立体几何线面、面面平行的证明
空间几何线面平行面面平行线面垂直面面垂直的证明方法
空间几何线面平行面面平行线面垂直面面垂直的证明方法空间几何中,线、面、平行面、面平行线、面垂直面等概念是非常重要的。
在证明这些概念时,我们需要掌握一些基本的证明方法。
下面,我将介绍一些证明方法,帮助大家更好地理解这些概念。
一、线与面的关系1. 线与平面的关系线与平面的关系有两种情况:线在平面内或线与平面相交。
对于线在平面内的情况,我们可以通过以下证明方法来证明:(1)假设线与平面不在同一平面内,那么这条线必然与平面相交,与已知矛盾。
(2)假设线与平面在同一平面内,但不在同一直线上,那么这条线必然与平面相交,与已知矛盾。
(3)假设线与平面在同一直线上,但不在同一点上,那么这条线必然与平面相交,与已知矛盾。
因此,我们可以得出结论:线与平面必然在同一平面内且相交于一点或在平面内。
2. 线与直线的关系线与直线的关系有三种情况:相交、平行、重合。
对于线与直线相交的情况,我们可以通过以下证明方法来证明:(1)假设两条线不相交,那么这两条线必然平行,与已知矛盾。
(2)假设两条线重合,那么这两条线必然相交,与已知矛盾。
因此,我们可以得出结论:两条不同的线必然相交于一点或平行。
二、面与面的关系1. 平行面的关系平行面的关系有两种情况:平行或重合。
对于平行面的情况,我们可以通过以下证明方法来证明:(1)假设两个平面不平行,那么这两个平面必然相交,与已知矛盾。
(2)假设两个平面重合,那么这两个平面必然平行,与已知矛盾。
因此,我们可以得出结论:两个不同的平面必然平行或相交于一条直线。
2. 面垂直面的关系面垂直面的关系有两种情况:相交于一条直线或垂直。
对于面垂直的情况,我们可以通过以下证明方法来证明:(1)假设两个面不垂直,那么这两个面必然相交于一条直线,与已知矛盾。
(2)假设两个面相交于一条直线,那么这两个面必然不垂直,与已知矛盾。
因此,我们可以得出结论:两个不同的面必然相交于一条直线或垂直。
三、面平行线的关系面平行线的关系有两种情况:平行或相交。
立体几何常考定理的总结(八大定理)
lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。
.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。
................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:....在需要证明的两个平面中找线面垂直................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。
立体几何线面平行证明
立体几何线面平行证明要证明两个线面平行,一般可以通过以下几种方法来进行证明:方法一:使用平行线的性质假设我们有线面A和线面B,要证明A和B平行,可以通过以下步骤进行证明:1.假设线面A和线面B不平行,即存在一条线a与线面A不平行,又与线面B相交于一点P。
2.假设在线面A上存在一点Q,它与直线a上相交于一点R。
3.由于线a与线面B相交于P,所以线段PR必然属于线面B。
4.由于线a与线面A相交于R,所以线段PR必然属于线面A。
5.由于线面A和线面B都包含线段PR,所以它们必然相交。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
方法二:使用支撑面的性质假设我们有线面A和线面B,要证明A和B平行,可以通过以下步骤进行证明:1.假设在线面A上存在一条直线a,它与线面B相交于一点P。
2.过直线a作平行于线面B的平面,该平面与线面A相交于线段QR。
3.由于直线a与线面B相交于点P,所以线段PR必然属于线面B。
4.由于平面上的任意两点可以确定一条直线,所以线段QR也属于线面B。
5.因此,线段QR同时属于线面A和线面B,所以它们不是平行的。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
方法三:使用平行四边形的性质假设我们有线面A和线面B,要证明A和B平行1.假设在线面A上存在一条直线a,它与线面B相交于一点P。
2.在线面A上选择一点Q,并通过P点作一条平行于线面A的直线b。
3.连接直线a和直线b,得到平行四边形PQRD。
4.由于平行四边形的特性,相邻两边平行且长度相等,所以线段PD也是平行于线面A的,并且它必然属于线面B。
5.因此,线段PD同时属于线面A和线面B,所以它们不是平行的。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
以上三种方法是一些常用的证明线面平行的方法,根据实际问题的具体情况,可以选择适合的方法进行证明。
立体几何常见证明方法
立体几何方法归纳小结一、线线平行的证明方法1、根据公理4,证明两直线都与第三条直线平行。
2、根据线面平行的性质定理,若直线a平行于平面A ,过a的平面B与平面A相交于b ,则a//b。
3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b 。
4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线a与直线b,则a//b 。
二、线面平行的证明方法1、根据线面平行的定义,证直线与平面没有公共点。
2、根据线面平行的判定定理,若平面A内存在一条直线b与平面外的直线a平行,则a//A 。
(用相似三角形或平行四边形)3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。
三、面面平行的证明方法1、根据定义,若两平面没有公共点,则两平面平行。
2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。
或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。
3、垂直同一直线的两平面平行。
4、平行同一平面的两平面平行。
四、两直线垂直的证明方法1、根据定义,证明两直线所成的角为90°2、一直线垂直于两平行直线中的一条,也垂直于另一条.3、一直线垂直于一个平面,则它垂直于平面内的所有直线.4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线).五、线面垂直的证明方法1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面.2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面.3、一直线垂直于两平行平面中的一个,也垂直于另一个.4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面.5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.六、面面垂直的证明方法1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。
证明面面平行的判定定理
证明面面平行的判定定理
面面平行是立体几何学中一个非常重要的概念。
在三维空间中,
如果两个平面是平行的,那么它们永远不会相交。
而面面平行的判定
定理可以帮助我们准确地判断两个平面是否平行。
本文将详细介绍面
面平行的判定定理,包括定义、性质和应用。
一、定义
在三维空间中,两个平面是平行的,当且仅当它们的法线向量平行。
因此,要判断两个平面是否平行,我们只需要比较它们的法线向
量是否平行即可。
二、性质
1. 如果两个平面是平行的,那么它们永远不会相交。
2. 两个平面的法线向量分别为n和m,如果n和m平行,那么这
两个平面是平行的。
3. 如果两个平面是平行的,那么它们的法线向量长度相等。
三、应用
在求解立体几何学问题时,面面平行的判定定理是非常有用的。
比如,在计算两个平面之间的距离时,我们可以先判断它们是否平行,再利用向量的知识求解距离。
又比如,在求解两个平面的夹角时,我
们也可以利用这个定理来进行计算。
另外,在工程和建筑设计中,面面平行的判定定理也有着广泛的应用。
比如,在设计房屋或者建筑物时,我们需要保证墙壁之间是平行的,才能保证建筑物的稳定性和美观性。
此外,在工程测量中,面面平行的判定定理也可以用来判断不同建筑物的墙面是否平行,从而帮助我们得出准确的测量结果。
综上所述,面面平行的判定定理是立体几何学中一个非常重要的定理,它可以帮助我们准确地判断两个平面是否平行,并在工程、建筑设计和测量方面有着广泛的应用。
因此,学好面面平行的判定定理对我们的学习和工作都是非常有帮助的。
立体几何中的平行与垂直
立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE⊥平面PCF;(Ⅱ)证明:平面PBC⊥平面PCF;(Ⅲ)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.练习3 .如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.(1)求证:PE⊥BD;(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,的值.求DEDC立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E解析 A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E 不正确;故选:C.练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行答案 C解析画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确.C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确.D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确.故选:C.【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.证明:(Ⅰ)取FC中点N.在图1中,由D,N分别为AC,FC中点,所以DN∥EF.在图2中,由M,N分别为A1C,FC中点,所以MN∥A1F,所以平面DMN∥平面A1EF,(5分)所以DM∥平面A1EF.解:(Ⅱ)直线A1B与直线CD不可能垂直.因为平面A1BD⊥平面BCD,EF⊂平面BCD,EF⊥BD,所以EF⊥平面A1BD,(8分)所以A1B⊥EF.假设有A1B⊥CD,注意到CD与EF是平面BCD内的两条相交直线,则有A1B⊥平面BCD.(1)(10分)又因为平面A1BD⊥平面BCD,A1E⊂平面A1BD,A1E⊥BD,所以A1E⊥平面BCD.(2)而(1),(2)同时成立,这显然与“过一点和已知平面垂直的直线只有一条”相矛盾,所以直线A1B与直线CD不可能垂直.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.证明:(Ⅰ)∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,∵AE⊂平面ABE,∴AE⊥BC,又∵BF⊥平面ACE,AE⊂平面ACE,∴AE⊥BF,∵BC∩BF=B,∴AE⊥平面BCE,又BE⊂平面BCE,∴AE⊥BE.(6分)解:(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,CE,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系得CN=13∵MG∥AE MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE,同理,GN∥平面ADE,∴平面MGN∥平面ADE,又MN⊂平面MGN,∴MN∥平面ADE,∴N点为线段CE上靠近C点的一个三等分点.(12分)【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE ⊥平面PCF ;(Ⅱ)证明:平面PBC ⊥平面PCF ;(Ⅲ)在线段PD ,BC 上是否分别存在点M ,N ,使得平面CFM ∥平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.【解答】证明:(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC ⊥DE ;所以折叠后,DE ⊥PF ,DE ⊥CF ,又PF∩CF=F,PF ,CF ⊂平面PCF ,所以DE ⊥平面PCF(Ⅱ)因为四边形AECD 为菱形,所以DC ∥AE ,DC=AE .又点E 为AB 的中点,所以DC ∥EB ,DC=EB .所以四边形DEBC 为平行四边形.所以CB ∥DE .又由(Ⅰ)得,DE ⊥平面PCF ,所以CB ⊥平面PCF .因为CB ⊂平面PBC ,所以平面PBC ⊥平面PCF .解:(Ⅲ)存在满足条件的点M ,N ,且M ,N 分别是PD 和BC 的中点.如图,分别取PD 和BC 的中点M ,N .连接EN ,PN ,MF ,CM .因为四边形DEBC 为平行四边形,所以EF ∥CN ,EF =12BC =CN .所以四边形ENCF 为平行四边形.所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 中点,所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE∩EN=E,MF ,CF ⊂平面CFM ,所以平面CFM ∥平面PEN .练习3 .如图,直角三角形ABC 中,A=60°,沿斜边AC 上的高BD ,将△ABD 折起到△PBD 的位置,点E 在线段CD 上.(1)求证:PE ⊥BD ;(2)过点D 作DM ⊥BC 交BC 于点M ,点N 为PB 中点,若PE ∥平面DMN ,求DE DC 的值.解析 (1)∵BD 是AC 边上的高,∴BD ⊥CD ,BD ⊥PD ,又PD∩CD=D,∴BD ⊥平面PCD ,又PE ⊂平面PCD 中,∴BD ⊥PE ,即PE ⊥BD ;(2)如图所示,连接BE ,交DM 与点F ,∵PE ∥平面DMN ,∴PE ∥NF ,又点N 为PB 中点,∴点F 为BE 的中点;∴DF=12BE=EF ;又∠BCD=90°﹣60°=30°,∴△DEF 是等边三角形,设DE=a ,则BD=√3a ,DC=√3BD=3a ;∴DE DC =a 3a =13.。
立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质
立体几何(线面平行、垂直的有关结论)空间中线面平行、垂直关系有关的定理:1、【线面平行的判定】平面外的一条直线和平面内的一条直线平行,则这条直线和这个平面平行。
2、【线面平行的性质】如果一条直线和一个平面平行,经过这条直线的平面和这平面相交,那么这条直线就和两平面的交线平行。
3、如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。
4、如果两个平面平行,其中一个平面内的任意一条直线平行于另一个平面。
5、如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
6、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
7、一条直线与两条平行直线中的一条直线相垂直,则这条直线也与另一条直线垂直。
8、与同一条直线都垂直的两条直线相互平行。
()9、与同一个平面都垂直的两条直线相互平行。
10、两条平行直线中的一条直线与一个平面相垂直,则另一条直线也垂直于这个平面。
11、两条相互垂直的直线中的一条平行于一个平面,则另一条直线垂直于这个平面。
()12、两条相互垂直的直线中的一条垂直于以个平面,则另一条直线平行于这个平面。
()13、平面外的两条相互垂直的直线中的一条垂直于一个平面,则另一条直线平行于这个平面。
14、一条直线垂直于两个平行平面中的一个平面,那么该直线也垂直于另一个平面。
15、如果两个平面垂直于同一条直线,那么这两个平面平行。
16、两个平面都与另一个平面相垂直,则这两个平面平行。
()17、一个平面垂直于两平行平面中的一个平面,则此平面也垂直于另一个平面。
18、如果一条直线与平面内的两条相交直线都垂直,则这条直线与这个平面垂直。
19、如果一条直线垂直于一个平面,那么这条直线垂直于该平面内的任意一条直线。
20、如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直。
21、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
【知识归纳】:【典型例题】:【高考小题】:。
总结证明线面平行的常用方法
BC DA 1B 1C 1D 1图2AFE GαabA图1总结证明线面平行的常用方法空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下:方法一、反证法【例1】求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理)已知:,,a b a αα⊄⊂∥b ,如图1.求证:a ∥α.【分析】要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明.【证明】假设直线a 与平面α不平行,又∵a α⊄,∴a A α=.下面只要说明aA α=不可能即可.∵a ∥b ,∴a ,b 可确定一平面,设为β. 又aA α=, ∴,A a A β∈∈.又b ,A αα⊂∈,∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α⊂,这与已知a α⊄相矛盾. ∴a A α=不可能.故a ∥α.方法二、判定定理法【例2】正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 【分析】要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件.【证明】如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且12EF CD =又∵G 为11C D 的中点, ∴ 1D G ∥CD 且112D G CD =∴ EF ∥1D G ,且1EF D G =B C DA 1B 1C 1D 1ANME F图3故四边形1EFD G 为平行四边形.∴ 1D F ∥EG又1D F ⊂平面11BDD B ,且EG ⊄平面11BDD B , ∴ EG ∥平面11BDD B 【评注】根据直线与平面平行的判定定理证明直线和平面平行的关键是在平面内找到 一条直线和已知直线平行,常用到中位线定理 、平行四边形的性质、成比例线段、平行转移法、投影法等.具体应用时,应根据题目条件而定.方法三、运用面面平行的性质定理【例3】在正方体1111ABCD A B C D -中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证:MN ∥平面11AA BB .【分析】若过MN 能作一个平面与平面11AA BB 平行,则由面面平行的性质定理,可得MN 与平面11AA BB 平行.【证明】如图3,作MP ∥1BB ,交BC 与点P,联结NP . ∵ MP ∥1BB ,∴1CM CPMB PB=. ∵1BD B C =,DN CM =,∴1B M BN =, ∵1CM DN MB NB =,∴DN CPNB PB= ∴NP ∥CD ∥AB , ∴面MNP ∥面11AA BB . ∴MN ∥平面11AA BB【评注】本题借助于成比例线段,证明一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,得到这两个平面平行,进而得到线面平行,很好地体现了线面、线线、面面平行关系之间的转化思想.。
立体几何证明方法——证线面平行
如图,在正方体 ABCD-A1B1C1D1 中, 点 M、N 在分别是 BC1、B1D1 的中点。 求证:MN//平面 AA1B1B
D1
A1
面面平行 则线面平行
D A
N
C1 G
B1
M C
B
.
7
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
关键:构造三角形平面 D1 A1 四边形平面
面面平行
D
A
构造三角形平面 .
N
C1
B1
M C
B
5
方法演练二:
如图,在正方体 ABCD-A1B1C1D1 中,
点 M、N 在分别是 BC1、B1D1 的中点。
求证:MN//平面 AA1B1B
D1
构造平行
A1
G
四边形平面
D
A
N
C1
B1
HM C
B
.
6
方法演练二:
a
的一条平行于一个平面,
b
那么另一条直线也平行于这个平面。
a // b
推理过程: a //
b //
b
.
3
方法演练一:
如图,在三棱锥 S ABC 中,
E,F 分别是侧棱 SA,SB 的中点。
求证: EF // 平面ABC .
S
E A
F C
关键点:找三角形平面 B
.
4
方法演练二:
如图,在正方体 ABCD-A1B1C1D1 中, 点 M、N 在分别是 BC1、B1D1 的中点。 求证:MN//平面 AA1B1B
二如何证明直线与平面平行:
方法一:线线平行,则线面平行。
立体几何线面面面平行的证明
立体几何线面面面平行的证明线面、面面平行是立体几何中重要的概念,在几何证明中经常会遇到。
下面将分别介绍线面平行和面面平行的证明。
一、线面平行的证明:线面平行是指一条直线与其中一平面上的其他线段或射线都平行。
下面给出线面平行的证明。
设直线l与平面α相交于点A,我们要证明直线l与平面上任意一条线段或射线都平行。
设平面上有一条线段BC,先证明直线l与线段BC平行。
假设直线l与线段BC的其中一点D相交,连接线段AD和CD。
现在需要证明线段AD与线段BC平行。
根据平面几何的基本知识,在平面上,如果三个点在同一条直线上,那么该直线上的任意两点连线也位于平面上。
故点A、D、C三点在同一条直线上,那么线段AD也位于平面α上。
又因为直线l与线段BC和AD的交点分别为D和A,根据定理“若两条直线平行,则与这两条直线分别相交的两个平行线交点连线也平行”。
所以,直线l与线段AD平行。
同理,可以证明直线l与线段CD平行。
综上所述,直线l与线段BC平行。
接下来证明直线l与平面上的任意一条射线EF平行。
同样以与射线EF有相交点E的直线l为基准,连接射线BE和EF。
然后使用相同的证明方法,即证明射线BE与EF平行。
通过以上证明,我们可以得出结论:直线l与平面α上的任意一条线段或射线都平行。
即证明了线面平行。
二、面面平行的证明:面面平行是指两个平面平行,这在立体几何中也有重要应用。
下面给出面面平行的证明。
设平面α与平面β相交于一条直线l,我们要证明平面α与平面β上的任意一条线段或射线都平行。
以直线l为基准,设平面α上有一条线段AB,我们需要证明线段AB 与平面β平行。
作直线AB的平行线于平面β相交于点C。
现在需要证明直线BC与线段AB平行。
根据平面几何的基本知识,若两条直线平行,那么有一个点在一条直线上,则另一条直线上的点的连线也在同一平面上。
因此点C在平面β上,那么连接线段BC位于平面β上。
又因为平面α与平面β分别与直线AB和BC相交于A和C两点,根据定理“若两个平面分别与一条直线相交,那么它们的交线上的任意两点连线也在这两个平面的交线上”。
立体几何线面面面平行的证明
立体几何线面面面平行的证明要证明两个面是平行的,首先要明确面的定义。
在几何学中,面是一个二维的几何概念,它由至少三个非共线的点所确定。
这三个点可以通过线段相连,并且所构成的平面是无限延伸的。
一个典型的例子是平面镜子的表面,它可以反射光线。
现在,我们假设有两个面α和β。
要证明这两个面是平行的,需要证明它们的法线向量是平行的。
法线向量是垂直于面的向量,它指向面的外部。
如果两个面的法线向量平行,那么这两个面就是平行的。
我们先来介绍一些与线面相交相关的概念。
1.线面交点:线与面的交点是线的一部分在面上的投影,我们用P表示线的交点。
2.线面距离:线与面的距离是从线上一点到面的垂直距离,我们用d 表示线与面的距离。
3.线面垂足:线与面的垂足是从线上一点到面的垂直线与面的交点,我们用H表示线面的垂足。
现在,我们来证明线面的性质。
1.性质1:直线与平行的平面不相交。
证明:设平面α和β平行且有交点P。
由于α和β平行,所以可以在平面α上找到一条直线和线段以及线面相交所需的点H(线段PH与线段PA平行于面β)。
然而,平面β与线段PH垂直,因此线段相交于点H,与α平行。
根据定义,线面的交点是线的一部分在面上的投影,并且直线和平行的平面不相交,矛盾。
2.性质2:线面垂直的直线是线在面上的最短路径。
证明:设直线L和平面α相交于点P,PL是直线L上的线段,L上的其他点Q到α的距离大于P到α的距离。
我们可以在平面α上找到一点H,使得PH与线段PL垂直。
连接PH,并延长PH到与α的交点为K。
根据定义,线面距离是从线上一点到面的垂直距离,因此PK是从L到α的最短路径,与已知矛盾。
现在,我们来证明两个面是平行的。
设α和β是两个面,它们分别由点A、B、C和D、E、F确定。
我们要证明α和β是平行的,需要证明它们的法线向量平行。
首先,我们可以找到一条直线L,通过点A且与α和β都不平行。
连接线段AD和线段AF,并找到线段AD和α的垂直线段AH。
立体几何证明方法——证面面平行
立体几何证明方法——证面面平行立体几何中,证明面面平行是一个常见的问题,可以通过多种方法进行证明。
下面将介绍几种常用的证明方法。
1.使用直线面法相交性质证明:设空间中有两个平面ABCD和EFGH,要证明这两个平面平行。
首先,选择平面ABCD上的两条相交直线AE和BF,然后分别在这两条直线上选择两个点C和D。
根据直线面法相交性质,直线AE与平面ABCD相交于点E,直线AE与平面CDH相交于点C,同理,直线BF与平面ABCD相交于点F,直线BF与平面CDH相交于点D。
连接线段AD和BC,可以得到四边形ABCD。
然后,考察四边形ABCD,如果四边形ABCD是平行四边形,则线段AD与线段BC互相平行。
由直线平行与面平行的性质可知,平面ABCD与平面EFHG平行。
因此,我们只需要证明四边形ABCD为平行四边形即可。
接下来,通过证明线段AD与线段BC互相平行来证明四边形ABCD为平行四边形。
可采用向量法、等距向量法等方法进行证明,具体方法根据题目要求来选择。
2.使用距离法证明:设空间中有两个平面ABCD和EFGH,要证明这两个平面平行。
首先,在平面ABCD上选择一点P,在平面EFGH上选择一点Q。
然后,构造线段PQ,并将其延长,过点P和Q分别作平行于平面ABCD和EFGH的直线。
两条直线与平面ABCD和EFGH的交点分别为A、B和E、F。
由于点P、Q到平面ABCD的距离相等,点A、B到平面EFGH的距离相等,利用距离的定义可以推出直线AE与直线BF互相平行。
同理可以证明直线BE与直线AF互相平行。
因此,根据平行四边形的性质可知线段AD与线段BC平行。
由于线段AD与线段BC平行,所以平面ABCD与平面EFGH平行。
3.使用垂线法证明:设空间中有两个平面ABCD和EFGH,要证明这两个平面平行。
首先,选择平面ABCD上的两条垂线,可以是两个相交直线的垂线或两个平行直线的垂线。
然后,在平面EFGH中分别找到与这两条垂线相交的直线段,并将其延长。
立体几何中的平行性的证明.
立体几何中的平行性的证明
一、证明两直线平行的方法:
1、定义法:同一平面内无公共点的两条直线(用反证法证明)。
2、判定定理:如果一条直线与一个平面平行,则经过这条直线的平面与这个平
面相交,直线与交线平行。
3、平行与同一直线的两条直线平行。
4、面面平行的性质定理:如果两个平行平面同时和第三个平面相交,则交线平
行。
5、向量法:如果两个直线的方向向量共线,则两直线平行。
6、垂直于同一平面的两直线平行。
二、证明直线和平面平行的方法:
1、定义法:证明直线与平面无公共点(反证法)。
2、判定定理:如果平面外的一条直线和平面内的一条直线平行,则直线和平面
平行。
3、面面平行的性质:如果两个平面平行,那么一个平面内的任何一条直线都平
行于另一个平面。
4、如果平面外的一条直线和平面的一条垂线垂直,那么这条直线和这个平面平
行。
5、如果平面外的一条直线和这个平面都垂直于同一个平面,那么这条直线和这
个平面平行。
三、证明平面与平面平行的方法:
1、定义法:证明两个平面没有公共点(反证法)。
2、判定定理:如果一个平面内的两条相交直线分别和另一个平面平行,那么这
两个平面相互平行。
3、推论:如果一个平面内的两条相交直线分别和另一个平面内的两条直线(相
交)平行,那么这两个平面相互平行。
4、垂直于同一直线的两个平面相互平行。
5、如果两个平面的法向量平行,那么这两个平面平行。
6、。
立体几何线面平行的判定
立体几何线面平行的判定
在立体几何中,线面平行的判定可以通过多种方法来进行。
首先,我们可以使用平行线的性质来判定线面的平行关系。
如果一条
直线与一个平面内的另一条直线平行,那么这两条直线与该平面平行。
这是因为平行线与同一平面的相交直线之间的对应角相等。
这
个性质可以帮助我们判定线面的平行关系。
另外,我们也可以利用垂直平分线的性质来判定线面的平行关系。
如果一条直线垂直于一个平面,并且平面内的另一条直线与这
条直线垂直,则这两条直线与该平面平行。
这是因为垂直平分线的
性质保证了这种平行关系成立。
此外,我们还可以利用平行四边形的性质来判定线面的平行关系。
如果一个四边形是平行四边形,那么它的对边是平行的。
因此,如果我们能够构造出一个平行四边形,就可以通过其性质来判定线
面的平行关系。
总之,线面平行的判定可以通过平行线的性质、垂直平分线的
性质以及平行四边形的性质来进行。
这些方法可以帮助我们在立体
几何中判定线面的平行关系,从而解决相关的几何问题。
立体几何---线面平行
直线、平面平行的判定【要点梳理】要点一、直线和平面平行的判定文字语言:直线和平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.简记为:线线平行,则线面平行.符号语言:a a a、b u a,a//b n a//a.要点诠释:(1)用该定理判断直线a与平面a平行时,必须具备三个条件:①直线a在平面a外,即a a a;②直线b在平面a内,即b u a;③直线a,b平行,即a〃b.这三个条件缺一不可,缺少其中任何一个,结论就不一定成立.(2)定理的作用将直线和平面平行的判定转化为直线与直线平行的判定,也就是说,要证明一条直线和一个平面平行,只要在平面内找一条直线与已知直线平行即可.要点二、两平面平行的判定文字语言:如果一个平面内有两条相交直线与另一个平面平行,则这两个平面平行.图形语言:j n符号语言:若au a、b u a,ab=A,且a//p、b//p,则a//p.要点诠释:(1)定理中平行于同一个平面的两条直线必须是相交的.(2)定理充分体现了等价转化的思想,即把面面平行转化为线面平行,可概述为:线面平行n面面平行.要点三、判定平面与平面平行的常用方法1.利用定义:证明两个平面没有公共点,有时直接证明非常困难,往往采用反证法.2.利用判定定理:要证明两个平面平行,只需在其中一个平面内找两条相交直线,分别证明它们平行于另一个平面,于是这两个平面平行,或在一个平面内找到两条相交的直线分别与另一个平面内两条相交的直线平行.3.平面平行的传递性:即若两个平面都平行于第三个平面,则这两个平面互相平行.【典型例题】类型一、直线与平面平行的判定例1.已知AB,BC,CD是不在同一平面内的三条线段,E,F,G分别是AB,BC,CD的中点,求证:AC//平面EFG,BD//平面EFG.例2.已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一个平面内,P、Q分别为对角线AE、BD上的点,且AP=DQ,如右图.求证:PQ〃平面CBE.【变式1】在正方体ABCD—ABCD中,O是正方形ABCD的中心,求证:AO//面BCD.11111111111【变式2】已知P是平行四边形ABCD所在平面外一点,E、F分别为AB、PD的中点,求证:AF〃平面PEC.【变式3】如右图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA,平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.(1)证明:EF〃平面PAD;(2)求三棱锥E-ABC的体积V.类型二、平面与平面平行的判定例3.如右图,已知正方体ABCD—A1B1C1D1,求证:平面AB1D1〃平面BDC1.例4.如右图,正方体ABCD—A1B1C1D1中,M、N、E、F分别是棱A1B1、A1D1、B1C1、C1D1的中点.求证:平面AMN〃平面EFDB.【变式1】点P是^ABC所在平面外一点,G,G,G分别是△PBC,△APC,△ABP的重心,求123证:面GGG//面ABC.123【变式2】如右图所示,在三棱柱ABC—A1B1c l中,点D,E分别是BC与B1C1的中点.求证:平面A1EB〃平面ADC1.【变式3】已知在正方体ABCD—A'B'C'D'中,M,N分别是A'D',A'B'的中点,在该正方体中作出过顶点且与平面AMN平行的平面,并证明你的结论.【巩固练习】1.下列说法中正确的是()A.如果一个平面内有一条直线和另一个平面平行,那么这两个平面平行B.如果一个平面内有无数条直线和另一个平面平行,那么这两个平面平行C.如果一个平面内的任何一条直线都与另一个平面平行,那么这两个平面平行D.如果两个平面平行于同一直线,则这两个平面平行2.已知三条互相平行的直线a、b、c中,a u a,b,c u a,则平面a、p的位置关系是()A.平行B.相交C.平行或相交D.重合3.已知m,n是两条不重合的直线,a、p是两个不重合的平面,给出下列三个命题:「m//p[m与n异面「m//n①\n m//n:②\n n与p相交;③\n m//a。
立体几何篇(线面平行、面面平行,线面垂直、面面垂直)
点线面的位置关系一(线面平行和面面平行)线面平行:1、判定定理:(1)平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行(线线平行,则线面平行);方法:平行四边形法则+中位线法则(2)直线所在的一个平面与此平面平行,则该直线与此平面平行(面面平行,则线面平行);2、性质定理一条直线与一个平面平行,则过这条直线的任一平面和此平面的交线与该直线平行(线面平行,则线线平行);面面平行:1、判定定理:一个平面内的两条相交直线都与另一个平面平行,则这两个平面平行(线面平行,则面面平行);2、性质定理(1)两个平面平行,其中一个平面内的任何一条直线都与另一个平面平行;(2)两个平面平行,同时与第三个平面相交,则交线平行。
例题选讲:1、如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,∠BCF=∠CEF=90°(1)求证:AE∥平面DCF;3、(全国卷)如图,直三棱柱111C B A ABC 中,E D ,分别是1,BB AB 的中点。
(1)证明:1BC //平面CD A 13.如图,在侧棱垂直底面的四棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点.(1)证明:①EF ∥A 1D 1;线面垂直:3、判定定理:(3)一条直线与一个平面内的两条直交直线垂直,则这条直线垂直于这个面(线线垂直,则线面垂直);(4)两平面垂直,在其中一个平面内,垂直于交线的直线,则垂直于另一个平面(面面垂直,则线面垂直);方法:主动垂直+被动垂直4、性质定理(1)直线垂直于平面,则垂直于平面内的任意一条直线;(2)垂直于同一平面的两条直线平行;面面垂直:4、判定定理:如果一个平面过另一个平面的垂线,则这两个平面垂直(线面垂直,则面面垂直);5、性质定理若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。
例题选讲:1、如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥平面ABCD,P A⊥AD.E 和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.2、(全国卷)如图,三棱柱111C B A ABC -中,侧棱垂直底面ο90=∠ACB ,121AA BC AC ==,D 是侧棱1AA 的中点。
立体几何9-4线面、面面平行的判定与性质
则另一条也垂直于这个平面,故选B. 答案:B
15
[例2] (文)在四面体ABCD中,CB=CD, AD⊥BD,且E,F分别是AB,BD的中 点.求证:
为线段CE的中点,所以PN綊12DC.
19
又四边形ABCD是矩形,点M为线段AB的中点,
所以AM綊12DC.所以PN綊AM.
故四边形AMNP是平行四边形.所以 MN∥AP,
而AP⊂平面DAE,MN⊄平面DAE,所以 MN∥DAE.
证法二:取BE中点G,连结GM、GN,
∵GN∥BC,BC∥DA,∴GN∥DA,又
(1)直线EF∥平面ACD; (2)平面EFC⊥平面BCD.
16
解析:(1)在△ABD中,因为E、F分别是AB、 BD的中点,所以EF∥AD.
又AD⊂平面ACD,EF⊄平面ACD, 所以直线EF∥平面ACD. (2)在△ABD中,因为AD⊥BD,EF∥AD,
所以EF⊥BD. 在△BCD中,因为CD=CB,F为BD的中点,
的中点,求证:MN∥平面DAE.
18
证明:(1)因为BC⊥平面ABE,AE⊂平面 ABE,
所以AE⊥BC. 又BF⊥平面ACE,AE⊂平面ACE, 所以AE⊥BF. 又BF∩BC=B, 所以AE⊥平面BCE. 又(2B)证E⊂法平一:面取BDCEE的,中所点P以,A连E结⊥PAB,EP.N,因为点N
1
2
重点难点 重点:线面、面面平行的判定定理与性质定
理及应用 难点:定理的灵活运用
3
知识归纳
一、直线与平面平行
立体几何线面平行证明
立体几何线面平行证明立体几何是数学中的一个重要分支,研究的是空间中点、线、面的相互关系和性质。
在立体几何中,平行是一个基本的概念,它描述了两个或多个线或面在空间中不相交且始终保持相同的间距。
本文将从线面平行的定义、性质和应用等方面进行阐述,以展示立体几何中线面平行的证明方法。
一、线面平行的定义在立体几何中,我们常常会遇到线和面的关系。
当一个线和一个面的方向相同,并且线上的任意一点到面的距离保持不变时,我们称这个线和面是平行的。
具体来说,设有一条直线l和一个平面P,如果直线l上的任意一点到平面P的距离d保持不变,那么我们就说直线l和平面P是平行的。
二、线面平行的性质线面平行具有以下性质:1. 平行线和同一平面内的直线没有交点;2. 平行线和同一平面内的直线的距离是恒定的;3. 平行线在同一平面内的投影线也是平行的;4. 平行线和平行面之间的角度为零。
三、线面平行的证明方法证明线面平行的方法有多种,下面列举几种常用的证明方法:1. 利用垂直关系证明:若直线和平面是平行的,那么直线上的任意一条垂线和平面垂直。
2. 利用距离关系证明:若直线和平面是平行的,那么直线上的任意一点到平面的距离是恒定的。
3. 利用投影关系证明:若直线和平面是平行的,那么直线在平面上的投影线也是平行的。
四、线面平行的应用线面平行在实际生活和科学研究中有着广泛的应用,下面列举几个常见的应用场景:1. 建筑工程:在建筑设计中,我们常常需要考虑墙壁和地面的平行关系,以保证建筑的稳定和美观。
2. 几何光学:在光学中,光线和镜面的关系是平行的,这是实现反射现象和成像的基础。
3. 地理测量:在地理测量中,为了计算地球上两点之间的距离,我们需要考虑经线和纬线的平行关系。
4. 电磁学:在电磁学中,电场线和等势面的关系是平行的,这是电场分布和电势分布的重要性质。
线面平行是立体几何中一个重要的概念。
通过定义、性质、证明方法和应用等方面的介绍,我们可以更深入地理解和应用线面平行的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q D
C
B A
P
C 1
B 1
A 1D 1
D
C
B
A D
A 1
C 1
C
B 1
B
理科数学复习专题 立体几何
线面平行与面面平行专题复习
【题型总结】
题型一 小题:判断正误
1. a 、b 、c 是直线,,,αβγ是平面,下列命题正确的是_____________
α
αβ
βααβαβαγαγββααα////a ,//a //a //,//a ////a ,//a ////,////a //,//a //a //,//a b b b b c c b b 则⑥则⑤则④则③则②则①
归纳:_______________________________________ 题型二 线面平行的判定
1、如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,E 、F 分别是PB,PC的中点,求证:EF
归纳: 3、在正方体中,E,F分别为C1D1和BC 的中点,
求证:
FE
1111111//.
ABCD A B C D AB D C BC -在正方体中,求证:平面平面11111111111,,:(1)//;(2)//.
ABC A B C D AC BC AB D D AC B DA BC D -2、如图已知正三棱柱中,点为的中点求证平面为的中点,求证:平面平面111ABC A B C -AB AC =,,M N P 11,,BC CC BB 1//A N AMP
【综合练习】 一、选择题
1、直线和平面平行是指该直线与平面内的( )
(A)一条直线不相交 (B)两条直线不相交 (C)无数条直线不相交(D)任意一条直线都不相交 2、已知a b ||,αα⊂,则必有( )
()||(),A a b B a b 异面 (),C a b 相交 (),D a b 平行或异面
3、若直线a,b 都与平面?平行,则a 和b 的位置关系是( ) (A)平行 (B)相交 (C)异面 (D)平行或相交或是异面直线
4.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ?α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的 ( )
A .①④
B .①⑤
C .②⑤
D .③⑤
5.下列命题正确的是 ( ) A 一直线与平面平行,则它与平面内任一直线平行
B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行
C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行
D 一直线与平面平行,则平面内任意直线都与已知直线异面 6. 以下命题(其中a ,b 表示直线,?表示平面)
①若a ∥b ,b ??,则a ∥? ②若a ∥?,b ∥?,则a ∥b ③若a ∥b ,b ∥?,则a ∥? ④若a ∥?,b ??,则a ∥b 其中正确命题的个数是 ( ) 个 个 个 个
二、解答题
1.如图,E D ,分别是正三棱柱111ABC A B C -的棱1AA 、11B C 的中点,
求证:1//A E 平面1BDC ;
2、如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=1,点E 是PC 的中点,作EF PB 交PB 于点
F.求证:PA∥平面EBD;
3、在正方体ABCD—A1B1C1D1中,O为面ABCD的中心,P,
Q分别为DD1和CC1的中点,证明:
面PAO//面BQD1
4、如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,AB=AC=1,∠BAC=90°,点D是棱B1C1的中点.
求证:AB1∥平面A1DC;。