⇔∆⇔⇔∆⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔解:(1)由题意圆心为AB 的中点M ,即, 因为所以圆的半径所以,所求圆的方程为 (2)方法一:设圆的方程为(x -a )2+(y -b )2=r 2(r >0),则,解得所以,所求圆的方程为(x -1)2+(y -1)2=4.方法二:由圆的几何性质可知,圆心一定在弦AB 的垂直平分线上.易得AB 的垂直平分线为y =x .由题意,解方程组,得圆心C 为(1,1),于是,半径r =|AC |=2,所以,所求圆的方程为(x -1)2+(y -1)2=4. (3)设所求圆的方程为x 2+y 2+Dx +Ey +F =0, 因为圆过点A ,B ,所以 4D +2E +F +20=0,① -D +3E +F +10=0,②在圆的方程中,令y =0,得x 2+Dx +F =0, 设圆在x 轴上的截距为x 1,x 2,则x 1+x 2=-D . 在圆的方程中,令x =0,得y 2+Ey +F =0, 设圆在y 轴上的截距为y 1,y 2,则y 1+y 2=-E .)212,243(+-)23,21(-M ,50)12()43(||22=-++=AB ⋅==250||21AB r ⋅=-++225)23()21(22y x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+--=--+-=-+222222)1()1()1()1(02r b a r b a b a ⎪⎩⎪⎨⎧===2,11r b a ⎩⎨⎧=-+=02y x xy由题意,得-D +(-E )=2,③解①②③,得D =-2,E =0,F =-12, 所以,所求圆的方程为x 2+y 2-2x -12=0.【评析】①以A (x 1,y 1),B (x 2,y 2)为一直径端点的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.②求圆的方程时,要注意挖掘题中圆的几何意义(如第(2)问);③待定系数法求圆的方程时,要恰当选择的圆的方程(如第(3)问),这样有时能大大减少运算量.例2 (1)点P (a ,b )在圆C :x 2+y 2=r 2(r >0)上,求过点P 的圆的切线方程;(2)若点P (a ,b )在圆C :x 2+y 2=r 2(r >0)内,判断直线ax +by =r 2与圆C 的位置关系. 解:(1)方法一:因为切线l 与半径OP 垂直,又可求出直线OP 的斜率,所以可得切线l 的斜率,再由点斜式得到切线方程.但要注意斜率是否存在(详细过程略).方法二:设Q (x ,y )为所求切线上任一点,则,即(x -a ,y -b )·(a ,b )=0. 整理得ax +by =a 2+b 2,又因为P 在圆上,所以a 2+b 2=r 2, 故所求的切线方程为ax +by =r 2. (2)由已知,得a 2+b 2<r 2,则圆心O (0,0)到直线ax +by =r 2的距离所以此直线与圆C 相离.【评析】随着点P (a ,b )与圆C :x 2+y 2=r 2的位置关系的变化,直线l :ax +by =r 2与圆C 的位置关系也在变化.①当点P 在圆C 上时,直线l 与圆C 相切;②当点P 在圆C 内时,直线l 与圆C 相离;③当点P 在圆外时,直线l 与圆C 相交.例3 已知点A (a ,3),圆C :(x -1)2+(y -2)2=4. (1)设a =3,求过点A 且与圆C 相切的直线方程;(2)设a =4,直线l 过点A 且被圆C 截得的弦长为2,求直线l 的方程;(3)设a =2,直线l 1过点A ,求l 1被圆C 截得的线段的最短长度,并求此时l 1的方程. 解:(1)如图8-4-1,此时A (3,3),0=⋅.||22222r rr ba r d =>+=3图8-4-1设切线为y -3=k (x -3)或x =3, 验证知x =3符合题意;当切线为y -3=k (x -3),即kx -y -3k +3=0时,圆心(1,2)到切线的距离解得所以,切线方程为3x +4y -21=0或x =3. (2)如图8-4-2,此时A (4,3),图8-4-2设直线l 为y -3=k (x -4)或x =4(舍), 设弦PQ 的中点为M ,则|CP |=r =2,所以,即圆心到直线l 的距离为1,,21|332|2=++--=k k k d ,43-=k ,3||=PM ,1||||||22=-=PM CP CM于是,解得k =0或, 所以,直线l 的方程为或y =3. (3)如图8-4-3,此时A (2,3),设所截得的线段为DE ,圆心到直线l 1的距离为d ,图8-4-3则,即 因为直线l 1过点A ,所以圆心到直线l 1的距离为d ≤|CA|=故当d =时,, 此时AC ⊥l 1,因为 所以=-1,故直线l 1方程为y -3=-(x -2),即x +y -5=0.【评析】(1)用点斜式设直线方程时,要注意斜率是否存在;(2)涉及直线与圆的位置关系问题时,用与圆有关的几何意义解题较为方便,常见的有:①比较圆心到直线的距离与半径的大小;②如图8-4-2,在由弦心距、半径及弦组成的Rt △CMP 中,有|CM |2+|MP |2=|CP |2,CM ⊥MP 等;③如图8-4-1,由切线段、半径组成的Rt △AB C .例4 已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求证:不论m 取何值,直线l 与圆C 恒交于两点.11|342|2=++--=k k k d 43x y 43=222|)|21(r d DE =+,42||2d DE -=,2222||min =DE ,11223=--=AC k 1l k【分析】要证明直线l 与圆C 恒交于两点,可以用圆心到直线的距离小于半径,也可以联立直线和圆的方程,消去y 后用判别式大于零去证明,但此题这两种方法计算量都很大.如果能说明直线l 恒过圆内一定点,那么直线l 与圆C 显然有两个交点.解:因为直线l :mx +y +m =0可化为y =-m (x +1), 所以直线l 恒过点A (-1,0),又圆C :(x -1)2+(y -2)2=25的圆心为(1,2),半径为5, 且点A 到圆C 的圆心的距离等于 所以点A 为圆C 内一点,则直线l 恒过圆内一点A , 所以直线l 与圆C 恒交于两点.例5 四边形ABCD 的顶点A (4,3),B (0,5),C (-3,-4),D O 为坐标原点. (1)此四边形是否有外接圆,若有,求出外接圆的方程,若没有,请说明理由; (2)记△ABC 的外接圆为W ,过W 上的点E (x 0,y 0)(x 0>0,y 0>0)作圆W 的切线l ,设l 与x 轴、y 轴的正半轴分别交于点P 、Q ,求△OPQ 面积的最小值.【分析】判断四点是否共圆,初中的方法是证明一组对角之和为180°,此题此法不易做.如何用所学知识解决问题是此题的关键,如果想到三点共圆,那么可以求出过三点的圆的方程,然后再判断第四点是否在圆上,问题就迎刃而解.解:(1)设△ABC 的外接圆为W ,圆心M (a ,b ),半径为r (r >0). 则W 为:(x -a )2+(y -b )2=r 2.由题意,得,解得,所以W :x 2+y 2=25. 将点D 的坐标代入W 的方程,适合. 所以点D 在△ABC 的外接圆W 上,故四边形ABCD 有外接圆,且外接圆的方程为x 2+y 2=25. (2)设切线l 的斜率为k ,直线ME (即OE )的斜率为k 1,,522)2()11(22<=-+--).1,62(⎪⎪⎪⎩⎪⎪⎪⎨⎧=--+--=-+-=-+-222222222)4()3()5()0()3()4(r b a r b a r b a ⎪⎩⎪⎨⎧===500r b a∵圆的切线l 垂直于过切点的半径,∴∴切线,整理得而,∵点E (x 0,y 0)在圆W 上,即,∴切线l :x 0x +y 0y =25.在l 的方程中,令x =0,得,同理 ∴△OPQ 的面积 ∵,(其中x 0>0,y 0>0)∴当且仅当时,等号成立. 即当时,△OPQ 的面积有最小值25. 练习8-4一、选择题1.以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的方程为( ) A .(x -2)2+(y +1)2=3 B .(x +2)2+(y -1)2=3 C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=92.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于( ) A .B .C .1D .53.若直线与圆x 2+y 2=1有公共点,则( ) ,11k k -= ,,00001y xk x y k -=∴=)(:0000x x y xy y l --=-202000y x y y x x +=+252020=+y x )25,0(,2500y Q y y ∴=).0,25(0x P ,26252525210000y x y x S OPQ ==⋅⋅∆002020225y x y x ≥=+.2525625262500=≥=∆y x S OPQ 22500==y x )225225(,E 62251=+bya xA .a 2+b 2≤1B .a 2+b 2≥1C .D .4.圆(x +2)2+y 2=5关于点(1,2)对称的圆的方程为( ) A .(x +4)2+(y -2)2=5 B .(x -4)2+(y -4)2=5 C .(x +4)2+(y +4)2=5 D .(x +4)2+(y +2)2=5二、填空题5.由点P (-1,4)向圆x 2+y 2-4x -6y +12=0所引的切线长是______. 6.若半径为1的圆分别与y 轴的正半轴和射线相切,则这个圆的方程为______.7.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为的点共有______个. 8.若不等式x 2+2x +a ≥-y 2-2y 对任意的实数x 、y 都成立,则实数a 的取值范围是______. 三、解答题9.已知直线l :x -y +2=0与圆C :(x -a )2+(y -2)2=4相交于A 、B 两点. (1)当a =-2时,求弦AB 的垂直平分线方程; (2)当l 被圆C 截得弦长为时,求a 的值.10.已知圆满足以下三个条件:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为.求该圆的方程.11.已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求直线l 被圆C 截得的线段的最短长度,以及此时l 的方程.11122≤+b a 11122≥+b a )0(33≥=x x y 23255§8-5 曲线与方程【知识要点】1.轨迹方程一般地,一条曲线可以看成动点运动的轨迹,曲线的方程又常称为满足某种条件的点的轨迹方程.2.曲线与方程在平面直角坐标系中,如果曲线C 与方程F (x ,y )=0之间有如下关系: (1)曲线C 上点的坐标都是方程F (x ,y )=0的解; (2)以方程F (x ,y )=0的解为坐标的点都在曲线C 上.那么,曲线C 叫做方程F (x ,y )=0的曲线,方程F (x ,y )=0叫做曲线C 的方程. 3.曲线的交点已知两条曲线C 1和C 2的方程分别是F (x ,y )=0,G (x ,y )=0,那么求两条曲线C 1和C 2的交点坐标,只要求方程组的实数解就可以得到.【复习要求】1.了解曲线与方程的对应关系,体会数形结合的思想、方程思想. 2.会求简单的轨迹方程;能根据方程研究曲线的简单性质. 【例题分析】例1 已知点A (-1,0),B (2,0),动点P 到点A 的距离与它到点B 的距离之比为2,求动点P 的轨迹方程.解:设P (x ,y ),则,即 化简得x 2+y 2-6x +5=0,所以动点P 的轨迹方程为x 2+y 2-6x +5=0.⎩⎨⎧==0),(0),(y x G y x F 2||||=PB PA ,2)2()1(2222=+-++yx y x。
解析几何小题压轴练-高考数学重点专题冲刺演练(学生版)
解析几何小题压轴练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·辽宁盘锦·盘锦市高级中学校考一模)已知双曲线x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,点P 在双曲线上,且∠F 1PF 2=60°,PF 2的延长线交双曲线于点Q ,若双曲线的离心率为e =72,则PQ F 1Q=()A.23B.813C.815D.122.(2023·山东潍坊·统考模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,点F 2与抛物线C 2:y 2=2px p >0 的焦点重合,点P 为C 1与C 2的一个交点,若△PF 1F 2的内切圆圆心的横坐标为4,C 2的准线与C 1交于A ,B 两点,且AB =92,则C 1的离心率为()A.94B.54C.95D.743.(2023·江苏南通·海安高级中学校考一模)双曲线C :x 2-y 2=4的左,右焦点分别为F 1,F 2,过F 2作垂直于x 轴的直线交双曲线于A ,B 两点,△AF 1F 2,△BF 1F 2,△F 1AB 的内切圆圆心分别为O 1,O 2,O 3,则△O 1O 2O 3的面积是()A.62-8B.62-4C.8-42D.6-424.(2023·湖南永州·统考二模)如图,F 1,F 2为双曲线的左右焦点,过F 2的直线交双曲线于B ,D 两点,且F 2D =3F 2B ,E 为线段DF 1的中点,若对于线段DF 1上的任意点P ,都有PF 1 ⋅PB ≥EF 1 ⋅EB 成立,则双曲线的离心率是()A.2B.3C.2D.55.(2023·河北·河北衡水中学校考模拟预测)已知椭圆x 2a 2+y 2b2=1a >b >0 的两焦点为F 1,F 2,x 轴上方两点A ,B 在椭圆上,AF 1与BF 2平行,AF 2交BF 1于P .过P 且倾斜角为αα≠0 的直线从上到下依次交椭圆于S ,T .若PS =βPT ,则“α为定值”是“β为定值”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不必要也不充分条件6.(2023·江苏南通·二模)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 在双曲线上,PF 1⊥PF 2,圆O :x 2+y 2=94(a 2+b 2),直线PF 1与圆O 相交于A ,B 两点,直线PF 2与圆O 相交于M ,N 两点.若四边形AMBN 的面积为9b 2,则C 的离心率为()A.54B.85C.52D.21057.(2023·浙江金华·浙江金华第一中学校考模拟预测)如图,已知椭圆C 1和双曲线C 2具有相同的焦点F 1-c ,0 ,F 2c ,0 ,A 、B 、C 、D 是它们的公共点,且都在圆x 2+y 2=c 2上,直线AB 与x 轴交于点P ,直线CP 与双曲线C 2交于点Q ,记直线AC 、AQ 的斜率分别为k 1、k 2,若椭圆C 1的离心率为155,则k 1⋅k 2的值为()A.2B.52C.3D.4二、多选题1.(2023·广东·统考一模)已知拋物线E :y 2=8x 的焦点为F ,点F 与点C 关于原点对称,过点C 的直线l 与抛物线E 交于A ,B 两点(点A 和点C 在点B 的两侧),则下列命题正确的是()A.若BF 为△ACF 的中线,则AF =2BFB.若BF 为∠AFC 的角平分线,则AF =6C.存在直线l ,使得AC =2AFD.对于任意直线l ,都有AF +BF >2CF2.(2023·广东深圳·深圳中学校联考模拟预测)已知P x 1,y 1 ,Q x 2,y 2 是椭圆x 24+9y 24=1上两个不同点,且满足x 1x 2+9y 1y 2=-2,则下列说法正确的是()A.2x 1+3y 1-3 +2x 2+3y 2-3 的最大值为6+25B.2x 1+3y 1-3 +2x 2+3y 2-3 的最小值为3-5C.x 1-3y 1+5 +x 2-3y 2+5 的最大值为25+2105D.x 1-3y 1+5 +x 2-3y 2+5 的最小值为10-223.(2023·浙江金华·浙江金华第一中学校考模拟预测)设F 1,F 2为椭圆x 24+y 23=1的左,右焦点,直线l过F 1交椭圆于A ,B 两点,则以下说法正确的是()A.△ABF 2的周长为定值8B.△ABF 2的面积最大值为23C.AF 1 2+AF 2 2的最小值为8D.存在直线l 使得△ABF 2的重心为16,144.(2023·江苏连云港·统考模拟预测)已知抛物线C :y 2=2px p >0 的焦点为F ,直线l 与C 交于A x 1,y 1 ,B x 2,y 2 两点,其中点A 在第一象限,点M 是AB 的中点,作MN 垂直于准线,垂足为N ,则下列结论正确的是()A.若直线l 经过焦点F ,且OA ⋅OB=-12,则p =2B.若AF =3FB ,则直线l 的倾斜角为π3C.若以AB 为直径的圆M 经过焦点F ,则ABMN的最小值为2D.若以AB 为直径作圆M ,则圆M 与准线相切5.(2023·辽宁·辽宁实验中学校考模拟预测)已知抛物线C :x 2=2py (p >0)的焦点为F ,斜率为34的直线l 1过点F 交C 于A ,B 两点,且点B 的横坐标为4,直线l 2过点B 交C 于另一点M (异于点A ),交C 的准线于点D ,直线AM 交准线于点E ,准线交y 轴于点N ,则()A.C 的方程为x 2=4yB.AB =254C.BD <AED.ND ⋅NE =46.(2023·山东青岛·统考一模)已知A 、B 是平面直角坐标系xOy 中的两点,若OA =λOB λ∈R ,OA⋅OB=r 2r >0 ,则称B 是A 关于圆x 2+y 2=r 2的对称点.下面说法正确的是()A.点1,1 关于圆x 2+y 2=4的对称点是-2,-2B.圆x 2+y 2=4上的任意一点A 关于圆x 2+y 2=4的对称点就是A 自身C.圆x 2+y -b 2=b 2b >0 上不同于原点O 的点M 关于圆x 2+y 2=1的对称点N 的轨迹方程是y =12bD.若定点E 不在圆C :x 2+y 2=4上,其关于圆C 的对称点为D ,A 为圆C 上任意一点,则ADAE为定值7.(2023·山东济宁·统考一模)已知F 1,F 2是椭圆C 1:x 2a 12+y 2a 22=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2a 22=1(a 2>0,b 2>0)的公共焦点,e 1,e 2分别是C 1与C 2的离心率,且P 是C 1与C 2的一个公共点,满足PF 1⋅PF 2=0,则下列结论中正确的是()A.a 12+b 12=a 22-b 22 B.1e 21+1e 22=2C.1e 1+3e 2的最大值为22 D.3e 1+1e 2的最大值为228.(2023·山东济南·一模)在平面直角坐标系xOy 中,由直线x =-4上任一点P 向椭圆x 24+y 23=1作切线,切点分别为A ,B ,点A 在x 轴的上方,则()A.∠APB 恒为锐角B.当AB 垂直于x 轴时,直线AP 的斜率为12C.|AP |的最小值为4D.存在点P ,使得(PA +PO )⋅OA=09.(2023·山东·沂水县第一中学校联考模拟预测)已知AB ,CD 是经过抛物线y 2=2x 焦点F 的互相垂直的两条弦,若AB 的倾斜角为锐角,C ,A 两点在x 轴上方,则下列结论中一定成立的是()A.AB 2+CD 2最小值为32B.设P x ,y 为抛物线上任意一点,则x +x -322+y -2 2的最小值为5C.若直线CD 的斜率为-3,则AF ⋅BF =4D.OA ⋅OB +OC ⋅OD =-3210.(2023·湖南·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,C 的一条渐近线l 的方程为y =3x ,且F 1到l 的距离为33,点P 为C 在第一象限上的点,点Q 的坐标为2,0 ,PQ 为∠F 1PF 2的平分线.则下列正确的是()A.双曲线的方程为x 29-y 227=1B.PF 1=3 PF 2C.OP =36D.点P 到x 轴的距离为315211.(2023·湖南·模拟预测)已知椭圆:Γ:x 2a2+y 23=1(a >3)的左、右焦点分别为F 1、F 2,右顶点为A ,点M 为椭圆Γ上一点,点I 是△MF 1F 2的内心,延长MI 交线段F 1F 2于N ,抛物线y 2=158(a +c )x (其中c为椭圆下的半焦距)与椭圆Γ交于B ,C 两点,若四边形ABF 1C 是菱形,则下列结论正确的是()A.|BC |=352 B.椭圆Γ的离心率是32C.1MF 1 +4MF 2的最小值为94 D.|IN ||MI |的值为12三、填空题1.(2023·广东揭阳·校考模拟预测)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点为F 1,F 2,P 是双曲线上一点,且∠F 1PF 2=π3.若ΔF 1PF 2的外接圆和内切圆的半径分别为R ,r ,且R =4r ,则双曲线的离心率为.2.(2023·浙江·校联考三模)已知椭圆E :x 24+y 2=1,椭圆的左右焦点分别为F 1,F 2,点A (m ,n )为椭圆上一点且m >0,n >0,过A 作椭圆E 的切线l ,并分别交x =2、x =-2于C 、D 点.连接CF 1、DF 2,CF 1与DF 2交于点E ,并连接AE .若直线l ,AE 的斜率之和为32,则点A 坐标为.3.(2023·辽宁葫芦岛·统考一模)已知双曲线M :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P为双曲线右支上的一点,Q 为△F 1F 2P 的内心,且2QF 1 +3QF 2 =4PQ,则M 的离心率为.4.(2023·辽宁·校联考一模)过双曲线C :x 2a 2-y 2b2=1a >0,b >0 焦点F 的直线与C 的两条渐近线的交点分分别为M 、N ,当MF +3FN =0时,FN =b .则C 的离心率为.5.(2023·河北邢台·校联考模拟预测)已知抛物线C :y 2=4x 的焦点为F ,经过F 的直线l ,l 与C 的对称轴不垂直,l 交C 于A ,B 两点,点M 在C 的准线上,若△ABM 为等腰直角三角形,则AB =.6.(2023·福建泉州·统考三模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,C 的渐近线与圆x 2+y 2=a 2在第一象限的交点为M ,线段MF 2与C 交于点N ,O 为坐标原点.若MF 1⎳ON ,则C 的离心率为.7.(2023·山东枣庄·统考二模)已知点A 1,2 在抛物线y 2=2px 上,过点A 作圆x -2 2+y 2=2的两条切线分别交抛物线于B ,C 两点,则直线BC 的方程为.8.(2023·湖北·宜昌市一中校联考模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e ≠22,C 的左右焦点分别为F 1,F 2,点A 在椭圆C 上满足∠F 1AF 2=π2.∠F 1AF 2的角平分线交椭圆于另一点B ,交y轴于点D .已知AB =2BD,则e =.9.(2023·湖北武汉·统考模拟预测)设F 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,A ,B 分别为双曲线E 的左右顶点,点P 为双曲线E 上异于A ,B 的动点,直线l :x =t 使得过F 作直线AP 的垂线交直线l 于点Q 时总有B ,P ,Q 三点共线,则ta 的最大值为.10.(2023·湖南株洲·统考一模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右焦点为F 1,F 2,过F 1的直线交椭圆C 于P ,Q 两点,若PF 1 =43F 1Q ,且PF 2 =F 1F 2,则椭圆C 的离心率为.11.(2023·湖南常德·统考一模)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =1,点P 为长方体表面上的动点,且PA ⋅PB=0,当CP 最小时,△ABP 的面积为.12.(2023·河北衡水·衡水市第二中学校考模拟预测)在平面直角坐标系中,椭圆E 以两坐标轴为对称轴,左,右顶点分别为A ,B ,点P 为第一象限内椭圆上的一点,P 关于x 轴的对称点为Q ,过P 作椭圆的切线l ,若l ⊥AP ,且△APQ 的垂心恰好为坐标原点O ,记椭圆E 的离心率为e ,则e 2的值为.。
2020高考数学最后十天压轴题 专题3.2 以解析几何中与椭圆相关的综合问题为解答题(解析版)
与 、 交于 、 两点,求证:
.
14. 【北京市通州区 2018-2019 学年第一学期高三年级期末考试】已知椭圆 :
过点
,且椭圆的离心率为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)斜率为 的直线 交椭圆 于
,
两点,且
.若直线 上存在点 P,使得
是以
为顶角的等腰直角三角形,求直线 的方程.
15.
【2019
湖北省重点中学联考】已知椭圆
7【. 湖北省宜昌市 2019 届高三年级元月调研】已知椭圆 :
的离心率为 ,短轴长为 .
(1)求椭圆 的方程;
(2)设过点
的直线 与椭圆 交于 、 两点, 是椭圆 的上焦点.问:是否存在直线 ,使得
?若存在,求出直线 的方程;若不存在,请说明理由.
8.【福建省厦门市 2019 届高三年级第一学期期末质检】在平面直角坐标系中,点
【名师指点】直线与直线的垂直关系,首先可以利用垂直关系得斜率之间的关系;其次可以利用向量数量 积为 0 处理,再可以联系圆中的有关知识,利用直径所对的圆周角为直角处理. 【 举 一 反 三 】【 山 东 省 恒 台 第 一 中 学 2019 届 高 三 上 学 期 诊 断 性 考 试 】 已 知 O 为 坐 标 原 点 , 椭 圆
3.(2020·山东高三期末)顺次连接椭圆 C
:
x2 a2
y2 b2
1 a
b
0 的四个顶点恰好构成了一个边长为
7且
面积为 4 3 的菱形.
(1)求椭圆 C 的标准方程; (2)设直线 l 与椭圆 C 相切于点 A ,过点 O 作 OM l ,垂足为 M ,求 AMO 面积的最大值.
4. (2019·江西高三月考(理))
2020年高考数学试题分项版解析专题10 圆锥曲线(学生版) 理
2020年高考试题分项版解析数学(理科)专题10 圆锥曲线(学生版)一、选择题:1.(2020年高考新课标全国卷理科4)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30o 的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 452.(2020年高考新课标全国卷理科8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 83. (2020年高考福建卷理科8)双曲线22214x y b-=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .5B .24C .3D .56.(2020年高考安徽卷理科9)过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =,则AOB ∆的面积为( )()A 22 ()B 2 ()C 322()D 228. (2020年高考四川卷理科8)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM =( ) A 、22 B 、23 C 、4 D 、259.(2020年高考全国卷理科3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A .2211612x y += B .221168x y += C .22184x y += D .221124x y +=二、填空题:1. (2020年高考江苏卷8)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率为5,则m 的值为 .2.(2020年高考北京卷理科12)在直角坐标系xOy 中,直线l 过抛物线=4x 的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方。
全国卷Ⅲ2020届高三高考压轴卷数学试题(理科)(含解析)
1.已知集合 A = {x (x +1)(x − 4) ≤ 0}, B = {x log2 x ≤ 2} ,则 A ∩ B = ( )
A. [− 2 , 4 ]
B. [1,+∞)
C. (0,4]
D.[−2, +∞)
2.若复数 z 满足 z(1−i)2 = i (i 是虚数单位),则 z 为( )
b = 2×1 = 2
成 a < b 不 立
n =1+1= 2
a = 9 + 1 × 9 = 27 2 22 4
b = 2×2 = 4
成 a < b 不 立
n = 2+1= 3
a = 27 + 1 × 27 = 81 4 24 8
b = 2×4 =8
成 a < b 不 立
n = 3+1= 4
8 / 18
x≥ 0,
14.已知
,x y
满足Βιβλιοθήκη x+y
≥
4,若
x
+
2
y
的最小值为_________.
≤ x − 2 y 1.
.D [−1, 1] 3
15.已知 线 与 有 的 , 是两 抛物
y2 = 2 px( p > 0)
椭圆
x2 a2
+
y2 b2
= 1(a
>b
>
0)
相同 焦点 F
P
曲
线的公共点,若
PF
=
5
,则此 的 为 . p
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的 第一题计分。
2020高考数学总复习:解析几何
222高考数学总复习第六讲:解析几何高考解析几何试题一般共有 4 题(2 个选择题, 1 个填空题, 1 个解答题), 共计 30 分左右, 考查的知识点约为 20 个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥 曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线 中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查 直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识, 这 点值得考生在复课时强化. 一、圆锥曲线的几类基本习题一. 弦的中点问题具有斜率的弦中点问题,一般设曲线上两点为 ( x , y ) , ( x , y ) ,1122代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
例1 给定双曲线 x 2 - y 2 = 1 。
过 A (2,1)的直线与双曲线交于2两点 P 及 P ,求线段 P P 的中点 P 的轨迹方程。
1 212分析:设 P ( x , y ) , P ( x , y ) 代入方程得 x 2 - y 12 = 1 , x 2 - y 2 = 1 。
1 1122212两式相减得( x + x )( x - x ) - 1 ( y + y )( y - y ) = 0 。
1 2 1 2 1 2 1 2又设中点 P (x,y ),将 x + x = 2 x , y + y = 2 y 代入,当 x ≠ x 时121212得程。
因此所求轨迹方程是 8( x - 1) 2 - 1 2 a 2 b 22 x - 2 y · y 1 - y 2 = 0 。
2 x - x1 2又 k = y 1 - y 2 = y - 1 ,x - xx - 212代入得 2 x 2 - y 2 - 4 x + y = 0 。
当弦 P P 斜率不存在时,其中点 P (2,0)的坐标也满足上述方1 214( y - ) 2 2 = 1 。
2020全国卷Ⅰ高考压轴卷数学(理)含解析
17.(本小题 12 分)
4sin2 A B 4sin Asin B 2 2
△ABC 中,内角 A、B、C 所对的边分别为 a、b、c,已知
2
(1)求角 C 的大小;
(2)已知 b 4 ,△ABC 的面积为 6,求边长 c 的值.
18. (本小题 12 分)
BC CD 1 AB 2
如图,在四棱锥 P-ABCD 中,PD⊥平面 ABCD,
A. 1
B. 2
C. 3
D. 4
8.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),
上三节容四升,下三节容二升,中三节容几何?( )
A. 二升
B. 三升
C. 四升
D. 五升
9.在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,a 3, c 2
3,bsinA
21. (本小题 12 分)
设函数 f x a2 ln x x2 ax a R .
(1)求 f x 的单调区间;
(2)求使 e 1 f x e2 对 x 1, e 恒成立的 a 的取值范围.
请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分,答题时用 2B 铅笔在答题卡上把所选的题号涂黑.
它表示以(﹣1,2)为圆心、半径等于 2 的圆; 设弦心距为 d,由题意可得 22+d2=4,求得 d=0, 可得直线经过圆心,故有﹣2a﹣2b+2=0, 即 a+b=1,再由 a>0,b>0,可得
4 1 =( 4 1 )(a+b)=5+ 4b a ≥5+2
ab ab
ab
4b a 9 ab
e
e
e
2020年高考数学(理)专题训练附解答: 解析几何
(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4||||=+BF AF ,求l 的方程;(2)若3AP PB =u u u r u u u r,求||AB .【肢解1】若4||||=+BF AF ,求l 的方程;【肢解2】若3AP PB =u u u r u u u r,求||AB .【肢解1】若4||||=+BF AF ,求l 的方程;【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知12342AF BF x x +=++=,所以1252x x +=, 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x , 由0144)1212(22>--=∆m m 得12m <, 所以121212592m x x -+=-=,解得78m =-,所以直线l 的方程为3728y x =-,即12870x y --=. 【肢解2】若3AP PB =u u u r u u u r,求||AB .【解析】设直线l 方程为23x y t =+, 专题 解析几何大题肢解一直线与抛物线联立2233x y t y x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,因为PB AP 3=,所以213y y-=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)3(4294123134.设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p.弦长的计算方法:求弦长时可利用弦长公式,根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后进行整体代入弦长公式求解.温馨提示:注意两种特殊情况:(1)直线与圆锥曲线的对称轴平行或垂直;(2)直线过圆锥曲线的焦点.【拓展1】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若27||||=+BF AF ,求l 在y 轴上的截距. 【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知123722AF BF x x +=++=,所以122x x +=, 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x , 由0144)1212(22>--=∆m m 得12m <, 所以12121229m x x -+=-=,解得21m =-,所以直线l 的方程为3122y x =-,令0=x 得21-=y ,所以直线l 在y 轴上的截距为21-. 【拓展2】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若2AP PB =u u u r u u u r,)0,4(-M ,求ABM ∆的面积.【解析】设直线l 方程为23x y t =+, 联立2233x y t y x⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,t y y 321-=,因为PB AP 2=,所以212y y -=,所以22-=y ,41=y ,所以821-=y y .38-=t , 所以=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)8(429412132, 直线l 方程为2833x y =-,即0823=+-y x ,所以点)0,4(-M 到l 的距离13413|812|=+-=d , 所以ABM ∆的面积为413413221||21=⨯⨯=⋅d AB .1.(2019年山西太原一模)已知抛物线x y 42=的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若AOB ∆的面积为6,求||AB .【解析】由题意知抛物线x y 42=的焦点F 的坐标为)0,1(, 易知当直线AB 垂直于x 轴时,AOB ∆的面积为2,不满足题意, 所以可设直线AB 的方程为)0)(1(≠-=k x k y , 与x y 42=联立,消去x 得0442=--k y ky , 设),(11y x A ,),(22y x B ,由韦达定理知ky y 421=+,421-=y y , 所以1616||221+=-ky y , 变式训练一所以AOB ∆的面积为616161212=+⨯⨯k,解得2±=k , 所以6||11||212=-⋅+=y y k AB . 2.(2019年湖北荆州模拟)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于,A B 两点.(1)若3AF FB =u u u r u u u r,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值. 【解析】(1)依题意可设直线:1AB x my =+,将直线AB 与抛物线联立214x my y x=+⎧⎨=⎩⇒2440y my --=,设11(,)A x y ,22(,)B x y ,由韦达定理得121244y y my y +=⎧⎨=-⎩,因为3AF FB =u u u r u u u r ,所以213y y -=,即312=m ,所以直线AB 的斜率为3或3-. (2)2212121212122()4161642OACB AOB S S OF y y y y y y y y m ∆==⋅⋅-=-=+-=+≥, 当0m =时,四边形OACB 的面积最小,最小值为4.(2020届广东省珠海市高三上学期期末)中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大. 【肢解1】求椭圆C 的方程; 【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.大题肢解二【肢解1】求椭圆C 的方程;【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎛⎫ ⎪⎝⎭两点得()222222221011321m n m n ⎧-+=⎪⎪⎪⎨⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎩ 解得21n =,24m =, 所以椭圆:C 2214x y +=. 【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【解析】将直线1:,(0)2l y x m m =+>代入2214x y +=得:221442x x m ⎛⎫++= ⎪⎝⎭. 整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<.由韦达定理得122x x m +=-,21222x x m =-.()()22221212124442284x x x x x x m m m -=+-=--=-242121222OPQ S m x x m m m m ∆=-=-=-+. 由二次函数可知当21m =即1m =时,OPQ ∆的面积的最大.直线与圆锥曲线的相交弦长问题:设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2 =1+1k2|y 1-y 2| =1+1k2(y 1+y 2)2-4y 1y 2.【变式1】中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:>+=m m x y l 与椭圆C 交于P ,Q 两点,若APQ ∆的面积为1+m ,求m 的值. 【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎛⎫ ⎪⎝⎭两点得()222222221011321m n m n ⎧-+=⎪⎪⎪⎨⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎩ 解得21n =,24m =. 所以椭圆:C 2214x y +=. (2)将直线1:,(0)2l y x m m =+>代入2214x y +=得221442x x m ⎛⎫++= ⎪⎝⎭. 整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<.设),(11y x P ,),(22y x Q ,韦达定理得122x x m +=-,21222x x m =-.所以)22(4)2()21(1||222---⋅+=m m PQ 252+-⋅=m ,由点到直线的距离公式得点)1,0(-A 到直线l 的距离5|22|m d +=. 所以APQ ∆的面积为255|22|212+-⋅⋅+⋅m m 2|1|2+-⋅+=m m , 因为APQ ∆的面积为1+m ,所以12|1|2+=+-⋅+m m m ,解得1=m 或1-=m (舍去). 所以1=m .变式训练二【变式2】已知椭圆)0(1:2222>>=+b a by a x C 的离心率为22,其中左焦点为)0,2(-F .(1)求椭圆C 的方程;(2)若直线m x y +=与椭圆C 交于不同的两点A ,B ,1ABF ∆的面积为)2(6-m ,求直线的方程.【解析】(1)由题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===222222c b a c a c 解得⎩⎨⎧==222b a ,所以椭圆C 的方程为14822=+y x . (2)设点),(11y x A ,),(22y x B ,由⎪⎩⎪⎨⎧+==+m x y y x 14822消去y 得0824322=-++m mx x , 由0)84(12)4(22>--=∆m m 得3232<<-m ,由韦达定理知3421mx x -=+,382221-=m x x ,所以)82(4)34(2||22---⋅=m m AB 367342+-=m , 由点到直线的距离公式得)0,2(1-F 到直线m x y +=的距离2|2|m d -=, 所以1ABF ∆的面积为36342|2|212+-⋅-⋅m m )2(6-=m ,解得3±=m ,满足3232<<-m , 所以所求直线方程为3+=x y 或3-=x y .1.(2019年山东高考模拟)已知圆22:4O x y +=,抛物线2:2(0)C x py p =>.(1)若抛物线C 的焦点F 在圆O 上,且A 为抛物线C 和圆O 的一个交点,求AF ;(2)若直线l 与抛物线C 和圆O 分别相切于,M N 两点,设()00,M x y ,当[]03,4y ∈时,求MN 的最大值.【解析】(1)由题意知(0,2)F ,所以4p =. 所以抛物线C 的方程为28x y =.将28x y =与224x y +=联立得点A 的纵坐标为2(52)A y =-,结合抛物线定义得||2522A pAF y =+=-. (2)由22x py =得22x y p =,x y p'=,所以直线l 的斜率为0x p ,故直线l 的方程为()000xy y x x p-=-.即000x x py py --=. 又由0220||2py ON x p -==+得02084y p y =-且2040y ->, 所以2222200||||||4MN OM ON x y =-=+-220000020824244y py y y y y =+-=+-- ()2202200022001644164444y y y y y y -+=+-=+--- 2020641644y y =++--.令204t y =-,0[3,4]y ∈,则[5,12]t ∈, 令64()16f t t t =++,则264()1f t t'=-; 当[5,8]t ∈时()0f t '≤,()f t 单调递减, 当(8,12]t ∈时()0f t '>,()f t 单调递增, 又64169(5)16555f =++=,64100169(12)16121235f =++=<, 所以max 169()5f x =,即||MN 的最大值为1355.2.(2020黑龙江省齐市地区普高联谊高二上学期期末)已知椭圆C :22221(0)x y a b a b+=>>过点)23,22(与点)22,1(--. (1)求椭圆C 的方程;(2)设直线l 过定点1(0,)2-,且斜率为()10k k-≠,若椭圆C 上存在A ,B 两点关于直线l 对称,O 为坐标原点,求k 的取值范围及AOB ∆面积的最大值.【解析】(1)由题意,可得2222231441214a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得222,1a b ==,所以椭圆的方程为2212x y +=.(2)由题意,设直线AB 的方程为(0)y kx m k =+≠,由2212y kx m x y =+⎧⎪⎨+=⎪⎩,整理得222(12)4220k x kmx m +++-=,所以∆>0,即2221k m +>,……….①且2121222422,1212km m x x x x k k-+=-=++, 所以线段AB 的中点横坐标02212km x k =-+,纵坐标为00212my kx m k=+=+, 将00,x y 代入直线l 方程112y x k =--,可得2122k m += ……… ②,由①②可得232k <,又0k ≠,所以66(,0)(0,)22k ∈-⋃, 又222221212211()48(12)812k AB kx x x x k m k +=++-=+-+,且原点O 到直线AB 的距离21m d k =+,所以22218(12)822(12)AOB m S AB d k m k ∆==⋅+-+2212168242m m m m =-=-, 所以1m =时,AOB S ∆最大值22,此时22k =±, 所以22k =±时,AOB S ∆最大值22.3.(2020福建省宁德市高三第一次质量检查)已知抛物线2:2C y px =的焦点为F ,1(,)2Q t 在抛物线C上,且32QF =. (1)求抛物线C 的方程及t 的值;(2)若过点(0,)M t 的直线l 与C 相交于,A B 两点,N 为AB 的中点,O 是坐标原点,且3AOB MON S S D D =,求直线l 的方程.【解析】(1)因为3||2QF =,所以13222p +=,所以2p =,抛物线C 的方程为:24y x =, 将1(,)2Q t 代入24y x =得2t =,(2)设1122(,),(,),A x y B x y 00(,),(0,2)N x y M , 显然直线l 的斜率存在,设直线l :2(0)y kx k =+≠,联立242y x y kx ⎧=⎨=+⎩,消去y 得224(1)40k x k x --+=,因为22Δ16(1)160k k =-->,得12k <且0k ≠, 所以1212224(1)4,k x x x x k k -+==, 因为ΔΔ3AOB MON S S =,所以||3||AB MN =,所以 221201310kx x k x +-=+-,即1203x x x -=,因为N 是AB 的中点,所以1202x x x +=, 所以22121212()()434x x x x x x ++-=?,整理得21212()16x x x x +=所以2224(1)64[]k k k -=,解得1211,3k k =-=,所以直线l 的方程为:2y x =-+或123y x =+. 4.(2020福建省龙岩市上杭县第一中学月考)已知点A(0,-2),椭圆E :22221x y a b+= (a>b>0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【解析】(1)设(),0F c ,因为直线AF 的斜率为233,()0,2A -, 所以2233c =,3c =. 又2223,2c b a c a ==-,解得2,1a b ==, 所以椭圆E 的方程为2214x y +=. (2)设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立22142,x y y kx +==-⎧⎪⎨⎪⎩,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,所以32k <-或32k >,由韦达定理知1212221612,1414k x x x x k k +==++. 所以()22121214PQ kx x x x =++-2222164811414k k k k ⎛⎫=+- ⎪++⎝⎭222414314k k k +-=+, 点O 到直线l 的距离221d k =+,所以221443214OPQk S d PQ k ∆-==+, 设2430k t -=>,则2243k t =+,所以244414424OPQ t S t t t∆==≤=++,当且仅当2t =,即2432k -=, 解得72k =±时取等号,满足234k >,所以OPQ ∆的面积最大时直线l 的方程为:722y x =-或722y x =--.5.(2020广东省佛山市高三教学质量检测)已知椭圆C :()222210x y a b a b +=>>的离心率为12,点31,2A ⎛⎫⎪⎝⎭在椭圆C 上,直线1l 过椭圆C 的右焦点与上顶点,动直线2l :y kx =与椭圆C 交于M ,N 两点,交1l 于P 点.(1)求椭圆C 的方程;(2)已知O 为坐标原点,若点P 满足14OP MN =,求此时MN 的长度. 【解析】(1)由题意得12c e a ==,2223121ab ⎛⎫ ⎪⎝⎭+=,结合222a b c =+, 解得24a =,23b =,21c =,故所求椭圆C 的方程为22143x y +=. (2)易知定直线1l 的方程为330x y +-=.联立22143y kxx y =⎧⎪⎨+=⎪⎩,整理得()223412k x +=,解得21234x k =±+, 令M 点的坐标为221212,3434k kk ⎛⎫ ⎪⎪++⎝⎭. 因为14OP MN =,由对称性可知,点P 为OM 的中点,故2212123434(,)22k k k P ++, 又P 在直线1l :330x y +-=上,故221212343433022k k k ++⨯+-=, 解得10k =,2233k =,所以M 点的坐标为()2,0或643,55⎛⎫ ⎪ ⎪⎝⎭, 所以2OM =或2215,所以MN 的长度为4或4215.6.(2020广西名校高三上学期12月高考模拟)如图,中心为坐标原点O 的两圆半径分别为11r =,22r =,射线OT 与两圆分别交于A 、B 两点,分别过A 、B 作垂直于x 轴、y 轴的直线1l 、2l ,1l 交2l 于点P .(1)当射线OT 绕点O 旋转时,求P 点的轨迹E 的方程;(2)直线l :3y kx =+与曲线E 交于M 、N 两点,两圆上共有6个点到直线l 的距离为12时,求MN 的取值范围.【解析】(1)设(),P x y ,OT 与x 轴正方向夹角为θ,则cos sin x OA y OB θθ⎧=⎪⎨=⎪⎩,即cos 2sin x y θθ=⎧⎨=⎩,化简得2214y x +=,即P 点的轨迹E 的方程为2214y x +=. (2)当两圆上有6个点到直线1的距离为12时,原点O 至直线l 的距离13,22d ⎛⎫∈ ⎪⎝⎭, 即2133221k <<+,解得21,113k ⎛⎫∈ ⎪⎝⎭, 联立方程22314y kx y x ⎧=+⎪⎨+=⎪⎩得()2242310k x kx ++-=, 设()11,M x y ,()22,N x y ,则122234k x x k +=-+,12214x x k=-+, 所以()()2222121222212414144k MN kx x x x k k k =++-=++++()2224134144k k k +⎛⎫==- ⎪++⎝⎭, 则1616,135MN ⎛⎫∈⎪⎝⎭.7.(2020辽宁省沈阳市东北育才学校高三模拟)已知(2,0)P 为椭圆2222:1(0)x y C a ba b+=>>的右顶点,点M 在椭圆C 的长轴上,过点M 且不与x 轴重合的直线交椭圆C 于A B 、两点,当点M 与坐标原点O 重合时,直线PA PB 、的斜率之积为14-. (1)求椭圆C 的标准方程;(2)若2AM MB =u u u u r u u u r,求OAB ∆面积的最大值.【解析】(1)设1(A x ,1)y ,1(B x -,1)y -,则2121144PA PBy k k x ==--g . 又2211221x y a b +=,代入上式可得2214b a -=-,又2a =,解得1b =. 所以椭圆C 的标准方程为:2214x y +=. (2)设直线AB 的方程为:(0)x ty m t =+≠,(22)m -剟.1(A x ,1)y ,2(B x ,2)y ,联立2244x ty m x y =+⎧⎨+=⎩,化为222(4)240t y mty m +++-=, 由韦达定理知12224mty y t +=-+,212244m y y t -=+,因为2AM MB =u u u u r u u u r,所以122y y =-,所以122152y y y y +=-,代入可得:22241694t m t +=+. 所以OAB ∆的面积12213|()|||22S m y y my =-=, 22222222222299416161694494(4)(94)(94)t t t S m y t t t t +==⨯⨯=⨯++++g .所以212||1214949||||t S t t t ==++…,当且仅当249t =时取等号. 所以OAB ∆面积的最大值为1.。
2020年高考数学压轴题命题区间(六)解析几何
压轴题命题区间(六)⎪⎪解析几何 增分点直线与圆专练一、选择题1.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( )A .(x +2)2+(y -2)2=2B .(x -2)2+(y +2)2=2C .(x +2)2+(y +2)2=2D .(x -2)2+(y -2)2=2解析:选D 由题意知,曲线方程为(x -6)2+(y -6)2=18,过圆心(6,6)作直线x +y -2=0的垂线,垂线所在直线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上.又(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为2,圆心坐标为(2,2),所以半径最小的圆的标准方程为(x -2)2+(y -2)2=2.2.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为C (2,1),半径r =2,因此2+a -1=0,a =-1,即A (-4,-1),|AB |=|AC |2-r 2=(2+4)2+(1+1)2-4=6.3.若曲线y =1+4-x 2与直线kx -y -2k +4=0有两个不同的交点,则实数k 的取值范围是( )A.⎝⎛⎭⎫0,512 B.⎝⎛⎦⎤13,34 C.⎝⎛⎦⎤512,34D.⎝⎛⎭⎫512,+∞解析:选C 注意到y ≥1,曲线y =1+4-x 2是圆x 2+(y -1)2=4在直线y =1的上方部分的半圆.又直线kx -y -2k +4=0⇒y -4=k (x -2)知恒过定点A (2,4).如图,由B (-2,1),知k AB =4-12-(-2)=34,当直线与圆相切时,|-1-2k +4|k 2+(-1)2=2,解得k =512,故实数k 的取值范围是⎝⎛⎦⎤512,34.4.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6D .2解析:选B 根据约束条件画出可行域如图中阴影部分所示.设点P 到圆心的距离为d ,求|AB |的最小值等价于求d 的最大值,易知d max =12+32=10,所以|AB |min =214-10=4.5.已知P 是过三点O (0,0),A (1,1),B (4,2)的圆M 上一点,圆M 与x 轴、y 轴的交点(非原点)分别为S ,T ,则|PS |·|PT |的最大值为( )A .25B .50C .75D .100解析:选B 设圆M 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 则⎩⎪⎨⎪⎧F =0,D +E +F +2=0,4D +2E +F +20=0,解得D =-8,E =6,F =0.所以圆M 的方程为x 2+y 2-8x +6y =0, 即(x -4)2+(y +3)2=25.令y =0,得x 2-8x =0,解得x =0或x =8. 令x =0,得y 2+6y =0,解得y =0或y =-6. 所以S (8,0),T (0,-6). 而圆心(4,-3)在直线ST 上,所以PS ⊥PT .即|PS |2+|PT |2=(2r )2=100. 所以|PS |·|PT |≤12(|PS |2+|PT |2)=50.所以(|PS |·|PT |)max =50.6.(2018·合肥质检)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0解析:选B 当直线l 的斜率不存在时,直线l 的方程为x =0,计算出弦长为23,符合题意;当直线l 的斜率存在时,可设直线l 的方程为y =kx +3,由弦长为23可知,圆心到该直线的距离为1,从而有|k +2|k 2+1=1,解得k =-34,所以直线l 的方程为3x +4y -12=0.综上,直线l 的方程为x =0或3x +4y -12=0.7.若过点P (2,1)的直线l 与圆C :x 2+y 2+2x -4y -7=0相交于两点A ,B ,且∠ACB =60°(其中C 为圆心),则直线l 的方程是( )A .4x -3y -5=0B .x =2或4x -3y -5=0C .4x -3y +5=0D .x =2或4x -3y +5=0解析:选B 由题意可得,圆C 的圆心为C (-1,2),半径为23,因为∠ACB =60°,所以△ABC 为正三角形,边长为23,所以圆心C 到直线l 的距离为3.若直线l 的斜率不存在,则直线l 的方程为x =2,与圆相交且圆心C 到直线l 的距离为3,满足条件;若直线l 的斜率存在,不妨设l :y -1=k (x -2),则圆心C 到直线l 的距离d =|3k +1|k 2+1=3,解得k=43,所以此时直线l 的方程为4x -3y -5=0. 8.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:选C 当|OA ―→+OB ―→|=33|AB ―→|时,O ,A ,B 三点为等腰三角形的三个顶点,其中OA =OB ,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,此时k = 2.当k >2时,|OA ―→+OB ―→|>33|AB ―→|.又直线与圆x 2+y 2=4有两个不同的交点,故k <22,综上,k 的取值范围为[2,22).9.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]解析:选A 设直线4x -3y +m =0与直线4x -3y -2=0间距等于1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y -7=0的距离等于4,因此所求的圆的半径的取值范围是(4,6).10.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝⎛⎭⎫y ±332=43 B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13解析:选C 法一:(排除法)由圆心在x 轴上,可排除A 、B ,又圆过(0,1)点,故圆的半径大于1,排除D ,选C.法二:(待定系数法)设圆的方程为(x -a )2+y 2=r 2,圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |,所以a =|OC |=33,即圆心坐标为⎝⎛⎭⎫±33,0,r 2=|AC |2=12+⎝⎛⎭⎫332=43.所以圆的方程为⎝⎛⎭⎫x ±332+y 2=43.11.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =60°,则实数a 的取值范围为________.解析:如图,圆O 的半径为1,圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则∠APO =30°,在Rt △PAO 中,|PO |=2,又圆M 的半径等于1,圆心坐标M (a ,a -4), ∴|PO |min =|MO |-1,|PO |max =|MO |+1, ∵|MO |=a 2+(a -4)2,∴由a 2+(a -4)2-1≤2≤a 2+(a -4)2+1, 解得2-22≤a ≤2+22. 答案:⎣⎡⎦⎤2-22,2+22 12.已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OPQ 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0解析:选D 当直线l 的斜率不存在时,则l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),所以S △OPQ =12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x-2)⎝⎛⎭⎫k ≠12,则圆心到直线PQ 的距离d =|1-2k |1+k 2,又|PQ |=29-d 2,所以S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤ ⎝⎛⎭⎫9-d 2+d 222=92,当且仅当9-d 2=d 2,即d 2=92时,S△OPQ 取得最大值92.因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.二、填空题13.在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y +3=0上,则实数k 的最小值为________.解析:法一:由题意,设M (2+cos θ,2+sin θ),则N (2+cos θ,-2-sin θ),将N 的坐标代入kx +y +3=0,可得sin θ-k cos θ=2k +1.因为sin θ-k cos θ=k 2+1sin(θ-φ),其中tan φ=k ,所以|2k +1|≤k 2+1,即3k 2+4k ≤0,解得-43≤k ≤0,故k 的最小值为-43.法二:圆(x -2)2+(y -2)2=1关于x 轴对称的圆的方程为(x -2)2+(y +2)2=1. 问题转化为直线kx +y +3=0与圆(x -2)2+(y +2)2=1有公共点N . 所以|2k -2+3|k 2+1≤1,即|2k +1|≤k 2+1, 解得-43≤k ≤0,故k 的最小值为-43.答案:-4314.(2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析:如图所示,∵直线AB 的方程为x -3y +6=0, ∴k AB =33,∴∠BPD =30°, 从而∠BDP =60°. 在Rt △BOD 中, ∵|OB |=23,∴|OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB , ∴OH 为直角梯形ABDC 的中位线, ∴|OC |=|OD |,∴|CD |=2|OD |=2×2=4. 答案:415.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上不同的两点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是________.解析:由题意知圆心⎝⎛⎭⎫-k 2,0在直线x -y -1=0上,所以-k2-1=0,解得k =-2,得圆心的坐标为(1,0),半径为1.又知直线AB 的方程为x -y +2=0,所以圆心(1,0)到直线AB 的距离为322,所以△PAB 面积的最大值为12×22×⎝⎛⎭⎫1+322=3+ 2.答案:3+ 216.两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两条平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两条平行直线和圆有一个,两个或三个不同的公共点,则称两条平行线和圆“相切”,已知直线l 1:2x -y +a =0,l 2:2x -y +a 2+1=0和圆x 2+y 2+2x -4=0相切,则a 的取值范围是________.解析:圆的标准方程为(x +1)2+y 2=5, 圆心(-1,0),r =5,两直线分别与圆相切时对应的a 的边界值为: |-2+a 2+1|5=5时,a =±6; |a -2|5=5时,a =-3或a =7, 所以a 的边界值分别为-3,7,±6.由题意可知,两平行直线中必有一条与圆相切,另一条与圆相离,相切,相交三种情况都满足题意,故a ∈[]-3,-6∪[]6,7. 答案:[]-3,-6∪[]6,7增分点数形各显威,挑战离心率离心率是圆锥曲线的重要几何性质,是描述圆锥曲线形状的重要参数.圆锥曲线的离心率的求法是一类常见题型,也是历年高考考查的热点.求解圆锥曲线的离心率的值或取值范围,其关键是建立恰当的等量或不等量关系,以过渡到含有离心率e 的等式或不等式使问题获解.[典例] (2016·全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23 D.34[思路点拨]本题以椭圆内点线的交错关系为条件,而结论是椭圆的离心率,思考目标自然是要得到a ,b ,c 满足的等量关系,那么方向不外乎两个:坐标关系或几何关系,抓住条件“直线BM 经过OE 的中点”作为突破口适当转化,获得所需等式.[方法演示]法一:数形结合法如图,设直线BM 与y 轴的交点为N ,且点N 的坐标为(0,m ),根据题意,点N 是OE 的中点,则E (0,2m ),从而直线AE 的方程为x -a +y2m=1,因此点M 的坐标为-c ,2m (a -c )a .又△OBN ∽△FBM , 所以|FM ||ON |=|FB ||OB |,即2m (a -c )a m =a +c a ,解得c a =13,所以椭圆C 的离心率为13. 法二:交点法同法一得直线AE 的方程为x -a +y 2m =1,直线BN 的方程为x a +y m =1.又因为直线AE 与直线BN 交于点M ,且PF ⊥x 轴,可设M (-c ,n ).则⎩⎪⎨⎪⎧-c -a +n2m =1,-c a +nm =1,消去n ,解得ca =13,所以椭圆C 的离心率为13. 法三:三点共线法同法一得直线AE 的方程为x -a +y 2m =1,由题意可知M ⎝⎛⎭⎫-c ,2m ⎝⎛⎭⎫1-c a ,N (0,m ),B (a,0)三点共线,则2m ⎝⎛⎭⎫1-ca -m -c =m -a,解得c a =13,所以椭圆C 的离心率为13.法四:方程法设M (-c ,m ),则直线AM 的方程为y =ma -c(x +a ),所以E ⎝⎛⎭⎫0,ma a -c .直线BM 的方程为y =m -c -a (x -a ),与y 轴交于点⎝⎛⎭⎫0,ma a +c ,由题意知,2ma a +c =maa -c ,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13.法五:几何法在△AOE 中,MF ∥OE ,所以MF OE =a -c a.在△BFM 中,ON ∥MF ,所以OE 2MF =a a +c ,即OE MF =2aa +c.所以MF OE ·OE MF =a -c a ·2a a +c =1,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13. [答案] A [解题师说]1.本题的五种方法,体现出三个重要的数学解题策略.利用已知条件和挖掘隐含条件建立起a 与c 的关系式.[注意] 在求离心率的值时需建立等量关系式,在求离心率的范围时需建立不等量关系式.[应用体验]1.(2018·新疆模拟)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233 C .3D .2解析:选A 依题意,不妨设点P 在双曲线的右支上,F 1,F 2分别为其左、右焦点,设椭圆与双曲线的离心率分别为e 1,e 2,则有e 1=|F 1F 2||PF 1|+|PF 2|,e 2=|F 1F 2||PF 1|-|PF 2|,则1e 1+1e 2=2|PF 1||F 1F 2|.在△PF 1F 2中,易知∠F 1F 2P ∈⎝⎛⎭⎫0,2π3, 由正弦定理得|PF 1||F 1F 2|=sin ∠F 1F 2P sin ∠F 1PF 2=23sin ∠F 1F 2P , 所以1e 1+1e 2=43sin ∠F 1F 2P ≤43=433,当且仅当sin ∠F 1F 2P =1,即∠F 1F 2P =π2时取等号,因此1e 1+1e 2的最大值是433.2.已知双曲线x 2a 2-y 2b 2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,则双曲线离心率的取值范围为__________.解析:设直线l 的方程为x a +yb =1.由已知,点(1,0)到直线l 的距离d 1与点(-1,0)到直线l 的距离d 2之和s =d 1+d 2=b (a -1)a 2+b2+b (a +1)a 2+b2=2ab c ≥45c ,整理得5a c 2-a 2≥2c 2,即5e 2-1≥2e 2,所以25e 2-25≥4e 4,即4e 4-25e 2+25≤0,解得54≤e 2≤5,52≤e ≤ 5.故双曲线离心率的取值范围为52, 5. 答案:52, 5一、选择题1.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B.12 C.23D.34解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.2.(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D .2解析:选A 法一:作出示意图如图所示,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.法二:因为MF 1与x 轴垂直,所以|MF 1|=b 2a.又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca= 2.3.(2018·宝鸡质检)已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率等于( )A.53 B.54 C.53或2516D.53或54解析:选D 当m <0,n >0时,圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径R =1,由mx 2+ny 2=1,得y 21n -x 2-1m=1,则双曲线的焦点在y轴上,对应的一条渐近线方程为y =±a b x ,设双曲线的一条渐近线为y =ab x ,即ax -by =0.∵一条渐近线与圆x 2+y 2-6x -2y +9=0相切,∴圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a-b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,所以8a 2-6ab =0,即4a -3b =0,b =43a ,平方得b 2=169a 2=c 2-a 2,所以c 2=259a 2,c =53a ,故离心率e =c a =53;当m >0,n <0时,双曲线的渐近线为y =±bax ,设双曲线的一条渐近线方程为y =ba x ,即bx -ay =0, ∴|3b -a |a 2+b 2=1, 即9b 2-6ab+a 2=c 2=a 2+b 2,∴8b 2-6ab =0,即4b =3a ,平方得16b 2=9a 2,即16(c 2-a 2)=9a 2, 可得e =54.综上,e =53或54.4.(2018·广西三市第一次联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )A.43B.53 C .2D .3解析:选B 取线段PF 1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1.∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a .∵|PA |=12|PF 1|=a +c ,∴4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.5.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作∠F 1PF 2的角平分线交x 轴于点M ,若2|PM |2=|PF 1|·|PF 2|,则该椭圆的离心率为( )A.12 B.22 C.32D.33解析:选B 记∠PF 1F 2=2α,∠PF 2F 1=2β,则有∠F 1MP =2β+π-(2α+2β)2=π2+(β-α),sin ∠F 1MP =cos(α-β)=sin ∠F 2MP ,则椭圆的离心率e =2c 2a =sin (2α+2β)sin 2α+sin 2β=2sin (α+β)cos (α+β)2sin (α+β)cos (α-β)=cos (α+β)cos (α-β).由已知得2|PM ||PF 1|=|PF 2||PM |,即2sin 2αcos (α-β)=cos (α-β)sin 2β,2sin 2αsin2β=cos 2(α-β),cos(2α-2β)-cos(2α+2β)=cos 2(α-β),即[2cos 2(α-β)-1]-[2cos 2(α+β)-1]=cos 2(α-β),cos 2(α-β)=2cos 2(α+β),cos (α+β)cos (α-β)=22=e ,所以该椭圆的离心率e =22.6.(2018·云南11校跨区调研)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与C 在第二象限的交点为P ,O 为原点,若|OP |=|OF |,则C 的离心率为( )A .5B. 5C.53D.54解析:选A 依题意得F (-5,0),|OP |=|OF |=5,tan ∠PFO =43,cos ∠PFO =35,|PF |=2|OF |cos ∠PFO =6.记双曲线的右焦点为F 2,则有|FF 2|=10.在△PFF 2中,|PF 2|=|PF |2+|FF 2|2-2|PF |·|FF 2|·cos ∠PFF 2=8.由双曲线的定义得a =12(|PF 2|-|PF |)=1,则C的离心率为e =ca=5.7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,若双曲线右支上存在两点B ,C使得△ABC 为等腰直角三角形,则该双曲线的离心率e 的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选C如图,由△ABC 为等腰直角三角形,所以∠BAx =45°. 设其中一条渐近线与x 轴的夹角为θ,则θ<45°,即tan θ<1. 又其渐近线的方程为y =b a x , 则ba <1,又e = 1+b 2a2, 所以1<e <2,故双曲线的离心率e 的取值范围为(1,2).8.(2018·广东五校协作体诊断)已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2且垂直于x 轴的直线与双曲线交于M ,N 两点,若MF 1―→·NF 1―→>0,则该双曲线的离心率e 的取值范围是( )A .(2,2+1)B .(1,2+1)C .(1,3)D .(3,+∞)解析:选B 设F 1(-c,0),F 2(c,0),依题意可得c 2a 2-y 2b 2=1,所以y =±b 2a ,不妨设M ⎝⎛⎭⎫c ,b 2a ,N ⎝⎛⎭⎫c ,-b 2a ,则MF 1―→·NF 1―→=-2c ,-b 2a ·⎝⎛⎭⎫-2c ,b 2a =4c 2-b 4a 2>0,得到4a 2c 2-(c 2-a 2)2>0,即a 4+c 4-6a 2c 2<0,故e 4-6e 2+1<0,解得3-22<e 2<3+22,又e >1,故1<e 2<3+22,得1<e <1+ 2.9.(2018·贵阳检测)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( )A.⎝⎛⎭⎫1,52 B.⎝⎛⎭⎫52,+∞ C.⎝⎛⎭⎫1,54 D.⎝⎛⎭⎫54,+∞解析:选B 依题意,注意到题中的双曲线x 2a 2-y 2b2=1的渐近线方程为y =±b a x ,且“右”区域是由不等式组⎩⎨⎧y <b a x ,y >-ba x所确定,又点(2,1)在“右”区域内,于是有1<2b a ,即b a >12,因此题中的双曲线的离心率e =1+⎝⎛⎭⎫b a 2∈⎝⎛⎭⎫52,+∞.10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F .若13<k <12,则椭圆C 的离心率的取值范围是( )A.⎝⎛⎭⎫14,34 B.⎝⎛⎭⎫23,1 C.⎝⎛⎭⎫12,23D.⎝⎛⎭⎫0,12 解析:选C 由题意可知,|AF |=a +c ,|BF |=a 2-c 2a ,于是k =a 2-c 2a (a +c ).又13<k <12,所以13<a 2-c 2a (a +c )<12,化简可得13<1-e 21+e <12,从而可得12<e <23. 11.已知F 1,F 2是双曲线y 2a 2-x 2b 2=1(a >0,b >0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆内,则双曲线的离心率的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选A 如图,不妨设F 1(0,c ),F 2(0,-c ),则过点F 1与渐近线y =ab x 平行的直线为y =ab x +c .联立⎩⎨⎧y =ab x +c ,y =-ab x ,解得⎩⎨⎧x =-bc 2a,y =c2,即M ⎝⎛⎭⎫-bc 2a ,c 2. 因为点M 在以线段F 1F 2为直径的圆x 2+y 2=c 2内, 故⎝⎛⎭⎫-bc 2a 2+⎝⎛⎭⎫c22<c 2,化简得b 2<3a 2, 即c 2-a 2<3a 2,解得ca<2,所以双曲线的离心率的取值范围为(1,2).12.(2018·湘中名校联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐近线交于C ,D 两点,若|AB |≥35|CD |,则双曲线离心率的取值范围为( )A.53,+∞ B.54,+∞ C .1,53D .1,54解析:选B 将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,不妨取A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a ,所以|AB |=2b 2a .将x =c 代入双曲线的渐近线方程y =±b a x ,得y =±bc a ,不妨取C ⎝⎛⎭⎫c ,bc a ,D ⎝⎛⎭⎫c ,-bc a ,所以|CD |=2bc a .因为|AB |≥35|CD |,所以2b 2a ≥35×2bc a ,即b ≥35c ,则b 2≥925c 2,即c 2-a 2≥925c 2,即1625c 2≥a 2,所以e 2≥2516,所以e ≥54. 二、填空题13.(2018·洛阳第一次统考)设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点为A .B ,C 是椭圆E 上关于原点对称的两点(B ,C 均不在x 轴上),若直线BF 平分线段AC ,则E 的离心率为________.解析:法一:设AC 的中点为M (x 0,y 0),依题意得点A (a,0),C (2x 0-a,2y 0),B (a -2x 0,-2y 0),F (c,0),其中y 0≠0.由B ,F ,M 三点共线得k BF =k BM ,2y 0c -a +2x 0=3y 03x 0-a≠0,化简得a =3c ,因此椭圆E 的离心率为13.法二:连接AB ,记AC 的中点为M ,B (x 0,y 0),C (-x 0,-y 0),则在△ABC 中,AO ,BM 为中线,其交点F 是△ABC 的重心.又F (c,0),由重心坐标公式得c =x 0-x 0+a3,化简得a =3c ,因此椭圆E 的离心率为13.答案:1314.(2018·湖北部分重点高中联考)已知双曲线C 2与椭圆C 1:x 24+y 23=1具有相同的焦点,则两条曲线相交的四个交点形成的四边形面积最大时双曲线C 2的离心率为__________.解析:设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知a 2+b 2=4-3=1,由⎩⎨⎧x 24+y 23=1,x 2a 2-y2b 2=1,解得交点的坐标满足⎩⎪⎨⎪⎧x 2=4a 2,y 2=3(1-a 2),由椭圆和双曲线关于坐标轴对称知,以它们的交点为顶点的四边形是长方形,其面积S =4|xy |=44a 2·3(1-a 2)=83·a 2·1-a 2≤83·a 2+1-a 22=43,当且仅当a 2=1-a 2,即a 2=12时,取等号,此时双曲线的方程为x 212-y 212=1,离心率e = 2.答案: 215.已知点A (3,4)在椭圆x 2a 2+y 2b 2=1(a >b >0)上,则当椭圆的中心到直线x =a 2a 2-b 2的距离最小时,椭圆的离心率为__________.解析:因为点A (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的点,所以9a 2+16b 2=1,所以b 2=16a 2a 2-9.因为a >b >0,所以1=9a 2+16b 2>9a 2+16a 2=25a2,从而a 2>25.设椭圆的中心到直线x =a 2a 2-b 2的距离为d ,则d =a 2a 2-b 2=a 4a 2-16a 2a 2-9=a 21-16a 2-9=a 2(a 2-9)a 2-25=a 2-25+400a 2-25+41≥ 2400+41=9,当且仅当a 2-25=400a 2-25,即a 2=45时,等号成立,此时b 2=20,c 2=25,于是离心率e =c a =2545=535=53.答案:5316.已知抛物线y =14x 2的准线过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的虚轴的一个端点,且双曲线C 与直线l :x +y =1相交于两点A ,B .则双曲线C 的离心率e 的取值范围为________.解析:抛物线y =14x 2化为x 2=4y ,所以准线为y =-1,所以双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的虚轴的一个端点为(0,-1),即b =1,所以双曲线C :x 2a2-y 2=1(a >0).联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1,消去y ,得(1-a 2)x 2+2a 2x -2a 2=0. ∵与双曲线交于两点A ,B ,∴⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0⇒0<a 2<2且a 2≠1. 而b =1,则c =a 2+b 2=a 2+1, ∴离心率e =ca =a 2+1a =1+1a2> 1+12=62,且e =1+1a2≠2, ∴e 的取值范围为⎝⎛⎭⎫62,2∪(2,+∞). 答案:⎝⎛⎭⎫62,2∪(2,+∞)增分点简化解析几何运算的5个技巧 中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.思想为指导,把定量的分析有机结合起来,则可使解题计算量简化,使解题构筑在较高的水平上.[典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B. 3C.32D.62[方法演示]解析:由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知, 可得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62. 答案:D [解题师说]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[应用体验]1.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||PA |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|PA |2=(x P +m )2+y 2P =(x P +m )2+4mx P ,则⎝⎛⎭⎫|PF ||PA |2=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||PA |≥22,所以|PF ||PA |的最小值为22. 答案:22对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“代点法”求解.[典例] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 [方法演示]解析:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2, 解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.答案:D [解题师说]本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.[应用体验]2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22. 答案:22来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例] 已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.[方法演示]解:(1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝⎛⎭⎫-65,45. (2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2), 联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k 21+4k 2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k 2. 所以直线MN 过x 轴上的一定点P ⎝⎛⎭⎫-65,0. [解题师说]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k 2,这体现了整体思路.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[应用体验]3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1, 代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0, 显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0, 则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t2,r 0=327,所以S △AF 2B =S △AF 1F 2+S △BF 1F 2=12|F 1F 2|·|y 1-y 2|=12|F 1F 2|·(y 1+y 2)2-4y 1y 2=12t 2+14+3t 2.而S △AF 2B =12|AB |r 0+12|BF 2|r 0+12|AF 2|r 0=12r 0(|AB |+|BF 2|+|AF 2|) =12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a =12×8×327=1227, 所以12t 2+14+3t 2=1227,解得t 2=1, 因为所求圆与直线l 相切,所以半径r =2t 2+1=2, 所以所求圆的方程为(x -1)2+y 2=2.解题方法和技巧之一.[典例] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 [方法演示]解析:由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,可设双曲线的方程为x 2-y 23=λ(λ>0).因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点在抛物线y 2=24x 的准线上,所以F (-6,0)是双曲线的左焦点,即λ+3λ=36,λ=9, 所以双曲线的方程为x 29-y 227=1.答案:B [解题师说]本题利用了共渐近线系双曲线方程,可使问题马上得到解决.避免了复杂的判断、可能的分类讨论、繁杂的解方程组,事半功倍.[应用体验]4.圆心在直线x -y -4=0上,且经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点的圆的方程为( )A .x 2+y 2-x +7y -32=0B .x 2+y 2-x +7y -16=0C .x 2+y 2-4x +4y +9=0D .x 2+y 2-4x +4y -8=0解析:选A 设经过两圆的交点的圆的方程为 x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0, 即x 2+y 2+61+λx +6λ1+λy -4+28λ1+λ=0, 其圆心坐标为⎝⎛⎭⎫-31+λ,-3λ1+λ, 又圆心在直线x -y -4=0上,所以-31+λ+3λ1+λ-4=0, 解得λ=-7,故所求圆的方程为x 2+y 2-x +7y -32=0.用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.[方法演示]证明:法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0). 由条件,得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1, 消去y 0并整理,得x 20=a 2b 2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4. 又a >b >0,故(1+k 2)2>4k 2+4, 即k 2+1>4,因此k 2>3,所以|k |> 3.法二:依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a1+k 2, 代入②,得(1+k 2)·4a 2(1+k 2)2<a 2, 解得k 2>3,所以|k |> 3.法三:设P (a cos θ,b sin θ)(0≤θ<2π), 则线段OP 的中点Q 的坐标为⎝⎛⎭⎫a 2cos θ,b2sin θ. |AP |=|OA |⇔AQ ⊥OP ⇔k AQ ×k =-1. 又A (-a,0),所以k AQ =b sin θ2a +a cos θ,即b sin θ-ak AQ cos θ=2ak AQ .从而可得|2ak AQ |≤b 2+a 2k 2AQ <a 1+k 2AQ ,解得|k AQ |<33,故|k |=1|k AQ |> 3. [解题师说]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量. [应用体验]5.(2018·长春质检)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且离心率为12,点P 为椭圆上一动点,△F 1PF 2面积的最大值为 3.(1)求椭圆的方程;(2)设椭圆的左顶点为A 1,过右焦点F 2的直线l 与椭圆相交于A ,B 两点,连接A 1A ,A 1B 并延长分别交直线x =4于R ,Q 两点,问RF 2―→·QF 2―→是否为定值?若是,求出此定值;若不是,请说明理由.解:(1)已知椭圆的离心率为12,不妨设c =t ,a =2t ,则b =3t ,其中t >0,当△F 1PF 2面积取最大值时,点P 为短轴端点, 因此12·2t ·3t =3,解得t =1,则椭圆的方程为x 24+y 23=1.(2)由(1)可知F 2(1,0),A 1(-2,0).设直线AB 的方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1,可得(3m 2+4)y 2+6my -9=0,则y 1+y 2=-6m4+3m 2,①y 1y 2=-94+3m 2,②直线AA 1的方程为y =y 1x 1+2(x +2), 直线BA 1的方程为y =y 2x 2+2(x +2), 则R ⎝⎛⎭⎫4,6y 1x 1+2,Q ⎝⎛⎭⎫4,6y 2x 2+2,F 2R ―→=⎝⎛⎭⎫3,6y 1x 1+2,F 2Q ―→=⎝⎛⎭⎫3,6y 2x 2+2,则F 2R ―→·F 2Q ―→=9+6y 1x 1+2·6y 2x 2+2=6y 1my 1+3·6y 2my 2+3+9=36y 1y 2m 2y 1y 2+3m (y 1+y 2)+9+9,将①②两式代入上式,整理得F 2R ―→·F 2Q ―→=0, 即F 2R ―→·F 2Q ―→为定值0.1.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33 B.23 C.22D .1解析:选C 如图所示,设P (x 0,y 0)(y 0>0),则y 20=2px 0,即x 0=y 202p.设M (x ′,y ′),由PM ―→=2MF ―→, 得⎩⎪⎨⎪⎧x ′-x 0=2⎝⎛⎭⎫p 2-x ′,y ′-y 0=2(0-y ′),化简可得⎩⎨⎧x ′=p +x03,y ′=y3.∴直线OM 的斜率为k =y 03p +x 03=y 0p +y 202p =2p 2p 2y 0+y 0≤2p 22p 2=22(当且仅当y 0=2p 时取等号).2.设双曲线x 2a +y 2b =1的一条渐近线为y =-2x ,且一个焦点与抛物线y =14x 2的焦点相同,则此双曲线的方程为( )A.54x 2-5y 2=1 B .5y 2-54x 2=1C .5x 2-54y 2=1D.54y 2-5x 2=1 解析:选D 因为x 2=4y 的焦点为(0,1), 所以双曲线的焦点在y 轴上. 因为双曲线的一条渐近线为y =-2x , 所以设双曲线的方程为y 2-4x 2=λ(λ>0), 即y 2λ-x 2λ4=1,则λ+λ4=1,λ=45,所以双曲线的方程为54y 2-5x 2=1.3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-c ,0),F 2(c,0),P 为双曲线上任一点,且PF 1―→·PF 2―→最小值的取值范围是⎣⎡⎦⎤-34c 2,-12c 2,则该双曲线的离心率的取值范围为( )A .(1,2]B .[2,2]C .(0,2]D .[2,+∞)解析:选B 设P (x 0,y 0),则PF 1―→·PF 2―→=(-c -x 0,-y 0)·(c -x 0,-y 0)=x 20-c 2+y 20=a2⎝⎛⎭⎫1+y 20b 2-c 2+y 20,上式当y 0=0时取得最小值a 2-c 2, 根据已知-34c 2≤a 2-c 2≤-12c 2,所以14c 2≤a 2≤12c 2,即2≤c 2a 2≤4,即2≤c a ≤2,所以所求离心率的取值范围是[2,2].4.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF ―→=λFB ―→(λ>1),则λ的值为( )A .5B .4 C.43D.52解析:选B 根据题意设A (x 1,y 1),B (x 2,y 2), 由AF ―→=λFB ―→,得⎝⎛⎭⎫p 2-x 1,-y 1=λ⎝⎛⎭⎫x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43⎝⎛⎭⎫x -p 2, 联立直线与抛物线方程,消去x ,得y 2-32py -p 2=0.故y 1+y 2=32p ,y 1y 2=-p 2,则(y 1+y 2)2y 1y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94.又λ>1,解得λ=4.5.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)解析:选D 设A ⎝⎛⎭⎫y 214,y 1,B ⎝⎛⎭⎫y 224,y 2,M y 21+y 228,y 1+y 22,C (5,0)为圆心,当y 1≠-y 2时,k AB =4y 1+y 2,k CM =4(y 1+y 2)y 21+y 22-40,由k AB ·k CM =-1⇒y 21+y 22=24,所以M 3,y 1+y 22,又r 2=|CM |2=4+⎝⎛⎭⎫y 1+y 222=10+12y 1y 2,所以(2r 2-20)2=y 21y 22,所以y 21,y 22是方程t 2-24t +(2r 2-20)2=0的两个不同的正根,由Δ>0得2<r <4.所以r 的取值范围是(2,4).6.中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( ) A.2x 275+2y 225=1 B.x 275+y 225=1 C.x 225+y 275=1 D.2x 225+2y 275=1 解析:选C 由已知得c =52, 设椭圆的方程为x 2a 2-50+y 2a 2=1,联立⎩⎪⎨⎪⎧x 2a 2-50+y 2a 2=1,y =3x -2,消去y 得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,设直线y =3x -2与椭圆的交点坐标分别为(x 1,y 1),(x 2,y 2),由根与系数关系得x 1+x 2=12(a 2-50)10a 2-450,由题意知x 1+x 2=1,即12(a 2-50)10a 2-450=1,解得a 2=75, 所以该椭圆方程为y 275+x 225=1.7.已知双曲线C :x 22-y 2=1,点M 的坐标为(0,1).设P 是双曲线C 上的点,Q 是点P关于原点的对称点.记λ=MP ―→·MQ ―→,则λ的取值范围是________.解析:设P (x 0,y 0),则Q (-x 0,-y 0),λ=MP ―→·MQ ―→=(x 0,y 0-1)·(-x 0,-y 0-1)=-x 20-y 20+1=-32x 20+2. 因为|x 0|≥2,所以λ≤-1, 所以λ的取值范围是(-∞,-1].答案:(-∞,-1]8.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则PA ―→·PB ―→的最小值为________.解析:由题意,设A (cos θ,sin θ),P (x ,x +2), 则B (-cos θ,-sin θ),∴PA ―→=(cos θ-x ,sin θ-x -2), PB ―→=(-cos θ-x ,-sin θ-x -2),∴PA ―→·PB ―→=(cos θ-x )(-cos θ-x )+(sin θ-x -2)·(-sin θ-x -2) =x 2+(x +2)2-cos 2θ-sin 2θ =2x 2+4x +3 =2(x +1)2+1,当且仅当x =-1,即P (-1,1)时,PA ―→·PB ―→取最小值1. 答案:19.设抛物线⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l的垂线,垂足为B .设C ⎝⎛⎭⎫72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.解析:由⎩⎪⎨⎪⎧x =2pt 2,y =2pt (p >0)消去t 可得抛物线方程为y 2=2px (p >0),∴F ⎝⎛⎭⎫p 2,0,|AB |=|AF |=12|CF |=32p ,可得A (p ,2p ). 易知△AEB ∽△FEC , ∴|AE ||FE |=|AB ||FC |=12, 故S △ACE =13S △ACF =13×3p ×2p ×12=22p 2=32,∴p 2=6.∵p >0,∴p = 6. 答案: 610.已知离心率为63的椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题10 解密解析几何中乘积或比值问题一、填空题 1.在长方体中,已知底面为正方形,为的中点,,点是正方形所在平面内的一个动点,且,则线段的长度的最大值为___.【答案】6图(1) 图(2)点睛: 2QC QP =是空间中的两条线段之间的关系,通过AD 的中点S 可以转化到同一平面上QS 与QC 的关系,再把正方形ABCD 放置在平面直角坐标系中,通过研究Q 的轨迹(是圆)得到BQ 的最大值.二、解答题2.如图,在平面直角坐标系xoy 中,已知椭圆C : 22221(0)x y a b a b +=>>的离心率12e =,左顶点为()4,0A −,过点A 作斜率为()0k k ≠的直线l 交椭圆C 于点D ,交y 轴于点E .(1)求椭圆C 的方程;(2)已知P 为AD 的中点,是否存在定点Q ,对于任意的()0k k ≠都有OP EQ ⊥,若存在,求出点Q 的坐标;若不存在说明理由;(3)若过O 点作直线l 的平行线交椭圆C 于点M ,求AD AE OM+的最小值.【答案】(1)2211612x y +=;(2)见解析;(3)22. 【解析】试题分析:(1)由椭圆的离心率和左顶点,求出a ,b ,由此能求出椭圆C 的标准方程.(2)直线l 的方程为y =k (x +4),与椭圆联立,得,(x +4)[(4k 2+3)x +16k 2-12)]=0,由此利用韦达定理、直线垂直,结合题意能求出结果.(3)OM 的方程可设为y =kx ,与椭圆联立得M 点的横坐标为24343x k =±+,由OM l ,,能求出结果.3.已知椭圆22221(0)x y a b a b +=>>经过点()0,3,离心率为12,左、右焦点分别为()()12,0,,0F c F c −.(1)求椭圆的方程; (2)若直线1:12l y x =−+与椭圆交于A ,B 两点,与以12F F 为直径的圆交于C ,D 两点,求AB CD的值. 【答案】(1)24x +23y =1;(2)154.点睛:直线与圆锥曲线相交问题通常采用“设而不求”的方法,设交点坐标为()()1122,,,x y x y ,直线方程为y kx b =+入圆锥曲线方程消去y 得关于x 的二次方程,由韦达定理得1212,x x x x +,再把题中与交点有关的已知条件、要证明的结论等用1122,,,x y x y 表示出来,最后把1212,x x x x +代入转化变形可解决问题.4.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率为32,且点22,2⎫⎪⎪⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设P 为椭圆上第一象限内的点,点P 关于原点O 的对称点为A ,点P 关于x 轴的对称点为Q ,设PD PQ λ=,直线AD 与椭圆C 的另一个交点为B ,若PA PB ⊥,求实数λ的值.【答案】(1)2214x y +=.(2)34λ=.点睛:椭圆与直线的综合问题要学会分析题目,由题中的对称关系,得到()00,P x y , 则()()0000,,,A x y Q x y −−−,再由PD PQ λ=,解()()00,12D x y λ−, 求出()001441PB BD x k k y λ=−=−−,利用PA PB ⊥,就可以求出34λ=。
学会结合示意图一步一步分析题目的解析方法,得到求解过程。
5.已知,F A 分别为椭圆2222:1(0)x y a b a b Ω+=>>的右焦点、右顶点, 1FA =,点333,,22a a P O ⎛⎫ ⎪ ⎪⎝⎭为坐标原点,射线OP 与Ω的交点为B ,且2515OB OP=. (1)求Ω的方程;(2)若直线:1(0)l y kx k =+>与Ω交于,M N 两点(M 在N 的上方). ,M N 在轴y 上的射线分别为,M N '',且11k MM NN ''−≤k 取得最大值时,求MN . 【答案】(1)22143x y +=;(2)247MN =. (2)设()()112212,,,,M x y N x y x x >,将1y kx =+代入22143x y +=,利用根与系数的关系,进而得到12,,MM x NN x ''∴==−,∴1212121111x xk MM NN x x x x +−='='+=, k k ∴≤max ,1k =,此时, 121288,77x x x x +=−=−,则MN 可求.6.已知椭圆2222:1x y C a b += ()0a b >>,其焦距为2,离心率为22(1)求椭圆C 的方程;(2)设椭圆的右焦点为F , K 为x 轴上一点,满足2OK OF =,过点K 作斜率不为0的直线l 交椭圆于,P Q 两点,求FPQ ∆面积s 的最大值.【答案】(1) 2212x y +=;(2)24. 【解析】试题分析:(1)由焦距为2得1c =,由离心率2c a =得2a =222b a c =−可得椭圆方程;(2)由题意可得()2,0K ,直线l 的方程为()2y k x =−, 0k ≠,将直线方程与椭圆方程联立由韦达定理可得2122812k x x k +=+, 21228212k x x k −=+,结合0>得k 的范围,利用点到直线的距离为21k h k =+, 12S PQ h = ()()222212221k k k −=+,令212t k =+, 12t <<,结合二次函数的性质可得S 最大值.点睛:本题主要考查的椭圆方程的求法,以及焦点三角形的最值问题,计算量较大,属于难题;设出直线方程的点斜式,联立直线与椭圆的方程,运用韦达定理,结合弦长公式,运用点到直线的距离公式求出三角形的高,将三角形的面积表示为关于k 的函数,利用换元法及二次函数的性质求出函数的最值.7.(2017·合肥市质检)已知点F 为椭圆E : 22221x y a b+= (a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线142x y+=与椭圆E 有且仅有一个交点M . (1)求椭圆E 的方程; (2)设直线142x y+=与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若λ|PM |2=|P A |·|PB |,求实数λ的取值范围.【答案】(1)22143x y +=;(2)415⎡⎫⎪⎢⎣⎭,.【解析】试题分析:(1)由两焦点与短轴的一个顶点构成一个等边三角形,直线142x y+=与椭圆有且仅有一个交点可得关于,a b , c 的方程组,求出,a b ,c 的值,即可得到椭圆的方程;(2)由(1)求得M 坐标,得到2PM 的值,当直线l 与x 轴垂直时,直接由2PMPA PB λ=⋅,求得λ值;当直线l 与x 轴不垂直时,设直线l 的方程为2y kx =+,联立直线方程与椭圆方程,利用判别式大于0求得k 的取值范围,再由根与系数的关系,结合2PM PA PB λ=⋅,把λ用含有k 的表达式表示,则实数λ的取值范围可求.(2)由(1)得M 31,2⎛⎫⎪⎝⎭,∵直线142x y+=与y 轴交于P (0,2), ∴|PM |2=54,当直线l 与x 轴垂直时,|PA |·|PB |=(23(23=1, ∴λ|PM |2=|PA |·|PB |⇒λ=45, 当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2), 由222{34120y kx x y =++−=⇒(3+4k 2)x 2+16kx +4=0,依题意得,x 1x 2=2434k+,且Δ=48(4k 2-1)>0, ∴|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·2434k +=1+2134k +=54λ,∴λ=45 (1+2134k +),∵k 2>14,∴45<λ<1.综上所述,λ的取值范围是[45,1).8.已知动点E 到点A ()2,0与点B ()2,0−的直线斜率之积为14−,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14.【解析】(1)直接设动点E 的坐标为(),x y ,把已知条件用数学式子翻译出来并化简即可,同时要注意变量的取值范围;(2)按直线l 的斜率存在与不存在分类,当直线l 的斜率不存在时,直线方程为x =1,直接求出P 、Q 坐标,计算数量积;当直线l 的斜率存在时,可以设交点坐标为()()1122,,,x y x y ,设方程为()1y k x =−,代入曲线C 的方程,消去y ,由韦达定理可得1212,x x x x +,计算出数量积OP OQ ⋅,并把1212,x x x x +代入关于k 的函数,再由不等式知识求最大值.9.设O 为坐标原点,动点M 在椭圆22194x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(Ⅰ)求点P 的轨迹方程E ;(Ⅱ)过()1,0F 的直线1l 与点P 的轨迹交于A B 、两点,过()1,0F 作与1l 垂直的直线2l 与点P 的轨迹交于C D 、两点,求证:11AB CD+为定值. 【答案】(Ⅰ)22198x y +=(Ⅱ)1748.【解析】试题分析:(Ⅰ)设(),P x y ,由题意可得(),0N x ,则2M x y ⎛⎫⎪⎝⎭,点M 在椭圆上,整理计算可得轨迹方程为22198x y +=.(Ⅱ)分类讨论:当1l 与x 轴重合时, 111748AB CD +=.当1l 与x 轴垂直时, 111748AB CD +=.当1l 与x 轴不垂直也不重合时,可设1l 的方程为()()()1110,,y k x k A x y =−≠, ()22,B x y , ()33,C x y ,()44,D x y 联立直线1l 与椭圆的方程有()222289189720k x k x k +−+−=,结合弦长公式有()()222121224811489k AB k x x x x k +=++−=+,把直线2l 与曲线椭圆联立计算可得()2248198k CD k +=+.则111748AB CD +=.据此,结论得证. 点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.10.已知椭圆22:29C x y +=,点()2,0P(Ⅰ)求椭圆C 的短轴长和离心率;(Ⅱ)过()1,0的直线l 与椭圆C 相交于两点,M N ,设MN 的中点为T ,判断TP 与TM 的大小,并证明你的结论. 【答案】(Ⅰ)2e =;(Ⅱ)结论是: TP TM <,证明见解析. 【解析】试题分析:(Ⅰ)根据椭圆的方程求得,,a b c 的值,即可求解椭圆的短轴长和离心率;(Ⅱ)设直线l : 1x my =+, ()11,M x y , ()22,N x y ,用直线的方程和椭圆的方程联立方程组,得到12y y +, 12y y ,则可计算得出0PM PN ⋅<,进而得到90MPN ∠>︒,得点P 在以MN 为直径的圆内,所以TP TM <.点睛:本题主要考查了椭圆的标准方程和简单的几何性质,直线与椭圆的位置关系的应用等问题,对于直线和圆锥曲线的位置关系,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数最值的方法---如二次函数的性质、基本不等式、导数等求解.本题易难点在与转换为点与圆的位置关系,从而得到结论,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.11.已知抛物线21:2C y px =上一点()03,M y 到其焦点F 的距离为4,椭圆2:C 22221(0)y x a b a b+=>>的离心率22e =,且过抛物线的焦点F . (1)求抛物线1C 和椭圆2C 的标准方程;(2)过点F 的直线l 交抛物线1C 于,A B 两不同点,交y 轴于点N ,已知NA AF λ=, NB BF μ=,求证: λμ+为定值.【答案】(1)抛物线的方程为24y x =,椭圆的标准方程为2212y x +=;(2)见解析. 【解析】试题分析:(1)利用抛物线C 1:y 2=2px 上一点M (3,y 0)到其焦点F 的距离为4;求出p ,即可得到抛物线方程,通过椭圆的离心率e =22,,且过抛物线的焦点F (1,0)求出a ,b ,即可得到椭圆的方程;(2)直线l 1的斜率必存在,设为k ,设直线l 与椭圆C 2交于A (x 1,y 1),B (x 2,y 2),求出直线l 的方程为y =k (x -1),N (0,-k ),联立直线与椭圆的方程,利用韦达定理以及判别式,通过向量关系式即可求出λ+μ为定值.12.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为43,离心率为3. (1)求椭圆C 的方程;(2)设直线L 经过点()0,1M ,且与椭圆C 交于,A B 两点,若2AM MB =,求直线L 的方程.【答案】(1) 221164x y += (2) 151y x =+ 【解析】试题分析:(1)根据椭圆的焦距为433a ,b ,即可求椭圆C 的方程; (2)设直线l 方程为y =kx +1,代入椭圆方程,由2AM MB =,可得x 1=-2x 2,利用韦达定理,化简可得22222812 ,21414k x x k k −=−−=−++消去2x 解得2320k =,求出k ,即可求直线l 的方程.(2)由题得直线L 的斜率存在,设直线L 方程为1y kx =+,则由221{ 1164y kx x y =++=得()22148120k x kx ++−=,且0∆>. 设()()1122,,,A x y B x y ,则由2AM MB =得122x x =−,又122122814{ 1214k x x k x x k +=−+⋅=−+, 所以22222814{ 12214k x k x k −=−+−=−+消去2x 解得2315,2010k k ==±, 所以直线l 的方程为15110y x =±+. 点睛:本题考查直线与椭圆的位置关系,关键是直线与椭圆方程的联立,由2AM MB =得122x x =−,结合韦达定理即可可解,注意计算的准确性.13.在平面直角坐标系xOy 中,动点P 到点()1,0F 的距离和它到直线1x =−的距离相等,记点P 的轨迹为C .(Ⅰ)求C 得方程;(Ⅱ)设点A 在曲线C 上, x 轴上一点B (在点F 右侧)满足AF FB =.平行于AB 的直线与曲线C 相切于点D ,试判断直线AD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由. 【答案】(1)24y x = (2)直线AD 过定点()1,0.14.已知椭圆22221(0)x y a b a b +=>>的离心率为3,左顶点为()2,0A −,过原点且斜率不为0的直线与椭圆交于,B C 两点,其中点B 在第二象限,过点B 作x 轴的垂线交AC 于点D .⑴求椭圆的标准方程;⑵当直线BC的斜率为ABD ∆的面积; ⑶试比较2AB 与AD AC ⋅大小.【答案】⑴2214x y +=⑵3(3)见解析 (3)方法一:设直线AB 的方程为()2y k x =+, 0k >,代入椭圆方程得()222241161640k x k x k +++−=设()11,B x y ,则有212164241k x k −−⋅=+,解得2122841k x k −=+从而()2228241k AB k −=−−=+()11,C x y −−, 所以21211122111111422444ACx y y y k k x x x x −−⋅=⋅=−=−=−+−+−−,于是14ACk k =−故()22228424141kAD k k −=−−=++()2222821624141k k AC k k −=−−=++ 从而()()()222222241611641164141k k AD AC k k k+⎛⎫⋅=+⋅=⎪⎝⎭++所以()()2222121441k AB AD AC k −−⋅=+因为点B 在第二象限,所以12k >,于是有2AB AD AC <⋅15.已知椭圆()2222:10x y C a b a b +=>>直线:20l x y −+=与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切. (1)求椭圆C 的方程;11 (2)是否存在直线与椭圆C 交于,A B 两点,交y 轴于点()0,M m ,使22OA OB OA OB +=−成立?若存在,求出实数m 的取值范围;若不存在,请说明理由.【答案】(1) 22182x y +=(2) m>或m < 【解析】试题分析:(1)根据椭圆的几何意义得到abc 的值,从而得到椭圆方程;(2)将向量模长的方程两边平方得到OA OB ⊥,即·0OAOB =,即12120x x y y +=,联立直线和椭圆得到二次方程,带入韦达定理得到参数范围。