2017-2018学年最新江苏省盐城市中考数学复习期末模拟试题及答案解析
2017-2018学年盐城市滨海县九年级上期末数学试卷(含答案解析)
3.
2 二次函数������ = (������ ‒ 1) + 1的图象顶点坐标是( )
二、填空题(本大题共 6 小题,共 18.0 分)
A. (1, ‒ 1)
【答案】C
B. ( ‒ 1,1)
C. (1,1)
D. ( ‒ 1, ‒ 1)
6.
如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到 旗杆的顶部,此时小明与平面镜的水平距离为 2m,旗杆底部与平面镜的水平 距离为16������.若小明的眼睛与地面的距离为1.5������,则旗杆的高度为______������.
数学试卷
一、选择题(本大题共 5 小题,共 15.0 分) 1. 一组数据 1,2,3,4,2,2 的众数是( )
根据顶点式的意义直接解答即可.
2 本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:������ = ������(������ ‒ ℎ) + ������(������ ≠ 0)的顶点坐标 为(ℎ,������).
பைடு நூலகம்
2 【解析】解:二次函数������ = (������ ‒ 1) + 1的图象的顶点坐标是(1,1).
故选:C.
【答案】12
第 1 页,共 8 页
【解析】解:如图,������������ = 2������,������������ = 16������,������������ = 1.5������, 由题意得∠������������������ = ∠������������������, ∵ ∠������������������ = ∠������������������, ∴△ ������������������∽ △ ������������������, ∴ ������������ = ������������
2017盐城市中考数学试卷(包含答案与解析)
2017年江苏省盐城市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥3.(3分)下列图形中,是轴对称图形的是()A.B.C.D.4.(3分)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.85.(3分)下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2 D.(ab)2=ab26.(3分)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)请写出一个无理数.8.(3分)分解因式a2b﹣a的结果为.9.(3分)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为.10.(3分)若在实数范围内有意义,则x的取值范围是.11.(3分)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.12.(3分)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=°.13.(3分)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为.14.(3分)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=°.15.(3分)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为.16.(3分)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:+()﹣1﹣20170.18.(6分)解不等式组:.19.(8分)先化简,再求值:÷(x+2﹣),其中x=3+.20.(8分)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.21.(8分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.22.(10分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.23.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.(10分)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.25.(10分)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC 与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F 恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.26.(12分)【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC 上且面积最大的矩形PQMN,求该矩形的面积.27.(14分)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.2017年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•随州)﹣2的绝对值是()A.2 B.﹣2 C.D.【考点】15:绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2017•盐城)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥【考点】U3:由三视图判断几何体.【分析】根据三视图即可判断该几何体.【解答】解:由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥,故选(C)【点评】本题考查三视图,解题的关键是熟练掌握几种常见几何体的三视图,本题属于基础题型.3.(3分)(2017•盐城)下列图形中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:D的图形沿中间线折叠,直线两旁的部分可重合,故选:D.【点评】本题考查了轴对称图形,掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)(2017•盐城)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.8【考点】W5:众数.【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据6,5,7.5,8.6,7,6中,6出现次数最多,故6是这组数据的众数.故选:B.【点评】此题主要考查了众数的定义,正确把握定义是解题关键.5.(3分)(2017•盐城)下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2 D.(ab)2=ab2【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.【解答】解:A、错误、7a+a=8a.B、错误.a2•a3=a5.C、正确.a3÷a=a2.D、错误.(ab)2=a2b2故选C.【点评】本题考查合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则,熟练掌握这些法则是解题的关键.6.(3分)(2017•盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.【考点】H6:二次函数图象与几何变换.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)(2017•盐城)请写出一个无理数.【考点】26:无理数.【分析】根据无理数定义,随便找出一个无理数即可.【解答】解:是无理数.故答案为:.【点评】本题考查了无理数,牢记无理数的定义是解题的关键.8.(3分)(2017•盐城)分解因式a2b﹣a的结果为a(ab﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】根据提公因式法分解即可.【解答】解:a2b﹣a=a(ab﹣1),故答案为:a(ab﹣1).【点评】本题考查了分解因式,能正确分解因式是解此题的关键.9.(3分)(2017•盐城)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 5.7×104.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•盐城)若在实数范围内有意义,则x的取值范围是x ≥3.【考点】72:二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.11.(3分)(2017•盐城)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.【考点】X4:概率公式.【分析】共有3种情况,上方的正六边形涂红色的情况只有1种,利用概率公式可得答案.【解答】解:上方的正六边形涂红色的概率是,故答案为:.【点评】此题主要考查了概率,关键是掌握概率=所求情况数与总情况数之比.12.(3分)(2017•盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=120°.【考点】K8:三角形的外角性质;K7:三角形内角和定理.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠1=90°+30°=120°,故答案为:120.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.(3分)(2017•盐城)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为5.【考点】AB:根与系数的关系.【专题】11 :计算题.【分析】先根据根与系数的关系得到x1+x2=4,x1x2=1,然后把x1(1+x2)+x2展开得到x1+x2+x1x2,然后利用整体代入的方法计算即可.【解答】解:根据题意得x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.故答案为5.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.14.(3分)(2017•盐城)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=110°.【考点】M5:圆周角定理.【分析】根据圆周角定理和圆内接四边形的性质即可得到结论.【解答】解:∵点C在上,点D在上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°,故答案为:110.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.(3分)(2017•盐城)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为π.【考点】O4:轨迹;R2:旋转的性质.【分析】如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短【解答】解:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB==,∴B运动的最短路径长为==π,故答案为π.【点评】本题考查旋转变换、轨迹.弧长公式、勾股定理等知识,解题的关键是确定旋转中心和旋转角的大小,属于中考常考题型.16.(3分)(2017•盐城)如图,曲线l 是由函数y=在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的,过点A (﹣4,4),B (2,2)的直线与曲线l 相交于点M 、N ,则△OMN 的面积为 8 .【考点】R7:坐标与图形变化﹣旋转;G5:反比例函数系数k 的几何意义. 【分析】由题意A (﹣4,4),B (2,2),可知OA ⊥OB ,建立如图新的坐标系(OB 为x′轴,OA 为y′轴,利用方程组求出M 、N 的坐标,根据S △OMN =S △OBM ﹣S △OBN 计算即可.【解答】解:∵A (﹣4,4),B (2,2), ∴OA ⊥OB ,建立如图新的坐标系(OB 为x′轴,OA 为y′轴.在新的坐标系中,A (0,8),B (4,0),∴直线AB 解析式为y′=﹣2x′+8, 由,解得或,∴M (1.6),N (3,2),∴S △OMN =S △OBM ﹣S △OBN =•4•6﹣•4•2=8,故答案为8【点评】本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)(2017•盐城)计算:+()﹣1﹣20170.【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂.【分析】首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:原式=2+2﹣1=3.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)(2017•盐城)解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,∴不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)(2017•盐城)先化简,再求值:÷(x+2﹣),其中x=3+.【考点】6D:分式的化简求值.【专题】11 :计算题;513:分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷(﹣)=÷=•=,当x=3+时,原式===.【点评】本题主要考查分式的化简求值,根据分式的混合运算顺序和法则将原式化简是解题的关键.20.(8分)(2017•盐城)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.【解答】解:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为:;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.【点评】此题考查了列表法或树状图法求概率.通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求事件A或B的概率.21.(8分)(2017•盐城)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】31 :数形结合.【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.【解答】解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“最想去景点B“的学生人数为280人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.22.(10分)(2017•盐城)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.【考点】LB:矩形的性质;L7:平行四边形的判定与性质;L9:菱形的判定.【分析】(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.【点评】本题主要考查矩形的性质、平行四边形、菱形,熟练掌握矩形的性质、平行四边形的判定与菱形的判定是解题的关键.23.(10分)(2017•盐城)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:=,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.【点评】本题考查了一元二次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,列出分式方程;(2)找准等量关系,列出一元二次方程.24.(10分)(2017•盐城)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【考点】O4:轨迹;MC:切线的性质;N3:作图—复杂作图.【分析】(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;(2)添加如图所示辅助线,圆心O的运动路径长为,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.【解答】解:(1)如图①所示,射线OC即为所求;(2)如图,圆心O的运动路径长为,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC===9,AB=2BC=18,∠ABC=60°,=9+9+18=27+9,∴C△ABC∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD===2,∴OO1=9﹣2﹣2=7﹣2,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴=,即=,∴=15+,即圆心O运动的路径长为15+.【点评】本题主要考查作图﹣复杂作图、切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质,熟练掌握切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质是解题的关键.25.(10分)(2017•盐城)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y 轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E 的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.【考点】MR:圆的综合题.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【解答】(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,即⊙F的半径为;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.【点评】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握切线的判定定理是解题的关键.26.(12分)(2017•盐城)【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC 上且面积最大的矩形PQMN,求该矩形的面积.【考点】LO:四边形综合题.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩形PQMN=PQ•PN═﹣(x﹣)2+,据此可得;【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知。
历年江苏省盐城市中考数学试卷(含答案)
2017年江苏省盐城市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥3.(3分)下列图形中,是轴对称图形的是()A.B.C.D.4.(3分)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.85.(3分)下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2 D.(ab)2=ab26.(3分)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)请写出一个无理数.8.(3分)分解因式a2b﹣a的结果为.9.(3分)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为.10.(3分)若在实数范围内有意义,则x的取值范围是.11.(3分)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.12.(3分)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=°.13.(3分)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为.14.(3分)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=°.15.(3分)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为.16.(3分)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:+()﹣1﹣20170.18.(6分)解不等式组:.19.(8分)先化简,再求值:÷(x+2﹣),其中x=3+.20.(8分)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.21.(8分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.22.(10分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.23.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.(10分)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.25.(10分)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC 与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F 恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.26.(12分)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别(用在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC 上且面积最大的矩形PQMN,求该矩形的面积.27.(14分)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.2017年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•随州)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2017•盐城)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥【分析】根据三视图即可判断该几何体.【解答】解:由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥,故选(C)【点评】本题考查三视图,解题的关键是熟练掌握几种常见几何体的三视图,本题属于基础题型.3.(3分)(2017•盐城)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:D的图形沿中间线折叠,直线两旁的部分可重合,故选:D.【点评】本题考查了轴对称图形,掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)(2017•盐城)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.8【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据6,5,7.5,8.6,7,6中,6出现次数最多,故6是这组数据的众数.故选:B.【点评】此题主要考查了众数的定义,正确把握定义是解题关键.5.(3分)(2017•盐城)下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2 D.(ab)2=ab2【分析】根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.【解答】解:A、错误、7a+a=8a.B、错误.a2•a3=a5.C、正确.a3÷a=a2.D、错误.(ab)2=a2b2故选C.【点评】本题考查合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则,熟练掌握这些法则是解题的关键.6.(3分)(2017•盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)(2017•盐城)请写出一个无理数.【分析】根据无理数定义,随便找出一个无理数即可.【解答】解:是无理数.故答案为:.【点评】本题考查了无理数,牢记无理数的定义是解题的关键.8.(3分)(2017•盐城)分解因式a2b﹣a的结果为a(ab﹣1).【分析】根据提公因式法分解即可.【解答】解:a2b﹣a=a(ab﹣1),故答案为:a(ab﹣1).【点评】本题考查了分解因式,能正确分解因式是解此题的关键.9.(3分)(2017•盐城)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 5.7×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•盐城)若在实数范围内有意义,则x的取值范围是x ≥3.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.11.(3分)(2017•盐城)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.【分析】共有3种情况,上方的正六边形涂红色的情况只有1种,利用概率公式可得答案.【解答】解:上方的正六边形涂红色的概率是,故答案为:.【点评】此题主要考查了概率,关键是掌握概率=所求情况数与总情况数之比.12.(3分)(2017•盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=120°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠1=90°+30°=120°,故答案为:120.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.(3分)(2017•盐城)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为5.【分析】先根据根与系数的关系得到x1+x2=4,x1x2=1,然后把x1(1+x2)+x2展开得到x1+x2+x1x2,然后利用整体代入的方法计算即可.【解答】解:根据题意得x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.故答案为5.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.14.(3分)(2017•盐城)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=110°.【分析】根据折叠的性质和圆内接四边形的性质即可得到结论.【解答】解:∵点C在上,点D在上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°,故答案为:110.【点评】本题考查了折叠的性质和圆内接四边形的性质,熟练掌握折叠的直线是解题的关键.15.(3分)(2017•盐城)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为π.【分析】如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短【解答】解:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB==,∴B运动的最短路径长为==π,故答案为π.【点评】本题考查旋转变换、轨迹.弧长公式、勾股定理等知识,解题的关键是确定旋转中心和旋转角的大小,属于中考常考题型.16.(3分)(2017•盐城)如图,曲线l 是由函数y=在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的,过点A (﹣4,4),B (2,2)的直线与曲线l 相交于点M 、N ,则△OMN 的面积为 8 .【分析】由题意A (﹣4,4),B (2,2),可知OA ⊥OB ,建立如图新的坐标系(OB 为x ′轴,OA 为y′轴,利用方程组求出M 、N 的坐标,根据S △OMN =S △OBM ﹣S △OBN 计算即可.【解答】解:∵A (﹣4,4),B (2,2), ∴OA ⊥OB ,建立如图新的坐标系,OB 为x′轴,OA 为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由,解得或,∴M(1,6),N(3,2),∴S=S△OBM﹣S△OBN=•4•6﹣•4•2=8,△OMN故答案为8【点评】本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)(2017•盐城)计算:+()﹣1﹣20170.【分析】首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:原式=2+2﹣1=3.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)(2017•盐城)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,∴不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)(2017•盐城)先化简,再求值:÷(x+2﹣),其中x=3+.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷(﹣)=÷=•=,当x=3+时,原式===.【点评】本题主要考查分式的化简求值,根据分式的混合运算顺序和法则将原式化简是解题的关键.20.(8分)(2017•盐城)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.【分析】(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.【解答】解:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为:;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.【点评】此题考查了列表法或树状图法求概率.通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求事件A或B的概率.21.(8分)(2017•盐城)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.【解答】解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“最想去景点B“的学生人数为280人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.22.(10分)(2017•盐城)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.【分析】(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.【点评】本题主要考查矩形的性质、平行四边形、菱形,熟练掌握矩形的性质、平行四边形的判定与菱形的判定是解题的关键.23.(10分)(2017•盐城)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?【分析】(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为a,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:=,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.【点评】本题考查了一元二次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,列出分式方程;(2)找准等量关系,列出一元二次方程.24.(10分)(2017•盐城)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【分析】(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;(2)添加如图所示辅助线,圆心O的运动路径长为,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.【解答】解:(1)如图①所示,射线OC即为所求;(2)如图,圆心O的运动路径长为,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC===9,AB=2BC=18,∠ABC=60°,∴C=9+9+18=27+9,△ABC∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD===2,∴OO1=9﹣2﹣2=7﹣2,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴=,即=,∴=15+,即圆心O运动的路径长为15+.【点评】本题主要考查作图﹣复杂作图、切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质,熟练掌握切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质是解题的关键.25.(10分)(2017•盐城)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y 轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【解答】(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,即⊙F的半径为;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.【点评】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握切线的判定定理是解题的关键.26.(12分)(2017•盐城)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别(用在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC 上且面积最大的矩形PQMN,求该矩形的面积.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩=PQ•PN═﹣(x﹣)2+,据此可得;形PQMN【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH=20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC 知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【解答】解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,则S=PQ•PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,矩形PQMN最大值为,∴当PQ=时,S矩形PQMN故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】。
【精品】2017-2018年江苏省盐城市响水县初三上学期数学期末试卷与答案
2017-2018学年江苏省盐城市响水县初三上学期期末数学试卷一、选择题(以下每小题有四个选项,其中只有一个选项正确,请把正确选项的字母选入该题括号内,每小题3分,共18分)1.(3分)已知2x=3y(y≠0),则下面结论成立的是()A.B.C.D.2.(3分)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA 3.(3分)一次数学测试后,随机抽取九年级三班6名学生的成绩如下:80,85,86,88,88,95.关于这组数据的错误说法是()A.极差是15B.众数是88C.中位数是86D.平均数是87 4.(3分)一元二次方程x2﹣3x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.(3分)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣56.(3分)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)若△ABC~△DEF,相似比为3:2,则对应高的比为.8.(3分)从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是.9.(3分)若1﹣是方程x2﹣2x+c=0的一个根,则c的值为.10.(3分)小明数学学科课堂表现及平时作业为90分、期中考试为88分、期末考试为96分,若这三项成绩分别按30%、30%、40%的比例计入总评成绩,则小明数学学科总评成绩是分.11.(3分)若x1,x2是一元二次方程x2+3x﹣5=0的两个根,则x12x2+x1x22的值是.12.(3分)如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=.13.(3分)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.14.(3分)已知:如图,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为.15.(3分)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树AB的树根7.2m的点E处,然后观测者沿着直线BE后退到点D,这时恰好在镜子里看到树稍顶点A,再用皮尺量得DE=2.4m,观测者目高CD=1.6m,则树高AB约是.16.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac <b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有.(只填序号)三、解答题(本大题共11小题,计102分)17.(6分)解方程:x2﹣4x+1=0.18.(6分)如图,AB为⊙O的直径,点C、D在⊙O上,CE⊥AB,DF⊥AB,垂足分别为E,F,且弧AC与弧BD相等,问AE与BF相等吗?为什么?19.(8分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC 三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC 位似,且位似比为2,并求出△A2B2C2的面积.20.(8分)在一个不透明的盒子中,装有3个分别写有数字1,2,3的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法写出所有可能出现的结果;(2)求两次取出的小球上的数字之和为奇数的概率P.21.(8分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一根小于﹣3,求k的取值范围.22.(10分)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是,乙的中位数是;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?23.(10分)如图,在△ABC中,∠ABC=90°,∠C=30°,AC的垂直平分线交BC 于点D,交AC于点E.(1)判断BE与△DCE的外接圆⊙O的位置关系,并说明理由;(2)若BE=,BD=1,求△DCE的外接圆⊙O的直径.24.(10分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.(1)求路灯A的高度;(2)当王华再向前走2米,到达F处时,他的影长是多少?25.(10分)工人师傅用一块长为2m,宽为1.2m的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)若长方体底面面积为1.28m2,求裁掉的正方形边长;(2)若要求制作的长方体的底面长不大于底面宽的3倍,并将容器进行防锈处理,侧面每平方米的费用为50元,底面每平方米的费用为200元,裁掉的正方形边长多大时,总费用最低,最低为多少?26.(12分)如图①,在△ABC中,AC=BC,点D是线段AB上一动点,∠EDF绕点D旋转,在旋转过程中始终保持∠A=∠EDF,射线DE与边AC交于点M,射线DE与边BC交于点N,连接MN.(1)找出图中的一对相似三角形,并证明你的结论;(2)如图②,在上述条件下,当点D运动到AB的中点时,求证:在∠EDF绕点D旋转过程中,点D到线段MN的距离为定值.27.(14分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与y轴的交于点A (0,3),与x轴的交于点B和C,点B的横坐标为2.点A关于抛物线对称轴对称的点为点D,在x轴上有一动点E(t,0),过点E作平行于y轴的直线与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当点P在线段AC的下方时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似.若存在,求出此时t的值;若不存在,请说明理由.2017-2018学年江苏省盐城市响水县初三上学期期末数学试卷参考答案与试题解析一、选择题(以下每小题有四个选项,其中只有一个选项正确,请把正确选项的字母选入该题括号内,每小题3分,共18分)1.(3分)已知2x=3y(y≠0),则下面结论成立的是()A.B.C.D.【解答】解:∵2x=3y(y≠0),∴=,故选:D.2.(3分)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA 【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选:B.3.(3分)一次数学测试后,随机抽取九年级三班6名学生的成绩如下:80,85,86,88,88,95.关于这组数据的错误说法是()A.极差是15B.众数是88C.中位数是86D.平均数是87【解答】解:A、极差是15,故A正确;B、众数是88,故B正确;C、中位数是87,故C错误;D、平均数是87,故D正确.故选:C.4.(3分)一元二次方程x2﹣3x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【解答】解:x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故选:B.5.(3分)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣5【解答】解:抛物线y=2x2的顶点坐标为(0,0),点(0,0)向右平移3个单位,再向下平移5个单位所得对应点的坐标为(3,﹣5),所以平移得到的抛物线的表达式为y=2(x﹣3)2﹣5.故选:A.6.(3分)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,=S△ABC=S正方形ABCD,且阴影部分面积=S△CEB故小明投掷飞镖一次,则飞镖落在阴影部分的概率为:.故选:B.二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)若△ABC~△DEF,相似比为3:2,则对应高的比为3:2.【解答】解:∵△ABC∽△DEF,相似比为3:2,∴对应高的比为:3:2.故答案为:3:28.(3分)从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是.【解答】解:∵从,0,π,3.14,6这五个数中随机抽取一个数,有理数有0,3.14,6共3个,∴抽到有理数的概率是:.故答案为:.9.(3分)若1﹣是方程x2﹣2x+c=0的一个根,则c的值为﹣2.【解答】解:把x=1﹣代入方程x2﹣2x+c=0得(1﹣)2﹣2(1﹣)+c=0,解得c=﹣2.故答案为﹣2.10.(3分)小明数学学科课堂表现及平时作业为90分、期中考试为88分、期末考试为96分,若这三项成绩分别按30%、30%、40%的比例计入总评成绩,则小明数学学科总评成绩是91.8分.【解答】解:由题意可得,90×30%+88×30%+96×40%=91.8(分),故答案为:91.8.11.(3分)若x1,x2是一元二次方程x2+3x﹣5=0的两个根,则x12x2+x1x22的值是15.【解答】解:∵x1,x2是一元二次方程x2+3x﹣5=0的两个根,∴x1+x2=﹣3,x1x2=﹣5,∴x12x2+x1x22=x1x2(x1+x2)=﹣5×(﹣3)=15,故答案为:15.12.(3分)如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=.【解答】解:如图所示:∵四边形ABCD与四边形EFGH位似,∴△OEF∽△OAB,△OFG∽△OBC,∴==,∴==.故答案为:.13.(3分)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是50(1﹣x)2=32.【解答】解:由题意可得,50(1﹣x)2=32,故答案为:50(1﹣x)2=32.14.(3分)已知:如图,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为35°.【解答】解:∵OA⊥BC,∴=,∴∠ADC=∠AOB=35°,故答案为:35°.15.(3分)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树AB的树根7.2m的点E处,然后观测者沿着直线BE后退到点D,这时恰好在镜子里看到树稍顶点A,再用皮尺量得DE=2.4m,观测者目高CD=1.6m,则树高AB约是 4.8m.【解答】解:由题意知∠CED=∠AEB,∠CDE=∠ABE=90°,∴△CED∽△AEB.∴=,∴=,∴AB=4.8米.故答案为:4.8m.16.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac <b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有①②③⑤.(只填序号)【解答】解由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=∴abc>0,4ac<b2,当x<时,y随x的增大而减小.故①②⑤正确∵﹣=<1∴2a+b>0故③正确由图象可得顶点纵坐标小于﹣2,则④错误当x=1时,y=a+b+c<0故⑥错误故答案为①②③⑤三、解答题(本大题共11小题,计102分)17.(6分)解方程:x2﹣4x+1=0.【解答】解:x2﹣4x+1=0x2﹣4x+4=3(x﹣2)2=3x﹣2=∴x1=2+,x2=2﹣;18.(6分)如图,AB为⊙O的直径,点C、D在⊙O上,CE⊥AB,DF⊥AB,垂足分别为E,F,且弧AC与弧BD相等,问AE与BF相等吗?为什么?【解答】解:AE=BD因为:连接OC、OD∴弧AC与弧BD相等∴∠COE=∠DOF又CE⊥AB,DF⊥AB,OC=OD∴△OCE≌△ODF∴OE=OF∴AE=BF.19.(8分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC 三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC 位似,且位似比为2,并求出△A2B2C2的面积.【解答】解:(1)如图所示,△A1B1C1就是所求三角形(2)如图所示,△A2B2C2就是所求三角形如图,分别过点A2、C2作y轴的平行线,过点B2作x轴的平行线,交点分别为E、F,∵A(﹣1,2),B(2,1),C(4,5),△A2B2C2与△ABC位似,且位似比为2,∴A2(﹣2,4),B2(4,2),C2(8,10),∴=8×10﹣×6×2﹣×4×8﹣×6×10=28.20.(8分)在一个不透明的盒子中,装有3个分别写有数字1,2,3的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法写出所有可能出现的结果;(2)求两次取出的小球上的数字之和为奇数的概率P.【解答】解:(1)列表得,(2)两次取出的小球上的数字之和为奇数的共有4种,∴P两次取出的小球上数字之和为奇数的概率P=.21.(8分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一根小于﹣3,求k的取值范围.【解答】(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根;(2)解:∵x2﹣(k+3)x+2k+2=0,∴(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于﹣3,∴k+1<﹣3,解得:k<﹣4,∴k的取值范围为k<﹣4.22.(10分)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是8,乙的中位数是7.5;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?【解答】解:(1)甲的平均数==8,乙的中位数是7.5;故答案为:8;7.5;(2);…=,=,∵,∴乙运动员的射击成绩更稳定.23.(10分)如图,在△ABC中,∠ABC=90°,∠C=30°,AC的垂直平分线交BC 于点D,交AC于点E.(1)判断BE与△DCE的外接圆⊙O的位置关系,并说明理由;(2)若BE=,BD=1,求△DCE的外接圆⊙O的直径.【解答】解:(1)连接OE,∵DE是AC的垂直平分线,∴BE=CE,∴∠EBC=∠C=30°,∴∠BEC=120°,∵OE=OC,∴∠OEC=∠C=30°,∴∠BEO=90°,∴BE是⊙O的切线;(2)∵BE是⊙O的切线,∴BE2=BD•BC,即()2=1•BC,∴BC=3,∴CD=2,∴△DCE的外接圆的直径是2.24.(10分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.(1)求路灯A的高度;(2)当王华再向前走2米,到达F处时,他的影长是多少?【解答】解:(1)设BC=x米,AB=y米,由题意得,CD=1米,CE=3米,EF=2米,身高MC=NE=1.5米,∵△ABD∽△MCD,△ABF∽△NEF,∴,,,,解得,∴路灯A的高度为6米.(2)如图,连接AG交BF延长线于点H,∵△ABH∽△GFH,GF=1.5米,BH=3+3+2+FH=8+FH,∴,,解得(米).答:当王华再向前走2米,到达F处时,他的影长是米.25.(10分)工人师傅用一块长为2m,宽为1.2m的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)若长方体底面面积为1.28m2,求裁掉的正方形边长;(2)若要求制作的长方体的底面长不大于底面宽的3倍,并将容器进行防锈处理,侧面每平方米的费用为50元,底面每平方米的费用为200元,裁掉的正方形边长多大时,总费用最低,最低为多少?【解答】解:(1)设裁掉的正方形的边长为xm,根据题意,得:(2﹣2x)(1.2﹣2x)=1.28,解得:x1=0.2或x2=1.4(舍),所以裁掉的正方形边长为0.2m;(2)∵长不大于宽的3倍,∴2﹣2x≤3(1.2﹣2x),解得:0<x≤0.4,设总费用为w,根据题意,得:w=50×2x(3.2﹣4x)+200×(2﹣2x)(1.2﹣2x)=400x2﹣960x+480=400(x﹣1.2)2﹣96,∵对称轴x=1.2且开口向上,∴当0<x≤0.4时,w随x的增大而减小,∴当x=0.4时,w取得最小值,最小值为160元,答:裁掉的正方形边长为0.4m时,总费用最低,最低为160元.26.(12分)如图①,在△ABC中,AC=BC,点D是线段AB上一动点,∠EDF绕点D旋转,在旋转过程中始终保持∠A=∠EDF,射线DE与边AC交于点M,射线DE与边BC交于点N,连接MN.(1)找出图中的一对相似三角形,并证明你的结论;(2)如图②,在上述条件下,当点D运动到AB的中点时,求证:在∠EDF绕点D旋转过程中,点D到线段MN的距离为定值.【解答】解:(1)△ADM∽△BND,理由如下:∵AC=BC,∴∠A=∠B,∵∠A+∠AMD=∠EDF+∠BDN,∵∠A=∠EDF,∴∠AMD=∠BDN,∴△ADM∽△BND;(2)证明:作DG⊥MN于G,DH⊥AM于H,如图②,由(1)得,△ADM∽△BND,∴=,∵AD=BD,∴=,又∠A=∠EDF,∴△ADM∽△DNM,∴∠AMD=∠NMD,又DG⊥MN,DH⊥AM,∴DG=DH,即在∠EDF绕点D旋转过程中,点D到线段MN的距离为定值.27.(14分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与y轴的交于点A (0,3),与x轴的交于点B和C,点B的横坐标为2.点A关于抛物线对称轴对称的点为点D,在x轴上有一动点E(t,0),过点E作平行于y轴的直线与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当点P在线段AC的下方时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似.若存在,求出此时t的值;若不存在,请说明理由.【解答】解:(1)将A(0,3)、B(2,0)代入y=x2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣2x+3.(2)当y=0时,有x2﹣2x+3=0,解得:x1=2,x2=6,∴点C的坐标为(6,0).设直线AC的解析式为y=mx+n(m≠0),将A(0,3)、C(6,0)代入y=mx+n,得:,解得:,∴直线AC的解析式为y=﹣x+3.设直线l与直线AC的交点为F,如图1所示,则点F的坐标为(t,﹣t+3).∵点P的坐标为(t,t2﹣2t+3),∴PF=﹣t+3﹣(t2﹣2t+3)=﹣t2+t,=S△APF+S△CPF,∴S△APC=OE•PF+CE•PF,=OC•PF,=×6×(﹣t2+t),=﹣(t﹣3)2+,∵a=﹣<0,当t=3时,△APC的面积取最大值,最大值为.(3)假设存在,∵∠AOB=∠AQP=90°,∴分△AOB∽△AQP和△AOB∽△PQA两种情况考虑.∵A(0,3),B(2,0),Q(t,3),P(t,t2﹣2t+3),∴AO=3,BO=2,AQ=t,PQ=|t2﹣2t|.①当△AOB∽△AQP时,有=,即=,解得:t1=0(舍去),t2=,t3=,经检验,t2=、t3=是所列分式方程的解;②当△AOB∽△PQA时,有=,即=,解得:t4=0(舍去),t5=2(舍去),t6=14,经检验,t6=14是所列分式方程的解.综上所述:当t>2时,存在点P,使以A、P、Q为顶点的三角形与△AOB相似,此时t的值为或或14.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)
江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 1 / 22江苏盐城市2017-2018学年度第一学期期末学情调研九年级数学试卷一、选择题(本大题共6小题,共18.0分)1. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( ) A. 95 B. 90 C. 85 D. 80 2. 下列多边形一定相似的是( )A. 两个平行四边形B. 两个菱形C. 两个矩形D. 两个正方形3. 一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是白球的概率为( )A.B.C.D.4. ⊙O 的直径为15cm ,O 点与P 点的距离为8cm ,点P 的位置( )A. 在⊙ 外B. 在⊙ 上C. 在⊙ 内D. 不能确定5. 为治理大气污染,保护人民健康.某市积极行动,调整产业结构,压减钢铁生产总量,2013年某市钢铁生产量为9700万吨,计划到2015年钢铁生产量设定为5000万吨,设该市每年钢铁生产量平均降低率为x ,依题意,下面所列方程正确的是( )A. B. C. D.6. 在平面直角坐标系中,将抛物线y =x 2先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( )A. B. C. D.二、填空题(本大题共10小题,共30.0分)7. 方程x 2-3x =0的解是______.8. 已知抛物线y =2x 2-5x +3与y 轴的交点坐标是______. 9.10. 一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是______.11. 如图,AB ∥CD ,AD 与BC 相交于点O ,若AO =2,DO =4,BO =2.5,则CO =______. 12. 如图,圆锥体的高h = cm ,底面半径r =1cm ,则圆锥体的侧面积为______cm 2.13.如图,抛物线y=ax2+bx+c(与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则a的取值范围是______.14.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为______.15.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为______.16.如图,O是半圆的圆心,半径为4.C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.若∠COA=60°,则FG=______.三、计算题(本大题共1小题,共8.0分)17.学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有6、8、10三张扑克牌,乙手中有5、8、9三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.四、解答题(本大题共10小题,共94.0分)江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 18.解方程:x2-2x+3=0.19.如图,边长为1的正方形网格纸中,△ABC为格点三角形(顶点都在格点上).在网格纸中,以O为位似中心画出△ABC的一个位似图形,使△ABC与其位似图形的相似比为1:2(不要求写画法).并直接写出△ABC的面积.20.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方()计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?3 / 2221.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出不等式ax2+bx+c>0的解集;(2)写出y随x的增大而减小的自变量x的取值范围;(3)分别求出a、b、c的值.22.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)23.某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 5 / 2224. 在△ABC 中,AB =AC ,∠BAC =100°.将线段CA 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0°<α<360°,连接AD 、BD .(1)如图1,当α=60°时,∠CBD 的大小为______;(2)如图2,当α=20°时,∠CBD 的大小为______;(提示:可以作点D 关于直线BC 的对称点)(3)当α为______°时,可使得∠CBD 的大小与(1)中∠CBD 的结果相等.25. 如图,在Rt △ABC 中,∠B =90°,点O 在边AB 上,以点O为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使∠BCM =2∠A .(1)判断直线MN 与⊙O 的位置关系,并说明理由; (2)若OA =6,∠BCM =60°,求图中阴影部分的面积.26. 如图,矩形OABC 的顶点O 、A 、C 都在坐标轴上,点B 的坐标为(8,3),M 是BC 边的中点.(1)求出点M 的坐标和△COM 的周长;(2)若点Q 是矩形OABC 的对称轴MN 上的一点,使以O 、M 、C 、Q 为顶点的四边形是平行四边形,求出符合条件的点Q 的坐标;(3)若P 是OA 边上一个动点,它以每秒1个单位长度的速度从A 点出发,沿AO 方向向点O 匀速运动,设运动时间为t 秒.是否存在某一时刻,使以P 、O 、M 为顶点的三角形与△COM 相似或全等?若存在,求出此时t 的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-6,0)、B(2,0)、C(0,6)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D 重合),过点P作y轴的垂线,垂足为点E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果点P的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)过点P(-3,m)作x轴的垂线,垂足为点F,连接EF,把△PEF沿直线EF 折叠,点P的对应点为点Pʹ,求出Pʹ的坐标.(直接写出结果)江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)答案和解析1.【答案】B【解析】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.2.【答案】D【解析】解:要判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、菱形、平行四边形都属于形状不唯一确定的图形,即对应角、对应边的比不一定相等,故不一定相似,A、B、C错误;而两个正方形,对应角都是90°,对应边的比也都相当,故一定相似,D正确.故选:D.利用相似多边形的对应边的比相等,对应角相等分析.本题考查相似多边形的识别.判定两个图形相似的依据是:对应边的比相等,对应角相等.两个条件必须同时具备.3.【答案】C【解析】解:∵一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,∴从袋子中随机摸出一个球是白球的概率为:=.故选:C.由一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.7 / 224.【答案】A【解析】解:∵⊙O的直径为15cm,∴⊙O的半径为7.5cm,∵O点与P点的距离为8cm,∴点P在⊙O外.故选:A.由⊙O的直径为15cm,O点与P点的距离为8cm,根据点与圆心的距离与半径的大小关系,即可求得答案.此题考查了点与圆的位置关系.注意点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5.【答案】D【解析】解:设该市每年钢铁生产量平均降低率为x,则2014年的产量为9700(1-x),2015年的产量为9700(1-x)2,故选:D.首先根据降低率表示出2014年的产量,然后表示出2015年的产量,令其等5000即可列出方程.本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6.【答案】C【解析】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向右平移2个单位,再向上平移2个单位后得到的点的坐标为(2,2),所以所得的抛物线的解析式为y=(x-2)2+2.故选:C.先确定抛物线y=2x2的顶点坐标为(0,0),再把点(0,0)先向右平移2个单位,江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)再向上平移2个单位后得到的点的坐标为(2,2),然后根据顶点式写出平移后抛物线的解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.【答案】x1=0,x2=3【解析】解:原式为x2-3x=0,x(x-3)=0,x=0或x-3=0,x1=0,x2=3.∴方程x2-3x=0的解是x1=0,x2=3.x2-3x有公因式x可以提取,故用因式分解法解较简便.本题考查简单的一元二次方程的解法,在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法.8.【答案】(0,3)【解析】解:当x=0时,y=3,即交点坐标为(0,3).y轴上点的坐标特点为横坐标为0,纵坐标为y,把x=0代入即可求得交点坐标为(0,3).本题考查了函数图象上的点的坐标与函数解析式的关系,要明确y轴上点的坐标横坐标为0.9.【答案】丙【解析】解:∵0.14<0.25<0.38,∴丙的方差最小,∴这四人中丙发挥最稳定,故答案为:丙根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.9 / 22本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.【答案】【解析】解:∵地面被等分成15份,其中阴影部分占5份,∴根据几何概率的意义,落在阴影区域的概率==.故答案为:.首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出停在阴影方砖上的概率.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率;此题将概率的求解设置于几何图象或游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.11.【答案】5【解析】解:∵AB∥CD,∴;∵AO=2,DO=4,BO=2.5,∴,解得:CO=5,故答案为;5平行线分线段成比例定理,得到;利用AO、BO、DO的长度,求出CO的长度.该题主要考查了平行线分线段成比例定理及其应用问题.掌握平行于三角形江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)11 / 22一边的直线截其他两边(或两边的延长线),所得的对应线段成比例是解题的关键.12.【答案】2π【解析】解:圆锥的母线长是=2(cm ),底面周长是2π, 则圆锥体的侧面积是:×2×2π=2π(cm 2).故答案是:2π.根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.本题考查了圆锥的侧面积的计算方法,解决本题的关键是根据已知条件求出圆锥的母线长和侧面展开扇形的弧长,然后用弧长与母线长乘积的一半求扇形的面积.13.【答案】【解析】 解:∵顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,∴当顶点C 与D 点重合,顶点坐标为(1,3),则抛物线解析式y=a (x-1)2+3, ∴ 解得-≤a≤-;当顶点C 与F 点重合,顶点坐标为(3,2),则抛物线解析式y=a (x-3)2+2, ∴解得-≤a≤-;∵顶点可以在矩形内部,∴-≤a≤-.故答案为:-≤a≤-. 顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,当顶点C 与D 点重合,可以知道顶点坐标为(1,3)且抛物线过(-1,0),则它与x 轴的另一个交点为(3,0),由此可求出a ;当顶点C 与F 点重合,顶点坐标为(3,2)且抛物线过(-2,0),则它与x轴的另一个交点为(8,0),由此也可求a,然后由此可判断a的取值范围.本题主要考查了抛物线的解析式y=ax2+bx+c中a、b、c对抛物线的影响,在对于抛物线的顶点在所给图形内进行运动的判定,充分利用了利用形数结合的方法,展开讨论,加以解决.14.【答案】5【解析】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=4,设求半径为r,则OH=8-r,在Rt△OFH中,r2-(8-r)2=42,解得r=5,故答案为:5.首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,易求得FH的长,然后设求半径为r,则OH=8-r,然后在Rt△OFH中,r2-(16-r)2=82,解此方程即可求得答案.此题考查了切线的性质、垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.15.【答案】【解析】解:∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC===5,∵DE垂直平分AC,垂足为O,∴OA=AC=,∠AOD=∠B=90°,∵AD∥BC,江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)13 / 22∴∠A=∠C ,∴△AOD ∽△CBA , ∴=,即=,解得AD=. 故答案为:. 先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出OA 的长,根据相似三角形的判定定理得出△AOD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16.【答案】【解析】解:作GH ⊥AB ,连接EO .∵EF ⊥AB ,EG ⊥CO ,∴∠EFO=∠EGO=90°, ∴G 、O 、F 、E 四点共圆,所以∠GFH=∠OEG ,又∵∠GHF=∠EGO ,∴△GHF ∽△OGE ,∵CD ⊥AB ,GH ⊥AB ,∴GH ∥CD , ∴, 又∵CO=EO ,∴CD=GF .∵半径为4.∠COA=60°, ∴CD=2, ∴GF=,故答案为:2. 首先根据四点共圆的性质得出GOFE 四点共圆,进而求出△GHF ∽△OGE ,再利用GH ∥CD,得出,即可求出答案.此题主要考查了相似三角形的判定以及其性质和四点共圆的性质,根据已知得出GOFE四点共圆是解题关键.17.【答案】解:(1)每人随机取一张牌共有9种情况,分别为(10,9);(10,7);(10,5);(8,9);(8,7);(8,5);(6,9);(6,7);(6,5),(2)学生乙获胜的情况有(8,9);(6,9);(6,7)共3种,则学生乙获胜的概率为P==;【解析】(1)根据题意可以写出所有的可能性;(2)根据(1)中的结果可以得到乙本局获胜的可能性,从而可以解答本题.此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.18.【答案】解:配方,得(x-)2=0.解得x1=x2=.【解析】根据配方法,可得方程的解.本题考查了解一元二次方程,配方法解一元二次方程的步骤是:移项,二次项系数化为1,配方,开方.19.【答案】解:如图△EFG或△MNH即为所求;S△ABC=2×3-×1×2-×1×2-×3×1=.【解析】根据位似中心,位似比,确定A、B、C的对应点即可解决问题,注意有两种情形;江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)本题考查作图-位似变换,解题的关键是熟练掌握基本知识,属于中考常考题型,注意有两种情形.20.【答案】解:(1)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),由上可得,甲组的成绩最高.【解析】(1)根据表格可以求得各小组的平均成绩,从而可以将各小组的成绩按照从大到小排列;(2)根据题意可以算出各组的加权平均数,从而可以得到哪组成绩最高.本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件.21.【答案】解:(1)观察图象可知,不等式ax2+bx+c>0的解集为1<x<3;(2)抛物线的对称轴为直线x=2,所以当x>2时,y随x的增大而减小;(3)∵抛物线经过(1,0),(2,2),(3,0),∴ ,解得.【解析】(1)写出抛物线在x轴上方所对应的自变量的范围即可;(2)根据二次函数的性质求解;(3)利用待定系数法即可解决问题;15 / 22本题考查了二次函数与不等式(组),解题的关键是学会利用图象法解不等式,熟练掌握待定系数法确定函数解析式,属于中考常考题型.22.【答案】解:在Rt△ABC中,∵AB=5,∠ABC=45°,∴AC=AB sin45°=5×=,在Rt△ADC中,∠ADC=30°,∴AD==5=5×1.414=7.07,AD-AB=7.07-5=2.07(米).答:改善后滑滑板约会加长2.07米.【解析】在Rt△ABC中,根据AB=5米,∠ABC=45°,求出AC的长度,然后在Rt△ADC 中,解直角三角形求AD的长度,用AD-AB即可求出滑板加长的长度.本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.23.【答案】解:(1)由题意,得:w=(x-20)×y=(x-20)•(-10x+500)=-10x2+700x-10000=-10(x-35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:-10x2+700x-10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,从而求出销售单价.此题考查二次函数的性质及其应用以及抛物线的基本性质,将实际问题转化为求函数最值问题,从而来解决实际问题是解题关键.24.【答案】30°30°60或20或140或300【解析】江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 17 / 22解:(1)∵∠BAC=100°,AB=AC ,∴∠ABC=∠ACB=40°,当α=60°时, 由旋转的性质得AC=CD ,∴△ACD 是等边三角形,∴∠DAC=60°, ∴∠BAD=∠BAC-∠DAC=100°-60°=40°, ∵AB=AC ,AD=AC ,∴∠ABD=∠ADB==70°,∴∠CBD=∠ABD-∠ABC=70°-40°=30°, 故答案为:30°;(2)如图2所示;作点D 关于BC 的对称点M ,连接AM 、BM 、CM 、AM .则△CBD ≌△CBM ,∴∠BCM=∠BCD=∠ACD=20°,CD=CA=CM , ∴∠ACM=60°, ∴△ACM 是等边三角形,∴AM=AC=AB ,∠MAC=60°, ∴∠BAM=40°, ∵∠CAD=∠CDA=(180°-20°)=80°, ∴∠BAD=∠MAD=20°, ∵AD=AD ,∴△DAB ≌△DAM ,∴BD=DM ,∵BD=BM ,∴BD=DM=BM ,∴∠DBM=60°, ∴∠DBC=∠CBM=30°, 故答案为30°(3)①由(1)可知,∠α=60°时可得∠BAD=100°-60°=40°,∠ABC=∠ACB=90°-=40°,∠ABD=90°-∠BAD=120°-=70°,∠CBD=∠ABD-∠ABC=30°.②如图3,翻折△BDC到△BD1C,则此时∠CBD1=30°,∠BCD=60°-∠ACB=-30°=20°,∠α=∠ACB-∠BCD1=∠ACB-∠BCD=-20°=20°;③以C为圆心CD为半径画圆弧交BD1的延长线于点D2,连接CD2,∠CDD2=∠CBD+∠BCD=30°+-30°=50°,∠DCD2=180°-2∠CDD2=180°-100°=80°,∠α=60°+∠DCD2=140°.④当点D旋转到BD的延长线上时,也满足条件,同法可得α=300°综上所述,α为60°或20°或140°或300°时,∠CBD=30°.故答案为60或20或140或300.(1)想办法求出∠ABD,∠ABC即可解决问题;(2)如图2所示;作点D关于BC的对称点M,连接AM、BM、CM、AM.想办法证明△ACM是等边三角形,△DAB≌△DAM,△DBM是等边三角形即可解决问题;(3)分三种情形分别讨论求解即可解决问题;本题是一道几何结论探究题,解答这类题目的关键是要善于从探究特殊结论江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 19 / 22 中归纳出一般性解题方法,并灵活运用这种方法解答一般性的问题,真正达到举一反三的目的.25.【答案】解:(1)MN 是⊙O 切线.理由:连接OC .∵OA =OC ,∴∠OAC =∠OCA ,∵∠BOC =∠A +∠OCA =2∠A ,∠BCM =2∠A ,∴∠BCM =∠BOC ,∵∠B =90°,∴∠BOC +∠BCO =90°,∴∠BCM +∠BCO =90°,∴OC ⊥MN ,∴MN 是⊙O 切线.(2)由(1)可知∠BOC =∠BCM =60°,∴∠AOC =120°,在RT △BCO 中,OC =OA =6,∠BCO =30°,∴BO = OC =3,BC =3 ,∴S 阴=S 扇形OAC -S △OAC =- •6 =12π-9 .【解析】(1)MN 是⊙O 切线,只要证明∠OCM=90°即可.(2)求出∠AOC 以及BC ,根据S 阴=S 扇形OAC -S △OAC 计算即可.本题考查直线与圆的位置关系、扇形面积、三角形面积等知识,解题的关键是记住切线的判定方法,扇形的面积公式,属于中考常考题型.26.【答案】解:(1)∵四边形OABC 是矩形,∴CB ∥OA .CB =OA ,∵B 点坐标为(8,3),M 为BC 中点,∴M 点坐标为(4,3),0C =AB =3,CM = BC =4,在Rr △OMC 中,∠C =90°,∴OM =5,∴△OMC的周长=OM+CM+CO=3+4+5=12,∴点M的坐标为(4,3),△OMC的周长为12.(2)如图①,分情况讨论:①当四边形是以OC,OM为边的平行四边形COMQ,则MQ∥OC,MQ=OC=3,此时Q点坐标为(4,6),②当四边形是以OC,CM为边的平行四边形COMQ,则Q点与对称轴MN与x轴的交点,此时Q点坐标为(4,0);③当四边形是以OM,CM为边的平行四边形CMOQ,这时Q点不在对称轴MN上,不符合条件;综上所述,符合条件的点Q的坐标为(4,6),(4,0).(3)存在.如图②,由题意知∠MOP不可能等于90°,分两种情况:①当∠PMO=90°时,△OMP∽△MCO,∴,∴OP=,∴AP=OA-OP=,②当∠MPO=90°时,△OMP∽△MOC,∴,∴OP=MC=4,∴AP=OA-OP=8-4=4,综上所述,当t为4s或s时,△OMP与△MOC相似【解析】(1)根据四边形OABC是矩形和M是BC边的中点,求出点M的坐标,根据勾股定理求出OM的长,得到△COM的周长;(2)分以OC,OM为边的平行四边形COMQ和以OM,CM为边的平行四边形CMOQ两种情况讨论即可;江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 21 / 22(3)分∠PMO=90°和∠MPO=90°两种情况,根据相似三角形的性质解答即可. 本题考查的是矩形、平行四边形知识的综合应用,掌握矩形的性质和平行四边形的判定定理是解题的关键,注意分情况讨论思想的正确运用. 27.【答案】解:(1)∵抛物线y =ax 2+bx +c 经过点A (-6,0),B (2,0),C (0,6)三点,∴ ,解得:,∴抛物线解析式为:y = x 2-2x +6, ∵ ,,∴抛物线的顶点D (-2,8);(2)∵A (-6,0),D (-2,8),∴设AD 的解析式y =2x +12,∵点P 在AD 上,∴P (x ,2x +12),∴S △APE = PE •y P = ×(-x )•(2x +12)=-x 2-6x , 当x = 时, 最大 ;(3)P ′( , ).点P 在AD 上,∴当-3时,y =2×(-3)+12=6,∴点P (-3,6),∴PF =6,PE =3,过点P ′作P ′M ⊥y 轴于点M ,∵△PEF 沿EF 翻折得△P ′EF ,∴∠PFE =∠P ′FE ,PF =P ′F =6,PE =P ′E =3,∵PF ∥y 轴,∴∠PFE =∠FEN ,∵∠PFE =∠P ′FE ,∴∠FEN =∠P ′FE ,∴EN =FN ,设EN =a ,则FN =a ,P ′N =6-a ,在Rt △P ′EN 中,P ′N 2+P ′E 2=EN 2,即(6-a )2+32=a 2,解得:a = , ∵S △P ′EN = P ′N •P ′E = EN •P ′M ,∴P ′M = ,在Rt △EMP ′中,EM = ,∴OM=EO-EM=6-=,∴P′(,).【解析】(1)根据待定系数法求抛物线的解析式,再根据顶点公式求出点D的坐标即可;(2)根据待定系数法求得AD的解析式,进而用含x的式子表示点P的坐标,利用三角形的面积公式,用含x的式子表示出△APE的面积,利用二次函数的最大值求得S的最大值即可;(3)根据点P在AD上,求得点P的坐标,再利用翻折的性质及平行线的性质证得∠FEN=∠P′FE,进而得EN=FN,设EN=a,再根据勾股定理求得a的值,利用等积法求出P′M的值,在Rt△EMP′中利用勾股定理求出EM的长,进而求得OM的长,即可得到点P′的坐标.本题主要考查二次函数的综合应用,解决第(3)题的关键是能根据翻折的性质及灵活运用勾股定理得出各条线段的长度,要求点的坐标,只要求得该点分别到x轴和y轴的距离即可.。
【精品】2018年江苏省盐城市中考数学试卷以及答案(word解析版)
2018年江苏省盐城市中考数学试卷答案与解析一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形与中心对称图形的概念判断.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)下列运算正确的是()A.a2+a2=a4 B.a3÷a=a3C.a2•a3=a5 D.(a2)4=a6【分析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a2+a2=2a2,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)3=a8,故D错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.(3分)盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A.1.46×105B.0.146×106C.1.46×106D.146×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将146000用科学记数法表示为:1.46×105.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.(3分)一组数据2,4,6,4,8的中位数为()A.2 B.4 C.6 D.8【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选:B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°【分析】根据圆周角定理得到∠ABC=∠ADC=35°,∠ACB=90°,根据三角形内角和定理计算即可.【解答】解:由圆周角定理得,∠ABC=∠ADC=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=55°,故选:C.【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半和半圆(或直径)所对的圆周角是直角是解题的关键.8.(3分)已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为()A.﹣2 B.2 C.﹣4 D.4【分析】根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1﹣3+k=0,然后解一次方程即可.【解答】解:把x=1代入方程得1+k﹣3=0,解得k=2.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.(3分)根据如图所示的车票信息,车票的价格为77.5元.【分析】根据图片得出价格即可.【解答】解:根据如图所示的车票信息,车票的价格为77.5元,故答案为:77.5.【点评】本题考查了数字表示事件,能正确读出信息是解此题的关键,培养了学生的观察图形的能力.10.(3分)要使分式有意义,则x的取值范围是x≠2.【分析】分式有意义,则分母x﹣2≠0,由此易求x的取值范围.【解答】解:当分母x﹣2≠0,即x≠2时,分式有意义.故答案为:x≠2.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.11.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为【分析】首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率.【解答】解:∵正方形被等分成9份,其中阴影方格占4份,∴当蚂蚁停下时,停在地板中阴影部分的概率为,故答案为:.【点评】此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.13.(3分)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2= 85°.【分析】直接利用三角形外角的性质结合平行线的性质得出答案.【解答】解:∵∠1=40°,∠4=45°,∴∠3=∠1+∠4=85°,∵矩形对边平行,∴∠2=∠3=85°.故答案为:85°.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.14.(3分)如图,点D为矩形OABC的AB边的中点,反比例函数y=(x>0)的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=4.【分析】设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则C(2a,),然后利用三角形面积公式得到•a•(﹣)=1,最后解方程即可.【解答】解:设D(a,),∵点D为矩形OABC的AB边的中点,∴B(2a,),∴C(2a,),∵△BDE的面积为1,∴•a•(﹣)=1,解得k=4.故答案为4.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.15.(3分)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).【分析】先根据图1确定:图2的周长=2个的长,根据弧长公式可得结论.【解答】解:由图1得:的长+的长=的长∵半径OA=2cm,∠AOB=120°则图2的周长为:=故答案为:.【点评】本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.16.(3分)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=或.【分析】分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;【解答】解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AC,∴△BPQ∽△BCA,∴=,∴=,∴x=,∴AQ=.②当AQ=PQ,∠PQB=90°时,设AQ=PQ=y.∵△BQP∽△BCA,∴=,∴=,∴y=.综上所述,满足条件的AQ的值为或.【点评】本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.三、解答题(本大题共有11小题,共102分。
【试题】2017年江苏省盐城市中考数学试题及答案清晰无错版
【关键字】试题A.盐城市2017年中考数学试题及答案一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是()A.2 B.﹣2 C.D.2.如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥3.下列图形中,是轴对称图形的是()4.数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.85.下列运算中,正确的是()A.7a+a=7a2 B.a2•a3=a6C.a3÷a=a2 D.(ab)2=ab26.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A (1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.请写出一个无理数.8.分解因式a2b﹣a的结果为.9.2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为.10.若在实数范围内有意义,则x的取值范围是.11.如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.12.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=°.13.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为.14.如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=°.15.如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为.16.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.计算:+()﹣1﹣20170.18.解不等式组:.19.先化简,再求值:÷(x+2﹣),其中x=3+.20.为了编撰祖国的优秀保守文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.21.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.22.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.23.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.25.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE 平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.26.【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.27.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF 中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“最想去景点B“的学生人数为280人.22.解:(1)证明:∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.23.解:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得: =,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.24.解:(1)如图①所示,射线OC即为所求;(2)如图,圆心O的运动路径长为,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC===9,AB=2BC=18,∠ABC=60°,∴C△ABC=9+9+18=27+9,∵O1D⊥BC、O1G ⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD===2,∴OO1=9﹣2﹣2=7﹣2,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴=,即=,∴=15+,即圆心O运动的路径长为15+.25.解:(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,即⊙F的半径为;(3)AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.26.解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,则S矩形PQMN=PQ•PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,∴当PQ=时,S矩形PQMN最大值为,【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD 交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵tanB==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2,27.解:(1)根据题意得A(﹣4,0),C(0,2),∵抛物线y=﹣x2+bx+c经过A、C两点,∴,∴,∴y=﹣x2﹣x+2;(2)①如图,令y=0,∴﹣x2﹣x+2=0,∴x1=﹣4,x2=1,∴B(1,0),过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,∴DM∥BN,∴△DME∽△BNE,∴==,设D(a,=﹣a2﹣a+2),∴M(a, a+2),∵B(1.0),∴N(1,),∴==(a+2)2+;∴当a=2时,的最大值是;②∵A(﹣4,0),B(1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,∴P(﹣,0),∴PA=PC=PB=,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=,过作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=,即,令D(a,﹣a2﹣a+2),∴DR=﹣a,RC=﹣a2﹣a,∴,∴a1=0(舍去),a2=﹣2,∴x D=﹣2,情况二,∴∠FDC=2∠BAC,∴tan∠FDC=,设FC=4k,∴DF=3k,DC=5k,∵tan∠DGC==,∴FG=6k,∴CG=2k,DG=3k,∴∴RC=k,RG=k,DR=3k﹣k=k,∴==,∴a1=0(舍去),a2=,点D的横坐标为﹣2或﹣.此文档是由网络收集并进行重新排版整理.word可编辑版本!。
2018年江苏省盐城市中考数学试卷含答案解析(Word版)
江苏省盐城市2018年中考数学试卷一、选择题1.-2018的相反数是()A. 2018B. -2018C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.6.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 87.如图,为的直径,是的弦,,则的度数为()A. B. C. D.8.已知一元二次方程有一个根为1,则的值为()A. -2B. 2C. -4D. 4二、填空题9.根据如图所示的车票信息,车票的价格为________元.10.要使分式有意义,则的取值范围是________.11.分解因式:________.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.13.将一个含有角的直角三角板摆放在矩形上,如图所示,若,则________.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则________。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径,.则右图的周长为________ (结果保留).16.如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则________.三、解答题17.计算:.18.解不等式:,并把它的解集在数轴上表示出来.19.先化简,再求值:,其中.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形中,对角线所在的直线上有两点、满足,连接、、、,如图所示.(1)求证:;(2)试判断四边形的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:.仅学生自己参与;.家长和学生一起参与;.仅家长自己参与;.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段所表示的函数表达式.25.如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.26.(1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则________;②求证:.________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接.设,则与的周长之比为________(用含的表达式表示).27.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于、两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.答案解析部分一、选择题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-2018的相反数是2018。
2017-2018年江苏省盐城市阜宁县初三上学期期末数学试卷含答案解析
2017-2018学年江苏省盐城市阜宁县初三上学期期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列统计量中,能够刻画一组数据的离散程度的是()A.方差或标准差B.平均数或中位数C.众数或频率D.频数或众数2.(3分)在比例尺为1:38 000的城市交通地图上,某条道路的长为5cm,则它的实际长度为()A.0.19 km B.1.9 km C.19 km D.190 km3.(3分)给出下列各组线段,其中成比例线段是()A.a=2cm,b=4cm,c=6cm,d=8cmB.a=cm,b=cm,c=cm,d=cmC.a=cm,b=cm,c=cm,d=2cmD.a=2cm,b=cm,c=2cm,d=cm4.(3分)在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.5.(3分)已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.2B.C.3D.46.(3分)如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=α.则α的值为()A.135°B.120°C.110°D.100°7.(3分)抛物线y=ax2+bx+c上部分点坐标如表所示,下列说法错误的是()x…﹣3﹣2﹣101…y…﹣60466…A.抛物线与y轴的交点为(0,6)B.抛物线的对称轴是在y轴的右侧C.抛物线一定经过点(3,0)D.在对称轴左侧,y随x增大而减小8.(3分)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.4二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)若,则锐角α=.10.(3分)已知3,a,4,b,5这五个数据,其中a、b是方程x2﹣3x+2=0的两个根,则这五个数据的极差是.11.(3分)若D,E,F分别为△ABC各边的中点,且△DEF的周长为9,则△ABC 的周长为.12.(3分)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.13.(3分)甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是.14.(3分)关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.15.(3分)已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为cm2.(结果保留π)16.(3分)如图∠DAB=∠CAE,请补充一个条件:,使△ABC∽△ADE.17.(3分)在△ABC中,(tanC﹣1)2+|﹣2cosB|=0,则∠A=.18.(3分)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D 出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)(1)计算:2sin30°+3cos60°﹣4tan45°(2)解方程:x2﹣2x﹣1=0.20.(8分)某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲9582888193798478乙8392809590808575(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.21.(8分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率.22.(8分)如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE 交CD于点F.(1)求证:△ABE∽△DEF.(2)求CF的长.23.(10分)如图,ABCD是围墙,AB∥CD,∠ABC=120°,一根6m长的绳子,一端拴在围墙一角的柱子上(B处),另一端拴着一只羊(E处).(1)请在图中画出羊活动的区域.(2)求出羊活动区域的面积.24.(10分)如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.(1)试判断线段BC、DE的数量关系,并说明理由;(2)若BC平分∠ABD,求证:线段FD是线段FG和FB的比例中项.25.(10分)大海中某小岛周围10km范围内有暗礁,一海轮在该岛的南偏西60°方向的某处,由西向东行驶了20km后到达该岛的南偏西30°方向的另一处,如果该海轮继续向东行驶,会有触礁的危险吗?(≈1.732).26.(10分)如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.27.(12分)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P 作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若Rt△AQP≌Rt△ACP≌Rt△BQP,求tanB的值;(3)已知AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值.28.(12分)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC 的面积之比为3:2.(1)求这条抛物线对应的函数关系式;(2)连接BD,试判断BD与AD的位置关系,并说明理由;(3)连接BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由.2017-2018学年江苏省盐城市阜宁县初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列统计量中,能够刻画一组数据的离散程度的是()A.方差或标准差B.平均数或中位数C.众数或频率D.频数或众数【解答】解:由于方差和极差反映数据的波动情况,所以能够刻画一组数据离散程度的统计量是方差或标准差.故选:A.2.(3分)在比例尺为1:38 000的城市交通地图上,某条道路的长为5cm,则它的实际长度为()A.0.19 km B.1.9 km C.19 km D.190 km【解答】解:设这条道路的实际长度为x,则,解得x=190000cm=1.9km.∴这条道路的实际长度为1.9km.故选:B.3.(3分)给出下列各组线段,其中成比例线段是()A.a=2cm,b=4cm,c=6cm,d=8cmB.a=cm,b=cm,c=cm,d=cmC.a=cm,b=cm,c=cm,d=2cmD.a=2cm,b=cm,c=2cm,d=cm【解答】解:A、2×8≠4×6,故选项错误;B、×≠×,故选项错误;C、×2≠×,故选项错误;D、2×=×2,故选项正确.故选:D.4.(3分)在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.【解答】解:设∠A、∠B、∠C所对的边分别为a、b、c,由于sinA==,∴cosB==故选:C.5.(3分)已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.2B.C.3D.4【解答】解:如图,连接OB,作OD⊥BC,∵BC=12,∴BD=BC=×12=6,∵△ABC是等边三角形,∴∠OBD=30°,∴OB=ODcos∠OBD=6×=3.故选:C.6.(3分)如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=α.则α的值为()A.135°B.120°C.110°D.100°【解答】解:∵∠ACB=a∴优弧所对的圆心角为2a∴2a+a=360°∴a=120°.故选:B.7.(3分)抛物线y=ax2+bx+c上部分点坐标如表所示,下列说法错误的是()x…﹣3﹣2﹣101…y…﹣60466…A.抛物线与y轴的交点为(0,6)B.抛物线的对称轴是在y轴的右侧C.抛物线一定经过点(3,0)D.在对称轴左侧,y随x增大而减小【解答】解:观察表格可知,抛物线与y轴的交点为(0,6);观察表格可知,抛物线对称轴为x==,抛物线的对称轴是在y轴的右侧,在对称轴左侧,y随x增大而增大,点(﹣2,0)的对称点为(3,0),错误的是D故选:D.8.(3分)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.4【解答】解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)若,则锐角α=60°.【解答】解:∵sinα=,∴α=60°,故答案为:60°.10.(3分)已知3,a,4,b,5这五个数据,其中a、b是方程x2﹣3x+2=0的两个根,则这五个数据的极差是4.【解答】解:x2﹣3x+2=0(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,故这五个数据为:1,2,3,4,5则这五个数据的极差是:5﹣1=4.故答案为:4.11.(3分)若D,E,F分别为△ABC各边的中点,且△DEF的周长为9,则△ABC 的周长为18.【解答】解:∵D,E,F分别为△ABC各边的中点,∴DE、EF、DF是△ABC的中位线,∴DE=BC,EF=AB,DF=AC,∴△ABC的周长=2△DEF的周长=2×9=18.故答案为:18.12.(3分)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是3200(1﹣x)2=2500.【解答】解:依题意得:两次降价后的售价为3200(1﹣x)2=2500,故答案为:3200(1﹣x)2=2500.13.(3分)甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是.【解答】解:∵甲、乙、丙3名学生随机排成一排拍照,共有甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲这6种等可能结果,而甲排在中间的只有2种结果,∴甲排在中间的概率为,故答案为:14.(3分)关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为c<1.【解答】解:∵关于x的方程x2+2x+c=0有两个不相等的实数根,∴△=22﹣4c=4﹣4c>0,解得:c<1.故答案为:c<1.15.(3分)已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为15πcm2.(结果保留π)【解答】解:底面圆的半径为3cm,则底面周长=6πc,侧面面积=×6π×5=15πcm2.16.(3分)如图∠DAB=∠CAE,请补充一个条件:∠D=∠B(答案不唯一),使△ABC∽△ADE.【解答】解:∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•A E时两三角形相似.故答案为:∠D=∠B(答案不唯一).17.(3分)在△ABC中,(tanC﹣1)2+|﹣2cosB|=0,则∠A=105°.【解答】解:∵(tanC﹣1)2+|﹣2cosB|=0,∴tanC﹣1=0,﹣2cosB=0,即tanC=1,cosB=,又∵B、C在同一个三角形中,∴B=30°,C=45°,∴A=180°﹣30°﹣45°=105°.故答案是105°.18.(3分)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D 出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为(1,).【解答】解:∵点A、B的坐标分别为(8,0),(0,2)∴BO=,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4设DP=a,则CP=4﹣a当BP所在直线与EC所在直线第一次垂直时,设BP与CE交于点F,则∠FCP=∠DBP又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴,即解得a1=1,a2=3(舍去)∴DP=1又∵PE=∴P(1,)故答案为:(1,)三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)(1)计算:2sin30°+3cos60°﹣4tan45°(2)解方程:x2﹣2x﹣1=0.【解答】解:(1)原式=2×+3×﹣4×1=1+﹣4=﹣;(2)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=±,所以x1=1+,x2=1﹣.20.(8分)某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲9582888193798478乙8392809590808575(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.【解答】解:(1)=(82+81+79+78+95+88+93+84)=85,=(92+95+80+75+83+80+90+85)=85.这两组数据的平均数都是85.这两组数据的中位数分别为83,84.(2)派甲参赛比较合适.理由如下:由(1)知=,∵=,s甲2<s乙2,∴甲的成绩较稳定,派甲参赛比较合适.注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,酌情给分.如派乙参赛比较合适.理由如下:从统计的角度看,甲获得8(5分)以上(含85分)的概率,乙获得8(5分)以上(含85分)的概率,∵P2>P1,∴派乙参赛比较合适.21.(8分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率.【解答】解:(1)甲乙两名学生AB两个书店购书的所有可能结果如图所示:从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,所以甲乙两名学生在不同书店购书的概率=;(2)甲乙丙三名学生到AB两个书店购书的所有可能的结果如图所示:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,所以甲乙丙到同一书店购书的概率==.22.(8分)如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE 交CD于点F.(1)求证:△ABE∽△DEF.(2)求CF的长.【解答】(1)证明:∵EF⊥BE,∴∠EFB=90°,∴∠DEF+∠AEB=90°.∵四边形ABCD为矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°,∴∠DEF=∠ABE,∴△ABE∽△DEF.(2)解:∵AD=12,AE=8,∴DE=4.∵△ABE∽△DEF,∴=,∴DF=,∴CF=CD﹣DF=6﹣=.23.(10分)如图,ABCD是围墙,AB∥CD,∠ABC=120°,一根6m长的绳子,一端拴在围墙一角的柱子上(B处),另一端拴着一只羊(E处).(1)请在图中画出羊活动的区域.(2)求出羊活动区域的面积.【解答】解:(1)如图所示:扇形MBN和扇形NCF即为所求;(2)由题意可得:∠NCF=60°,MB=BN=6m,NC=2m,羊活动区域的面积为:+=12π+π=π(m2).24.(10分)如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.(1)试判断线段BC、DE的数量关系,并说明理由;(2)若BC平分∠ABD,求证:线段FD是线段FG和FB的比例中项.【解答】(1)解:BC=DE,理由:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.在△CAB和△EAD中,,∴△CAB≌△EAD(SAS),∴BC=DE.(2)∵△BAC≌△DAE∴∠ABC=∠ADE,∵BC平分∠ABD,∴∠ABC=∠CBD,∴∠CBD=∠ADE又∵∠GFD=∠GFD,∴△FGD∽△FDB,∴,∴FD2=FG•FB.即线段FD是线段FG和FB的比例中项.25.(10分)大海中某小岛周围10km范围内有暗礁,一海轮在该岛的南偏西60°方向的某处,由西向东行驶了20km后到达该岛的南偏西30°方向的另一处,如果该海轮继续向东行驶,会有触礁的危险吗?(≈1.732).【解答】解:如图海轮在B处时位于A岛的南偏西60°,在C处时位于南偏西30°,作AD⊥BC于点D,∵∠BAD=60°,∠CAD=30°,∴∠BAC=30°,又∵∠ABC=30°,∴AC=BC=20,∴CD=AC=×20=10,AD==10 >10,因为A岛到海轮的航线的最短距离大于10,所以不可能触礁.26.(10分)如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.【解答】(1)证明:连接OD.∵O为AB中点,D为BC中点,∴OD∥AC.∵DF为⊙O的切线,∴DF⊥OD.∴DF⊥AC.(2)过O作OE⊥BD,则BE=ED.在Rt△BEO中,∠B=30°,∴OE=OB,BE=OB.∵BD=DC,BE=ED,∴EC=3BE=OB.在Rt△OEC中,tan∠BCO=.27.(12分)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P 作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若Rt△AQP≌Rt△ACP≌Rt△BQP,求tanB的值;(3)已知AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值.【解答】(1)证明:∵∠PQB=∠C=90°,∠B=∠B∴△PBQ∽△ABC;∴不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)解:∵Rt△AQP≌Rt△ACP,∴AQ=AC又Rt△AQP≌Rt△BQP,∴AQ=QB,∴AQ=QB=AC∴∠B=30°,∴tanB=.(3)解:设BP=x(0<x<4),由勾股定理,得AB=5,∵由(1)知,△PBQ∽△ABC,∴==,即==,∴PQ=x,QB=x,S△APQ=•P Q•AQ=﹣x2+x=﹣(x﹣)2+,∴当x=时,△APQ的面积最大,最大值是;28.(12分)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC 的面积之比为3:2.(1)求这条抛物线对应的函数关系式;(2)连接BD,试判断BD与AD的位置关系,并说明理由;(3)连接BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由.【解答】解:(1)根据△ABE与△ABC的面积之比为3:2及E(2,6),可得C (0,4).∴D(0,2).由D(0,2)、E(2,6)可得直线AD所对应的函数关系式为y=2x+2.当y=0时,2x+2=0,解得x=﹣1.∴A(﹣1,0).由A(﹣1,0)、C(0,4)、E(2,6)求得抛物线对应的函数关系式为y=﹣x2+3x+4.(2)BD⊥AD.求得B(4,0),通过相似或勾股定理逆定理证得∠BDA=90°,即BD⊥AD.(3)法1:求得M(,),AM=.由△ANB∽△ABM,得=,即AB2=AM•AN,∴52=•AN,解得AN=3.从而求得N (2,6).法2:由OB=OC=4及∠BOC=90°得∠ABC=45°.由BD ⊥AD 及BD=DE=2得∠AEB=45°.∴△AEB ∽△ABM ,即点E 符合条件,∴N (2,6).附加:初中数学几何模型【模型一】“一线三等角”模型:图形特征: 60°60°60° 45°45°45°运用举例: 1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标; x yB C AO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .l s 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
2017-2018学年江苏省盐城市七年级(下)期末数学试卷 (解析版)
2017-2018学年江苏省盐城市七年级(下)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)四边形的内角和为()A.180°B.360°C.540°D.720°2.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.3.(3分)下列由左到右的变形中,因式分解正确的是()A.x2﹣1=(x+1)(x﹣1)B.(x+1)2=x2+2x+1C.x2﹣2x+1=x(x﹣2)+1D.(x+1)(x﹣1)=x2﹣14.(3分)满足不等式x+1>0的最小整数解是()A.﹣1B.0C.1D.25.(3分)已知x2+4x+k是一个完全平方式,则常数k为()A.2B.﹣2C.4D.﹣46.(3分)用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x张制作盒身、y张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是()A.B.C.D.7.(3分)已知a=(﹣)0,b=﹣2﹣2,c=(﹣2)﹣2,则a、b、c的大小关系为()A.c<b<a B.a<b<c C.b<a<c D.b<c<a8.(3分)对于有理数x,我们规定{x}表示不小于x的最小整数,如{2.2}=3,{2}=2,{﹣2.5}=﹣2,若{}=3,则x的取值可以是()A.10B.20C.30D.40二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程)9.(3分)如图,直线a、b被直线c所截,a∥b,∠1=70°,则∠2=°.10.(3分)命题“若a=b,则﹣a=﹣b”的逆命题是.11.(3分)太阳的半径约为700000000米,数据700000000用科学记数法表示为.12.(3分)计算:(b2)3÷b=.13.(3分)如图,△ABC中,∠1=∠2,∠BAC=60°,则∠APB=°.14.(3分)已知方程组,则a+b+c=.15.(3分)计算:(﹣9)1009×()2018=.16.(3分)(2+1)(22+1)(24+1)(28+1)(216+1)+1=.三、解答题(本大题共有10小题,共72分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)分解因式:(1)x2﹣3x;(2)2a2﹣4a+2.18.(6分)解方程组:19.(6分)化简并求值:(n+2)(2n﹣1)﹣2n2,其中n=.20.(6分)利用数轴确定不等式组的解集.21.(6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作:(1)将△ABC先向右平移2个单位,再向上平移4个单位,画出平移后的△A1B1C1;(2)连接AA1、BB1,则线段AA1、BB1的位置关系为、数量关系为;(3)画出△ABC的AB边上的中线CD以及BC边上的高AE.22.(6分)已知:如图,是一个形如“5”字的图形,AC∥DE,AB∥CD,∠D+∠E=180°.求证:∠A=∠E.证明:∵(已知)∴∠A+∠C=180°()∵AC∥DE()∴∠=∠D()又∠D+∠E=180°(已知)∴∠A=∠E()23.(8分)已知关于x、y的二元一次方程组(1)若方程组的解满足x﹣y=4,求m的值;(2)若方程组的解满足x+y<0,求m的取值范围.24.(8分)一家公司加工蔬菜,有粗加工和精加工两种方式,如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?25.(8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元.小华:我有1元和5角的硬币共13枚,总币值小于8.5元.小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元.这三人身上哪一个的5角硬币最多呢?请写出解答过程.26.(12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去,请根据如下条件,证明定理.【定理证明】已知:△ABC(如图①).求证:∠A+∠B+∠C=180°.【定理推论】如图②,在△ABC中,有∠A+∠B+∠ACB=180°,点D是BC延长线上一点,由平角的定义可得∠ACD+∠ACB=180°,所以∠ACD=.从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=80°,∠DBC=150°,则∠ACB=°;(2)若∠A=80°,则∠DBC+∠ECB=°.【拓展延伸】如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=80°,∠P=150°,则∠DBP+∠ECP=°;(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=50°,则∠A和∠P的数量关系为;(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.2017-2018学年江苏省盐城市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)四边形的内角和为()A.180°B.360°C.540°D.720°【分析】根据多边形的内角和公式即可得出结果.【解答】解:四边形的内角和=(4﹣2)•180°=360°.故选:B.【点评】本题主要考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.2.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.【分析】根据平移的性质,结合图形对小题进行一一分析,选出正确答案.【解答】解:∵只有C的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:C.【点评】本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.(3分)下列由左到右的变形中,因式分解正确的是()A.x2﹣1=(x+1)(x﹣1)B.(x+1)2=x2+2x+1C.x2﹣2x+1=x(x﹣2)+1D.(x+1)(x﹣1)=x2﹣1【分析】直接利用因式分解的定义以及整式的乘法运算法则分别判断得出答案.【解答】解:A、x2﹣1=(x+1)(x﹣1),由左到右的变形中,因式分解正确,符合题意;B、(x+1)2=x2+2x+1,是整式乘法,不合题意;C、x2﹣2x+1=x(x﹣2)+1,不是因式分解,不合题意;D、(x+1)(x﹣1)=x2﹣1,是整式乘法,不合题意;故选:A.【点评】此题主要考查了公式法分解因式以及整式的乘法运算,正确掌握相关定义是解题关键.4.(3分)满足不等式x+1>0的最小整数解是()A.﹣1B.0C.1D.2【分析】先移项得出不等式的解集,在此范围内确定不等式的最小整数解可得.【解答】解:∵x+1>0,∴x>﹣1,则不等式的最小整数解为0,故选:B.【点评】本题考查的是解一元一次不等式,在解答此类题目是要注意,不等式的两边同时除以一个负数时不等号的符号要改变,这是此类题目的易错点.5.(3分)已知x2+4x+k是一个完全平方式,则常数k为()A.2B.﹣2C.4D.﹣4【分析】根据完全平方公式即可求出答案.【解答】解:∵(x+2)2=x2+4x+4,∴k=4,故选:C.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.6.(3分)用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x张制作盒身、y张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是()A.B.C.D.【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=18,再列出方程组即可.【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:.故选:B.【点评】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.7.(3分)已知a=(﹣)0,b=﹣2﹣2,c=(﹣2)﹣2,则a、b、c的大小关系为()A.c<b<a B.a<b<c C.b<a<c D.b<c<a【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:∵a =(﹣)0=1,b =﹣2﹣2=﹣,c =(﹣2)﹣2=, ∴b <c <a . 故选:D .【点评】此题主要考查了负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.8.(3分)对于有理数x ,我们规定{x }表示不小于x 的最小整数,如{2.2}=3,{2}=2,{﹣2.5}=﹣2,若{}=3,则x 的取值可以是( )A .10B .20C .30D .40【分析】由题意可知:规定{x }表示不小于x 的最小整数,当{}=3时,可以确定的取值范围,进而得到关于x 的一元一次不等式组,解之即可.【解答】解:有题意得:,解不等式①得:x >16, 解不等式②得:x ≤26, 不等式组的解集为16<x ≤26, 20符合x 的取值范围. 故选:B .【点评】本题考查解一元一次不等式组,根据数量关系,列出一元一次不等式组是解题的关键. 二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程) 9.(3分)如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= 70 °.【分析】由a ∥b ,根据两直线平行,同位角相等,即可求得∠3的度数,又由对顶角相等,即可求得∠2的度数.【解答】解:∵a ∥b , ∴∠3=∠1=70°, ∵∠2与∠3是对顶角,∴∠2=70°.故答案为:70.【点评】此题考查了平行线的性质与对顶角的运用.解题的关键是数形结合思想的应用.10.(3分)命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b.【分析】根据命题的逆命题进行解答即可.【解答】解:命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b,故答案为:若﹣a=﹣b,则a=b【点评】此题考查命题问题,关键是根据命题的题设和结论进行颠倒得出逆命题即可解答.11.(3分)太阳的半径约为700000000米,数据700000000用科学记数法表示为7×108.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:700000000=7×108,故答案为:7×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)计算:(b2)3÷b=b5.【分析】利用单项式除单项式法则计算即可得到结果.【解答】解:(b2)3÷b=b5,故答案为:b5【点评】此题考查了整式的除法,涉及的知识有:同底数幂的乘法,幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.13.(3分)如图,△ABC中,∠1=∠2,∠BAC=60°,则∠APB=120°.【分析】依据∠1=∠2,∠BAC=∠BAP+∠1=60°,即可得出∠BAP+∠2=60°,进而得到△ABP 中,∠P=180°﹣60°=120°.【解答】解:∵∠1=∠2,∠BAC=∠BAP+∠1=60°,∴∠BAP+∠2=60°,∴△ABP中,∠P=180°﹣60°=120°,故答案为:120.【点评】本题主要考查了三角形内角和定理的运用,解题时注意:三角形内角和是180°.14.(3分)已知方程组,则a+b+c=2.【分析】方程组三方程相加即可求出所求.【解答】解:,①+②+③得:2(a+b+c)=4,则a+b+c=2,故答案为:2【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.(3分)计算:(﹣9)1009×()2018=﹣1.【分析】直接利用幂的乘方运算法则以及积的乘方运算法则将原式变形得出答案.【解答】解:(﹣9)1009×()2018=(﹣32)1009×()2018=﹣32018×()2018=﹣(3×)2018=﹣1.故答案为:﹣1.【点评】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.16.(3分)(2+1)(22+1)(24+1)(28+1)(216+1)+1=232.【分析】原式乘以(2﹣1)后,利用平方差公式依次计算,合并即可得到结果.【解答】解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)+1=(22﹣1)(22+1)(24+1)(28+1)(216+1)+1=(24﹣1)(24+1)(28+1)(216+1)+1=(28﹣1)(28+1)(216+1)+1=(216﹣1)(216+1)+1=232﹣1+1=232.故答案为:232【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.三、解答题(本大题共有10小题,共72分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)分解因式:(1)x2﹣3x;(2)2a2﹣4a+2.【分析】(1)原式提取公因式即可得到结果;(2)原式提取2,再利用完全平方公式分解即可.【解答】解:(1)原式=x(x﹣3);(2)原式=2(a2﹣2a+1)=2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.(6分)解方程组:【分析】直接利用代入消元法解方程得出答案.【解答】解:,把②代入①得:2(1﹣y)+3y=5,解得:y=3,把有代入②得:x=1﹣3,解得:x=﹣2,故方程组的解为.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.19.(6分)化简并求值:(n+2)(2n﹣1)﹣2n2,其中n=.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,把n的值代入计算即可求出值.【解答】解:原式=2n2+3n﹣2﹣2n2=3n﹣2,当n=时,原式=1﹣2=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(6分)利用数轴确定不等式组的解集.【分析】先分别求出各不等式的解集,在数轴上表示出来,即可得出不等式组的解集.【解答】解:由①得x≥﹣2由②得x<1在数轴上表示不等式①、②的解集所以,不等式组的解集是﹣2≤x<1【点评】本题考查了解一元一次不等式组:先分别解几个不等式,然后把它们的解集的公共部分作为原不等式的解集;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”.也考查了利用数轴表示不等式的解集.21.(6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作:(1)将△ABC先向右平移2个单位,再向上平移4个单位,画出平移后的△A1B1C1;(2)连接AA1、BB1,则线段AA1、BB1的位置关系为AA1∥BB1、数量关系为AA1=BB1;(3)画出△ABC的AB边上的中线CD以及BC边上的高AE.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用平移的性质直接得出线段之间的关系;(3)利用基本作图方法得出CD,AE即可.【解答】解:(1)如图:△A1B1C1,即为所求;(2)线段AA1、BB1的位置关系为:AA1∥BB1、数量关系为:AA1=BB1;故答案为:AA1∥BB1,AA1=BB1;(3)如图所示:CD,AE即为所求.【点评】此题主要考查了平移变换以及平移的性质,正确得出对应点位置是解题关键.22.(6分)已知:如图,是一个形如“5”字的图形,AC∥DE,AB∥CD,∠D+∠E=180°.求证:∠A=∠E.证明:∵AB∥CD(已知)∴∠A+∠C=180°(两直线平行,同旁内角互补)∵AC∥DE(已知)∴∠C=∠D(两直线平行,内错角相等)又∠D+∠E=180°(已知)∴∠A=∠E(等角的补角相等)【分析】依据AB∥CD可得∠A+∠C=180°,依据AC∥DE可得∠C=∠D,再根据∠D+∠E=180°,即可得到∠A=∠E.【解答】解:∵AB∥CD(已知)∴∠A+∠C=180°(两直线平行,同旁内角互补)∵AC∥DE(已知)∴∠C=∠D(两直线平行,内错角相等)又∠D+∠E=180°(已知)∴∠A=∠E(等角的补角相等)故答案为:AB∥CD;两直线平行,同旁内角互补;已知;C;两直线平行,内错角相等;等角的补角相等.【点评】本题主要考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.23.(8分)已知关于x、y的二元一次方程组(1)若方程组的解满足x﹣y=4,求m的值;(2)若方程组的解满足x+y<0,求m的取值范围.【分析】(1)用加减消元法解出x和y的值,把x和y用含有m的式子表示,代入x﹣y=4,求出m 的值即可,(2)把x和y用含有m的式子表示,代入x+y<0,得到关于m的一元一次不等式,解之即可.【解答】解:(1),解得:,代入x﹣y=4得:m+2=4,解得:m=2,故m的值为2,(2)把x=2m﹣2,y=m﹣4代入x+y<0得:3m﹣6<0,解得:m<2,故m的取值范围为:m<2.【点评】本题考查解二元一次方程组和解一元一次不等式,解题的关键:(1)正确找出等量关系列出关于m的一元一次方程,(2)根据不等量关系列出关于m的一元一次不等式.24.(8分)一家公司加工蔬菜,有粗加工和精加工两种方式,如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?【分析】设粗加工蔬菜为x吨,精加工蔬菜为y吨,根据14天要加工完成150吨蔬菜,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设粗加工蔬菜为x吨,精加工蔬菜为y吨,根据题意得:,解得:.答:粗加工蔬菜为120吨,精加工蔬菜为30吨.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元.小华:我有1元和5角的硬币共13枚,总币值小于8.5元.小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元.这三人身上哪一个的5角硬币最多呢?请写出解答过程.【分析】设小军身上有1元硬币x枚,5角硬币y枚,根据13枚硬币共9元,即可得出关于x,y的二元一次方程组,解之可得出y的值;设小华身上有5角硬币m枚,则有1元硬币(13﹣m)枚,根据总币值小于8.5元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;设小峰身上有1元硬币a枚,5角硬币b枚,根据总币值4元,即可得出关于a,b的二元一次方程,结合a>0可得出b<8.综上,即可得出结论.【解答】解:设小军身上有1元硬币x枚,5角硬币y枚,根据题意得:,解得:,∴小军身上有5角硬币8枚;设小华身上有5角硬币m枚,则有1元硬币(13﹣m)枚,根据题意得:13﹣m+0.5m<8.5,解得:m>10,∴小军身上有5角硬币至少10枚;设小峰身上有1元硬币a枚,5角硬币b枚,根据题意得:a+0.5b=4,∴b=8﹣2a,∴小峰身上有5角硬币不超过8枚.综上所述,小华身上5角硬币最多.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及二元一次方程的应用,通过解方程(方程组、不等式)求出三人身上5角硬币的枚数(或范围)是解题的关键.26.(12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去,请根据如下条件,证明定理.【定理证明】已知:△ABC(如图①).求证:∠A+∠B+∠C=180°.【定理推论】如图②,在△ABC中,有∠A+∠B+∠ACB=180°,点D是BC延长线上一点,由平角的定义可得∠ACD+∠ACB=180°,所以∠ACD=∠A+∠ABC.从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=80°,∠DBC=150°,则∠ACB=70°;(2)若∠A=80°,则∠DBC+∠ECB=260°.【拓展延伸】如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=80°,∠P=150°,则∠DBP+∠ECP=230°;(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=50°,则∠A和∠P的数量关系为∠P=∠A+100°;(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.【分析】【定理证明】方法一:过点A作直线MN∥BC,根据平行线的性质和平角的定义可得结论;方法二:延长BC到点D,过点C作CE∥AB,根据平行线的性质和平角的定义可得结论;【定理推论】根据三角形的内角和定理和平角的定义可得结论;【初步运用】(1)根据三角形的外角等于与它不相邻的两个内角的和列式可得结论;(2)根据三角形的内角和得:∠ABC+∠ACB=100°,由两个平角的和可得结论;【拓展延伸】(1)连接AP,根据三角形内角和定理的推论可得等式,将两个等式相加可得结论;(2)如图⑤,设∠DBO=x,∠OCE=y,则∠DBO=∠OBP=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,综合可得结论;(3)如图⑥,作辅助线,构建三角形PQC,根据(1)的结论得:∠DBP+∠ECP=∠A+∠BPC,和角平分线的定义,证明∠MBP=∠PQC,可得结论.【解答】【定理证明】证明:方法一:过点A作直线MN∥BC,如图所示,∴∠MAB=∠B,∠NAC=∠C,∵∠MAB+∠BAC+∠NAC=180°,∴∠BAC+∠B+∠C=180°;(3分)方法二:延长BC到点D,过点C作CE∥AB,如图所示,∴∠A=∠ACE,∠B=∠ECD,∵∠ACB+∠ACE+∠ECD=180°,∴∠A+∠B+∠ACB=180°;(3分)【定理推论】∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠ABC,(4分)故答案为:∠A+∠ABC;【初步运用】(1)∵∠DBC=∠A+∠ACB,∴∠ACB=∠DBC﹣∠A=150°﹣80°=70°,故答案为:70;(5分)(2)∵∠A=80°,∴∠ABC+∠ACB=100°,∴∠DBC+∠ECB=360°﹣100°=260°,故答案为:260;(6分)【拓展延伸】(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=80°,∠P=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=80°+130°=230°,故答案为:230;(7分)(2)∠P=∠A+100°(9分)理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠DBO=∠OBP=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=50°,∴∠P=∠A+100°,故答案为:∠P=∠A+100°;(3)证明:延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN(12分)【点评】本题考查的是三角形内角和的证明、三角形外角的性质的推理及运用、平行线的性质,根据题意作出辅助线,构造出三角形是解答此题的关键.。
2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析
B.最大的负整数是﹣ 1
C.有理数包括正有理数和负有理数
D.一个有理数的平方总是正数
3.(2017?扬州)若数轴上表示﹣ 1 和 3 的两点分别是点 A 和点 B,则点 A 和点 B
之间的距离是(
)
A .﹣ 4
B.﹣ 2
C.2
D. 4
4.( 2017?长春) 3 的相反数是(
)
A .﹣ 3
B.﹣
C.
A .90°B. 120° C. 160° D. 180° 【分析】 因为本题中∠ AOC 始终在变化,因此可以采用 “设而不求 ”的解题技巧进 行求解. 【解答】 解:设∠ AOD=a ,∠ AOC=9°0 +a,∠ BOD=9°0 ﹣a, 所以∠ AOC +∠ BOD=9°0 +a+90°﹣a=180°. 故选 D. 二.填空题(每小题 3 分,共 24 分) 13.(2017?冷水滩区一模)若∠ α补角是∠ α余角的 3 倍,则∠ α= 45° . 【分析】 分别表示出∠ α补角和∠ α余角,然后根据题目所给的等量关系, 列方程 求出∠ α的度数. 【解答】 解:∠ α的补角 =180°﹣ α, ∠α的余角 =90°﹣α, 则有: 180°﹣ α=3(90°﹣α), 解得: α=45°. 故答案为: 45°. 14.(2017?枣庄阴平质检)已知∠ AOB=70°,∠ BOC=20°,OE 为∠ AOB 的平分
25.(12 分)(2017?岳阳) 我市某校组织爱心捐书活动,准备将一批捐赠的书打包
寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的
,结果打了
16 个包还多 40 本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书 一起,刚好又打了 9 个包,那么这批书共有多少本?
盐城市2018年中考数学试卷及答案解析
盐城市2018年初中毕业与升学考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.-2018的相反数是()A.2018B.-2018C.12018D.-120182.下列图形中,既是轴对称图形又是中心对称图形的是()3.下列运算正确的是()A.A2+a2=a4B.A3÷a=a3C.A2·a3=a5D.(a2)4=a64.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A.1.46×105B.0.146×106C.1.46×106D.146×1035.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()第5题图6.一组数据2,4,6,4,8的中位数为()A.2B.4C.6D.87.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°第7题图8.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.-2B.2C.-4D.4二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程,请将答案直接写在答题卡相应位置上)9.根据如图所示的车票信息,车票的价格为______元.第9题图10.要使分式1x-2有意义,则x的取值范围是______.11.分解因式:x2-2x+1=______.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为______.第12题图13.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=______.第13题图(x>0)的图象经过点D,交BC边于点E.14.如图,点D为矩形OABC的AB边的中点,反比例函数y=kx若△BDE的面积为1,则k=______.第14题图15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分,右图中,图形的相关数据:半径OA=2cm,∠AOB=120°,则右图的周长为______cm(结果保留π).第15题图16.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=______.第16题图三、解答题(本大题共有11小题,共100分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(本题满分6分)计算:π0-(12)-1+38.18.(本题满分6分)解不等式:3x -1≥2(x -1),并把它的解集在数轴上表示出来.19.(本题满分8分)先化简,再求值:(1-1x +1)÷x x 2-1,其中x =2+1.20.(本题满分8分)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.(本题满分8分)在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE =DF ,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.第21题图22.(本题满分8分)“安全教育平台”是中国教育协会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件,某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与B.家长和学生一起参与C.仅家长自己参与D.家长和学生都未参与第22题图请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了______名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.(本题满分10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为______件.(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.(本题满分10分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地,两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=______分钟时甲乙两人相遇,甲的速度为40米/分钟;(2)求出线段AB所表示的函数表达式.第24题图25.(本题满分10分)如图,在以线段AB 为直径的⊙O 上取一点C ,连接AC 、BC ,将△ABC 沿AB 翻折后得到△AB D.(1)试说明点D 在⊙O 上;(2)在线段AD 的延长线上取一点E ,使AB 2=AC ·AE ,求证:BE 为⊙O 的切线;(3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若BC =2,AC =4,求线段EF 的长.第25题图26.(本题满分12分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 点于E 、F .(1)若AB =6,AE =4,BD =2,则CF =______;(2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示.问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长之比为______(用含α的表达式表示).图①图②图③第26题图27.(本题满分14分)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(-1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(Ⅰ)若点P的横坐标为-12,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.第27题图2018盐城市2018年初中毕业与升学考试数学解析1.A 【解析】只有符号不同的两个数互为相反数,故选A.2.D 【解析】逐项分析如下:选项逐项分析结论A 不是轴对称图形,是中心对称图形 B 是轴对称图形,不是中心对称图形 C 是轴对称图形,不是中心对称图形 D既是轴对称图形,也是中心对称图形√3.C【解析】逐项分析如下:选项逐项分析结论A a 2+a 2=2a 2≠a 4 B a 3÷a =a 2≠a 3 C a 2·a 3=a 5√D(a 2)4=a 8≠a 64.A 【解析】科学记数法的一般形式为a ×10n ,其中1≤|a |<10,n 为原数整数位数减1,∴a =1.46,n =5,即146000=1.46×105.5.B 【解析】左视图是指自左向右看得到的图形,B 选项符合题意.6.B 【解析】先将2,4,6,4,8从小到大排列为:2,4,4,6,8,由于是5个数,所以中位数是中间的那个数,中位数是4.7.C 【解析】∵在⊙O 中AC ︵所对圆周角为∠ABC ,∠ADC ,∴∠ABC =∠ADC =35°,又∵AB 为直径,∴∠ACB =90°,∴在Rt △ABC 中,∠CAB =90°-35°=55°.8.B 【解析】由根的定义知x =1使方程两边相等,所以把x =1代入原方程,得:1+k -3=0,解得:k =2.9.77.510.x ≠2【解析】要使得分式有意义,需使分母不为零,即x -2≠0,故x ≠2.11.(x -1)212.49【解析】整个方格地板是9格,而阴影部分是4格,∴P (停在地板中阴影部分)=49.13.85°【解析】如解图所示,∵AB ∥CD ,∴∠4=∠2=40°+45°=85°,∴∠2=85.第13题解图14.4【解析】设D (a ,b ),∵点D 为AB 的中点,∴B (2a ,b ),又∵BC ∥AO ,∴点E 的横坐标为2a ,又∵点D 、E 都在反比例函数图象上,∴E (2a ,b 2),∴S △BDE =12BD ·BE =12(2a -a )(b -b 2)=1,即ab4=1,∴ab=4,∵点D 在反比例函数图象上,∴y =4x,k =4.15.83π【解析】由于题中左图是由若干个右图组成的图案,∴如解图,设弧AB 的中点为点C ,连接AC ,OC ,则∠AOC =12∠AOB =60°,OA =OC ,∴△AOC 为等边三角形,∴AO ︵=DB ︵=AC ︵,∴右图的周长为lAO ︵+lOB ︵+lAB ︵=60π×2180+60π×2180+120π×2180=83π.第15题解图16.154或307【解析】由题意可得,AC =6,BC =8,则AC BC =34,且AB =62+82=10,如解图①,当∠QPB =90°,AQ =PQ 时,满足条件,设PQ =3x ,则PB =4x ,∴BQ =(3x )2+(4x )2=5x ,∵PQ =AQ =3x ,∴3x =10-5x ,解得x =54,∴AQ =3x =154;如解图②,当∠PQB =90°,AQ =PQ 时,满足条件,∵tan ∠B =PQ QB =AC BC =34,∴设PQ =3x ,则BQ =4x ,∴AQ =PQ =3x ,∴3x +4x =10,解得x =107,∴AQ =3x =307.综上可知,AQ 的值为154或307.第16题解图17.解:原式=1-2+2=1.18.解:3x -1≥2x -23x -2x ≥1-2x ≥-1.将不等式的解集表示在数轴上如解图所示,第18题解图19.解:原式=x +1-1x +1·(x +1)(x -1)x =x -1当x =2+1时,原式=2+1-1= 2.20.解:(1)列表如下:P (拿到两个肉粽)=212=16.21.(1)证明:如解图,连接AC ,交BD 于点O ,∵四边形ABCD 是正方形,∴AB =AD ,∠ABD =∠ADB =45°,∴∠ABE =∠ADF =135°,∴在△ABE 和△ADF 中,=AD ,ABE =∠ADF ,=DF ,∴△ABE ≌△ADF (SAS);第21题解图(2)解:四边形AECF 是菱形,理由如下:∵四边形ABCD 是正方形,∴OA =OC ,OB =OD ,又∵BE =DF ,∴OB +BE =OD +DF ,∴OE =OF ,∴AC 与EF 互相平分,∴四边形AECF 是平行四边形,∵四边形ABCD 是正方形,∴AC ⊥BD ,∴AC ⊥EF ,∴四边形AECF 是菱形.22.解:(1)80÷20%=400(名),∴在这次调查抽样调查中,共调查了400名学生.(2)C 类共60名学生,总调查人数共有400名学生,∴C 类所对应扇形圆心角度数:60400×360°=54°.补全条形统计图如解图;各类情况条形统计图第22题解图【解法提示】400-80-60-20=240(名),∴B 类共有240名学生(3)∵“家长和学生都未参与”为D 类,∴20400×2000=100(人),答:根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数为100人.23.解:(1)∵每降低1元,平均每天可多售出2件,∴每降价3元,平均每天可多售出6件,共降价3元,则平均每天销售数量为26件;(2)设平均每件商品降低x 元,(40-x )(20+2x )=1200,解得:x =100或x =20,∵每件盈利不少于25元,∴40-x ≥25,解得:x ≤15,∴x =10,答:当每件商品降低10元时,该商品每天销售利润为1200元.24.解:(1)24,40;【解法提示】当y =0时,t =24分钟,甲乙两人相遇,∵乙先到达终点,∴B 点表示甲到达目的地时所用时间为60分钟,∴甲的速度为:2400÷60=40(米/分钟).(2)当t =24分钟时,甲乙两人相遇,∴甲乙的速度和为2400÷24=100(米/分钟),∵甲的速度为40米/分钟,∴乙的速度为60米/分钟,而A 点表示乙到达目的地,∴乙到达目的地所用时间为2400÷60=40(分钟).而此时甲乙两人相距:40×100-2400=1600(米)∴A 点坐标为(40,1600),B 的坐标为(60,2400)设线段AB 解析式为:y =kt +b ,将A ,B 两点代入,得:k +b =1600k +b =2400,∴线段AB 所表示的函数解析式为:y =40t (40≤t ≤60)25.解:(1)如解图,连接OD ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵△ABC 沿AB 翻折后得到△ABD ,∴△ABC ≌△ABD ,第25题解图∴∠ACB =∠ADB =90°,∵OA =OB ,∴OD =12AB =OB ,∴D 在⊙O 上;(2)∵△ABC ≌△ABD ,∴AC =AD 又AB 2=AC ·AE ,∴AB 2=AD ·AE ,即ADAB =ABAE ,在△ABD 和△AEB 中,∵∠BAD =∠BAE ,ADAB =ABAE ,∴△ABD ∽△AEB ,∴∠ADB =∠ABE =90°,(3)在Rt △ABC 中,∠C =90°,∴AB =AB 2+BC 2=25,由(2)得AB 2=AD ·AE ,∴AE =5,∴DE =AE -AD =1,在△BDF 和△ACF 中,∠F =∠F ,∠BDF =∠ACF =90°,∴△BDF ∽△ACF ,设EF =x ,BF =y ,则DF =x +1,CF =y +2,∴DF FC =BDAC =BFAF ,∴x +1y +2=24=yx +5,=53=103,∴EF =53.26.(1)解:4【解法提示】∵△ABC 是等边三角形,∴BC =AB =5,∠B =∠C =60°,∵AB =6,AE =4,∴BE =2,∵BE =2,∠B =60°,BD =2,∴△BDE 是等边三角形,∴∠BDE =60°,∵∠EDF =60°,∴∠FDC =60°,∵∠FCD =60°,∴△FDC 是等边三角形,∴CF =CD =BC -BD =4.(2)证明:∵∠EDF =60°,∴∠BDE +∠CDF =120°,∵∠C =60°,∴∠CDF +∠CFD =120°,∴∠BDE =∠CFD ,又∵∠B =∠C =60°,∴△EBD ∽△DCF ;【思考】存在,D 是中点,此时BD BC =12;第26题解图①【解法提示】如解图①,作DM ⊥AB 于M ,DN ⊥EF 于N ,DG ⊥CF 于G ,∵DE 平分∠BEF ,DF 平分∠CFE ,∴DM =DN =DG ,在△BMD 和△CGD中,B =∠C =60°BMD =∠CGD =90°=GD,∴△BMD ≌△CGD (AAS),∴BD =CD ,则BD BC =12,【探索】(1-cos α)∶1;第26题解图②【解法提示】∵AB =AC ,OB =OC ,∴∠B =∠C ,AO ⊥BC ,∵∠MON =∠B =α,∴易证△BOE ∽△CFO ,∴OB OE =CF OF ,∵OB =OC ,∴OC OE =CF OF,又∵∠EOF =∠C =α,∴△EOF ∽△OCF ∽△EBO ,∴∠BEO =∠OEF =∠COF ,∠BOE =∠EFO =∠CFO ,如解图②,作OP ⊥AB 于P ,OL ⊥EF 于L ,OQ ⊥CF 于Q ,∴OP =OL =OQ ,∴易得△EPO ≌ELO ,△LFO ≌△OFQ ,△APO ≌△AQO ,∴EL =EP ,FL =FQ ,AP =AQ ,∴C△AEF =AE +EF +AF =AE +EL +FL +AF =AE +EP +FQ +AF =AP +AQ =2AP ,C △ABC =2(AB +OB ),C △AEF C △ABC=2AP 2(AB +OB )=AP AB +OB =AP (AB -OB )(AB +OB )(AB -OB )=AP (AB -OB )OA 2=AP (AB -OB )AP ·AB =AB -OB AB =1-cos α,∴C △AEF 与C △NEF 之比为(1-cos α)∶1.27.解:(1)∵抛物线y =ax 2+bx +3经过点A (-1,0),B (3,0),∴把A (-1,0),B (3,0)代入y =ax 2+bx +3-b +3=0a +3b +3=0,=-1=2,∴抛物线表达式为y =-x 2+2x +3;(2)(Ⅰ)∵点P 横坐标为-12,直尺宽为4,点P 在点Q 的左侧,∴点Q 横坐标为72,∵P 、Q 两点都在抛物线y =-x 2+2x +3上,∴点P 坐标为(-12,74),点Q 坐标为(72,-94),设直线PQ 解析式为y =kx +c ,将P (-12,84),点Q (72,-94)-12k +c =74,+c =-94,=-1=54,∴直线PQ 解析式为y =-x +54,第27题解图如解图,过点D 作x 轴垂线,交PQ 于点H ,过点P 、Q 分别作DH 垂线,垂足分别为点M 、N设点D 坐标为(n ,-n 2+2n +3),则点H 坐标为(n ,n +54)∵点D 在线段PQ 上方∴DH =(-n 2+2n +3)-(-n +54)=-n 2+3n +74∵S △DPQ =S △PDH +S △PDH ,其中S △PDH =12DH ·PM ,S △QDH =12DH ·QN ,∴S △DPQ =12DH ·PM +12DH ·QN =12DH ·(PM +QN )=124DH =2DH ,∴S △DPQ =2(-n 2+3n +74)=-2(n -32)2+8∵-2<0,∴当n =32时,S △DPQ 取得最大值8,此时点D 坐标为(32,154).(Ⅱ)设点P 坐标为(m ,-m 2+2m +3).则点Q 横坐标为m +4,故点Q 坐标为(m +4,-m 2-6m -5)设直线PQ 解析式为y =kx +c将P 、Q 坐标代入y =kx +c =-2m -2=m 2+4m +3∴直线PQ 解析式为y =(-2m -2)x +m 2+4m +3如解图,设点D 坐标为(n ,-n 2+2n +3).则点H 坐标为(n ,m 2+4m +3-2mn -2n ).DH =-n 2+2n +3-(m 2+4m +3-2mn -2n )=-m 2-n 2+2mn -4m +4n=-(m -n )2-4(m -n )=-[(m -n )2+4(m -n )]=-[(m -n )2+4(m -n )+4-4]=-(m -n +2)2+4∵-1<0∴当m -n +2=0时DH 取得最大值4由(Ⅰ)得S △DPQ =2DH ,故S △DPQ 存在最大值,最大值为8.。
盐城市中考数学试卷 包含答案与解析
2017年江苏省盐城市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥3.(3分)下列图形中,是轴对称图形的是()A.B.C.D.4.(3分)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.85.(3分)下列运算中,正确的是()A.7a+a=7a2B.a2?a3=a6 C.a3÷a=a2D.(ab)2=ab26.(3分)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)请写出一个无理数.8.(3分)分解因式a2b﹣a的结果为.9.(3分)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为.10.(3分)若在实数范围内有意义,则x的取值范围是.11.(3分)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.12.(3分)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.13.(3分)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为.14.(3分)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB= °.15.(3分)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为.16.(3分)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B (2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:+()﹣1﹣20170.18.(6分)解不等式组:.19.(8分)先化简,再求值:÷(x+2﹣),其中x=3+.20.(8分)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.21.(8分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.22.(10分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.23.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.(10分)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.25.(10分)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F 与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.26.(12分)【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC 上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.27.(14分)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.2017年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017?随州)﹣2的绝对值是()A.2 B.﹣2 C.D.【考点】15:绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2017?盐城)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥【考点】U3:由三视图判断几何体.【分析】根据三视图即可判断该几何体.【解答】解:由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥,故选(C)【点评】本题考查三视图,解题的关键是熟练掌握几种常见几何体的三视图,本题属于基础题型.3.(3分)(2017?盐城)下列图形中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:D的图形沿中间线折叠,直线两旁的部分可重合,故选:D.【点评】本题考查了轴对称图形,掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)(2017?盐城)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.8【考点】W5:众数.【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据6,5,7.5,8.6,7,6中,6出现次数最多,故6是这组数据的众数.故选:B.【点评】此题主要考查了众数的定义,正确把握定义是解题关键.5.(3分)(2017?盐城)下列运算中,正确的是()A.7a+a=7a2B.a2?a3=a6 C.a3÷a=a2D.(ab)2=ab2【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.【解答】解:A、错误、7a+a=8a.B、错误.a2?a3=a5.C、正确.a3÷a=a2.D、错误.(ab)2=a2b2故选C.【点评】本题考查合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则,熟练掌握这些法则是解题的关键.6.(3分)(2017?盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.【考点】H6:二次函数图象与几何变换.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC?AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)(2017?盐城)请写出一个无理数.【考点】26:无理数.【分析】根据无理数定义,随便找出一个无理数即可.【解答】解:是无理数.故答案为:.【点评】本题考查了无理数,牢记无理数的定义是解题的关键.8.(3分)(2017?盐城)分解因式a2b﹣a的结果为 a(ab﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】根据提公因式法分解即可.【解答】解:a2b﹣a=a(ab﹣1),故答案为:a(ab﹣1).【点评】本题考查了分解因式,能正确分解因式是解此题的关键.9.(3分)(2017?盐城)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 5.7×104.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017?盐城)若在实数范围内有意义,则x的取值范围是 x≥3 .【考点】72:二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.11.(3分)(2017?盐城)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.【考点】X4:概率公式.【分析】共有3种情况,上方的正六边形涂红色的情况只有1种,利用概率公式可得答案.【解答】解:上方的正六边形涂红色的概率是,故答案为:.【点评】此题主要考查了概率,关键是掌握概率=所求情况数与总情况数之比.12.(3分)(2017?盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= 120 °.【考点】K8:三角形的外角性质;K7:三角形内角和定理.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠1=90°+30°=120°,故答案为:120.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.(3分)(2017?盐城)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为 5 .【考点】AB:根与系数的关系.【专题】11 :计算题.【分析】先根据根与系数的关系得到x1+x2=4,x1x2=1,然后把x1(1+x2)+x2展开得到x1+x2+x1x2,然后利用整体代入的方法计算即可.【解答】解:根据题意得x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.故答案为5.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.14.(3分)(2017?盐城)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB= 110 °.【考点】M5:圆周角定理.【分析】根据圆周角定理和圆内接四边形的性质即可得到结论.【解答】解:∵点C在上,点D在上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°,故答案为:110.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.(3分)(2017?盐城)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为π.【考点】O4:轨迹;R2:旋转的性质.【分析】如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短【解答】解:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB==,∴B运动的最短路径长为==π,故答案为π.【点评】本题考查旋转变换、轨迹.弧长公式、勾股定理等知识,解题的关键是确定旋转中心和旋转角的大小,属于中考常考题型.(2017?盐城)如图,曲线l是由函数y=16.(3分)在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B (2,2)的直线与曲线l相交于点M、N,则△OMN的面积为 8 .【考点】R7:坐标与图形变化﹣旋转;G5:反比例函数系数k的几何意义.【分析】由题意A(﹣4,4),B (2,2),可知OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴,利用方程组求出M、N的坐标,根据S△OMN =S△OBM﹣S△OBN计算即可.【解答】解:∵A(﹣4,4),B(2,2),∴OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由,解得或,∴M(1.6),N(3,2),∴S△OMN =S△OBM﹣S△OBN=?4?6﹣?4?2=8,故答案为8【点评】本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)(2017?盐城)计算:+()﹣1﹣20170.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:原式=2+2﹣1=3.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)(2017?盐城)解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,∴不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)(2017?盐城)先化简,再求值:÷(x+2﹣),其中x=3+.【考点】6D:分式的化简求值.【专题】11 :计算题;513:分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷(﹣)=÷=? =,当x=3+时,原式===.【点评】本题主要考查分式的化简求值,根据分式的混合运算顺序和法则将原式化简是解题的关键.20.(8分)(2017?盐城)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.【解答】解:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为:;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.【点评】此题考查了列表法或树状图法求概率.通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求事件A或B的概率.21.(8分)(2017?盐城)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】31 :数形结合.【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.【解答】解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:。
2017–2018学年度第一学期期末初三数学模拟试卷二(含答案)
= .故选 B.
二、填空题 (每小题 2 分,共 20 分) 11.x ≤2;12.5;13.8;14.3π;15.解:函数与 x 轴的另一交点的坐标是:(-3,0),
则一元二次方程的根是:x1=1,x=-3.故答案是:x1=1,x2=-3.;16.解:设 A 点坐标
为(0,a),(a>0),则 x2=a,解得 x= ,∴点 B( ,a), =a,则 x= ,
DE
AB=
.
17.现定义运算“★”,对于任意实数 a、b,都有 a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,
若 x★2=6,则实数 x 的值是
.
版权所有@蔡老师数学
- 2 - / 12
18.如图,AB 是⊙O 的弦,AB=4,点 C 是⊙O 上的一个动点,且∠ACB=45°.若点 M,N 分 别是 AB,BC 的中点,则 MN 长的最大值是 .
(2)设点 D 是线段 AB 上的动点,过点 D 作 y 轴的平行线交抛物线于点 E,求线段 DE
长度的最大值.
y
版权所有@蔡老师数学
CO B
Ax
- 4 - / 12
„„„„„„„„„„„„„„„„„„„„„„„装„„„„„订„„„„„线„„„„„„„„„„„„„„„„„„„„„„
.
学号
26.(8 分)如图,AP 是∠MAN 的平分线,B 是射线 AN 上的一点,以 AB 为直径作⊙O 交
19.解:原式=(4 3- 3)× 6…………………………………………………………2 分
=3 3× 6……………………………………………………………………4 分
= 9 2 ……………………………………………………………………6 分
盐城市中考数学试卷包含答案与解析
盐城市中考数学试卷包含答案与解析Love and liking, January 6, 20192017年江苏省盐城市中考数学试卷一、选择题:本大题共6个小题;每小题3分;共18分.在每小题给出的四个选项中;只有一项是符合题目要求的.1.3分﹣2的绝对值是A.2 B.﹣2 C.D.2.3分如图是某个几何体的主视图、左视图、俯视图;该几何体是A.圆柱B.球 C.圆锥D.棱锥3.3分下列图形中;是轴对称图形的是A.B.C.D.4.3分数据6;5;7.5;8.6;7;6的众数是A.5 B.6 C.7 D.85.3分下列运算中;正确的是A.7a+a=7a2B.a2 a3=a6C.a3÷a=a2D.ab2=ab26.3分如图;将函数y=x﹣22+1的图象沿y轴向上平移得到一条新函数的图象;其中点A1;m;B4;n平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9图中的阴影部分;则新图象的函数表达式是A.B.C.D.二、填空题每题3分;满分30分;将答案填在答题纸上7.3分请写出一个无理数.8.3分分解因式a2b﹣a的结果为.9.3分2016年12月30日;盐城市区内环高架快速路网二期工程全程全线通车;至此;已通车的内环高架快速路里程达57000米;用科学记数法表示数57000为.10.3分若在实数范围内有意义;则x的取值范围是.11.3分如图;是由大小完全相同的正六边形组成的图形;小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色;则上方的正六边形涂红色的概率是.12.3分在“三角尺拼角”实验中;小明同学把一副三角尺按如图所示的方式放置;则∠1=°.13.3分若方程x2﹣4x+1=0的两根是x1;x2;则x11+x2+x2的值为.14.3分如图;将⊙O沿弦AB折叠;点C在上;点D在上;若∠ACB=70°;则∠ADB=°.15.3分如图;在边长为1的小正方形网格中;将△ABC绕某点旋转到△A'B'C'的位置;则点B运动的最短路径长为.16.3分如图;曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的;过点A﹣4;4;B2;2的直线与曲线l相交于点M、N;则△OMN的面积为.三、解答题本大题共11小题;共102分.解答应写出文字说明、证明过程或演算步骤. 17.6分计算:+﹣1﹣20170.18.6分解不等式组:.19.8分先化简;再求值:÷x+2﹣;其中x=3+.20.8分为了编撰祖国的优秀传统文化;某校组织了一次“诗词大会”;小明和小丽同时参加;其中;有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗;其答案为“山重水复疑无路”.1小明回答该问题时;对第二个字是选“重”还是选“穷”难以抉择;若随机选择其中一个;则小明回答正确的概率是;2小丽回答该问题时;对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择;若分别随机选择;请用列表或画树状图的方法求小丽回答正确的概率.21.8分“大美湿地;水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生;要求每位同学选择且只能选择一个最想去的景点;下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息;解答下列问题:1求被调查的学生总人数;2补全条形统计图;并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;3若该校共有800名学生;请估计“最想去景点B“的学生人数.22.10分如图;矩形ABCD中;∠ABD、∠CDB的平分线BE、DF分别交边AD、BC 于点E、F.1求证:四边形BEDF是平行四边形;2当∠ABE为多少度时;四边形BEDF是菱形请说明理由.23.10分某商店在2014年至2016年期间销售一种礼盒.2014年;该商店用3500元购进了这种礼盒并且全部售完;2016年;这种礼盒的进价比2014年下降了11元/盒;该商店用2400元购进了与2014年相同数量的礼盒也全部售完;礼盒的售价均为60元/盒.12014年这种礼盒的进价是多少元/盒2若该商店每年销售这种礼盒所获利润的年增长率相同;问年增长率是多少24.10分如图;△ABC是一块直角三角板;且∠C=90°;∠A=30°;现将圆心为点O的圆形纸片放置在三角板内部.1如图①;当圆形纸片与两直角边AC、BC都相切时;试用直尺与圆规作出射线CO;不写作法与证明;保留作图痕迹2如图②;将圆形纸片沿着三角板的内部边缘滚动1周;回到起点位置时停止;若BC=9;圆形纸片的半径为2;求圆心O运动的路径长.25.10分如图;在平面直角坐标系中;Rt△ABC的斜边AB在y轴上;边AC与x轴交于点D;AE平分∠BAC交边BC于点E;经过点A、D、E的圆的圆心F恰好在y轴上;⊙F与y轴相交于另一点G.1求证:BC是⊙F的切线;2若点A、D的坐标分别为A0;﹣1;D2;0;求⊙F的半径;3试探究线段AG、AD、CD三者之间满足的等量关系;并证明你的结论.26.12分探索发现如图①;是一张直角三角形纸片;∠B=60°;小明想从中剪出一个以∠B为内角且面积最大的矩形;经过多次操作发现;当沿着中位线DE、EF剪下时;所得的矩形的面积最大;随后;他通过证明验证了其正确性;并得出:矩形的最大面积与原三角形面积的比值为.拓展应用如图②;在△ABC中;BC=a;BC边上的高AD=h;矩形PQMN的顶点P、N分别在边AB、AC上;顶点Q、M在边BC上;则矩形PQMN面积的最大值为.用含a;h的代数式表示灵活应用如图③;有一块“缺角矩形”ABCDE;AB=32;BC=40;AE=20;CD=16;小明从中剪出了一个面积最大的矩形∠B为所剪出矩形的内角;求该矩形的面积.实际应用如图④;现有一块四边形的木板余料ABCD;经测量AB=50cm;BC=108cm;CD=60cm;且tanB=tanC=;木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN;求该矩形的面积.27.14分如图;在平面直角坐标系中;直线y=x+2与x轴交于点A;与y轴交于点C;抛物线y=x2+bx+c经过A、C两点;与x轴的另一交点为点B.1求抛物线的函数表达式;2点D为直线AC上方抛物线上一动点;①连接BC、CD;设直线BD交线段AC于点E;△CDE的面积为S1;△BCE的面积为S2;求的最大值;②过点D作DF⊥AC;垂足为点F;连接CD;是否存在点D;使得△CDF中的某个角恰好等于∠BAC的2倍若存在;求点D的横坐标;若不存在;请说明理由.2017年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题;每小题3分;共18分.在每小题给出的四个选项中;只有一项是符合题目要求的.1.3分2017 随州﹣2的绝对值是A.2 B.﹣2 C.D.考点15:绝对值.分析根据负数的绝对值等于它的相反数解答.解答解:﹣2的绝对值是2;即|﹣2|=2.故选:A.点评本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.3分2017 盐城如图是某个几何体的主视图、左视图、俯视图;该几何体是A.圆柱B.球 C.圆锥D.棱锥考点U3:由三视图判断几何体.分析根据三视图即可判断该几何体.解答解:由于主视图与左视图是三角形;俯视图是圆;故该几何体是圆锥;故选C点评本题考查三视图;解题的关键是熟练掌握几种常见几何体的三视图;本题属于基础题型.3.3分2017 盐城下列图形中;是轴对称图形的是A.B.C.D.考点P3:轴对称图形.分析根据轴对称图形的概念求解.解答解:D的图形沿中间线折叠;直线两旁的部分可重合;故选:D.点评本题考查了轴对称图形;掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴;图形两部分折叠后可重合.4.3分2017 盐城数据6;5;7.5;8.6;7;6的众数是A.5 B.6 C.7 D.8考点W5:众数.分析直接利用众数的定义分析得出答案.解答解:∵数据6;5;7.5;8.6;7;6中;6出现次数最多;故6是这组数据的众数.故选:B.点评此题主要考查了众数的定义;正确把握定义是解题关键.5.3分2017 盐城下列运算中;正确的是A.7a+a=7a2B.a2 a3=a6C.a3÷a=a2D.ab2=ab2考点47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.分析根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.解答解:A、错误、7a+a=8a.B、错误.a2 a3=a5.C、正确.a3÷a=a2.D、错误.ab2=a2b2故选C.点评本题考查合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则;熟练掌握这些法则是解题的关键.6.3分2017 盐城如图;将函数y=x﹣22+1的图象沿y轴向上平移得到一条新函数的图象;其中点A1;m;B4;n平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9图中的阴影部分;则新图象的函数表达式是A.B.C.D.考点H6:二次函数图象与几何变换.分析先根据二次函数图象上点的坐标特征求出A、B两点的坐标;再过A作AC∥x轴;交B′B的延长线于点C;则C4;1;AC=4﹣1=3;根据平移的性质以及曲线段AB扫过的面积为9图中的阴影部分;得出AA′=3;然后根据平移规律即可求解.解答解:∵函数y=x﹣22+1的图象过点A1;m;B4;n;∴m=1﹣22+1=1;n=4﹣22+1=3;∴A1;1;B4;3;过A作AC∥x轴;交B′B的延长线于点C;则C4;1;∴AC=4﹣1=3;∵曲线段AB扫过的面积为9图中的阴影部分;∴AC AA′=3AA′=9;∴AA′=3;即将函数y=x﹣22+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象;∴新图象的函数表达式是y=x﹣22+4.故选D.点评此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识;根据已知得出AA′是解题关键.二、填空题每题3分;满分30分;将答案填在答题纸上7.3分2017 盐城请写出一个无理数.考点26:无理数.分析根据无理数定义;随便找出一个无理数即可.解答解:是无理数.故答案为:.点评本题考查了无理数;牢记无理数的定义是解题的关键.8.3分2017 盐城分解因式a2b﹣a的结果为aab﹣1.考点55:提公因式法与公式法的综合运用.分析根据提公因式法分解即可.解答解:a2b﹣a=aab﹣1;故答案为:aab﹣1.点评本题考查了分解因式;能正确分解因式是解此题的关键.9.3分2017 盐城2016年12月30日;盐城市区内环高架快速路网二期工程全程全线通车;至此;已通车的内环高架快速路里程达57000米;用科学记数法表示数57000为5.7×104.考点1I:科学记数法—表示较大的数.分析科学记数法的表示形式为a×10n的形式;其中1≤|a|<10;n为整数.确定n的值时;要看把原数变成a时;小数点移动了多少位;n的绝对值与小数点移动的位数相同.当原数绝对值≥1时;n是非负数;当原数的绝对值<1时;n是负数.解答解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.点评此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式;其中1≤|a|<10;n为整数;表示时关键要正确确定a的值以及n的值.10.3分2017 盐城若在实数范围内有意义;则x的取值范围是x≥3.考点72:二次根式有意义的条件.分析根据被开方数大于等于0列式进行计算即可求解.解答解:根据题意得x﹣3≥0;解得x≥3.故答案为:x≥3.点评本题考查了二次根式有意义的条件;知识点为:二次根式的被开方数是非负数.11.3分2017 盐城如图;是由大小完全相同的正六边形组成的图形;小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色;则上方的正六边形涂红色的概率是.考点X4:概率公式.分析共有3种情况;上方的正六边形涂红色的情况只有1种;利用概率公式可得答案.解答解:上方的正六边形涂红色的概率是;故答案为:.点评此题主要考查了概率;关键是掌握概率=所求情况数与总情况数之比.12.3分2017 盐城在“三角尺拼角”实验中;小明同学把一副三角尺按如图所示的方式放置;则∠1=120°.考点K8:三角形的外角性质;K7:三角形内角和定理.分析根据三角形的外角的性质计算即可.解答解:由三角形的外角的性质可知;∠1=90°+30°=120°;故答案为:120.点评本题考查的是三角形的外角的性质;掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.3分2017 盐城若方程x2﹣4x+1=0的两根是x1;x2;则x11+x2+x2的值为5.考点AB:根与系数的关系.专题11 :计算题.分析先根据根与系数的关系得到x1+x2=4;x1x2=1;然后把x11+x2+x2展开得到x1+x2+x1x2;然后利用整体代入的方法计算即可.解答解:根据题意得x1+x2=4;x1x2=1;所以x11+x2+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.故答案为5.点评本题考查了根与系数的关系:若x1;x2是一元二次方程ax2+bx+c=0a≠0的两根时;x1+x2=﹣;x1x2=.14.3分2017 盐城如图;将⊙O沿弦AB折叠;点C在上;点D在上;若∠ACB=70°;则∠ADB=110°.考点M5:圆周角定理.分析根据圆周角定理和圆内接四边形的性质即可得到结论.解答解:∵点C 在上;点D 在上;若∠ACB=70°;∴∠ADB +∠ACB=180°;∴∠ADB=110°;故答案为:110.点评本题考查了圆周角定理:在同圆或等圆中;同弧或等弧所对的圆周角相等;都等于这条弧所对的圆心角的一半.15.3分2017 盐城如图;在边长为1的小正方形网格中;将△ABC 绕某点旋转到△A'B'C'的位置;则点B 运动的最短路径长为 π . 考点O4:轨迹;R2:旋转的性质. 分析如图作线段AA′、CC′的垂直平分线相交于点P ;点P 即为旋转中心;观察图象可知;旋转角为90°逆时针旋转时B 运动的路径长最短解答解:如图作线段AA′、CC′的垂直平分线相交于点P ;点P 即为旋转中心;观察图象可知;旋转角为90°逆时针旋转时B 运动的路径长最短;PB==; ∴B 运动的最短路径长为==π;故答案为π.点评本题考查旋转变换、轨迹.弧长公式、勾股定理等知识;解题的关键是确定旋转中心和旋转角的大小;属于中考常考题型.16.3分2017 盐城如图;曲线l 是由函数y=在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的;过点A ﹣4;4;B2;2的直线与曲线l 相交于点M 、N ;则△OMN 的面积为 8 .考点R7:坐标与图形变化﹣旋转;G5:反比例函数系数k 的几何意义.分析由题意A ﹣4;4;B2;2;可知OA ⊥OB ;建立如图新的坐标系OB 为x′轴;OA 为y′轴;利用方程组求出M 、N 的坐标;根据S △OMN =S △OBM ﹣S △OBN 计算即可.解答解:∵A ﹣4;4;B2;2;∴OA ⊥OB ; 建立如图新的坐标系OB 为x′轴;OA 为y′轴.在新的坐标系中;A0;8;B4;0;∴直线AB 解析式为y′=﹣2x′+8; 由;解得或;∴M1.6;N3;2; ∴S △OMN =S △OBM ﹣S △OBN = 4 6﹣ 4 2=8;故答案为8点评本题考查坐标与图形的性质、反比例函数的性质等知识;解题的关键是学会建立新的坐标系解决问题;属于中考填空题中的压轴题.三、解答题本大题共11小题;共102分.解答应写出文字说明、证明过程或演算步骤. 17.6分2017 盐城计算:+﹣1﹣20170.考点2C :实数的运算;6E :零指数幂;6F :负整数指数幂.分析首先计算开方;乘方、然后计算乘法;最后从左向右依次计算;求出算式的值是多少即可.解答解:原式=2+2﹣1=3.点评此题主要考查了实数的运算;要熟练掌握;解答此题的关键是要明确:在进行实数运算时;和有理数运算一样;要从高级到低级;即先算乘方、开方;再算乘除;最后算加减;有括号的要先算括号里面的;同级运算要按照从左到右的顺序进行.另外;有理数的运算律在实数范围内仍然适用.18.6分2017 盐城解不等式组:.考点CB :解一元一次不等式组.分析分别求出每一个不等式的解集;根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解答解:解不等式3x﹣1≥x+1;得:x≥1;解不等式x+4<4x﹣2;得:x>2;∴不等式组的解集为x>2.点评本题考查的是解一元一次不等式组;正确求出每一个不等式解集是基础;熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.8分2017 盐城先化简;再求值:÷x+2﹣;其中x=3+.考点6D:分式的化简求值.专题11 :计算题;513:分式.分析原式括号中两项通分并利用同分母分式的减法法则计算;约分得到最简结果;把x 的值代入计算即可求出值.解答解:原式=÷﹣=÷==;当x=3+时;原式===.点评本题主要考查分式的化简求值;根据分式的混合运算顺序和法则将原式化简是解题的关键.20.8分2017 盐城为了编撰祖国的优秀传统文化;某校组织了一次“诗词大会”;小明和小丽同时参加;其中;有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗;其答案为“山重水复疑无路”.1小明回答该问题时;对第二个字是选“重”还是选“穷”难以抉择;若随机选择其中一个;则小明回答正确的概率是;2小丽回答该问题时;对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择;若分别随机选择;请用列表或画树状图的方法求小丽回答正确的概率.考点X6:列表法与树状图法;X4:概率公式.分析1利用概率公式直接计算即可;2画出树状图得到所有可能的结果;再找到回答正确的数目即可求出小丽回答正确的概率.解答解:1∵对第二个字是选“重”还是选“穷”难以抉择;∴若随机选择其中一个正确的概率=;故答案为:;2画树形图得:由树状图可知共有4种可能结果;其中正确的有1种;所以小丽回答正确的概率=.点评此题考查了列表法或树状图法求概率.通过列表法或树状图法展示所有等可能的结果求出n;再从中选出符合事件A或B的结果数目m;然后根据概率公式求事件A或B的概率.21.8分2017 盐城“大美湿地;水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生;要求每位同学选择且只能选择一个最想去的景点;下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息;解答下列问题:1求被调查的学生总人数;2补全条形统计图;并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;3若该校共有800名学生;请估计“最想去景点B“的学生人数.考点VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.专题31 :数形结合.分析1用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;2先计算出最想去D景点的人数;再补全条形统计图;然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;3用800乘以样本中最想去A景点的人数所占的百分比即可.解答解:1被调查的学生总人数为8÷20%=40人;2最想去D景点的人数为40﹣8﹣14﹣4﹣6=8人;补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;3800×=280;所以估计“最想去景点B“的学生人数为280人.点评本题考查了条形统计图:条形统计图是用线段长度表示数据;根据数量的多少画成长短不同的矩形直条;然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小;便于比较.22.10分2017 盐城如图;矩形ABCD中;∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.1求证:四边形BEDF是平行四边形;2当∠ABE为多少度时;四边形BEDF是菱形请说明理由.考点LB:矩形的性质;L7:平行四边形的判定与性质;L9:菱形的判定.分析1由矩形可得∠ABD=∠CDB;结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB;即可知BE∥DF;根据AD∥BC即可得证;2当∠ABE=30°时;四边形BEDF是菱形;由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°;结合∠A=90°可得∠EDB=∠EBD=30°;即EB=ED;即可得证.解答证明:1∵四边形ABCD是矩形;∴AB∥DC、AD∥BC;∴∠ABD=∠CDB;∵BE平分∠ABD、DF平分∠BDC;∴∠EBD=∠ABD;∠FDB=∠BDC;∴∠EBD=∠FDB;∴BE∥DF;又∵AD∥BC;∴四边形BEDF是平行四边形;2当∠ABE=30°时;四边形BEDF是菱形;∵BE平分∠ABD;∴∠ABD=2∠ABE=60°;∠EBD=∠ABE=30°;∵四边形ABCD是矩形;∴∠A=90°;∴∠EDB=90°﹣∠ABD=30°;∴∠EDB=∠EBD=30°;∴EB=ED;又∵四边形BEDF是平行四边形;∴四边形BEDF是菱形.点评本题主要考查矩形的性质、平行四边形、菱形;熟练掌握矩形的性质、平行四边形的判定与菱形的判定是解题的关键.23.10分2017 盐城某商店在2014年至2016年期间销售一种礼盒.2014年;该商店用3500元购进了这种礼盒并且全部售完;2016年;这种礼盒的进价比2014年下降了11元/盒;该商店用2400元购进了与2014年相同数量的礼盒也全部售完;礼盒的售价均为60元/盒.12014年这种礼盒的进价是多少元/盒2若该商店每年销售这种礼盒所获利润的年增长率相同;问年增长率是多少考点AD:一元二次方程的应用;B7:分式方程的应用.分析1设2014年这种礼盒的进价为x元/盒;则2016年这种礼盒的进价为x﹣11元/盒;根据2014年花3500元与2016年花2400元购进的礼盒数量相同;即可得出x的分式方程;解之经检验后即可得出结论;2设年增长率为m;根据数量=总价÷单价求出2014年的购进数量;再根据2014年的销售利润×1+增长率2=2016年的销售利润;即可得出m的一元二次方程;解之即可得出结论.解答解:1设2014年这种礼盒的进价为x元/盒;则2016年这种礼盒的进价为x﹣11元/盒;根据题意得:=;解得:x=35;经检验;x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.2设年增长率为m;2014年的销售数量为3500÷35=100盒.根据题意得:60﹣35×1001+a2=60﹣35+11×100;解得:a=0.2=20%或a=﹣2.2不合题意;舍去.答:年增长率为20%.点评本题考查了一元二次方程的应用以及分式方程的应用;解题的关键是:1找准等量关系;列出分式方程;2找准等量关系;列出一元二次方程.24.10分2017 盐城如图;△ABC是一块直角三角板;且∠C=90°;∠A=30°;现将圆心为点O的圆形纸片放置在三角板内部.1如图①;当圆形纸片与两直角边AC、BC都相切时;试用直尺与圆规作出射线CO;不写作法与证明;保留作图痕迹2如图②;将圆形纸片沿着三角板的内部边缘滚动1周;回到起点位置时停止;若BC=9;圆形纸片的半径为2;求圆心O运动的路径长.考点O4:轨迹;MC:切线的性质;N3:作图—复杂作图.分析1作∠ACB的平分线得出圆的一条弦;再作此弦的中垂线可得圆心O;作射线CO 即可;2添加如图所示辅助线;圆心O的运动路径长为;先求出△ABC的三边长度;得出其周长;证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形;得出∠OO1O2=60°=∠ABC、∠O1OO2=90°;从而知△OO1O2∽△CBA;利用相似三角形的性质即可得出答案.解答解:1如图①所示;射线OC即为所求;2如图;圆心O的运动路径长为;过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB;垂足分别为点D、F、G;过点O作OE⊥BC;垂足为点E;连接O2B;过点O2作O2H⊥AB;O2I⊥AC;垂足分别为点H、I;在Rt△ABC中;∠ACB=90°、∠A=30°;∴AC===9;AB=2BC=18;∠ABC=60°;∴C=9+9+18=27+9;△ABC∵O1D⊥BC、O1G⊥AB;∴D、G为切点;∴BD=BG;在Rt△O1BD和Rt△O1BG中;∵;∴△O1BD≌△O1BGHL;∴∠O1BG=∠O1BD=30°;在Rt△O1BD中;∠O1DB=90°;∠O1BD=30°;∴BD===2;∴OO1=9﹣2﹣2=7﹣2;∵O1D=OE=2;O1D⊥BC;OE⊥BC;∴O1D∥OE;且O1D=OE;∴四边形OEDO1为平行四边形;∵∠OED=90°;∴四边形OEDO1为矩形;同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形;又OE=OF;∴四边形OECF为正方形;∵∠O1GH=∠CDO1=90°;∠ABC=60°;∴∠GO1D=120°;又∵∠FO1D=∠O2O1G=90°;∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC;同理;∠O1OO2=90°;∴△OO1O2∽△CBA;∴=;即=;∴=15+;即圆心O运动的路径长为15+.点评本题主要考查作图﹣复杂作图、切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质;熟练掌握切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质是解题的关键.25.10分2017 盐城如图;在平面直角坐标系中;Rt△ABC的斜边AB在y轴上;边AC 与x轴交于点D;AE平分∠BAC交边BC于点E;经过点A、D、E的圆的圆心F恰好在y轴上;⊙F与y轴相交于另一点G.1求证:BC是⊙F的切线;2若点A、D的坐标分别为A0;﹣1;D2;0;求⊙F的半径;3试探究线段AG、AD、CD三者之间满足的等量关系;并证明你的结论.考点MR:圆的综合题.分析1连接EF;根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC;得到FE ∥AC;根据平行线的性质得到∠FEB=∠C=90°;证明结论;2连接FD;设⊙F的半径为r;根据勾股定理列出方程;解方程即可;3作FR⊥AD于R;得到四边形RCEF是矩形;得到EF=RC=RD+CD;根据垂径定理解答即可.解答1证明:连接EF;∵AE平分∠BAC;∴∠FAE=∠CAE;∵FA=FE;∴∠FAE=∠FEA;∴∠FEA=∠EAC;∴FE∥AC;∴∠FEB=∠C=90°;即BC是⊙F的切线;2解:连接FD;设⊙F的半径为r;则r2=r﹣12+22;解得;r=;即⊙F的半径为;3解:AG=AD+2CD.证明:作FR⊥AD于R;则∠FRC=90°;又∠FEC=∠C=90°;∴四边形RCEF是矩形;∴EF=RC=RD+CD;∵FR⊥AD;∴AR=RD;∴EF=RD+CD=AD+CD;∴AG=2FE=AD+2CD.点评本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质;掌握切线的判定定理是解题的关键.26.12分2017 盐城探索发现如图①;是一张直角三角形纸片;∠B=60°;小明想从中剪出一个以∠B为内角且面积最大的矩形;经过多次操作发现;当沿着中位线DE、EF剪下时;所得的矩形的面积最大;随后;他通过证明验证了其正确性;并得出:矩形的最大面积与原三角形面积的比值为.拓展应用如图②;在△ABC中;BC=a;BC边上的高AD=h;矩形PQMN的顶点P、N分别在边AB、AC上;顶点Q、M在边BC上;则矩形PQMN面积的最大值为.用含a;h的代数式表示灵活应用如图③;有一块“缺角矩形”ABCDE;AB=32;BC=40;AE=20;CD=16;小明从中剪出了一个面积最大的矩形∠B为所剪出矩形的内角;求该矩形的面积.实际应用如图④;现有一块四边形的木板余料ABCD;经测量AB=50cm;BC=108cm;CD=60cm;且tanB=tanC=;木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN;求该矩形的面积.考点LO:四边形综合题.分析探索发现:由中位线知EF=BC、ED=AB、由=可得;=PQ 拓展应用:由△APN∽△ABC知=;可得PN=a﹣PQ;设PQ=x;由S矩形PQMNPN═﹣x﹣2+;据此可得;灵活应用:添加如图1辅助线;取BF中点I;FG的中点K;由矩形性质知AE=EH=20、CD=DH=16;分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20;从而判断出中位线IK的两端点在线段AB和DE上;利用探索发现结论解答即可;。
2017-2018学年盐城市滨海县九年级上期末数学试卷(含答案解析)
数学试卷一、选择题(本大题共5小题,共15.0分)1. 一组数据1,2,3,4,2,2的众数是A. 1B. 2C. 3D. 4【答案】B【解析】解:在数据1,2,3,4,2,2中,2出现的次数最多,这组数据1,2,3,4,2,2的众数是2,故选:B.根据众数的定义即可得到结论.本题考查了众数的定义,熟记众数的定义是解题的关键.2. 如图,OA为的半径,弦于P点若,,则弦BC的长为A. 10B. 8C. 6D. 4【答案】B【解析】解:,,由勾股定理,得,由垂径定理,得,故选:B.根据勾股定理,可得BP,根据垂径定理,可得答案.本题考查了垂径定理,利用勾股定理得出BP的长是解题关键,又利用了垂径定理.3. 二次函数的图象顶点坐标是A. B. C. D. 【答案】C【解析】解:二次函数的图象的顶点坐标是.故选:C.根据顶点式的意义直接解答即可.本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:的顶点坐标为.4. 已知,是方程的两个根,则的值为A. 5B.C. 2D. 【答案】B【解析】解:,是方程的两个根,,故选:B.根据韦达定理即可得.本题考查了根与系数的关系:若,是一元二次方程的两根时,,.5.xy【答案】C【解析】解:由表格中的数据看出和更接近于0,故x应取对应的范围.故选:C.观察表格可知,y随x的值逐渐增大,的值在之间由负到正,故可判断时,对应的x的值在之间.本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.二、填空题(本大题共6小题,共18.0分)6. 如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m,旗杆底部与平面镜的水平距离为若小明的眼睛与地面的距离为,则旗杆的高度为______【答案】12【解析】解:如图,,,,由题意得,,∽,,即,.即旗杆的高度为12m.如图,,,,利用题意得,则可判断∽,然后利用相似比计算出DE的长.本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度利用杆或直尺测量物体的高度就是利用杆或直尺的高长作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.7. 二次函数的图象经过,则代数式的值为______.【答案】0【解析】解:二次函数的图象经过点,,,.故答案为0.把点代入函数解析式求出,然后即可得解.本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.8.x0123y2m2【答案】【解析】解:把,和,代入,解得,所以二次函数为,当时,,所以.故答案为.先把,和,代入二次函数解析式求出b、c,确定二次函数解析式,然后计算出自变量为2的函数值即可.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.9. 抛物线的对称轴是______.【答案】直线【解析】解:抛物线的对称轴是直线.故答案为:直线.因为顶点式,对称轴是,所以抛物线的对称轴是直线.此题主要考查了二次函数的性质,掌握抛物线顶点式,顶点坐标是,对称轴是是解题关键.10. 在如图所示的地板上行走,随意停下来时,站在黑色地板上的概率是______.【答案】【解析】解:观察这个图可知:黑色区域块的面积占总面积块的,故其概率为,故答案为:.根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率.11. 在一次飞镖比赛中,甲、乙两位选手各扔10次飞镖,如图记录了他们的比赛结果你认为两人中技术更好的是______,你的理由是______.【答案】乙;乙的平均成绩更高,成绩更稳定【解析】解:由图可知,乙的技术更好,因为乙的平均成绩更高,成绩更稳定;故答案为:乙;乙的平均成绩更高,成绩更稳定.可利用方差来比较稳定性,谁的稳定性好,就让谁去.此题考查方差的问题,方差的特征是解题的关键.三、计算题(本大题共1小题,共12.0分)12. 某企业接到一批产品的生产任务,按要求必须在15天内完成已知每件产品的售价为65元,工人甲第x天生产的产品数量为y件,y与x满足如下关系:工人甲第几天生产的产品数量为80件?设第x天生产的产品成本为P元件,P与x的函数图象如图,工人甲第x天创造的利润为W元.求P与x的函数关系式;求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?【答案】解:根据题意,得:若,得:,不符合题意;若,解得:.答:工人甲第14天生产的产品数量为80件;由图象知:当时,;当时,设,将,代入得:,,,综上,P与x的函数关系式为:;当时,,当时,,综上,W与x的函数关系式为:;当时,,,随x的增大而增大,当时,W最大为1000元;当时,,当时,W最大值为1280元,综上,第14天时,利润最大,最大利润为1280元.【解析】根据求得x即可;先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润单件利润销售量”列出函数解析式,由二次函数的性质求得最值即可.本题考查一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润售价成本,学会利用函数的性质解决最值问题.四、解答题(本大题共8小题,共75.0分)13. 已知二次函数的图象与y轴交于点.求m的值;求抛物线与x轴的交点坐标和它的顶点坐标;画出这个二次函数的图象;取什么值时,抛物线在x轴的上方?【答案】解:把代入得:;抛物线的表达式为:令得:,,抛物线与x轴的交点为,,抛物线顶点坐标为列表得:x0123y03430图象如图,.由图象可知:当时,抛物线在x轴上方.【解析】直接把点代入抛物线解析式求m,确定抛物线解析式;根据解析式确定抛物线的顶点坐标;根据解析式确定对称轴,开口方向,与x轴及y轴的交点,画出图象.可以通过的图象及计算得到.考查从图象中读取信息的能力考查二次函数的性质及图象画法,属于基础题.14. 如图,在平行四边形ABCD中,E是BC上的一点,且BE::2,AE交BD于点F,求:的值;与的周长比、面积的比.【答案】在平行四边形ABCD中,∽,,又::2,,.∽,.【解析】由∽,推出,又BE::2可得,即可解决问题;利用相似三角形的性质即可解决问题;本题考查相似三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15. 如图,AB、CD为两个建筑物,建筑物AB的高度为90米,从建筑物AB的顶部A点测得建筑物CD的顶部C点的俯角为,测得建筑物CD的底部D点的俯角为.求两建筑物底部之间水平距离BD的长度;求建筑物CD的高度结果保留根号【答案】解:根据题意得:,,,,,两建筑物底部之间水平距离BD的长度为90米;延长AE、DC交于点F,根据题意得四边形ABDF为正方形,,在中,,,又,,建筑物CD的高度为米.【解析】先根据平行线的性质得出,据此可得可得出结论;延长AE、DC交于点F,可得四边形ABDF为正方形,据此知,中求得,根据可得答案.本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角是向上看的视线与水平线的夹角、俯角是向下看的视线与水平线的夹角、熟记锐角三角函数的定义是解题的关键.16. 如图1,在矩形ABCD中,,BC8,动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,点P,Q运动速度均为每秒1个单位长度,当点Q到达点A时停止运动,点P也同时停止,连结PQ,设运动时间为秒.在点Q从B到A的运动过程中,当______时,;当______时,;求的面积S关于t的函数表达式,并写出t的取值范围;随着P、Q两点的运动,线段PQ的垂直平分线为L.如图2,当t经过点B时,求t的值.如图3,当t经过点A时,射线QP交AD于点E,求AE的长.【答案】3;【解析】解:由题意知,则,由得,解得;、,,,∽,,即,解得;故答案为:3、;如图1所示,过点P作于点H,,,则,,∽,,,,,,;如图2,当PQ的垂直平分线l经过点B时,,,,,,,;如图3,线段PQ的垂直平分线为l经过点A时,则,即,,;,过点E作交AC于点F,则,,,,,∽,,即,解得,,.由题意、,根据得解之可得t的值;时知∽,得,据此求解可得;过点P作于点H,,,证∽,求出,根据三角形面积公式求出即可;的垂直平分线l经过点B时,,证、得;线段PQ的垂直平分线为l经过点A时,由得,即,据此得,作,证∽得,据此求得x的值,从而得出答案.本题考查了四边形的综合问题,主要考查矩形性质,等腰三角形性质,线段垂直平分线性质,勾股定理,相似三角形的性质和判定的应用和学生分析问题和解决问题的能力,题目比较典型,但是有一定的难度.17. 小明家客厅里装有一种三位单极开关,分别控制着楼梯、客厅、走廊三盏电灯,按下任意一个开关均可打开对应的一盏电灯,因刚搬进新房不久,不熟悉情况.若小明任意按下一个开关,则下列说法正确的是______.A.小明打开的一定是楼梯灯B.小明打开的可能是卧室灯C.小明打开的不可能是客厅灯D.小明打开走廊灯的概率是若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.【答案】D【解析】解:小明家客厅里装有一种三位单极开关,分别控制着楼梯、客厅、走廊三盏电灯,小明任意按下一个开关,打开走廊灯的概率是,故选:D.画树状图得:共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,正好客厅灯和走廊灯同时亮的概率是.由小明家客厅里装有一种三位单极开关,分别控制着楼梯、客厅、走廊三盏电灯,直接利用概率公式求解即可求得答案;首先根据题意画出树状图,然后由树状图求得所有等可能的结果与正好客厅灯和走廊灯同时亮的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率,用到的知识点为:概率所求情况数与总情况数之比熟记求随机事件的概率公式是解题的关键.18. 解方程:计算:.【答案】解:原式或,.原式【解析】移项、提取公因式,即可求得答案;利用特殊角的三角函数值解答即可;本题主要考查了解一元二次方程和特殊角的三角函数求值,属于基础题.19. 如图,抛物线与x轴交于点、,与y轴交于点.求抛物线的表达式;将绕AB中点E旋转,得到.求点D的坐标;判断四边形ADBC的形状,并说明理由;在该抛物线对称轴上是否存在点F,使与相似?若存在,求所有满足条件的F点的坐标;若不存在,请说明理由.【答案】解:将、、代入,得:,解得:,抛物线的表达式为.过点D作轴于点H,如图1所示.将绕AB中点E旋转,得到,≌,,,,点D的坐标为.四边形ADBC是矩形,理由如下:将绕AB中点E旋转,得到,,,四边形ADBC是平行四边形.,,,,,,,是直角三角形,,四边形ADBC是矩形.、,对称轴为直线.由题意可得:,,.当∽时,,,,点F的坐标为或;当∽时,,,,点F的坐标为或综上所述:点F的坐标为或或或【解析】根据点A、B、C的坐标,利用待定系数法即可求出抛物线的表达式;过点D作轴于点H,根据旋转的性质可得出DH、AH的长度,结合点A的坐标,即可求出点D的坐标;利用旋转的性质可得出、,由平行四边形的判定定理可得出四边形ADBC是平行四边形,由点A、B、C的坐标可得出AB、AC、BC的长度,利用直角三角的逆定理可得出,进而可得出四边形ADBC是矩形;由点A、B的坐标可得出抛物线的对称轴,分∽和∽两种情况考虑,利用相似三角形的性质可求出点F的纵坐标,此题得解.本题考查了待定系数法求二次函数解析式、旋转的性质、平行四边形的判定、勾股定理逆定理、矩形的判定、二次函数的性质以及相似三角形的性质,解题的关键是:根据点的坐标,利用待定系数法求出二次函数表达式;利用旋转的性质求出OH、DH的长度;利用勾股定理逆定理找出;分∽和∽两种情况求出EF的长度.20. 如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若,.求的度数.求图中阴影部分的面积.【答案】解:连结OC为的切线又又而由知:又.【解析】连接OC,由过点C的切线交AB的延长线于点D,推出,推出,即,由,推出,推出,可得,推出,即可解决问题先求和扇形OCB的面积,进而可求出图中阴影部分的面积.本题主要考查切线的性质及扇形面积的计算,掌握过切点的半径与切线垂直是解题的关键,学会用分割法求阴影部分面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省盐城市2018年下学期期末模拟试卷初三数学试卷(考试时间:120分钟 卷面总分:150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1、31-的相反数是 ( ) A .3 B .-3 C .31 D .31- 2、下列计算正确的是( )A .﹣3a+2a=﹣aB .(3a 2)2=6a 4C .a 6+a 2=a 3D .2a+3b=5ab3、如图,观察这个立体图形,它的俯视图是( )A .B .C .D .4、下列各式中,与xy 2是同类项的是( )A .-2xy 2B .2x 2yC .xyD .x 2y 25、如图,已知AB ∥CD ,∠C=65°,∠E=30°,则∠A 的度数为( )A .30°B .32.5°C .35°D .37.5°6. 若x -1+(y +2)2=0,则(x +y)2016等于( )A.-1B.1C.32016D.-32016第5题 第7题7、将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上,点A 、B 的读数分别为86°、30°,则∠ACB 的度数为( )A 、15°B 、28°C 、29°D 、34°8、如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点。
点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是( )A 、225B 、325C 、6D 、12二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.若代数式23-x 有意义,则x 的取值范围是 . 10.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示为 元.11.若一个n 边形的内角和为900º,则n= .12.分解因式:2327x -= .13.甲、乙两名射击运动员各进行10次射击练习,总成绩均为95环,这两名运动员成绩的方差分别是20.6S =甲,20.4S =乙,则成绩更稳定的是 . 14.圆锥的底面半径为4cm ,母线长为5cm ,则这个圆锥的侧面积是 cm 2.15.一次函数y=kx+b 的图象如图所示,当y >0时,x 的取值范围是 .16、如图,已知菱形ABCD ,其顶点A ,B 在数轴对应的数分别为-4和1,则BC= .第16题 第18题17.如图,将△ABC 放在每个小正方形边长为1的网格中,点A ,B ,C 均在格点上,则tanA 的值是.18.如图,在△BDE 中,∠BDE=90°,BD =26,点D 的坐标是(7,0),∠BDO =15°,将△BDE 旋转到△ABC 的位置,点C 在BD 上,则旋转中心的坐标为 .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.(本题满分8分)(1)计算:1026142016)3(4-⎪⎭⎫ ⎝⎛+-⨯--+ (2))解方程:0322=--x x . 20.(本题满分8分)先化简,再求值:mm m m m 211122+-÷--,其中m 满足一元二次方程 0822=--m m .21.(本题满分8分)某校有A 、B 两个阅览室,甲、乙、丙三名学生各自随机选择其中的一个阅览室阅读.(1)下列事件中,是必然事件的为( )A .甲、乙同学都在A 阅览室B .甲、乙、丙同学中至少两人在A 阅览室C .甲、乙同学在同一阅览室D .甲、乙、丙同学中至少两人在同一阅览室(2)用画树状图的方法求甲、乙、丙三名学生在同一阅览室阅读的概率.22.(本题满分8分)为了开展阳光体育运动,某市教体局做了一个随机调查,调查内容是:每天锻炼是否超过1h 及锻炼未超过...1h ..的原因....他们随机调查了600名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2).根据图示,请回答以下问题:(1)“没时间”的人数是 ,并补全频数分布直方图;(2)2016年该市中小学生约40万人,按此调查,可以估计2016年全市中小学生每天锻炼超过1h 的约有 万人;(3)在(2)的条件下,如果计划2018年该市中小学生每天锻炼未超过1h 的人数降到7.5万人,求2016年至2018年锻炼未超过1h 人数的年平均降低.....的百分率.23.(本题满分10分)如图,已知E 、F 分别是平行四边形ABCD 的边BC 、AD 上的点,且BE=DF .(1)求证:四边形AECF 是平行四边形;(2)若1090BC BAC =∠=︒,,且四边形AECF 是菱形,求BE 的长.24.(本题满分10分)如图,小明在大楼45米高(即PH=45米,且PH ⊥HC )的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i (即tan ∠ABC )为1:3.(点P 、H 、B 、C 、A 在同一个平面上.点H、B、C在同一条直线上)(1)∠PBA的度数等于________度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:2≈1.414,3≈1.732).25.(本题满分10分)已知:如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC边相切于点D,连结AD.(1)求证:AD是∠BAC的平分线;(2)若AC= 3,BC=4,求⊙O的半径.26.(本题满分10分)某商场销售一种成本为每件30元的商品,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似看作一次函数y=-10x+600,商场销售该商品每月获得利润为w(元).(1)求w与x之间的函数关系式;(2)如果商场销售该商品每月想要获得2000元的利润,那么每月成本至少多少元?(3)为了保护环境,政府部门要求用更加环保的新产品替代该商品,商场销售新产品,每月的销量与销售价格之间的关系与原产品的销售情况相同,新产品的成本每件32元,若新产品每月的销售量不低于200件时,政府部门给予每件4元的补贴,试求定价多少元时,每月销售新产品的利润最大?求出最大的利润.27.(本题满分12分)已知矩形OABC在如图所示平面直角坐标系中,点B的坐标为(4,3),连B.、.接AC.动点P从点B出发,以2cm/s的速度,沿直线BC方向运动,运动到C为止(不包括端点.....C.),过点P作PQ∥AC交线段BA于点Q,以PQ为边向下作正方形PQMN,设正方形PQMN与△ABC 重叠部分图形面积为S(cm2),设点P的运动时间为t(s).(1)请用含t的代数式表示BQ长和N点的坐标;(2)求S与t之间的函数关系式,并指出t的取值范围;(3)如图2,点G 在边OC 上,且OG=1cm ,在点P 从点B 出发的同时,另有一动点E 从点O 出发,以2cm/s 的速度,沿x 轴正方向运动,以OG 、OE 为一组邻边作矩形OEFG .试求当点F 落在正方形PQMN 的内部(不含边界)时t 的取值范围.图1 图228.(本题满分12分)如图1,二次函数)0(2≠++=a c bx ax y 的图像与x 轴交于A (-1,0),B (-3,0),与y 轴交于C (0,3).(1)求二次函数的解析式和直线AC 的解析式.(2)点P 在抛物线上,以P 为圆心,210为半径的圆与直线AC 相切,求点P 坐标. (3)如图2,点D 、E 均在抛物线上,连接OD 、BD 、DE ,且BD =OD ,∠CDO =∠EDB ,求点D 和点E 坐标.图1 图2初三数学答案一、选择题1、C2、A3、D4、A5、C6、B7、B8、A二、填空题9、x ≠2 10、6.8×108 11、7 12、3(x+3)(x -3)13、乙 14、20π 15、x<2 16、517、21 18、(4,33)三、解答题19、(1)13…………………(4分) (2)x=6…………………(4分)(没检验扣1分)20、51,11-+-m …………………(8分) 21、(1)D …………………(2分) (2)41=P …………………(6分) 22、(1)300 ……(2分)(2)10 ……(2分) (3)50% ……(4分)23、(10分)(1)略 …………………(5分)(2)5 …………………(5分)24、(10分)(1)90°…………………(2分)(2)52.0…………………(8分)25、(10分) (1)略…………………(5分)(2)815=r …………………(5分) 26、(10分)解:(1)w =(x -30)(-10x +600)=-10x 2+900x -18000………………2分(2)由题意得,-10x 2+900x -18000=2000解得x 1=40,x 2=50……………………………………………………………4分 当x =40时,成本为30×(-10×40+600)=6000(元)当x =50时,成本为30×(-10×50+600)=3000(元)∴每月想要获得2000元的利润,每月成本至少3000元……………………6分(3)当y <200时,-10x +600<200,解得x >40w =(x -32)(-10x +600)=-10(x -46)2+1960∵a =-10<0,x >40,∴当x =46时,w 最大值=1960(元) ………………7分 当y ≥200时,-10x +600≥200,解得x ≤40w =(x -32+4)(-10x +600)=-10(x -44)2+2560……………………8分 ∵a =-10<0,∴抛物线开口向下,当32<x ≤40时,w 随x 的增大而增大 ∴当x =40时,w 最大值=2400(元) ……………………………………………9分 ∵1960<2400,∴当x =40时,w 最大∴定价每件40元时,每月销售新产品的利润最大,最大利润为2400元…10分27、(1)BQ=t ,则N 点坐标(4﹣t ,3﹣2t )…………………4分(2)解:S=t 2.0〈t≤. S=﹣3t 2+6t .<t 〈2.…………………4分 (3)<t<.…………………4分28、(1)33342+=++=x y x x y …………………4分(2)22133,221122133,2211-⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+-…………………4分 (3)D ⎪⎭⎫ ⎝⎛--43,23 E (-5,8) …………………4分。