模式识别简答题 杭电模式识别
模式识别试题答案
模 式 识 别 非 学 位 课 考 试 试 题 考试科目: 模式识别 考试时间考生姓名: 考生学号 任课教师 考试成绩一、简答题(每题6分,12题共72分):1、 监督学习和非监督学习有什么区别?参考答案:当训练样本的类别信息已知时进行的分类器训练称为监督学习,或者由教师示范的学习;否则称为非监督学习或者无教师监督的学习。
2、 你如何理解特征空间?表示样本有哪些常见方法?参考答案:由利用某些特征描述的所有样本组成的集合称为特征空间或者样本空间,特征空间的维数是描述样本的特征数量。
描述样本的常见方法:矢量、矩阵、列表等。
3、 什么是分类器?有哪些常见的分类器?参考答案:将特征空中的样本以某种方式区分开来的算法、结构等。
例如:贝叶斯分类器、神经网络等。
4、 进行模式识别在选择特征时应该注意哪些问题?参考答案:特征要能反映样本的本质;特征不能太少,也不能太多;要注意量纲。
5、 聚类分析中,有哪些常见的表示样本相似性的方法?参考答案:距离测度、相似测度和匹配测度。
距离测度例如欧氏距离、绝对值距离、明氏距离、马氏距离等。
相似测度有角度相似系数、相关系数、指数相似系数等。
6、 你怎么理解聚类准则?参考答案:包括类内聚类准则、类间距离准则、类内类间距离准则、模式与类核的距离的准则函数等。
准则函数就是衡量聚类效果的一种准则,当这种准则满足一定要求时,就可以说聚类达到了预期目的。
不同的准则函数会有不同的聚类结果。
7、 一种类的定义是:集合S 中的元素x i 和x j 间的距离d ij 满足下面公式:∑∑∈∈≤-S x S x ij i j h d k k )1(1,d ij r ,其中k 是S 中元素的个数,称S 对于阈值h ,r 组成一类。
请说明,该定义适合于解决哪一种样本分布的聚类?参考答案:即类内所有个体之间的平均距离小于h ,单个距离最大不超过r ,显然该定义适合团簇集中分布的样本类别。
8、 贝叶斯决策理论中,参数估计和非参数估计有什么区别?参考答案:参数估计就是已知样本分布的概型,通过训练样本确定概型中的一些参数;非参数估计就是未知样本分布概型,利用Parzen 窗等方法确定样本的概率密度分布规律。
模式识别习题2017杭电模式识别
《模式识别》课后习题注:章和习题编号与《模式识别》(第二版,清华大学出版社)一致,请按内容与其它教材对应,另有部分补充题目单独编号。
第二章 贝叶斯决策理论习题作业2.3 证明:在两类情况下12()()1P x P x ωω+= 2.4 分别写出在以下两种情况 (1)(2)下的最小错误率贝叶斯决策规则。
2.9 写出两类和多类情况下最小风险贝叶斯决策判别函数和决策方程。
2.20 对的特殊情况,证明(1) 若,则超平面靠近先验概率较小的类;(2) 在什么情况下,先验概率对超平面的位置影响不大。
2.24 二维正态分布,写出负对数似然比决策规则。
第三章 概率密度函数的估计3.1设总体分布密度为N (μ,1 ),-∞< μ < +∞,并设 R ={x 1,x 2,…,x N } ,分别用最大似然估计和贝叶斯估计计算求 , 已知μ的先验分布p(μ)~ N (0,1 )。
(3-2)试分析用Parzen 窗法估计的类概率密度函数,窗口尺寸h 过大或过小可能产生的影响,比较Kn 近邻估计较之于Parzen 窗法的优势。
12()()p x p x ωω=12()()P P ωω=2iI σ∑=()()i j P P ωω≠1212111122(1,0) (1,0) 111122T Tμμ⎡⎤⎡⎤-⎢⎥⎢⎥=-=∑=∑=⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦,,,12()()P P ωω=ˆμ第四章 线性判别函数4.4 对于二维线性判别函数12g()22x x x =+- (1)将判别函数写成0()T g x w x w =+的形式,并画出()0g x =的几何图形。
(2)映射成广义七次线性函数()Tg x a y =;(3)指出上述X 空间实际是Y 空间的一个子空间,且0Ta y =对于X 子空间的划分和原空间中00Tw w +=对原空间的划分相同,并在图上表示出来。
(4-2)两类样本点用感知器算法设计分类器。
模式识别试题及总结
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
模式识别考试题答案
模式识别考试题答案题1:设有如下三类模式样本集ω1,ω2和ω3,其先验概率相等,求Sw 和Sb ω1:{(1 0)T, (2 0) T, (1 1) T} ω2:{(-1 0)T, (0 1) T, (-1 1) T}ω3:{(-1 -1)T, (0 -1) T, (0 -2) T}解:由于本题中有三类模式,因此我们利用下面的公式:b S =向量类模式分布总体的均值为C ,))()((00031m m m m m P t i i i i --∑=ω,即:i31i i0m )p(E{x }m ∑===ωi m 为第i 类样本样本均值⎪⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛=--=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--=⎪⎪⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡---++-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡++-+-=⎪⎪⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡++++=∑=81628113811381628112181448144811681498149814981498116814481448112131911949119497979797949119491131)m m )(m m ()(P S 919134323131323431m 343121100131m 323211010131m ;313410012131m t0i 0i 31i i b10321ω;333t(i)(i)k k w i i i i i i i i 1i 11111S P()E{(x-m )(x-m )/}C [(x m )(x m )33361211999271612399279Tk ωω====•==--⎡⎤⎡⎤--⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑题2:设有如下两类样本集,其出现的概率相等: ω1:{(0 0 0)T , (1 0 0) T , (1 0 1) T , (1 1 0) T}ω2:{(0 0 1)T , (0 1 0) T , (0 1 1) T , (1 1 1) T}用K-L 变换,分别把特征空间维数降到二维和一维,并画出样本在该空间中的位置。
大学模式识别考试题及标准答案详解
大学模式识别考试题及答案详解————————————————————————————————作者:————————————————————————————————日期:一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
模式识别总复习题
总复习题1 简答题1、什么是模式与模式识别?2、一个典型的模式识别系统主要由哪几个部分组成?3、什么是后验概率?4、确定线性分类器的主要步骤?5、样本集推断总体概率分布的方法?6、近邻法的基本思想是什么?7、什么是K近邻法?1 简答题8、监督学习与非监督学习的区别?9、什么是误差平方和准则?10、分级聚类算法的2种基本途径是什么?11、特征抽取与特征选择的区别?12、什么是最优搜索算法?13、统计学习理论的核心问题?14、什么是支持向量机?2 问答题1、描述贝叶斯公式及其主要作用。
2、利用最大似然估计方法对单变量正态分布函数来估计其均值μ和方差σ2。
3 、请详细写出感知器训练算法步骤。
4 、请详细写出Fisher 算法实现步骤。
5 、什么是两分剪辑近邻法与压缩近邻法。
2 问答题6、请详细介绍初始聚类中心的选择方法。
7、请描述K均值聚类算法。
8、什么是离散K-L变换以及离散有限K-L展开。
9、必考:针对某个识别对象设计自己的模式识别系统,并叙述各步骤主要工作。
3 计算题1、在图像识别中,假定有灌木和坦克2种类型,它们的先验概率分别是0.7和0.3,损失函数如下表所示。
其中,类型w1和w2分别表示灌木和坦克,判决a1=w1,a2=w2。
现在做了2次实验,获得2个样本的类概率密度如下:3 计算题2、已知两类的训练样本:w1(0,0)T,(0,2)T;w2(2,0)T,(2,2)T,试用H-K 算法进行分类器训练,求解向量w*。
3、已知欧氏二维空间中两类9 个训练样本w1:(-1,0)T,(-2,0)T,(-2,1)T,(-2,-1)Tw2:(1,1)T,(2,0)T,(1,-1)T,(2,1)T,(2,2)T试分别用最近邻法和K 近邻法求测试样本(0,0)T的分类,取K=5,7。
3 计算题4、已知两类的数据:w1:(1,0),(2,0),(1,1)W2:(-1,0),(0,1),(-1,1)试求该组数据的类内与类间散布矩阵。
2010期末试题 杭电模式识别
2.3 两类情况下: 11121()()()()()j j j p x P P x p x P ωωωωω==∑,22221()()()()()j j j p x P P x p x P ωωωωω==∑则 1122122211()()()()()()1()()()()j j j j j j p x P p x P P x P x p x P p x P ωωωωωωωωωω==+=+=∑∑3.1总体分布为N(μ,1),即均值μ未知,此时θ=μ,总体分布形式为21/211(|)exp ()2(2)p x x θθπ⎡⎤=--⎢⎥⎣⎦,211ln (|)ln(2)()22p x x θπθ=-- (1)最大似然估计1()ln ()ln (|)ln (|)Nk k H l p p x θθχθθ====∑,由11ln (|)()()0N Nk k k k d p x dH x d d θθθθθ====-=∑∑,可得 11ˆNk k x N μθ===∑ (2)贝叶斯估计似然函数 1(|)(|)Nk k p p x χθθ==∏,则1(|)()(|)(|)()(|)()Nk k p p p p x p p p d χθθθχαθθχθθθ===∏⎰,其中 1(|)()p p d αχθθθ=⎰由21/211(|)exp ()2(2)k k p x x θθπ⎡⎤=--⎢⎥⎣⎦,21/211()exp()2(2)p θθπ=- 221/21/21'22'22111"211111(|)exp ()exp()22(2)(2)11 exp ()exp (1)2221 exp (1)22Nk k N N Nk k k k k k Nk k p x x N x x N x θχαθθππαθθαθθαθθ=====⎡⎤=--⋅-⎢⎥⎣⎦⎧⎫⎧⎫⎡⎤⎡⎤=--+=-+-+⎨⎬⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎩⎭⎧⎫⎡⎤=-+-⎨⎬⎢⎥⎣⎦⎩∏∑∑∑∑⎭式中与θ无关的项都全部吸收到α’和α”中,这样与写成N (μN ,σN )的正态密度函数比较,应用待定系数法,可求得22111N NN k k N N Xσμσ=⎧=+⎪⎪⎨⎪=⎪⎩∑,即211 11N kk N N X N N σμ===++∑, 根据定理3.1,21/211ˆ(|)exp ()2(2)N N N N p d d θμθθθχθθθμσπσ⎡⎤-==-=⎢⎥⎣⎦⎰⎰即 11ˆˆ1NNk k X N μθμ====+∑4.4 (1) []102()122T x g x w x w x ⎡⎤=+=-⎢⎥⎣⎦(2) 齐次线性判别函数:[]121()212T x g x a y x ⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦4.15最小平方误差准则中建立的线性方程组为Ya b =,对MSE 准则函数计算梯度并令为0可得 T T Y Ya Y b =可以写为分块矩阵形式 1101211121222122*********T T TT TT TTN N w X w N X X X X X N ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤--⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦其中1i 是N i 个1的列向量,X i 是一个N i x d 矩阵。
模式识别习题及答案
模式识别习题及答案模式识别习题及答案模式识别是人类智能的重要组成部分,也是机器学习和人工智能领域的核心内容。
通过模式识别,我们可以从大量的数据中发现规律和趋势,进而做出预测和判断。
本文将介绍一些模式识别的习题,并给出相应的答案,帮助读者更好地理解和应用模式识别。
习题一:给定一组数字序列,如何判断其中的模式?答案:判断数字序列中的模式可以通过观察数字之间的关系和规律来实现。
首先,我们可以计算相邻数字之间的差值或比值,看是否存在一定的规律。
其次,我们可以将数字序列进行分组,观察每组数字之间的关系,看是否存在某种模式。
最后,我们还可以利用统计学方法,如频率分析、自相关分析等,来发现数字序列中的模式。
习题二:如何利用模式识别进行图像分类?答案:图像分类是模式识别的一个重要应用领域。
在图像分类中,我们需要将输入的图像分为不同的类别。
为了实现图像分类,我们可以采用以下步骤:首先,将图像转换为数字表示,如灰度图像或彩色图像的像素矩阵。
然后,利用特征提取算法,提取图像中的关键特征。
接下来,选择合适的分类算法,如支持向量机、神经网络等,训练模型并进行分类。
最后,评估分类结果的准确性和性能。
习题三:如何利用模式识别进行语音识别?答案:语音识别是模式识别在语音信号处理中的应用。
为了实现语音识别,我们可以采用以下步骤:首先,将语音信号进行预处理,包括去除噪声、降低维度等。
然后,利用特征提取算法,提取语音信号中的关键特征,如梅尔频率倒谱系数(MFCC)。
接下来,选择合适的分类算法,如隐马尔可夫模型(HMM)、深度神经网络(DNN)等,训练模型并进行语音识别。
最后,评估识别结果的准确性和性能。
习题四:如何利用模式识别进行时间序列预测?答案:时间序列预测是模式识别在时间序列分析中的应用。
为了实现时间序列预测,我们可以采用以下步骤:首先,对时间序列进行平稳性检验,确保序列的均值和方差不随时间变化。
然后,利用滑动窗口或滚动平均等方法,将时间序列划分为训练集和测试集。
模式识别试题答案最终版【范本模板】
模式识别非学位课考试试题考试科目:模式识别考试时间考生姓名: 考生学号任课教师考试成绩一、简答题(每题6分,12题共72分):1、监督学习和非监督学习有什么区别?参考答案:监督学习与非监督学习的区别:监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的.非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等.2、你如何理解特征空间?表示样本有哪些常见方法?参考答案:由利用某些特征描述的所有样本组成的集合称为特征空间或者样本空间,特征空间的维数是描述样本的特征数量。
描述样本的常见方法:矢量、矩阵、列表等。
3、什么是分类器?有哪些常见的分类器?参考答案:将特征空中的样本以某种方式区分开来的算法、结构等。
例如:贝叶斯分类器、神经网络等。
4、进行模式识别在选择特征时应该注意哪些问题?参考答案:特征要能反映样本的本质;特征不能太少,也不能太多;要注意量纲。
5、聚类分析中,有哪些常见的表示样本相似性的方法?参考答案:距离测度、相似测度和匹配测度。
距离测度例如欧氏距离、绝对值距离、明氏距离、马氏距离等。
相似测度有角度相似系数、相关系数、指数相似系数等。
6、SVM的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。
7、请论述模式识别系统的主要组成部分及其设计流程,并简述各组成部分中常用方法的主要思想。
特征空间信息获取:通过测量、采样和量化,可以用矩阵或向量表示二维图像或以为波形。
模式识别复习资料
(4)如果 Z j( k 1 ) Z j( k )j 1 ,2 , ,K ,则回到(2),将模式 样本逐个重新分类,重复迭代计算。
.
15
例2.3:已知20个模式样本如下,试用K-均值算法分类。
X1 0,0T X2 1,0T X3 0,1T X4 1,1T X5 2,1T X6 1,2T X7 2,2T X8 3,2T
x1
20
8 聚类准则函数Jj与K的关系曲线
上述K-均值算法,其类型数目假定已知为K个。当K未知时,
可以令K逐渐增加, 此时J j 会单调减少。最初减小速度快,但当 K 增加到一定数值时,减小速度会减慢,直到K =总样本数N 时,
Jj = 0。Jj-K关系曲线如下图:
Jj
曲线的拐点 A 对应着接近最优
④ 判断:
Zj(2)Zj(1)
j 1,2 ,故返回第②步。 .
17
② 从新的聚类中心得:
X 1: D D12||||X X11ZZ12((22))|||| X1S1(2) ┋
X 20:D D12||||X X2200Z Z12((22))|||| X20S2(2) 有: S 1 ( 2 ) { X 1 ,X 2 , ,X 8 } N 1 8
(2)将最小距离 3 对应的类 G1(0) 和G2 (0) 合并为1类,得 新的分类。
G 1( 1 2 ) G 1 ( 0 )G , 2 ( 0 ) G 3(1)G 3(0) G 4(1 )G 4(0 ) G 5(1)G 5(0) G 6(1 )G 6(0)
计算聚类后的距离矩阵D(1): 由D(0) 递推出D(1) 。
3)计算合并后新类别之间的距离,得D(n+1)。
4)跳至第2步,重复计算及合并。
模式识别考试
简答题1. 什么是模式与模式识别模式识别: 模式识别是研究用计算机来实现人类模式识别能力的一门学科。
模式:模式是一些供模仿用的、完美无缺的标本。
2. 模式识别系统的组成信息获取,预处理,特征提取和选取,分类器设计,分类决策3. 什么是后验概率?系统在某个具体的模式样本X条件下位于某种类型的概率。
、4. 确定线性分类器的主要步骤采集训练样本,构成训练样本集。
样本应该具有典型性确定一个准则J=J(w,x),能反映分类器性能,且存在权值w*使得分类器性能最优设计求解w的最优算法,得到解向量w*5. 样本集推断总体概率分布的方法?参数估计监督参数估计:样本所属类别及类条件总体概率密度函数的形式已知,某些参数未知非监督参数估计:已知总体概率密度函数形式但未知样本类别,要推断某些参数非参数估计:已知样本类别,未知总体概率密度函数形式,要求直接推断概率密度函数本身6. 近邻法的主要思想作为一种分段线性判别函数的极端情况,将各类中全部样本都作为代表点,这样的决策方法就是近邻法的基本思想。
7. 什么是K近邻法?他是最近邻法的推广,取未知样本x的k个近邻,看这k个近邻中多数属于哪一类,就把x归为哪一类。
8.监督学习和非监督学习的区别监督学习的用途明确,就是对样本进行分类。
训练样本集给出不同类别的实例,从这些实例中找出区分不同类样本的方法,划定决策面非监督学习的用途更广泛,用来分析数据的内在规律,如聚类分析,主分量分析,数据拟合等等9. 什么是误差平法和准则对于一个给定的聚类,均值向量是最能代表聚类中所有样本的一个向量,也称其为聚类中心。
一个好的聚类方法应能使集合中的所有向量与这个均值向量的误差的长度平方和最小。
10. 分级聚类算法有两种基本思路聚合法:把所有样本各自看为一类,逐级聚合成一类。
基本思路是根据类间相似性大小逐级聚合,每级只把相似性最大的两类聚合成一类,最终把所有样本聚合为一类。
分解法:把所有样本看做一类,逐级分解为每个样本一类。
2018-模式识别期末试卷-精选word文档 (20页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==模式识别期末试卷篇一:【模式识别】期末考试试卷02《模式识别》期末考试试题(A)一、填空题(15个空,每空2分,共30分)1.基于机器学习的模式识别系统通常由两个过程组成, 即()和分类判决。
2.统计模式识别把观察对象表达为一个随机向量(即特征向量), 将()表达为由有穷或无穷个具有相似数值特性的模式组成的集合。
3.特征一般有两种表达方法: (1)将特征表达为();(2)将特征表达为基元。
4.特征提取是指采用变换或映射实现由模式测量空间向()的转变。
5.同一类模式类样本的分布比较集中,没有或临界样本很少,这样的模式类称为()。
6.加权空间的所有()都通过坐标原点。
7.线性多类判别:若每两个模式类间可用判别平面分开,在这种情况下,M类有()个判别函数,存在有不确定区域。
8.当取()损失函数时, 最小风险贝叶斯判决准则等价于最大后验概率判决准则。
9.Neyman-Pearson决策的基本思想是()某一错误率,同时追求另一错误率最小。
10.聚类/集群:用事先不知样本的类别,而利用样本的先验知识来构造分类器属于()学习。
11.相似性测度、()和聚类算法称为聚类分析的三要素。
12.K/C均值算法使用的聚类准则函数是()准则,通过反复迭代优化聚类结果,使所有样本到各自所属类别的中心的距离平方和达到最小。
13.根据神经元的不同连接方式,可将神经网络分为分层网络和相互连接型网络两大类。
其中分层网络可细分为前向网络、具有反馈的前向网络和()三种互连方式。
14.神经网络的特性及能力主要取决于()及学习方法。
15.BP神经网络是采用误差反向传播算法的多层前向网络,其中,神经元的传输函数为S型函数,网络的输入和输出是一种()映射关系。
二、简答题(2题,每小题10分,共20分)1.简述有监督分类方法和无监督分类方法的主要区别。
模式识别试题及总结.doc
《模式识别》试卷( A)一、填空与选择填空(本题答案写在此试卷上,30 分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1 二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher 线性判别函数的求解过程是将N 维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A 01, A0A1 ,A1A0 , B BA , B0}, A)(2)({A}, {0, 1}, {A 0, A0A}, A)(3)({S}, {a, b}, {S 00S, S11S, S00, S11},S)(4)({A}, {0, 1}, {A 01, A0A1, A1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有(1、 2);马式距离具有(1、2、3、 4)。
(1)平移不变性( 2)旋转不变性( 3)尺度缩放不变性( 4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
模式识别试题
《模式识别》试题答案(A卷)一、填空与选择填空(本题答案写在此试卷上,30分)1、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
2、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性3、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
)。
4、感知器算法1。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
5、积累势函数法较之于H-K算法的优点是(该方法可用于非线性可分情况(也可用于线性可分情况));位势函数K(x,x k)与积累位势函数K(x)的关系为(∑∈=XxxxKxK~kkk),()(α)。
6、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于(某一种判决错误较另一种判决错误更为重要)情况;最小最大判决准则主要用于(先验概率未知的)情况。
7、“特征个数越多越有利于分类”这种说法正确吗?(错误)。
特征选择的主要目的是(从n个特征中选出最有利于分类的的m个特征(m<n),以降低特征维数)。
一般在(可分性判据对特征个数具有单调性)和( C n m>>n )的条件下,可以使用分支定界法以减少计算量。
8、散度Jij越大,说明ωi类模式与ωj类模式的分布(差别越大);当ωi类模式与ωj类模式的分布相同时,Jij=(0)。
9、已知有限状态自动机Af=(∑,Q,δ,q0,F),∑={0,1};Q={q0,q1};δ:δ(q0,0)= q1,δ(q0,1)= q1,δ(q1,0)=q0,δ(q1,1)=q0;q0=q0;F={q0}。
现有输入字符串:(a) 00011101011,(b) 1100110011,(c) 101100111000,(d)0010011,试问,用Af对上述字符串进行分类的结果为(ω1:{a,d};ω2:{b,c} )。
模式识别简答题
在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。
监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。
非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。
使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。
动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。
协方差矩阵为,则1)对角元素是各分量的方差,非对角元素是各分量之间的协方差。
2)主分量,通过求协方差矩阵的特征值,用得,则,相应的特征向量为:,对应特征向量为,对应。
这两个特征向量即为主分量。
3)K-L变换的最佳准则为:对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截尾误差最小。
4)在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关消除。
1、求数据集的主分量是非监督学习方法;2、汉字识别对待识别字符加上相应类别号——有监督学习方法;3、自组织特征映射——将高维数组按保留近似度向低维映射——非监督学习;4、CT图像分割——按数据自然分布聚类——非监督学习方法;线性分类器三种最优准则:Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。
该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。
感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、监督学习与非监督学习的区别:
监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由
带分类号的数据集组成,因此监督学习方法的训练过程是离线的。
非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的
训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中
获取道路象素与非道路象素集,
进行分类器设计,然后用所设计的分类器对道路图像进行分割。
使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行
聚类运算,以实现道路图像的分割。
2.动态聚类是指对当前聚类通过迭代运算改善聚类;
分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现
合并。
3. 线性分类器三种最优准则:
Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类
器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,
类间尽可能分开。
该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。
感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。
其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工
神经元网络多层感知器的基础。
支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使
两类之间的间隔为最大, 它的基本出发点是使期望泛化风险尽可能小。
4、试问“模式”与“模式类”的含义。
如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?
答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的
代表,概念或典型,而“模式”
则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”
的具体化。
5、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。
答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定
对称矩阵(一般为协方差矩阵)。
根据定义,距某一点的Mahalanobis 距离相等
点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧氏距离。
6、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。
答:监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。
非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。
使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。
7、试述动态聚类与分级聚类这两种方法的原理与不同。
答:动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。
8、如果观察一个时序信号时在离散时刻序列得到的观察量序列表示为,而该时序信号的内在状态序列表示成。
如果计算在给定O条件下出现S的概率,试问此概率是何种概率。
如果从观察序列来估计状态序列的最大似然估计,这与Bayes决策中基于最小错误率的决策有什么关系。
答:在给定观察序列条件下分析它由某个状态序列S产生的概率似后验概率,写成P(S|O),而通过O求对状态序列的最大似然估计,与贝叶斯决策的最小错误率决策相当。
9、试说明以下问题求解是基于监督学习或是非监督学习:
1. 求数据集的主分量
2. 汉字识别
3. 自组织特征映射
4. CT图像的分割
答:1、求数据集的主分量是非监督学习方法;
2、汉字识别对待识别字符加上相应类别号——有监督学习方法;
3、自组织特征映射——将高维数组按保留近似度向低维映射——非监督学习;
4、CT图像分割——按数据自然分布聚类——非监督学习方法;
10、试列举线性分类器中最著名的三种最佳准则以及它们各自的原理。
答:线性分类器三种最优准则:
Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,
类间尽可能分开。
该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。
感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。
其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网络多层感知器的基础。
支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间隔为最大, 它的基本出发点是使期望泛化风险尽可能小。
11、对一副道路图像,希望把道路部分划分出来,可以采用以下两种方法:
1.在该图像中分别在道路部分与非道路部分画出一个窗口,把在这两个窗口中的象素数据作为训练集,用Fisher准则方法求得分类器参数,再用该分类器对整幅图进行分类。
2.将整幅图的每个象素的属性记录在一张数据表中,然后用某种方法将这些数据按它们的自然分布状况划分成两类。
因此每个象素就分别得到相应的类别号,从而实现了道路图像的分割。
试问以上两种方法哪一种是监督学习,哪个是非监督学习?
答:
第一种方法中标记了两类样本的标号,需要人手工干预训练过程,属于监督学习方法;
第二种方法只是依照数据的自然分布,把它们划分成两类,属于非监督学习方法。
12、试分析五种常用决策规则思想方法的异同。
答、五种常用决策是:
1. 基于最小错误率的贝叶斯决策,利用概率论中的贝叶斯公式,得出使得错误率最小
的分类规则。
2. 基于最小风险的贝叶斯决策,引入了损失函数,得出使决策风险最小的分类。
当在
0-1损失函数条件下,基于最小风险的贝叶斯决策变成基于最小错误率的贝叶斯决策。
3. 在限定一类错误率条件下使另一类错误率最小的两类别决策。
4. 最大最小决策:类先验概率未知,考察先验概率变化对错误率的影响,找出使最小
贝叶斯奉献最大的先验概率,以这种最坏情况设计分类器。
5. 序贯分类方法,除了考虑分类造成的损失外,还考虑特征获取造成的代价,先用一
部分特征分类,然后逐步加入性特征以减少分类损失,同时平衡总的损失,以求得最有效益。
13、既然有线性判别函数,为什么还要引进非线性判别函数?试分析由“线性判别函数”向“非线性判别函数”推广的思想和方法。
答:实际中有很多模式识别问题并不是线性可分的,这时就需要采用非线性分类器,比如当两类样本分不具有多峰性质并互相交错时,简单的线性判别函数往往会带来较大的分类错误。
这时,树分类器作为一种分段线性分类器,常常能有效地应用于这种情况。
14、1.什么是特征选择?
答:1. 特征选择就是从一组特征中挑选出一些最有效的特征以达到降低特征空间维数的目的。
2. 什么是Fisher线性判别?
Fisher线性判别:
可以考虑把d维空间的样本投影到一条直线上,形成一维空间,即把维数压缩到一维,这在数学上容易办到,然而,即使样本在d维空间里形成若干紧凑的互相分得开的集群,如果把它们投影到一条任意的直线上,也可能使得几类样本混在一起而变得无法识别。
但是在一般情况下,总可以找到某个方向,使得在这个方向的直线上,样本的投影能分开得最好。
问题是如何根据实际情况找到这条最好的、最易于分类的投影线,这就是Fisher算法所要解决的基本问题。
15、请论述模式识别系统的主要组成部分及其设计流程,并简述各组成部分中常用方法的主要思想。
特征空间
信息获取:通过测量、采样和量化,可以用矩阵或向量表示二维图像或以为波形。
预处理:去除噪声,加强有用的信息,并对输入测量仪器或其他因素造成的退化现象进
行复原。
特征选择和提取:为了有效地实现分类识别,就要对原始数据进行变换,得到最能反映分类本质的特征。
分类决策:在特征空间中用统计方法把识别对象归为某一类。
16、定性说明基于参数方法和非参数方法的概率密度估计有什么区别?
答:基于参数方法:是由已知类别的样本集对总体分布的某些参数进行统计推断非参数方法:已知样本所属类别,但未知总体概率密度函数形式.。