2017-2018学年最新江苏省苏州市中考数学押题卷及答案解析

合集下载

2018年江苏省苏州市中考数学试卷含答案解析(Word版)

2018年江苏省苏州市中考数学试卷含答案解析(Word版)

2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.(3.00分)下列四个图案中,不是轴对称图案的是()A. B.C. D.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.5.(3.00分)计算(1+)÷的结果是()A.x+1 B. C. D.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120° D.130°8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.310.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.20.(5.00分)解不等式组:21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A 型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.2018年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.【点评】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3.00分)下列四个图案中,不是轴对称图案的是()A. B.C. D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.(3.00分)计算(1+)÷的结果是()A.x+1 B. C. D.【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】解:原式=(+)÷=•=,故选:B.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120° D.130°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.【点评】此题考查圆周角定理,关键是根据互补得出∠AOC的度数.8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.3【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.10.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12【分析】由tan∠AOD==可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=a3.【分析】根据同底数幂的除法解答即可.【解答】解:a4÷a=a3,故答案为:a3【点评】此题主要考查了同底数幂的除法,对于相关的同底数幂的除法的法则要求学生很熟练,才能正确求出结果.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是8.【分析】根据众数的概念解答.【解答】解:在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多,∴这组数据的众数是8,故答案为:8.【点评】本题考查的是众数的确定,一组数据中出现次数最多的数据叫做众数.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=﹣2.【分析】根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.【解答】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点评】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为80°.【分析】依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°.【解答】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=60°,∴∠BFA=20°+60°=80°,∴∠BED=80°,故答案为:80.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.【分析】由2πr1=、2πr2=知r1=、r2=,据此可得=,利用勾股定理计算可得.【解答】解:∵2πr1=、2πr2=,∴r1=、r2=,∴====,故答案为:.【点评】本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.【分析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt△ABC中,由勾股定理得:AC==5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2,∠B′AB=90°,即∠CMA=∠MAB=∠B=90°,∴CM=AB=2,AM=BC=,∴B′M=2﹣=,在Rt△B′MC中,由勾股定理得:B′C===5,∴S==,△AB′C∴5×AN=2×2,解得:AN=4,∴sin∠ACB′==,故答案为:.【点评】本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB 为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为2(结果留根号).【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.【点评】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+3﹣=3【点评】本题考查实数的运算,解题的关键是熟练运用运算法则,本题属于基础题型.20.(5.00分)解不等式组:【分析】首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可.【解答】解:由3x≥x+2,解得x≥1,由x+4<2(2x﹣1),解得x>2,所以不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【分析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【分析】(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1),答:参加这次调查的学生人数是50人;补全条形统计图如下:(2),答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3),答:估计该校选择“足球”项目的学生有96人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A 型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?【分析】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y 元,根据题意,得:,解得:,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.【点评】本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.【分析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【解答】解:(1)由x2﹣4=0得,x1=﹣2,x2=2,∵点A位于点B的左侧,∴A(﹣2,0),∵直线y=x+m经过点A,∴﹣2+m=0,解得,m=2,∴点D的坐标为(0,2),∴AD==2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′的坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2.【点评】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.【分析】(1)连接AC,根据切线的性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS证明△CDA≌△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.【解答】证明:(1)连接AC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.【点评】此题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.【分析】问题1:(1)先根据平行线分线段成比例定理可得:,由同高三角形面积的比等于对应底边的比,则==,根据相似三角形面积比等于相似比的平方得:==,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:=,分别表示和的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1的解法可知:===,根据相似三角形的性质得:=,可得结论;=S,解法二:如图3,连接AC交EF于M,根据AD=BC,可得=,得:S△ADCS△ABC=,由问题1的结论可知:=,证明△CFM∽△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论.【解答】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE∥BC,∴,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,即,故答案为:;(2)解法一:∵AB=4,AD=m,∴BD=4﹣m,∵DE∥BC,∴==,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴===,即=;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,∴△ADF∽△ABH,∴=,∴===,即=;问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD∥BC,∴△OAD∽△OBC,∴,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF∥BC,由问题1的解法可知:===,∵==,∴=,∴===,即=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=BC,∴=,=,∴S△ADC=S,S△ABC=,∴S△ADC由问题1的结论可知:=,∵MF∥AD,∴△CFM∽△CDA,∴===,=×S,∴S△CFM∴S=S△EMC+S△CFM=+×S=,△EFC∴=.【点评】本题考查了相似三角形的性质和判定、平行线分线段成比例定理,熟练掌握相似三角形的性质:相似三角形面积比等于相似比的平方是关键,并运用了类比的思想解决问题,本题有难度.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.。

(完整word版)2018年江苏省苏州市中考数学试卷(试卷+答案+解析)

(完整word版)2018年江苏省苏州市中考数学试卷(试卷+答案+解析)

2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)在下列四个实数中,最大的数是( )A.﹣3 B.0 C.D.2.(3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3。

84×104C.3.84×105D.3。

84×1063.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.4.(3分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.5.(3分)计算(1+)÷的结果是( )A.x+1 B.C.D.6.(3分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.7.(3分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为( )A.100°B.110°C.120°D.130°8.(3分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里9.(3分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2D.310.(3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为( )A.3 B.2C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3分)计算:a4÷a= .12.(3分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(3分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .14.(3分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.15.(3分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.16.(3分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.17.(3分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.18.(3分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E 在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).三、解答题(本题共10小题,共76分)19.(5分)计算:|﹣|+﹣()2.20.(5分)解不等式组:21.(6分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.22.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(8分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26.(10分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27.(10分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC 的面积为S,△DEC的面积为S′.(1)当AD=3时,= ;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.28.(10分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.2018年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【考点】2A:实数大小比较.菁优网版权所有【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.2.(3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为( )A.3。

2017江苏苏州市中考数学试卷解析

2017江苏苏州市中考数学试卷解析

2017年江苏省苏州市中考数学试卷满分:130分 版本:苏教版第Ⅰ卷(共30分)一、选择题(每小题3分,共10小题,合计30分) 1.(2017江苏苏州,1,3分)(—21)÷7的结果是 A .3B .—3C .13D .13-答案:B ,解析:根据有理数除法法则,同号得正,异号得负;除以一个不为0的数等于乘以其倒数.2.(2017江苏苏州,2,3分)有一组数据:2,5,5,6,7,这组数据的平均数为 A .3B .4C .5D .6答案:C ,解析:根据平均数的计算方法,2+5+5+6+7=55,故答案选C .3.(2017江苏苏州,3,3分)小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为 A .2B .2.0C .2.02D .2.03答案:D ,解析:根据“近似数的计算方法”,用四舍五入法将2.026精确到0.01的近似值,精确到百分位,则2.026≈2.03.4.(2017江苏苏州,4,3分)关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1B .—1C .2D .—2答案:A ,解析:根据一元二次方程有两个相等的实数根,即根的判别式.5.(2017江苏苏州,5,3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为 A .70B .720C .1680D .2370答案:C ,解析:根据用样本估计总体的统计思想,所以,故答案选C . 6.(2017江苏苏州,6,3分)若点A (m ,n )在一次函数y =3x +b 的图象上,且3m —n >2,则b 的取值范围为 A .b >2B .b >—2C .b <2D .b <—2答案:D ,解析:根据一次函数图象上点的特征,点A (m ,n )在一次函数y =3x +b 的图象上,则n =3m+b ,—b =3m —n ,所以—b >2,故答案为b <—2.7.(2017江苏苏州,7,3分)如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为=4401k k ∆-=⇒=702400=1680100⨯A .30°B .36°C .54°D .72°答案:B ,解析:根据“正多边形的定义:各边都相等,各角都相等”可计算出正五边形一个内角的度数∠A=108°,再根据等腰△ABE 两底角相等,可计算底角∠ABE=36°.8.(2017江苏苏州,8,3分)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程 a (x -2)2+1=0的实数根为A .x 1=0,x 2=4B .x 1=—2,x 2=6C . x 1=32,x 2=52D .x 1=—4,x 2=0答案:A ,解析:根据“二次函数图象上点的坐标特征”可得4a +1=0,a =-14,则21(2)104x --+=,解一元二次方程得x 1=0,x 2=4.9.(2017江苏苏州,9,3分)如图,在Rt △ABC 中,∠ACB=90°,∠A=56°.以BC 为直径的 O 交AB 于点D ,E 是O 上一点,且C CD E =,连接OE ,过点E 作EF ⊥OE ,交AC 的延长线于点F ,则∠F 的度数为A .92°B .108°C . 112°D .124°答案:C ,解析:根据“圆中圆心角圆周角性质”.∵∠ACB=90°,∠A=56°∴∠B=34°.在O 中,∵C CD E =,∴∠B=12∠CBD=∠COE =68°,∴∠F=112°,故答案选C . 10.(2017江苏苏州,10,3分)如图,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点.过点F 作FE ⊥AD ,垂足为E .将△AEF 沿点A 到点B 的方向平移,得到△AE 'F '.设P 、P '分别是EF 、E 'F '的中点,当点A '与点B '重合时,四边形PP 'CD 的面积为A .B .C .D .8答案:A ,解析:根据平移性质,四边形PP 'CD 为平行四边形,再通过做辅助线,构造直角三角形,利用三角函数求出平行四边形PP 'CD 的高的长度,进而求出□PP 'CD 的面积. 作DH ⊥AB ,PK ⊥AB ,FL ⊥AB ,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点,∴AF =4,EF =4,∴EL .∵P 是EF 的中点,∴PK ∵DH =∴□PP 'CD 的高为∴=82S =故答案选A .第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(2017江苏苏州,11,3分)计算:()22a = .答案:4a ,解析:根据“幂的乘方运算法则”,幂的乘方,底数不变,指数相乘,()224a a =.12.(2017江苏苏州,12,3分)如图,点D 在∠AOB 的平分线OC 上,点E 在OA 上,ED ∥OB , ∠1=25°,则∠AED 的度数为 .答案:50,解析:根据“平行线性质、三角形外角性质”,∵DE ∥OB ,∴∠EDO =∠1=25°.∵OD 平分∠AOB ,∴∠AOD =25°.∴∠AED =25°+25°=50°.13.(2017江苏苏州,13,3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.答案:8,解析:根据“中位数的定义”,计算中位数先按照从小到大的顺序排列,11个数据的中位数由第6个数据决定,故中位数是8.14.(2017江苏苏州,14,3分)因式分解:2441a a -+= .答案:()221a -,解析:根据“公式法分解因式:2222()a ab b a b ++=+”,()2244121a a a -+=-.15.(2017江苏苏州,15,3分)如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是 .答案:13,解析:根据“轴对称图形定义”,有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是13.16.(2017江苏苏州,16,3分)如图,AB 是O 的直径,AC 是弦,AC =3,∠BOC =2∠AOC .若用扇形OAC (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .答案:12,解析:根据“圆锥的侧面展开图的弧长等于地面圆的周长”,∵∠BOC =2∠AOC ,∠BOC +∠AOC =180°,∴∠AOC =60°.∴R =3.∴6032180l r ππ⨯==.∴r =12.2117.(2017江苏苏州,17,3分)如图,在一笔直的沿湖道路上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4km .游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为v 1、v 2,若回到A 、B 所用时间相等,则12v v = (结果保留根号).解析:根据“特殊角三角函数的应用”,作CD ⊥AB ,垂足为D ,∵AC =6,∠CAB=30°,∴CD =2.在Rt △BCD 中,∠CBD=45°,∴BC=.∵开往码头A 、B 的游船回到A 、B 所用时间相等,12v v ==.18.(2017江苏苏州,18,3分)如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边B C ''交CD 边于点G .连接BB '、CC ',若AD =7,CG =4,AB B G ''=,则CC BB '='(结果保留根号).D解析:根据“旋转的性质、勾股定理”,连接AG ,设DG =x ,则4AB B G x ''==+.在Rt AB G ∆'中,x 2+49=2(x +4)2,∴x =1.则AB =5,BC =7,∴CC BB'=='. 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(2017江苏苏州,19,5分)计算:()013π-+-.思路分析:根据“实数的运算法则”,计算绝对值、算数平方根、0次幂,即可得出答案. 解:.原式=1+2-1=2.20.(2017江苏苏州,20,5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.思路分析:根据“不等式组解集的求解方法”,先求出各不等式的解集,再利用数轴判断公共解集,即可求出不等式组的解集.解:解不等式○1得,44x +≥,解得3x ≥;解不等式○2得,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<.21.(2017江苏苏州,21,6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-.思路分析:分式的化简求值,先将括号内的进行通分,各分子、分母因式分解,再约分.解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =时,原式===.22.(2017江苏苏州,22,6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元. (1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式; (2)求旅客最多可免费携带行李的质量.思路分析:(1)用待定系数法求一次函数的表达式;(2)旅客最多可免费携带行李的质量就是y =0时x 的值.解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg .23.(2017江苏苏州,23,8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有名男生、名女生的概率.思路分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.解:(1)m =8,n =3; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:该组频数数据总数360⨯︒也可使用树状图.由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有8种可能.P ∴( 名男生、名女生)82123==. 24.(2017江苏苏州,24,8分)如图,∠A=∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .(1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数.思路分析:(1)用ASA 证明两三角形全等;(2)利用全等三角形的性质得出EC =ED ,∠C=∠BDE ,再利用等腰三角形性质:等边对等角,即可求出底角∠BDE =69°.解:(1)证明:∵AE 和BD 相交于点O ,AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠.在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠.在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=,69BDE C ∴∠=∠=.25.(2017江苏苏州,25,8分)如图,在△ABC 中,AC =BC ,AB ⊥x 轴,垂足为A .反比例函数ky x=(0x >)的图像经过点C ,交AB 于点D .已知AB =4,BC =52. (1)若OA =4,求k 的值;(2)连接OC ,若BD =BC ,求OC 的长.思路分析:(1)利用勾股定理,先求出C 的坐标,再代入反比例函数即可;(2)利用勾股定理,求OC 的长度.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴点的坐标为5,22⎛⎫⎪⎝⎭,点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=.,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. 点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,222,OC OF CF OC =+∴=. 26.(2017江苏苏州,26,10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形ABCD 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为个单位长度/,移动至拐角处调整方向需要(即在B 、C 处拐弯时分别用时).设机器人所用时间为t (s )时,其所在位置用点P 表示,P 到对角线BD 的距离(即垂线段PQ 的长)为d 个单位长度,其中d 与的函数图像如图②所示. (1)求AB 、BC 的长;(2)如图②,点M 、N 分别在线段EF 、GH 上,线段MN 平行于横轴,M 、N 的横坐标分别为t 1、t 2.设机器人用了t 1(s )到达点P 1处,用了t 2(s )到达点P 2处(见图①).若CP 1+CP 2=7,求t 1、t 2的值.思路分析:根据“特殊角三角函数值,平行线分线段成比例定理”,(1)利用勾股定理求出BT ,再利用正切值求出BC ;(2)平行线分线段成比例定理列出方程,即可求解.解:(1)作,AT BD ⊥ 垂足为T ,由题意得,248,5AB AT ==. 在Rt ABT ∆中,22232,.5AB BT AT BT =+∴= tan ,6,AD AT ABD AD AB BT∠==∴= 即6BC =.(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ P Q . 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20CP t CP t t t =-=-∴==.27.(2017江苏苏州,27,10分)如图,已知△ABC 内接于O ,AB 是直径,点D 在O 上,OD∥BC ,过点D 作DE ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:△DOE ∽△ABC ;(2)求证:∠ODF =∠BDE ;(3)连接OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若1227S S =,求sinA 的值.思路分析:(1)利用两角对应相等,证明两三角形相似;(2)相似三角形对应角相等,同弧所对的圆周角相等;(3)转化角度,放在直角三角形ODE 中,即可求∠A 的正弦值.解:(1)AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠.//,OD BC DOE ABC ∴∠=∠,DOE ∴∆∽ABC ∆.(2)DOE ∆∽ABC ∆.ODE A A ∴∠=∠∠和BDC ∠是BC 所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭∽ ,即144ABC DOE S S S ∆∆== , OA OB =,12BOC ABC S S ∆∆∴= , 即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++ , 112DBE S S ∆∴= ,12BE OE ∴= , 即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠==. 28.(2017江苏苏州,28,10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,OB =OC .点D 在函数图像上,CD ∥x 轴,且CD =2,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段OC 上的点F 关于直线的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.思路分析:(1)根据二次函数的对称轴公式,抛物线上的点代入,即可求出c 的值;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值.解:(1)CD x 轴,2CD = ,∴抛物线对称轴为直线 1.l x =: ∴()1, 2.,0,2b b OB OC Cc -==-=∴点B 的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c =(舍去), 3.c ∴=-(2)设点F 的坐标为()0,.m 对称轴为直线1l x =:,∴点F 关于直线的对称点F 的坐标为()2,m .直线BE 经过点()()3,0,1,4,B E -∴利用待定系数法可得直线BE 的表达式为26y x =-. 因为点F 在BE 上,∴2262m =⨯-=-,即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++ ∴1QR =.①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n n n -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴=时,NQ 取最小值.此时Q 点的坐标为115,.24⎛⎫- ⎪⎝⎭②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +-同理,()221121,2NQ n n =+-∴= 时,NQ 取最小值.此时Q 点的坐标为315,.24⎛⎫- ⎪⎝⎭ 综上所述:满足题意得点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

2017年江苏省苏州市中考数学试卷(解析版)

2017年江苏省苏州市中考数学试卷(解析版)

5. (3 分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、 无所谓”三种意见.现从学校所有 2400 名学生中随机征求了 100 名学生的意见,其中持 “反对”和“无所谓”意见的共有 30 名学生,估计全校持“赞成”意见的学生人数约为 ( A.70 ) B.720 C.1680 D.2370
25. (8 分)如图,在△ABC 中,AC=BC,AB⊥x 轴,垂足为 A.反比例函数 y= (x>0) 的图象经过点 C,交 AB 于点 D.已知 AB=4,BC= . (1)若 OA=4,求 k 的值; (2)连接 OC,若 BD=BC,求 OC 的长.
A.92°
B.108°
C.112°
D.124°
10. (3 分)如图,在菱形 ABCD 中,∠A=60°,AD=8,F 是 AB 的中点.过点 F 作 FE ⊥AD, 垂足为 E. 将△AEF 沿点 A 到点 B 的方向平移, 得到△A'E'F'. 设 P、 P'分别是 EF、 E'F'的中点,当点 A'与点 B 重合时,四边形 PP'CD 的面积为( )
பைடு நூலகம்
6. (3 分)若点 A(m,n)在一次函数 y=3x+b 的图象上,且 3m﹣n>2,则 b 的取值范围 为( A.b>2 ) B.b>﹣2 C.b<2 D.b<﹣2 )
7. (3 分)如图,在正五边形 ABCDE 中,连接 BE,则∠ABE 的度数为(
A.30°
B.36°
2
C.54°
D.72°
2
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为
(3)从选航模项目的 4 名学生中随机选取 2 名学生参加学校航模兴趣小组训练,请用列 举法(画树状图或列表)求所选取的 2 名学生中恰好有 1 名男生、1 名女生的概率.

2017年江苏省苏州市中考数学试卷及答案解析

2017年江苏省苏州市中考数学试卷及答案解析

()
A. 3
B. 4
C. 5
D. 6
卷 3.小亮用天平称得一个罐头的质量为 2.026 kg ,用四舍五入法将 2.026 精确到 0.01的近
似值为
()
03
4.关于 x 的一元二次方程 x2 2x k 0 有两个相等的实数根,则 k 的值为
()
D. x1 4 , x2 0
9.如图,在 Rt△ABC 中,∠ACB =90 ,∠A =56 .以 BC 为直径的 O 交 AB 于点 D , E
是 O 上一点,且 CE CD ,连接 OE ,过点 E 作 EF⊥OE ,交 AC 的延长线于点 F ,则
F 的度数为
()
A. 92
B.108
绝密★启用前 在
江苏省苏州市 2017 年中考试卷
数学
本试卷满分 120 分,考试时间 120 分钟.
一、选择题(每小题 2 分,共 20 分) 此 1. (21) 7 的结果是
()
A. 3
B. 3
C. 1
3
D. 1 3
2.有一组数据: 2 , 5 , 5 , 6 , 7 , 这组数据的平均数为
v1 若回到 A、B 所用时间相等,则 v2
(结果保留根号).
18.如图,在矩形 ABCD 中,将∠ABC 绕点 A 按逆时针方向旋转一定角度后, BC 的对应 边 BC 交 CD 边于点 G .连接 BB、CC ,若 AD 7 , CG 4 , AB BG , 则 CC BB (结果保留根号).
22.(6 分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过 规定时,需付的行李费 y (元)是行李质量 x (kg) 的一次函数.已知行李质量为 20 kg

2018年江苏省苏州市中考数学试卷含答案解析(Word版)

2018年江苏省苏州市中考数学试卷含答案解析(Word版)

2018 年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共 30 分)1.(3.00 分)在以下四个实数中,最大的数是()A.﹣ 3 B.0C.D.2.( 3.00 分)地球与月球之间的均匀距离大概为384000km,384000 用科学记数法可表示为()A.3.84×103B.3.84×104C. 3.84×105D.3.84× 1063.(3.00 分)以下四个图案中,不是轴对称图案的是()A.B.C.D.4.(3.00 分)若在实数范围内存心义,则x 的取值范围在数轴上表示正确的是()A.B.C.D.5.(3.00 分)计算( 1+)÷的结果是()A.x+1 B.C.D.6.( 3.00 分)如图,飞镖游戏板中每一块小正方形除颜色外都同样.若某人向游戏板扔掷飞镖一次(假定飞镖落在游戏板上),则飞镖落在暗影部分的概率是()A.B.C.D.7.( 3.00 分)如图, AB 是半圆的直径, O 为圆心, C 是半圆上的点, D 是上的点,若∠ BOC=40°,则∠ D 的度数为()A.100°B.110°C.120°D.130°8.( 3.00 分)如图,某海监船以 20 海里 / 小时的速度在某海疆履行巡航任务,当海监船由西向东航行至 A 处时,测得岛屿 P 恰幸亏其正北方向,持续向东航行 1 小时抵达 B 处,测得岛屿 P 在其北偏西 30°方向,保持航向不变又航行 2 小时到达 C 处,此时海监船与岛屿P 之间的距离(即PC的长)为()A.40 海里 B.60 海里 C.20海里D.40海里9.(3.00 分)如图,在△ ABC中,延伸 BC至 D,使得 CD= BC,过 AC中点 E 作EF∥CD(点 F 位于点 E 右边),且 EF=2CD,连结 DF.若 AB=8,则 DF 的长为()A.3B.4C.2D.310.(3.00 分)如图,矩形 ABCD的极点 A,B 在 x 轴的正半轴上,反比率函数 y=在第一象限内的图象经过点D,交 BC于点 E.若 AB=4, CE=2BE,tan∠AOD= ,则 k 的值为()A.3B.2C.6D.12二、填空题(每题只有一个正确选项,本题共8 小题,每题 3 分,共24 分)11.( 3.00 分)计算: a4÷a=.12.(3.00 分)在“献爱心”捐钱活动中,某校 7 名同学的捐钱数以下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13 .( 3.00 分)若对于x 的一元二次方程x2+mx+2n=0 有一个根是 2 ,则m+n=.2215.( 3.00 分)如图,△ ABC 是一块直角三角板,∠ BAC=90°,∠ B=30°,现将三角板叠放在一把直尺上,使得点 A 落在直尺的一边上,AB 与直尺的另一边交于E,F.若∠ CAF=20°,则∠ BED的度数为°.点 D,BC与直尺的两边分别交于点16.(3.00 分)如图, 8×8 的正方形网格纸上有扇形OAB和扇形 OCD,点 O,A,B,C,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为 r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r 2,则的值为.17.(3.00 分)如图,在 Rt△ ABC中,∠ B=90°,AB=2,BC=.将△ ABC绕点A 按逆时针方向旋转90°获得△ AB'C′,连结 B'C,则 sin∠ACB′=.18.( 3.00 分)如图,已知 AB=8,P 为线段 AB 上的一个动点,分别以 AP,PB为边在AB的同侧作菱形 APCD和菱形 PBFE,点 P,C,E在一条直线上,∠ DAP=60°.M ,N 分别是对角线 AC, BE的中点.当点 P 在线段 AB 上挪动时,点 M , N 之间的距离最短为(结果留根号).三、解答题(每题只有一个正确选项,本题共10 小题,共 76 分)19.( 5.00分)计算: | ﹣ |+ ﹣()2.20.( 5.00分)解不等式组:21.(6.00 分)如图,点 A,F,C,D 在一条直线上, AB∥DE,AB=DE,AF=DC.求证: BC∥ EF.22.( 6.00 分)如图,在一个能够自由转动的转盘中,指针地点固定,三个扇形的面积都相等,且分别标有数字1,2,3.( 1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是 3 的倍数的概率(用画树状图或列表等方法求解).23.( 8.00 分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了预计全校学生对这四个活动项目的选择状况,体育老师从全体学生中随机抽取了部分学生进行检查(规定每人一定而且只好选择此中的一个项目),并把检查结果绘制成以下图的不完好的条形统计图和扇形统计图,请你依据图中信息解答以下问题:(1)求参加此次检查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有 600 名学生,试预计该校选择“足球”项目的学生有多少人?24.( 8.00 分)某学校准备购置若干台 A 型电脑和 B 型打印机.假如购置 1 台 A 型电脑, 2 台 B 型打印机,一共需要花销 5900 元;假如购置 2 台 A 型电脑, 2台 B 型打印机,一共需要花销9400 元.(1)求每台 A 型电脑和每台 B 型打印机的价钱分别是多少元?(2)假如学校购置 A 型电脑和 B 型打印机的估算花费不超出 20000 元,而且购买 B 型打印机的台数要比购置 A 型电脑的台数多 1 台,那么该学校至多能购置多少台 B 型打印机?25.( 8.00 分)如图,已知抛物线 y=x2﹣4 与 x 轴交于点 A,B(点 A 位于点 B 的左边),C 为极点,直线 y=x+m 经过点 A,与 y 轴交于点 D.(1)求线段 AD 的长;(2)平移该抛物线获得一条新拋物线,设新抛物线的极点为C′.若新抛物线经过点 D,而且新抛物线的极点和原抛物线的极点的连线CC′平行于直线 AD,求新抛物线对应的函数表达式.26.( 10.00 分)如图, AB 是⊙ O 的直径,点 C 在⊙ O 上, AD 垂直于过点 C 的切线,垂足为 D,CE垂直 AB,垂足为 E.延伸 DA 交⊙ O 于点 F,连结 FC, FC与AB 订交于点 G,连结 OC.(1)求证: CD=CE;(2)若 AE=GE,求证:△ CEO是等腰直角三角形.27.(10.00 分)问题 1:如图①,在△ ABC中, AB=4,D 是 AB 上一点(不与 A,B 重合),DE∥ BC,交 AC于点 E,连结 CD.设△ ABC的面积为 S,△ DEC的面积为 S′.( 1)当 AD=3时,=;( 2)设 AD=m,请你用含字母m 的代数式表示.问题 2:如图②,在四边形ABCD中, AB=4,AD∥ BC,AD= BC,E 是 AB 上一点(不与 A, B 重合),EF∥ BC,交 CD于点 F,连结 CE.设 AE=n,四边形 ABCD的面积为 S,△ EFC的面积为 S′.请你利用问题 1 的解法或结论,用含字母 n 的代数式表示.28.( 10.00 分)如图①,直线l 表示一条东西走向的笔挺公路,四边形ABCD是一块边长为 100 米的正方形草地,点A, D 在直线 l 上,小明从点 A 出发,沿公路l 向西走了若干米后抵达点E 处,而后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线 FC方向走到公路 l 上的点 G 处,最后沿公路 l 回到点 A 处.设AE=x米(此中 x> 0),GA=y米,已知 y 与 x 之间的函数关系如图②所示,(1)求图②中线段 MN 所在直线的函数表达式;(2)试问小明从起点 A 出发直至最后回到点 A 处,所走过的路径(即△ EFG)能否能够是一个等腰三角形?假如能够,求出相应 x 的值;假如不能够,说明原因.2018 年江苏省苏州市中考数学试卷参照答案与试题分析一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共 30 分)1.(3.00 分)在以下四个实数中,最大的数是()A.﹣ 3 B.0C.D.【剖析】将各数依照从小到大次序摆列,找出最大的数即可.【解答】解:依据题意得:﹣ 3<0<<,则最大的数是:.应选: C.【评论】本题考察了有理数大小比较,将各数依照从小到大次序摆列是解本题的重点.2.( 3.00 分)地球与月球之间的均匀距离大概为法可表示为()345 A.3.84×10B.3.84×10C. 3.84×10384000km,384000 用科学记数D.3.84× 106【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤| a| < 10,n 为整数.确定 n 的值是易错点,因为 384 000 有 6 位,因此能够确立 n=6﹣1=5.【解答】解: 384 000=3.84× 105.应选: C.【评论】本题考察科学记数法表示较大的数的方法,正确确立 a 与 n 值是重点.3.(3.00 分)以下四个图案中,不是轴对称图案的是()A.B.C.D.【剖析】依据轴对称的观点对各选项剖析判断利用清除法求解.【解答】解: A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.应选: B.【评论】本题考察了轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.4.(3.00 分)若在实数范围内存心义,则x 的取值范围在数轴上表示正确的是()A.B.C.【剖析】依据二次根式存心义的条件列出不等式,示即可.D.解不等式,把解集在数轴上表【解答】解:由题意得 x+2≥0,解得 x≥﹣ 2.应选: D.【评论】本题考察的是二次根式存心义的条件,掌握二次根式中的被开方数是非负数是解题的重点.5.(3.00 分)计算(1+)÷的结果是()A.x+1 B.C.D.【剖析】先计算括号内分式的加法、将除式分子因式分解,再将除法转变为乘法,约分即可得.【解答】解:原式 =(+)÷=?=,应选: B.【评论】本题主要考察分式的混淆运算,解题的重点是掌握分式混淆运算次序和运算法例.6.( 3.00 分)如图,飞镖游戏板中每一块小正方形除颜色外都同样.若某人向游戏板扔掷飞镖一次(假定飞镖落在游戏板上),则飞镖落在暗影部分的概率是()A.B.C.D.【剖析】依据几何概率的求法:飞镖落在暗影部分的概率就是暗影地区的面积与总面积的比值.【解答】解:∵总面积为 3×3=9,此中暗影部分面积为4×× 1× 2=4,∴飞镖落在暗影部分的概率是,应选: C.【评论】本题考察几何概率的求法:第一依据题意将代数关系用面积表示出来,一般用暗影地区表示所求事件(A);而后计算暗影地区的面积在总面积中占的比率,这个比率即事件( A)发生的概率.7.( 3.00 分)如图, AB 是半圆的直径,O 为圆心, C 是半圆上的点,D 是上的点,若∠BOC=40°,则∠ D 的度数为()A.100°B.110°C.120°D.130°【剖析】依据互补得出∠ AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠ BOC=40°,∴∠ AOC=180°﹣ 40°=140°,∴∠D=,应选: B.【评论】本题考察圆周角定理,重点是依据互补得出∠AOC的度数.8.( 3.00 分)如图,某海监船以 20 海里 / 小时的速度在某海疆履行巡航任务,当海监船由西向东航行至 A 处时,测得岛屿 P 恰幸亏其正北方向,持续向东航行 1 小时抵达 B 处,测得岛屿 P 在其北偏西 30°方向,保持航向不变又航行 2 小时到达 C 处,此时海监船与岛屿P 之间的距离(即PC的长)为()A.40 海里 B.60 海里 C.20海里D.40海里【剖析】第一证明 PB=BC,推出∠ C=30°,可得 PC=2PA,求出 PA即可解决问题;【解答】解:在 Rt△PAB中,∵∠ APB=30°,∴PB=2AB,由题意 BC=2AB,∴PB=BC,∴∠ C=∠ CPB,∵∠ ABP=∠C+∠ CPB=60°,∴∠ C=30°,∴PC=2PA,∵PA=AB?tan60°,∴PC=2× 20× =40 (海里),应选: D.【评论】本题考察解直角三角形的应用﹣方向角问题,解题的重点是证明 PB=BC,推出∠ C=30°.9.(3.00 分)如图,在△ ABC中,延伸 BC至 D,使得 CD= BC,过 AC中点 E 作EF∥CD(点 F 位于点 E 右边),且 EF=2CD,连结 DF.若 AB=8,则 DF 的长为()A.3B.4C.2D.3【剖析】取 BC的中点 G,连结 EG,依据三角形的中位线定理得: EG=4,设 CD=x,则 EF=BC=2x,证明四边形 EGDF是平行四边形,可得 DF=EG=4.【解答】解:取BC的中点G,连结EG,∵E是 AC的中点,∴ EG是△ ABC的中位线,∴ EG= AB==4,设 CD=x,则 EF=BC=2x,∴ BG=CG=x,∴EF=2x=DG,∵ EF∥CD,∴四边形 EGDF是平行四边形,∴DF=EG=4,应选: B.【评论】本题考察了平行四边形的判断和性质、三角形中位线定理,作协助线建立三角形的中位线是本题的重点.10.(3.00 分)如图,矩形 ABCD的极点 A,B 在 x 轴的正半轴上,反比率函数 y=E.若AB=4, CE=2BE,tan∠AOD=,在第一象限内的图象经过点D,交BC于点则 k 的值为()A.3B.2C.6D.12【剖析】由 tan∠AOD= =可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比率函数经过点D、E 列出对于 a 的方程,解之求得 a 的值即可得出答案.【解答】解:∵ tan∠ AOD= =,∴设 AD=3a、OA=4a,则 BC=AD=3a,点 D 坐标为( 4a,3a),∵ CE=2BE,∴ BE= BC=a,∵AB=4,∴点 E(4+4a,a),∵反比率函数 y=经过点D、E,∴k=12a2=(4+4a)a,解得: a= 或 a=0(舍),则 k=12× =3,应选: A.【评论】本题主要考察反比率函数图象上点的坐标特点,解题的重点是依据题意表示出点D、E 的坐标及反比率函数图象上点的横纵坐标乘积都等于反比率系数k.二、填空题(每题只有一个正确选项,本题共8 小题,每题 3 分,共 24 分)11.( 3.00 分)计算: a4÷a= a3.【剖析】依据同底数幂的除法解答即可.【解答】解: a4÷ a=a3,故答案为: a3【评论】本题主要考察了同底数幂的除法,对于有关的同底数幂的除法的法例要修业生很娴熟,才能正确求出结果.12.(3.00 分)在“献爱心”捐钱活动中,某校 7 名同学的捐钱数以下(单位:元):5,8,6,8,5,10,8,这组数据的众数是8.【剖析】依据众数的观点解答.【解答】解:在 5,8,6,8,5,10,8,这组数据中, 8 出现了 3 次,出现的次数最多,∴这组数据的众数是8,故答案为: 8.【评论】本题考察的是众数确实定,一组数据中出现次数最多的数据叫做众数.13.(3.00 分)若对于 x 的一元二次方程x2+mx+2n=0 有一个根是 2,则 m+n=﹣2.【剖析】依据一元二次方程的解的定义把 x=2 代入 x2+mx+2n=0 获得 4+2m+2n=0 得 n+m=﹣2,而后利用整体代入的方法进行计算.【解答】解:∵ 2(n≠0)是对于 x 的一元二次方程x2+mx+2n=0 的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣ 2.【评论】本题考察了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,因此,一元二次方程的解也称为一元二次方程的根..(3.00分)若a+b=4,a﹣b=1,则( a+1)2﹣( b﹣1)2的值为 12 .14【剖析】对所求代数式运用平方差公式进行因式分解,而后整体代入求值.【解答】解:∵ a+b=4,a﹣b=1,∴( a+1)2﹣( b﹣1)2=(a+1+b﹣1)( a+1﹣ b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是: 12.【评论】本题考察了公式法分解因式,属于基础题,娴熟掌握平方差公式的构造即可解答.15.( 3.00 分)如图,△ ABC 是一块直角三角板,∠ BAC=90°,∠ B=30°,现将三角板叠放在一把直尺上,使得点 A 落在直尺的一边上, AB 与直尺的另一边交于点 D,BC与直尺的两边分别交于点 E,F.若∠ CAF=20°,则∠ BED的度数为 80 °.【剖析】依照 DE∥AF,可得∠ BED=∠ BFA,再依据三角形外角性质,即可获得∠ BFA=20°+60°=80°,从而得出∠ BED=80°.【解答】解:以下图,∵DE∥AF,∴∠ BED=∠BFA,又∵∠ CAF=20°,∠ C=60°,∴∠ BFA=20°+60°=80°,∴∠ BED=80°,故答案为: 80.【评论】本题主要考察了平行线的性质,解题时注意:两直线平行,同位角相等.16.(3.00 分)如图, 8×8 的正方形网格纸上有扇形OAB和扇形 OCD,点 O,A,B,C,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为 r1;若用扇形 OCD围成另个圆锥的侧面,记这个圆锥的底面半径为 r 2,则的值为.【剖析】由 2πr、πr1 =2 2=据此可得=,利用勾股定理计算可得.【解答】解:∵ 2πr、πr1= 2 2=∴ r1=、r2=,∴= ===,故答案为:.知 r1=、r2=,,【评论】本题主要考察圆锥的计算,解题的重点是掌握圆锥体底面周长与母线长间的关系式及勾股定理.17.(3.00 分)如图,在 Rt△ ABC中,∠ B=90°,AB=2 ,BC= .将△ ABC绕点A 按逆时针方向旋转 90°获得△ AB'C′,连结 B'C,则 sin∠ACB′= .【剖析】依据勾股定理求出AC,过 C 作 CM⊥ AB′于 M,过 A 作 AN⊥CB′于 N,求出 B′M、 CM,依据勾股定理求出B′C,依据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt △ ABC 中,由勾股定理得: AC==5,过 C 作 CM⊥ AB′于 M ,过 A 作 AN⊥CB′于N,∵依据旋转得出 AB′=AB=2 ,∠B′AB=90,°即∠ CMA=∠MAB=∠B=90°,∴ CM=AB=2 , AM=BC= ,∴B′M=2 ﹣ = ,在 Rt△B′MC中,由勾股定理得: B′C===5,∴S△′C=,AB =∴5×AN=2 ×2 ,解得: AN=4,∴sin∠ACB′= = ,故答案为:.【评论】本题考察认识直角三角形、勾股定理、矩形的性质和判断,能正确作出协助线是解本题的重点.18.( 3.00 分)如图,已知 AB=8,P 为线段 AB 上的一个动点,分别以 AP,PB 为边在 AB 的同侧作菱形 APCD 和菱形 PBFE,点 P, C,E 在一条直线上,∠DAP=60°.M , N 分别是对角线 AC, BE 的中点.当点 P 在线段 AB 上挪动时,点M, N 之间的距离最短为2(结果留根号).【剖析】连结 PM、PN.第一证明∠ MPN=90°设 PA=2a,则 PB=8﹣2a,PM=a,PN=(4﹣a),建立二次函数,利用二次函数的性质即可解决问题;【解答】解:连结 PM、PN.∵四边形 APCD,四边形 PBFE是菱形,∠ DAP=60°,∴∠ APC=120°,∠ EPB=60°,∵ M,N 分别是对角线 AC,BE的中点,∴∠ CPM= ∠APC=60°,∠ EPN= ∠ EPB=30°,∴∠ MPN=60°+30°=90°,设 PA=2a,则 PB=8﹣2a,PM=a,PN= (4﹣a),∴MN===,∴ a=3 时, MN 有最小值,最小值为2,故答案为 2.的重点【评论】本题考察菱形的性质、勾股定理二次函数的性质等知识,解题是学会增添常用协助线,建立二次函数解决最值问题.三、解答题(每题只有一个正确选项,本题共10 小题,共76 分)19.( 5.00 分)计算:| ﹣|+﹣() 2.【剖析】依据二次根式的运算法例即可求出答案.【解答】解:原式 = +3﹣=3【评论】本题考察实数的运算,解题的重点是娴熟运用运算法例,本题属于基础题型.20.( 5.00 分)解不等式组:【剖析】第一分别求出每一个不等式的解集,而后确立它们解集的公关部分即可.【解答】解:由 3x≥x+2,解得 x≥1,由 x+4<2(2x﹣ 1),解得 x>2,因此不等式组的解集为 x> 2.【评论】本题考察的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.21.(6.00 分)如图,点 A,F,C,D 在一条直线上, AB∥DE,AB=DE,AF=DC.求证: BC∥ EF.【剖析】由全等三角形的性质 SAS判断△ ABC≌△ DEF,则对应角∠ ACB=∠DFE,故证得结论.【解答】证明:∵ AB∥ DE,∴∠ A=∠ D,∵AF=DC,∴ AC=DF.∴在△ ABC与△ DEF中,,∴△ ABC≌△ DEF(SAS),∴∠ ACB=∠DFE,∴BC∥EF.【评论】本题考察全等三角形的判断和性质、平行线的性质等知识,解题的重点是正确找寻全等三角形全等的条件,属于中考常考题型.22.( 6.00 分)如图,在一个能够自由转动的转盘中,指针地点固定,三个扇形的面积都相等,且分别标有数字1,2,3.( 1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是 3 的倍数的概率(用画树状图或列表等方法求解).【剖析】(1)由标有数字 1、2、3 的 3 个转盘中,奇数的有 1、 3 这 2 个,利用概率公式计算可得;( 2)依据题意列表得出全部等可能的状况数,得出这两个数字之和是 3 的倍数的状况数,再依据概率公式即可得出答案.【解答】解:( 1)∵在标有数字 1、2、3 的 3 个转盘中,奇数的有1、3 这 2 个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;( 2)列表以下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,全部等可能的状况数为9 种,此中这两个数字之和是 3 的倍数的有3种,因此这两个数字之和是 3 的倍数的概率为=.【评论】本题考察了列表法或树状图法求概率.用到的知识点为:概率=所讨情况数与总状况数之比.23.( 8.00 分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了预计全校学生对这四个活动项目的选择状况,体育老师从全体学生中随机抽取了部分学生进行检查(规定每人一定而且只好选择此中的一个项目),并把检查结果绘制成以下图的不完好的条形统计图和扇形统计图,请你依据图中信息解答以下问题:(1)求参加此次检查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600 名学生,试预计该校选择“足球”项目的学生有多少人?【剖析】(1)由“乒乓球”人数及其百分比可得总人数,依据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被检查人数的比率乘以 360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1),答:参加此次检查的学生人数是50 人;补全条形统计图以下:(2),答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3),答:预计该校选择“足球”项目的学生有 96 人.【评论】本题考察了条形统计图和扇形统计图,读懂统计图,从不一样的统计图中获得必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小.24.( 8.00 分)某学校准备购置若干台 A 型电脑和 B 型打印机.假如购置 1 台 A 型电脑, 2 台 B 型打印机,一共需要花销5900 元;假如购置 2 台 A 型电脑, 2台 B 型打印机,一共需要花销9400 元.(1)求每台 A 型电脑和每台 B 型打印机的价钱分别是多少元?(2)假如学校购置 A 型电脑和 B 型打印机的估算花费不超出 20000 元,而且购置B 型打印机的台数要比购置 A 型电脑的台数多 1 台,那么该学校至多能购置多少台B 型打印机?【剖析】(1)设每台A 型电脑的价钱为x 元,每台B 型打印机的价钱为y 元,依据“1台 A 型电脑的钱数 +2 台 B 型打印机的钱数 =5900,2 台 A 型电脑的钱数 +2台 B 型打印机的钱数 =9400”列出二元一次方程组,解之可得;( 2)设学校购置 a 台 B 型打印机,则购置 A 型电脑为(a﹣1)台,依据“(a﹣1)台 A 型电脑的钱数 +a 台 B 型打印机的钱数≤ 20000”列出不等式,解之可得.【解答】解:(1)设每台 A 型电脑的价钱为 x 元,每台 B 型打印机的价钱为 y 元,依据题意,得:,解得:,答:每台 A 型电脑的价钱为3500 元,每台 B 型打印机的价钱为1200 元;(2)设学校购置 a 台 B 型打印机,则购置 A 型电脑为( a﹣1)台,依据题意,得: 3500(a﹣1)+1200a≤ 20000,解得: a≤5,答:该学校至多能购置 5 台 B 型打印机.【评论】本题主要考察一元一次不等式与二元一次方程组的应用,解题的重点是理解题意,找到题目包含的相等关系或不等关系,并据此列出方程组与不等式.25.( 8.00 分)如图,已知抛物线 y=x2﹣4 与 x 轴交于点 A,B(点 A 位于点 B 的左边),C 为极点,直线 y=x+m 经过点 A,与 y 轴交于点 D.(1)求线段 AD 的长;(2)平移该抛物线获得一条新拋物线,设新抛物线的极点为C′.若新抛物线经过点 D,而且新抛物线的极点和原抛物线的极点的连线CC′平行于直线 AD,求新抛物线对应的函数表达式.【剖析】(1)解方程求出点 A 的坐标,依据勾股定理计算即可;( 2)设新抛物线对应的函数表达式为: y=x2+bx+2,依据二次函数的性质求出点C′的坐标,依据题意求出直线 CC′的分析式,代入计算即可.2【解答】解:(1)由 x ﹣ 4=0 得, x1=﹣ 2, x2=2,∴ A(﹣ 2,0),∵直线 y=x+m 经过点 A,∴﹣ 2+m=0,解得, m=2,∴点 D 的坐标为( 0,2),∴AD==2;( 2)设新抛物线对应的函数表达式为: y=x2+bx+2,y=x2+bx+2=( x+ )2+2﹣,则点 C′的坐标为(﹣,2﹣),∵CC′平行于直线 AD,且经过 C(0,﹣4),∴直线 CC′的分析式为: y=x﹣4,∴2﹣ =﹣﹣4,解得, b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣ 4x+2 或 y=x2+6x+2.【评论】本题考察的是抛物线与 x 轴的交点、待定系数法求函数分析式,掌握二次函数的性质、抛物线与 x 轴的交点的求法是解题的重点.26.( 10.00 分)如图, AB 是⊙ O 的直径,点 C 在⊙ O 上, AD 垂直于过点 C 的切线,垂足为 D,CE垂直 AB,垂足为 E.延伸 DA 交⊙ O 于点 F,连结 FC, FC与AB 订交于点 G,连结 OC.(1)求证: CD=CE;(2)若 AE=GE,求证:△ CEO是等腰直角三角形.【剖析】(1)连结 AC,依据切线的性质和已知得: AD∥ OC,得∠ DAC=∠ACO,依据 AAS证明△ CDA≌△ CEA(AAS),可得结论;( 2)介绍两种证法:证法一:依据△ CDA≌△ CEA,得∠ DCA=∠ECA,由等腰三角形三线合一得:∠ F=∠ACE=∠ DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠ F=x,则∠ AOC=2∠ F=2x,依据平角的定义得:∠ DAC+∠ EAC+∠OAF=180°,则 3x+3x+2x=180,可得结论.【解答】证明:(1)连结 AC,∵ CD是⊙ O 的切线,∴OC⊥CD,∵ AD⊥CD,∴∠ DCO=∠D=90°,∴AD∥OC,∴∠ DAC=∠ACO,∵OC=OA,∴∠ CAO=∠ACO,∴∠ DAC=∠CAO,∵CE⊥AB,∴∠ CEA=90°,在△ CDA和△ CEA中,∵,∴△ CDA≌△ CEA(AAS),∴CD=CE;(2)证法一:连结 BC,∵△ CDA≌△ CEA,∴∠ DCA=∠ECA,∵CE⊥AG,AE=EG,∴ CA=CG,∴∠ ECA=∠ECG,∵AB是⊙O 的直径,∴∠ ACB=90°,∵ CE⊥AB,∴∠ ACE=∠B,∵∠ B=∠ F,∴∠ F=∠ACE=∠ DCA=∠ ECG,∵∠ D=90°,∴∠ DCF+∠F=90°,∴∠ F=∠DCA=∠ ACE=∠ ECG=22.5°,∴∠ AOC=2∠F=45°,∴△ CEO是等腰直角三角形;证法二:设∠ F=x,则∠ AOC=2∠F=2x,∵AD∥OC,∴∠ OAF=∠AOC=2x,∴∠ CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴ CA=CG,∴∠ EAC=∠CGA,∵CE⊥AG,AE=EG,∴ CA=CG,∴∠ EAC=∠CGA,∴∠ DAC=∠EAC=∠CGA=3x,∵∠ DAC+∠EAC+∠OAF=180°,∴ 3x+3x+2x=180,x=22.5 ,°∴∠ AOC=2x=45°,∴△ CEO是等腰直角三角形.【评论】本题考察了切线的性质、全等三角形的判断与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判断与性质等知识.本题难度适中,本题相等的角许多,注意各角之间的关系,注意掌握数形联合思想的应用.27.(10.00 分)问题 1:如图①,在△ ABC中, AB=4,D 是 AB 上一点(不与 A,B 重合),DE∥ BC,交 AC于点 E,连结 CD.设△ ABC的面积为 S,△ DEC的面积为 S′.( 1)当 AD=3时,=;( 2)设 AD=m,请你用含字母m 的代数式表示.问题 2:如图②,在四边形ABCD中, AB=4,AD∥ BC,AD= BC,E 是 AB 上一点(不与 A, B 重合),EF∥ BC,交 CD于点 F,连结 CE.设 AE=n,四边形 ABCD的面积为 S,△ EFC的面积为 S′.请你利用问题 1 的解法或结论,用含字母 n 的代数式表示.【剖析】问题 1:( 1)先依据平行线分线段成比率定理可得:,由同高三角形面积的比等于对应底边的比,则== ,依据相像三角形面积比等于相像比的平方得:==,可得结论;( 2)解法一:同理依据( 1)可得结论;解法二:作高线 DF、 BH,依据三角形面积公式可得:=,分别表示和的值,代入可得结论;问题 2:解法一:如图2,作协助线,建立△ OBC,证明△ OAD∽△ OBC,得 OB=8,由问题 1 的解法可知:===,依据相像三角形的性质得:=,可得结论;解法二:如图 3,连结 AC交 EF于 M ,依据 AD= BC,可得= ,得:S△ADC,=S S△ABC=,由问题1的结论可知:=,证明△ CFM∽△ CDA,依据相像三角形面积比等于相像比的平方,依据面积和可得结论.【解答】解:问题 1:(1)∵ AB=4,AD=3,∴BD=4﹣ 3=1,∵ DE∥BC,∴,∴== ,∵DE∥BC,∴△ ADE∽△ ABC,∴==,∴=,即,故答案为:;(2)解法一:∵ AB=4,AD=m,∴BD=4﹣ m,∵ DE∥BC,∴= =,∴= =,∵DE∥BC,∴△ ADE∽△ ABC,∴==,∴===,即=;解法二:如图 1,过点 B 作 BH⊥AC 于 H,过 D 作 DF⊥ AC于 F,则 DF∥BH,∴△ ADF∽△ ABH,∴=,∴===,即=;问题 2:如图②,解法一:如图 2,分别延伸 BD、CE交于点 O,∵AD∥BC,∴△ OAD∽△ OBC,∴,∴OA=AB=4,∴OB=8,∵ AE=n,∴OE=4+n,∵ EF∥BC,由问题 1 的解法可知:===,∵==,∴= ,∴===,即=;解法二:如图 3,连结 AC交 EF于 M,∵AD∥BC,且 AD= BC,∴= ,∴ S△ADC=,∴S△ADC= S,S△ABC= ,由问题 1 的结论可知:=,∵MF∥ AD,∴△ CFM∽△ CDA,∴===,∴ S△CFM=×S,∴ S△EFC△EMC+S△CFM+×S=,=S=∴=.【评论】本题考察了相像三角形的性质和判断、平行线分线段成比率定理,娴熟掌握相像三角形的性质:相像三角形面积比等于相像比的平方是重点,并运用了类比的思想解决问题,本题有难度.28.( 10.00 分)如图①,直线l 表示一条东西走向的笔挺公路,四边形ABCD是一块边长为 100 米的正方形草地,点A, D 在直线 l 上,小明从点 A 出发,沿公路l 向西走了若干米后抵达点E 处,而后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线 FC方向走到公路 l 上的点 G 处,最后沿公路 l 回到点 A 处.设AE=x米(此中 x> 0),GA=y米,已知 y 与 x 之间的函数关系如图②所示,(1)求图②中线段 MN 所在直线的函数表达式;(2)试问小明从起点 A 出发直至最后回到点 A 处,所走过的路径(即△ EFG)能否能够是一个等腰三角形?假如能够,求出相应 x 的值;假如不能够,说明原因.。

2017江苏苏州中考数学解析

2017江苏苏州中考数学解析

2017年##省##市初中毕业暨升学考试试卷数学〔满分130分,考试时间120分钟〕一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.〔2017####, 1, 3分〕〔-21〕÷7的结果是 A.3 B.-3 C.31D.31[答案]B[考点解剖]本题目考查了有理数的除法,正确掌握有理数的除法运算是解题的关键. [解题思路]先根据有理数的除法法则,两数相除同号为正,异号为负,并把绝对值相除. [解答过程]解:∵〔-21〕÷7=-〔21÷7〕=-3,故选B . [易错点津]此类问题容易出错的地方是符号和计算. [试题难度]★★[关键词]有理数的除法;有理数计算; 2.〔2017####,2,3分〕有一组数据:2,5,5,6,7,这组数据的平均数为 A.3B.4C.5D.6 [答案]C[考点解剖]本题目考查了平均数的计算,掌握平均数的计算方法是解题的关键. [解题思路]先把这一组数据的和求出,再除以数据的个数即可. [解答过程] 解:〔2+5+5+6+7〕÷5=5,故选C .[易错点津]此类问题容易出错的地方是平均数的计算方法不熟练. [试题难度]★★ [关键词]平均数; 3.〔2017####,2,3〕小亮用天平秤得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为A.2B.2.0C.2.02D.2.03 [答案]D .[考点解剖]本题目考查了近似数的知识,解题的关键是熟练掌握近似数的求法. [解题思路]根据题意要精确到0.01,四舍五入后保留两位小数. [解答过程]解:∵要精确到0.01,主要看千分位,千分位是6,根据四舍五入应该进1,∴2.026≈2.03,故选D . [易错点津]此类问题容易出错的地方是没有进行四舍五入. [试题难度]★★ [关键词]近似数; 4.〔2017####,4,3分〕关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k 的值为 A.1 B.-1 C.2D.-2. [答案]A .[考点解剖]本题目考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.[解题思路]先根据一元二次方程有两个相等的实数根,得出b 2-4ac =0,再代入求出k 的值即可.[解答过程]解:∵方程有两个相等的实数根,∴b2-4ac=<-2>2-4k=0,化简得4-4k=0,解得k=1,故选A.[易错点津]此类问题容易出错的地方是根的判别式掌握不扎实,不能把相等的实数根转化为关于k的方程.[试题难度]★★[关键词]根的判别式;一元一次方程;5.〔2017####,5,3分〕为了鼓励学生课外阅读,学校公布了"阅读奖励"方案,并设置了"赞成、反对、无所谓"三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持"反对"和"无所谓"意见的共有30名学生,估计全校持"赞成"意见的学生人数为A.70B.720C.1680D.2370[答案]C[考点解剖]本题目考查了统计的知识,解题的关键是找出持有"赞成"意见的所占的百分数.[解题思路]先根据100名学生中持"反对"和"无所谓"的人数,持"赞成"意见的学生人数,得到所占的百分数,再用这个百分数乘以总人数即可.[解答过程]解:∵〔100-30〕÷100=70%,∴估计全校持"赞成"意见的学生人数为70%×2400=1680〔人〕,故选C.[易错点津]此类问题容易出错的地方是审题不清,把30名学生当成"赞成"的人数.[试题难度]★★[关键词]统计;百分数计算;6.〔2017####,6,3分〕若点A<m,n>在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为A.b>2 B.b>-2C.b<2D.b<-2[答案]D.[考点解剖]本题目考查了一次函数图象上点的坐标,解题的关键是把点A的坐标代入一次函数.[解题思路]把点A坐标代入一次函数的解析式中,得到的关于b的等式,再代入不等式中即可求.[解答过程]解:∵A〔m,n〕在一次函数y=3x+b的图象上,∴n=3m+b,∴-b=3m-n,又∵3m-n>2,∴-b>2,∴b<-2,故选D.[易错点津]此类问题容易出错的地方是在解不等式两边同时除以一个负数时,不等号没有改变方向.[试题难度]★★[关键词]一次函数;解不等式;7.〔2017####,7,3分〕如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为A.30°B.36°C.54°D.72°[答案]B.[考点解剖]本题目考查了正五边形的内角和以与等腰三角形的性质,解题的关键是求出正五边形的每个内角.[解题思路]先根据多边形的内角和公式求出内角和,再求出每个内角的度数,再结合△ABE是等腰三角形,求出底角,或者根据外角和求出每个外角的度数,再根据相邻外角与内角的互补关系求出每个内角的度数[解答过程]解:∵正五边形ABCDE中,∴内角和=〔5-2〕×180°=540°,∴每一个内角=540÷5=108°,又∵正五边形ABCDE中,∴AB=AE,∴∠ABE=〔180°-108°〕÷2=36°,故选B.[易错点津]此题易错地方主要是求不出每一个内角的度数.[试题难度]★★[关键词]多边形内角和公式;等腰三角形性质;8.〔2017####,8,3分〕若二次函数y=ax2+1的图象经过点<-2,0>,则关于x的方程a〔x-2〕2+1=0的实数根为A.x1=0,x2=-4B.x1=-2,x2=-6C.x2=32,x1=52D.x1=-4,x2=0[答案]A[考点解剖]本题考查了二次函数以与一元二次方程的结合,解题的关键是根据二次函数求出a的值.[解题思路]把点<-2,0>代入二次函数解析式中求出a的值,再把a的值代入方程中,解出x的之即可.[解答过程]解:∵二次函数y=ax2+1的图象经过点<-2,0>,∴4a+1=0,解得a=-14,所以-14〔x-2〕2+1=0,〔x-2〕2=4,∴x-2=±2,解得x1=0,x2=-4,故选A.[易错点津]此题易错地方主要是有两点,第一点不会根据函数图象过点求出a的值,第二点在解一元二次方程时出错.[试题难度]★★[关键词]二次函数;一元一次方程;一元二次方程;9.〔2017####,9,3分〕如图,在Rt△ABC中,∠ACB=90°,∠A=56°,以BC为直径的⊙O交AB于点D,E 是⊙O上一点,且CE=CD,连接OE,过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为A.92°B.108°C.112°D.124°[答案]C[考点解剖]本题考查了圆周角和圆心角的知识,解题的关键是掌握等弧弧所对的圆心角和圆周角的关系.[解题思路]先根据互余关系求出∠B的度数,再根据等弧所对的圆心角和圆周角关系求出∠COE的度数,最后根据四边形内角和是360°,可以求出∠F度数.[解答过程]解:∵∠ACB=90°,∠A=56°,∴∠B=34°,∵CE=CD,∴∠COE=2∠B=68°,又∵EF⊥OE,∴∠OEF=90°,∴∠F=360°-90°-90°-68°=112°.故选C.[易错点津]此类问题容易出错的地方是不能根据条件求出∠COE的度数.[试题难度]★★★[关键词]圆周角和圆心角;三角形内角和;四边形内角和;[方法规律]圆心角和圆周角的考查是中考的一个重点,这类题目主要从等弧入手,依次去找弧所对的圆周角和圆心角,即可得到关系.10.〔2017####,10,3〕如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△''AE F,设点P,'P分别是EF、''E F的中点,当点'A与点B重合时,四边形'PP CD的面积为8[答案]A[考点解剖]本题考查了菱形有关的性质以与解直角三角形,解题的关键是找出所求四边形的高.[解题思路]连接DF,与P'P交于点G,根据菱形性质可得DF⊥AB,根据∠A=60°,AD=8可求出DF,AE,EF,以与所求四边形的高DG,即可得出面积.[解答过程]解:连接FD ,与P 'P 交于点G ,∵在菱形ABCD 中,∠A =60°,F 是AB 的中点,∴DF ⊥AB ,∵在菱形ABCD中,AD =8,∴AB =8,∵F 是AB 的中点,∴AF =4,∵∠A =60°,∴DF =sinA ·AD =在Rt △AEF 中,∴EF =cosA ·AF =sin 60°·424=又∵P 为EF 的中点,∴PF 又∵∠GPF =∠EF A=30°,∴FG =12PF =12∴DG =72所求四边形的面积=DC ·DG =8×72=故选A.[易错点津]此类问题容易出错的地方是菱形的性质不熟悉,其次在运用时候对于辅助线的把握上不够扎实.[试题难度]★★★★[关键词]菱形的性质;解直角三角形;[方法规律]解决与面积有关的题目,首先要结合条件作高,该题目就因为菱形的性质以与结合特殊角就可以求出高,但是在运用的时候要注意条件的一次或者多次运用,这类题目有很强的综合性,需要学生平时多注意总结归纳.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.〔2017####,11,3分〕计算〔a 2〕2=______▲________. [答案]a 4.[考点解剖]本题考查了幂的乘方,解题的关键是熟练掌握幂的运算法则. [解题思路]根据幂的运算法则公式〔a m 〕n =a mn ,直接得出答案. [解答过程]解:∵〔a 2〕2=a 2×2=a 4,故填a 4.[易错点津]此类问题容易出错的地方是公式识记不清. [试题难度]★[关键词]幂的乘方;12.〔2017####,12,3分〕如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为______▲________.[答案]50°[考点解剖]本题考查了角平分的性质和平行的性质,解题的关键是根据角平分线得出∠AOB的度数.[解题思路]根据条件得出OD是∠AOB的平分线,可得出∠AOB的度数,结合ED∥OB,两直线平行同位角相等,可得出结论.[解答过程]解:∵D在∠AOB的平分线OC上,∴∠AOB=2∠1=50°,又∵ED∥OB,∴∠AED=∠AOB=50°,故答案为50°.[易错点津]此类问题容易出错的地方是对两直线平行的性质不熟练.[试题难度]★★[关键词]两直线平行的性质;角平分线的性质;13.〔2017####,13,3分〕某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是______▲________.环.[答案]8.[考点解剖]本题考查了中位数的知识,解题的关键是会读图表.[解题思路]根据题意11个人,中位数为从小到大的第6个数,即可得出答案.[解答过程]解:射击成绩依次为7,8,8,8,8,8,9,9,9,10,10,所以中位数为8.故答案为8.[易错点津]此类问题容易出错的地方是对中位数进行分析时没有进行排序.[试题难度]★★[关键词]中位数;条形统计图;14.〔2017####,14,3分〕因式分解:4a2-4a+1=______▲________.[答案]<2a-1〕2.[考点解剖]本题考查了因式分解,解题的关键是掌握完全平方公式进行因式分解.[解题思路]根据完全平方公式的知识进行因式分解.[解答过程]解:4a2-4a+1=〔2a-1〕2.[易错点津]此类问题容易出错的地方是看不出这是完全平方公式.[试题难度]★★[关键词]因式分解;完全平方公式;15.〔2017####,15,3分〕如图,在"3×3"网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______▲________.[答案]1 3 .[考点解剖]本题考查了概率的知识,解题的关键是找出所有轴对称图案. [解题思路]把剩余的6个小方格依次去分析,看是否能组成轴对称图案. [解答过程]解:如图所示,在6个方格中,第3个空白方格和第5个空白方格都能够与原来的3个黑色小方格组成轴对称图案,所有P〔轴对称图案〕=26=13.故答案为13. [易错点津]此类问题容易出错的地方是会出现遗漏情况.[试题难度]★★[关键词]概率;轴对称图案; 16.〔2017####,16,3分〕如图,AB 是⊙O 的直径,AC 是弦,AC =3,∠BOC =2∠AOC .若用扇形OAC 〔图中阴影部分〕围成一个圆锥的侧面,则这个圆锥底面圆的半径是_____▲________.[答案]12.[考点解剖]本题考查了弧长计算,解题的关键是求出∠AOC 的度数.[解题思路]先根据∠BOC +∠AOC =180°以与二者关系求出∠AOC 的度数,可得出AC 的长,再结合弧长即为圆锥的底面周长即可得出半径. [解答过程]解:∵∠BOC =2∠AOC ,∠BOC +∠AOC =180°,∴∠AOC =60°,∵OA =OC ,∴△OAC 是等边三角形,∴OA =OC =AC ,AC 的长l =180n r π=60180π×3=π.∴2πr =π,∴r =12.故答案为12.[易错点津]此类问题容易出错的地方是公式不熟练以与找不到扇形和圆锥的关系. [试题难度]★★★[关键词]弧长计算公式;17.〔2017####,17,3分〕如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4km .游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为v 1、v 2,若回到A 、B 所用时间相等,则12v v =_____▲_______〔结果保留根号〕.[答案[考点解剖]本题考查了特殊角的锐角三角函数值,解题的关键是作出辅助线. [解题思路]过点作CD ⊥AB ,再根据AC 和60°求出CD 的长,即可求出CB 的长也就可以求出速度的比. [解答过程]解:过点作CD⊥AB,∵观光岛屿C在码头A北偏东60°的方向,AC=4km,∴∠CAD=30°.∴CD=12AC=1 2×4=2km,又∵观光岛屿C在码头B北偏西45°的方向,∴∠CBD=45°,∴CB=∴12vv=,[易错点津]此类问题容易出错的地方是不会添加辅助线,不能进行转化.[试题难度]★★★[关键词]解直角三角形;[方法规律]在一般三角形中已知一些边和角求另外的边长的问题,通常都是通过添作高线,构造直角三角形,运用解直角三角形的知识来解决问题.18.〔2017####,18,3分〕如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC 的对应边C''B交CD边于点G.连接'BB、'CC,若AD=7,CG=4,G''AB=B,则''CCBB=_____▲_______〔结果保留根号〕.[答案]5[考点解剖]本题考查了旋转,相似的综合运用,解题的关键是连接作出辅助线.[解题思路]旋转的思维以与最后求比值,我们会去找三角形相似,于是连接AC',AG,AC,从而''CCBB就转化成求ACCB,结合条件设AB=x,再利用Rt△ADG用勾股定理处理,结合相似可求.[解答过程]解:连接AC',AG,AC,∠ABC绕点A旋转,∴△ABC≌△A'B C,∴∠BAC=∠B'AC',∴∠BAB'=CAC',AB=AB',AC =AC',∴△BAB'∽△CAC',∴''CC BB =ACCB,∵AB'=AG ,∴△A B'G 是等腰直角三角形,设AB =x ,所以AB'=B'G =x ,AG ,∵AD =7,CG =4,∴AD 2+DG 2=AG 2,∴72+<x -4>2=>2,∴x =5,∴AB =5,∴''CC BB =ACCB5=5.故答案为5.[易错点津]此类问题容易出错的地方是运用旋转的思想,不易想到辅助线需要连接AC ',AG ,AC . [试题难度]★★★★[关键词]旋转;相似;等腰直角三角形;[归纳拓展]此题目较难,不管是辅助线还是求CG 的长度都不容易,这类题目综合性较高,需要学生扎实的基础和能力,有很强的选拔性,完成时,先从所求的结论出发,想明白应该求出相似,再结合旋转,作出辅助线.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19.〔2017####,19,5分〕|-3〕0[考点解剖]本题考查了实数的计算,解题的关键是掌握绝对值,根号和0次幂的相关计算. [解题思路]先根据绝对值,二次根式以与0次幂的知识进行计算. [解答过程]解:原式=1+2-1=2.[易错点津]此类问题容易出错的地方是绝对值的计算以与0次幂的知识,其次是符号问题. [试题难度]★★[关键词]绝对值;二次根式;0次幂;实数计算;[方法规律]实数的计算先把绝对值化简,二次根式的知识掌握就能得分.20.〔2017####,20,5分〕解不等式组:12x 13x 6x +⎧⎨⎩≥4(-)>-[考点解剖]本题考查了解不等式组,解题的关键是熟练掌握解不等式组的方法.[解题思路]先分别求出两个不等式的解集,再根据"同大取大,同小取小,大小小大取中间,大大小小无解"求出不等式解集. [解答过程]解:由x +1≥4,解得x ≥3,由2〔x -1〕>3x -6,解得x <4,∴不等式组的解集是3≤x <4.[易错点津]此类问题容易出错的地方是不等式的两边同时除以一个负数时,不等式没有改变符号. [试题难度]★★[关键词]一元一次不等式组;[方法规律]这类题目都是先解出每一个不等式的解集,再求出公共解集即可.21.〔2017####,21,6分〕先化简,再求值:〔1-52x +〕÷29x+3x -其中x 2.[考点解剖]本题考查了分式的化简求值,解题的关键是先熟练掌握分式的计算.[解题思路]先把括号里的式子进行通分,再相减,所得的差乘以29x+3x-的倒数,再进行约分,最后把x的值代入计算即可. [解答过程]解:原式=3x+2x-÷(3)(3x+3x x+-)=3x+2x-·(3)(3)(3xx x++-)=1x+2.当x2时,3.[易错点津]此类问题容易出错的地方是分式计算出现错误.[试题难度]★★[关键词]分式的计算;二次根式的化简;[方法规律]分式化简求值时,先乘除,后加减,有括号要先算括号,把复杂的分式计算化成简单的分式后再代入求值即可.22.〔2017####,22,6分〕某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量规定超过规定时,需付的行李费y〔元〕是行李质量x〔kg〕的一次函数,已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.〔1〕当行李的质量x超过规定时,求y与x之间的函数表达式;〔2〕求旅客最多可免费携带行李的质量.[考点解剖]本题考查了一次函数在实际生活中的运用,解题的关键是先求出需付的行李费y与行李质量x的函数表达式.[解题思路]先根据题意用待定系数法确定函数表达式,再求出y=0时x的值即可.[解答过程]解:〔1〕根据题意,设y与x的函数表达式为y=kx+b.当x=20时,y=2,得2=20k+b当x=50时,y=8,得8=50k+b解方程组20k b250k b++⎧⎨⎩==8,得15kb⎧⎪⎨⎪⎩==-2所求函数表达式y=15x-2.〔2〕当y=0时,15x-2=0,得x=10.答:旅客最多可免费携带行李10kg.[易错点津]此类问题容易出错的地方是再用待定系数法确定函数关系式出现错误,其次是不能理解旅客最多可免费携带行李的质量的意义.[试题难度]★★[关键词]一次函数;待定系数法确定函数关系式;[方法规律]这类题目首先应该用待定系数法确定函数关系式,然后再找出一点的坐标进行分析讨论. 23.〔2017####,23,8分〕初一〔1〕班针对"你最喜爱的课外活动项目"对全班学生进行调查〔每名学生分别选一个活动项目〕,并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:〔1〕m=_____▲_______n=_____▲_______;〔2〕扇形统计图中机器人项目所对应扇形的圆心角度数为_____▲_______°;〔3〕从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法〔画树状图或列表〕求所选取的2名学生中恰好有1名男生、1名女生的概率.[考点解剖]本题考查了统计图,解题的关键读懂统计图.[解题思路]〔1〕可以确定航模的人数和所占的百分数就可以确定总人数,再确定3D打印的人数依次可以得出人数和所占的百分比.〔2〕用机器人的百分数乘以360°即可以得到圆心角.〔3〕把所有可能性用树状图或表格列出来,即可以的到概率.[解答过程]解:〔1〕m=8,n=3;〔2〕144;〔3〕将选航模项目的2名男生编上1,2,将2名女生编上3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中"1名男生、1名女生"有8种可能.∴P<1名男生、1名女生>=812=23.<如用树状图,酌情相应给分>.[易错点津]此类问题容易出错的地方是在求概率问题时,不能把所有情况都考虑完全[试题难度]★★[关键词]扇形统计图;概率;树状图和表格;[方法规律]统计是生活中经常应用的数学知识,它与实际生活联系密切,因此也成为中考的热点,但这类问题并不难.只要把握好概念间的相互联系以与概念的灵活应用,这样的问题会迎刃而解.本题概率和统计结合起来考查学生的识图能力,以与对图中数据的处理能力.24.〔2017####,24,8分〕如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.〔1〕求证:△AEC≌△BED;〔2〕若∠1=42°,求∠BDE的度数.[考点解剖]本题考查了三角形全等的判定和性质,解题的关键是找出全等的判定方法.[解题思路]〔1〕结合∠A=∠B以与∠BEO=∠2,可以得出∠AEC=∠BEO,用ASA即可证明三角形全等.〔2〕根据三角形全等的性质得到对应边CE=ED,可得出∠C的度数,转化可以结论.[解答过程]解:<1>证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO =∠2,又∵∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∴△AEC≌△BED〔ASA〕.〔2〕∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°.∠C=∠EDC=69°,∠C=∠BDE=69°.[易错点津]此类问题容易出错的地方是不能根据条件转化为三角形全等的条件,证明全等方法不熟练.[试题难度]★★[关键词]三角形全等的判定和性质;[方法规律]证明三角形全等主要去找边和角,根据已知条件得出两个三角形的对应边和对应角相等,用AAS,SAS,ASA,SSS来证明两个三角形全等,直角三角形还可以用HL来证明.25.〔2017####,25,8分〕如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=kx<x>0>的图像经过点C,交AB于点D.已知AB=4,BC=52.〔1〕若OA=4,求k的值;〔2〕连接OC,若BD=BC,求OC的长.[考点解剖]本题考查了反比例函数和三角形的结合,解题的关键是作CE⊥AB求点C坐标. [解题思路]〔1〕作CE⊥AB,垂足为E,在Rt△BCE中求出点C坐标,可求出k的值.〔2〕设A点的坐标为<m,0>,表示出点D和点C的坐标,再根据点C,D都在y=kx的图象上求出D和C坐标,作CF⊥x轴,垂足为F,在Rt△OFC中用勾股定理可求. [解答过程]解:〔1〕作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=52,BE=2,∴CE=32.∵OA=4,∴C点的坐标为〔52,2〕,∵点C在y=kx的图象上,∴k=5.〔2〕设A点的坐标为<m,0>,∵BD=BC=52,∴AD=32,D、C两点的坐标分别为〔m,32〕,〔m-32,2〕.点C,D都在y=kx的图象上,∴32m=2〔m-32〕,∴m=6.C点的坐标为〔92,2〕.作CF⊥x轴,垂足为F,∴OF=92,CF=2.在Rt△OFC中,OC2=OF2+CF2,∴OC2.[易错点津]此类问题容易出错的地方是不能把三角形的边转化到点的坐标中,其次作出辅助线也是解题的关键.[试题难度]★★★[关键词]反比例函数;等腰三角形;勾股定理;[方法规律]反比例函数和三角形,四边形结合是考试的一个热点,解题中要把线段之间的关系用勾股,相似,全等等方法转化成点的坐标,进而求出结论.26.〔2017####,26,10分〕某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s〔即在B、C处拐弯时分别用时1s〕.设机器人所用时间为t 〔s 〕时,其所在位置用点P 表示,P 到对角线BD 的距离〔即垂线段PQ 的长〕为d 个单位长度,其中d 与t 的函数图像如图②所示.〔1〕求AB 、BC 的长;〔2〕如图②,点M 、N 分别在线段EF 、GH 上,线段MN 平行于横轴,M 、N 的横坐标分别为t 1、t 2.设机器人用了t 1〔s 〕到达点P 1处,用了t 2〔s 〕到达点P 2处〔见图①〕.若CP 1+CP 2=7,求t 1、t 2的值.[考点解剖]本题考查了动点问题,解题的关键是作出合理的辅助线.[解题思路]〔1〕在Rt △ABT 中先求出BT 的长,再用∠ABD 的正切值可求出结论.〔2〕过点P 1,P 2分别作BD 的垂线,垂足为Q 1,Q 2,可根据对应边成比例列出比例式,可求CP 1和 CP 2,即可结合动点求时间.[解答过程]解:〔1〕作AT ⊥BD ,垂足为T ,由题意得,AB =8,AT =245在Rt △ABT 中,AB 2=BT 2+AT 2,∴BT =325∵tan ∠ABD =AD AB =AT BT ,∴AD =6,即BC =6. 〔2〕在图①中,连接P 1P 2,过点P 1,P 2分别作BD 的垂线,垂足为Q 1,Q 2,则P 1Q 1∥P 2Q 2,∵在图②中,线段MN 平行于横轴,∴d 1=d 2,即P 1Q 1=P 2Q 2,∴P 1P 2∥BD ,∴1CP CB =2CP CD ,即16CP =28CP ,又∵CP 1+CP 2=7,∴CP 1=3, CP 2=4.设M ,N 的横坐标分别为t 1,t 2,由题意得,CP 1=15-t 1,CP 2=t 2-16,∴t 1=12,t 2=20.[易错点津]此类问题容易出错的地方是不会作出合理的辅助线,其次方法不够灵活.[试题难度]★★★[关键词]正切角;勾股定理;对应边成比例;[方法规律]动点类的题目也是近几年中考的热门,解决这一类题目的关键是〔1〕找出动点的运动方法,〔2〕用含t 的代数式表示出各边,〔3〕用相似,勾股或者全等找出关系求解.[一题多解]设线段EF 所在的直线的函数表达式为d =kt +b ,由题意得,E,F 坐标分别为〔9,0〕,〔15,245〕,∴9k 02415k 5b b ++⎧⎪⎨⎪⎩==,得4k 536b 5⎧⎪⎪⎨⎪⎪⎩==-∴所求的函数表达式为y =45t -365. 由题意得,G 、H 两点的坐标为〔16,245〕,〔24,0〕,同理可得,直线GH 的函数表达式为d =-35t +725.在图②中M ,N 的横坐标分别为t 1,t 2,∴d 1=45t 1-365,d 2=-35t 2+725.又线段MN 平行于横轴,∴d 1=d 2,∴45t 1-365=-35t 2+725,即4t 1+t 2=108.∵机器人用了t 1〔s 〕到达点P 1,用了机器人用了t 2〔s 〕到达点P 2处,且CP 1+CP 2=7,t 2-t 1=8,解方程组4t 310812t t 8.21t +=⎧⎪⎨⎪⎩=,-,得t 1t 20.2=⎧⎪⎨⎪⎩=12,.27.〔2017####,27,10分〕如图,已知△ABC 内接于⊙O ,AB 是直径,点D 在⊙O 上,OD ∥BC ,过点D 作DE ⊥AB ,垂足为E ,连接CD 交OE 边于点F .〔1〕求证:△DOE ∽△ABC ;〔2〕求证:∠ODF =∠BDE ;〔3〕连接OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若12S S =27,求sin A 的值. [考点解剖]本题考查了圆的基本性质以与与相似的结合运用,解题的关键是熟练掌握圆的基本性质.[解题思路]〔1〕根据OD ∥BC ,可得到一组角相等,结合直径所对的圆周角是90°,可得出另一组角相等即可证.〔2〕△DOE ∽△ABC 可得对应角相等∠ODE =∠A ,再结合同弧所对的圆周角相等可得结论. 〔3〕结合三角形的面积比=相似比的平方,进行面积的转化S △DBE 转化为S 1有关的式子,再得出OE 和OD 的数量关系即可.[解答过程]解:〔1〕∵AB 是⊙O 的直径,∴∠ACB =90°,∵DE ⊥AB ,∴∠DEO =90°.∴∠DEO =∠ACB . ∵OD ∥BC ,∴∠DOE =∠ABC ,∴△DOE ∽△ABC .〔2〕∵△DOE ∽△ABC ,∴∠ODE =∠A ,∵∠A 与∠BDC 是BC 所对的圆周角,∴∠A =∠BDC , ∴∠ODE =∠BDC ,∴∠ODF =∠BDE.〔3〕∵△DOE ∽△ABC ,∴S ODE S ABC△△=<OD AB >2=14, 即S △ABC =4S △DOE =4S 1,∵OA =OB ,∴S △BOC =12S △ABC ,即S △BOC =2S 1 . ∵12S S =27,S 2=S △BOC +S △DOE +S △DBE =2S 1+S 1+ S △DBE ,∴S △DBE =12S 1,∴BE =12OE ,即OE =23OB =23OD ,∴sinA =sin ∠ODE =OE OD =23. [易错点津]此类问题容易出错的地方是对圆的性质不熟悉,不能对条件灵活处理,其次直径所对的圆周角是重要的性质,是非常重要的考点,希望多留意.[试题难度]★★★★[关键词]圆的性质;三角形相似;相似三角形的性质;[方法规律]解圆有关的题目时,相似是一种常见的数学手段,注意从同弧〔等弧〕所对的圆周角相等和直径所对的圆周角是90°出发,找出相似三角形,再根据对应边的关系很多问题也就迎刃而解.28.〔2017####,28,10分〕如图,二次函数y =x 2+bx +c 的图像与x 轴交于A 、B 两点,与y 轴交于点C ,OB =OC .点D 在函数图像上,CD ∥x 轴,且CD =2,直线l 是抛物线的对称轴,E 是抛物线的顶点. 〔1〕求b 、c 的值;〔2〕如图①,连接BE ,线段OC 上的点F 关于直线l 的对称点F 恰好在线段BE 上,求点F 的坐标;〔3〕如图②,动点P在线段OB上,过点P作X轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.[考点解剖]本题考查了二次函数的图象和性质,解题的关键是对二次函数的综合运用能够灵活处理. [解题思路]〔1〕根据条件用对称轴的知识表示出点C和点B坐标代入解析式即可.〔2〕设点F的坐标为〔0,m〕,表示出点'F,再求出BE的解析式,即可求F坐标.〔3〕设点P坐标为〔n,0〕,表示出P A,PB,PN,再分类讨论Q在直线PN左侧和右侧,用勾股定理处理. [解答过程]解:〔1〕∵CD∥x轴,CD=2,∴抛物线对称轴为直线l:x=1.∴-b2=1,b=-2,∵OB=OC,C〔0,c〕,∴B点的坐标为〔-c,0〕,∴0=c2+2c+c,解得c=-3或c=0〔舍去〕,∴c=-3.〔2〕设点F的坐标为〔0,m〕,对称轴为直线l:x=1,∴点F关于直线l的对称点'F的坐标为〔2,m〕.直线BE经过点B〔3,0〕,E〔1,-4〕利用待定系数法可得直线BE的表达式为y=2x-6 .因为点F在BE上,∴m=2×2-6=-2,即点F的坐标为〔0,-2〕.〔3〕存在点Q满足题意.设点P坐标为〔n,0〕,则P A=n+1,PB=PM=3-n,PN=-n2+2n+3,作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴12<n+1><3-n>=12<-n2+2n+3>·QR∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为〔n-1,n2-4n〕,B点的坐标为〔n,n2-4n〕,N点的坐标为〔n,n2-2n-3〕,∴在Rt△QRN中,NQ2=1+<2n-3>2时,NQ取最小值1 .此时Q点的坐标为〔1 2 ,-154〕.②点Q在直线PN的右侧时,Q点的坐标为〔n+11,n2-4n〕,同理,NQ2=1+<2n-1>2时,∴当n=1 2时,NQ取最小值1 .此时Q点的坐标为〔32,-154〕.综上所述:满足题意得点Q的坐标为〔12,-154〕和〔32,-154〕.[易错点津]此类问题容易出错的地方是知识点比较综合,需要学生有一定的综合能力.用对称轴求二次函数解析式是一个重点,其次线段的表示和勾股定理也是二次函数中经常遇到的值.[试题难度]★★★★★[关键词]二次函数的图像;二次函数的性质;[方法规律]二次函数是中考必考的知识,尤其是压轴题中的运用几乎每一年中考都不变化,这一类题目比较综合,需要学生有很好的分析能力,解题的方法是根据条件先确定二次函数解析式,其次用设点法表示出点的坐标,依此表示出边长,再用勾股,全等,相似等数学方法进行计算,综合性非常强,需要学生平时多注意积累.。

江苏苏州 2017年中考真题数学(解析版)详细答案

江苏苏州 2017年中考真题数学(解析版)详细答案

第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()217-÷的结果是A .3B .3-C .13D .13- 【答案】B. 【解析】试题分析:()217-÷2137=-=- 故答案选B. 考点:有理数的除法.2.有一组数据:2,5,5,6,7,这组数据的平均数为 A .3 B .4 C .5 D .6 【答案】C.考点:平均数的求法3.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为 A .2 B .2.0 C .2.02 D .2.03 【答案】D. 【解析】试题分析:2.026 2.03≈故答案选D. 考点:近似数4.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1 B .1- C.2 D .2- 【答案】A. 【解析】试题分析:=4401k k ∆-=⇒= 故答案选A. 考点:根的判别式的性质.5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为A .70B .720 C.1680 D .2370 【答案】C. 【解析】 试题分析:702400=1680100⨯故答案选C. 考点:用样本估计总体的统计思想.6.若点(),m n A 在一次函数3y x b =+的图像上,且32m n ->,则b 的取值范围为 A .2b > B .2b >- C.2b < D .2b <- 【答案】D.考点:一次函数上的点的特征.7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为 A .30 B .36 C.54 D .72【答案】B. 【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B. 考点:多边形的外角,等腰三角形的两底角相等8.若二次函数21y ax =+的图像经过点()2,0-,则关于x 的方程()2210a x -+=的实数根为A .10x =,24x =B .12x =-,26x = C.132x =,252x = D .14x =-,20x = 【答案】A.考点:一元二次方程的解法9.如图,在Rt C ∆AB 中,C 90∠A B =,56∠A =.以C B 为直径的O 交AB 于点D ,E 是O 上一点,且C CD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为 A .92 B .108 C.112 D .124【答案】C. 【解析】 试题分析:C 90∠A B =,56∠A =,34B ∴∠=︒1C CD 682B CBD COE E =∴∠=∠=∠=︒,112F ∴∠=︒故答案选C.考点:圆心角与圆周角的关系.10.如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243 C.323 D .3238-【答案】A.7382832S ∴=⨯=L K H故答案选A.考点:平行四边形的面积,三角函数.第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.计算:()22a= .【答案】4a . 【解析】 试题分析:()()()22224=aa a a=⋅ .考点: 幂的乘方的运算 .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠=,则D ∠AE 的度数为 .【答案】50.考点:平行线的性质,外角的性质 .13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.【答案】8. 【解析】试题分析: 先按照从小到大的顺序排列,11个数据的中位数由第6个数据决定 ,故中位数是8. 考点:中位数的求法.14.因式分解:2441a a -+= . 【答案】2(21)a -.考点:公式法因式分解 .15.如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 .【答案】 13. 【解析】试题分析: 有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是13. 21.考点:轴对称图形的定义,求某个事件的概率 . 16.如图,AB 是O 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若用扇形C OA (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .【答案】12考点:圆锥的侧面展开图的弧长等于地面圆的周长.17.如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60的方向,在码头B 北偏西45的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).【答案】2 .D.考点:特殊角三角函数的应用 .18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB(结果保留根号).【答案】745.考点:旋转的性质 ,勾股定理 .三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分5分) 计算:()0143π-+--. 【答案】2 【解析】试题分析:先算绝对值、算术平方根、0次幂 . 试题解析:原式1212=+-=. 考点:实数的运算. 20. (本题满分5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.【答案】34x ≤<考点:一元一次不等式组的解法 21. (本题满分6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中32x =-. 【答案】12x +,33【解析】试题分析:先将括号里面进行通分,各分子、分母因式分解,再约分 .试题解析:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当32x =-时, 原式11333223===-+. 考点:分式的化简求值.22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式; (2)求旅客最多可免费携带行李的质量. 【答案】(1)求y 与x 之间的函数表达式为125y x =-;(2)10 【解析】试题分析:(1)用待定系数法求一次函数的表达式;(2)旅客最多可免费携带行李的质量就是0y = 时x 的值 .(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg .考点:一次函数的实际应用23. (本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率. 【答案】(1)8,3m n ==; (2)144;(3)23【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=该组频数数据总数360⨯︒ ;(3)列表格求概率.试题解析:(1)8,3m n ==; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1 名男生、1 名女生”有8种可能.P ∴( 1 名男生、1 名女生)82123==.(如用树状图,酌情相应给分) 考点:统计与概率的综合运用.24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O . (1)求证:C ∆AE ≌D ∆BE ; (2)若142∠=,求D ∠B E 的度数.【答案】(1)详见解析;(2)69BDE ∠=考点:全等三角形的判定与性质25.(本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数ky x=(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =. (1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.【答案】(1)5k = (2) 972OC = 【解析】试题分析:(1)利用勾股定理,先求出C 的坐标,再代入反比例函数即可.(2)利用勾股定理,求OC 的长度.试题解析:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴点的坐标为5,22⎛⎫⎪⎝⎭,点C 在k y x =的图象上,5k ∴=.考点:反比例函数与三角形的综合运用.26.(本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形CD AB 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为1个单位长度/s ,移动至拐角处调整方向需要1s (即在B 、C 处拐弯时分别用时1s ).设机器人所用时间为()s t 时,其所在位置用点P 表示,P 到对角线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与t 的函数图像如图②所示. (1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平行于横轴,M 、N 的横坐标分别为1t 、2t .设机器人用了()1s t 到达点1P 处,用了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.【答案】(1)AB=8,BC=6;(2)1212,20.t t == 【解析】试题分析:(1)利用勾股定理求出BT,再利用正切值求出BC ;(2)平行线分线段成比例定理列出方程,求解 .(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ PQ . 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ PQ =.1212..CP CP PP BD CB CD∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20.CP t CP t t t =-=-∴==考点:三角函数的应用,平行线分线段成比例定理. 27.(本题满分10分)如图,已知C ∆AB 内接于O ,AB 是直径,点D 在O 上,D//C O B ,过点D 作D E ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:D ∆OE ∽C ∆AB ; (2)求证:DF D ∠O =∠B E ;(3)连接C O ,设D ∆OE 的面积为1S ,四边形C D B O 的面积为2S,若1227S S =,求sin A 的值.【答案】(1)详见解析;(2)详见解析;(3)2sin 3A = 【解析】试题分析:(1)利用两角对应相等,两三角形相似证明;(2)相似三角形对应角相等,同弧所对的圆周角相等;(3)转化角度,放在直角三角形求正弦值.(3)21,4DOE ABC S OD DOEABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭ ,即144ABC DOE S S S ∆∆== ,OA OB =,12BOC ABC S S ∆∆∴=,即12B O CS S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++ ,112DBE S S ∆∴=,12BE OE ∴= ,即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠== 考点:圆、三角函数、相似三角形的综合运用.28.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标; (3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.【答案】(1)2b =-, 3.c =-;(2)点F 的坐标为()0,2-;(3)点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭【解析】试题分析: (1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值.(2)设点F 的坐标为()0,.m对称轴为直线1,l x =∴:点F 关于直线l 的对称点F 的坐标为()2,m .直线BE 经过点()()3,0,1,4,B E -∴ 利用待定系数法可得直线BE 的表达式为26y x =- . 因为点F 在BE 上,∴ 2262,m =⨯-=- 即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++作,QR PN ⊥ 垂足为,R()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++ 1.QR ∴= ①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n nn -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴=时,NQ 取最小值1 .此时Q 点的坐标为115,. 24⎛⎫-⎪⎝⎭考点:二次函数的综合运用.。

2017年江苏省苏州市中考数学试题及答案(word版)(20200813171622)

2017年江苏省苏州市中考数学试题及答案(word版)(20200813171622)

2017年苏州市初中毕业暨升学考试试卷数学
第I卷(共30分)
一、选择题:本大题共10个小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的.
1. -21 “7的结果是
c c 1 1
A. 3 B . -3 CD .-
3 3
2•有一组数据:2 , 5 , 5 , 6 , 7,这组数据的平均数为
A. 3 B . 4 C. 5 D . 6
3•小亮用天平称得一个罐头的质量为 2.026 kg ,用四舍五入法将2.026精确到0.01的近似
值为
A. 2
B. 2.0
C. 2.02 D . 2.03
2
4•关于x的一元二次方程x -2x ^0有两个相等的实数根,则k的值为
A . 1
B . -1 C.2 D . -2
5•为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”
三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和
“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为
A . 70
B . 720 C.1680 D . 2370
6•若点Z m,n在一次函数y =3x • b的图像上,且3m - n 2,则b的取值范围为
A . b 2
B . b -2 C. b :: 2 D . b ::—2
7•如图,在正五边形JTCD;:中,连接y • 丁叮:的度数为
A . 30
B . 36 C. 54 D . 72
2 . 2
8若二次函数y =ax 1的图像经过点-2,0 ,则关于x的方程a x - 2 7 = 0的实数根。

2017年江苏省苏州市中考数学试卷和解析答案

2017年江苏省苏州市中考数学试卷和解析答案

2017年江苏省苏州市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.2.(3分)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.63.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.034.(3分)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣25.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.23706.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣27.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36° C.54° D.72°8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2=D.x1=﹣4,x2=09.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°10.(3分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)计算:(a2)2= .12.(3分)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为°.13.(3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环.14.(3分)分解因式:4a2﹣4a+1= .15.(3分)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.17.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头 A北偏东60°的方向,在码头 B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到 A、B所用时间相等,则= (结果保留根号).18.(3分)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则= (结果保留根号).三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:|﹣1|+﹣(π﹣3)0.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣2.22.(6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m= ,n= ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.25.(8分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.26.(10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段 PQ的长)为d 个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.27.(10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.28.(10分)如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.2017年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•苏州)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.【分析】根据有理数的除法法则计算即可.【解答】解:原式=﹣3,故选B.【点评】本题考查有理数的除法法则,属于基础题.2.(3分)(2017•苏州)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.6【分析】把给出的这5个数据加起,再除以数据个数5,就是此组数据的平均数.【解答】解:(2+5+5+6+7)÷5=25÷5=5答:这组数据的平均数是5.故选C【点评】此题主要考查了平均数的意义与求解方法,关键是把给出的这5个数据加起,再除以数据个数5.3.(3分)(2017•苏州)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.03【分析】根据题目中的数据和四舍五入法可以解答本题.【解答】解:2.026≈2.03,故选D.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的表示方法.(2017•苏州)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()(3分)4.A.1 B.﹣1 C.2 D.﹣2【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4k=0,解之即可得出k值.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴△=(﹣2)2﹣4k=4﹣4k=0,解得:k=1.故选A.【点评】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.5.(3分)(2017•苏州)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.2370【分析】先求出100名学生中持“赞成”意见的学生人数,进而可得出结论.【解答】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100﹣30=70名,∴全校持“赞成”意见的学生人数约=2400×=1680(名).故选C.【点评】本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.6.(3分)(2017•苏州)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣2【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m﹣n>2,即可得出b<﹣2,此题得解.【解答】解:∵点A(m,n)在一次函数y=3x+b的图象上,∴3m+b=n.∵3m﹣n>2,∴﹣b>2,即b<﹣2.故选D.【点评】本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征结合3m ﹣n>2,找出﹣b>2是解题的关键.7.(3分)(2017•苏州)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36° C.54° D.72°【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选B.【点评】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.8.(3分)(2017•苏州)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2=D.x1=﹣4,x2=0【分析】二次函数y=ax2+1的图象经过点(﹣2,0),得到4a+1=0,求得a=﹣,代入方程a(x ﹣2)2+1=0即可得到结论.【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0),∴4a+1=0,∴a=﹣,∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0,解得:x1=0,x2=4,故选A.【点评】本题考查了二次函数与x轴的交点问题,一元二次方程的解,正确的理解题意是解题的关键.9.(3分)(2017•苏州)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键.10.(3分)(2017•苏州)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8【分析】如图,连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH即可解决问题.【解答】解:如图,连接BD,DF,DF交PP′于H.由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF=,∴HF=PF=,∵DF=4,∴DH=4﹣=,∴平行四边形PP′CD的面积=×8=28.故选A.【点评】本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)(2017•苏州)计算:(a2)2= a4.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(a2)2=a4.故答案为:a4.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.(3分)(2017•苏州)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为50 °.【分析】根据平行线的性质得到∠3=∠1,根据角平分线的定义得到∠1=∠2,等量代换得到∠2=∠3,由三角形的外角的性质即可得到结论.【解答】解:∵ED∥OB,∴∠3=∠1,∵点D在∠AOB的平分线OC上,∴∠1=∠2,∴∠2=∠3,∴∠AED=∠2+∠3=50°,故答案为:50.【点评】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握平行线的性质是解题的关键.13.(3分)(2017•苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是8 环.【分析】11名成员射击成绩处在第6位的是8,则中位数为8.【解答】解:∵按大小排列在中间的射击成绩为8环,则中位数为8.故答案为:8.【点评】本题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•苏州)分解因式:4a2﹣4a+1= (2a﹣1)2.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:4a2﹣4a+1=(2a﹣1)2.故答案为:(2a﹣1)2.【点评】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.15.(3分)(2017•苏州)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.【分析】根据轴对称的性质设计出图案即可.【解答】解:如图,∵可选2个方格∴完成的图案为轴对称图案的概率==.故答案为:.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.16.(3分)(2017•苏州)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.【分析】根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.【解答】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)(2017•苏州)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头 A北偏东60°的方向,在码头 B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C 乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到 A、B所用时间相等,则= (结果保留根号).【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC 的长,然后根据=求解.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),∴===.故答案是:.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.18.(3分)(2017•苏州)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则= (结果保留根号).【分析】先连接AC,AG,AC',构造直角三角形以及相似三角形,根据△ABB'∽△ACC',可得到=,设AB=AB'=x,则AG=x,DG=x﹣4,Rt△ADG中,根据勾股定理可得方程72+(x﹣4)2=(x)2,求得AB的长以及AC的长,即可得到所求的比值.【解答】解:连接AC,AG,AC',由旋转可得,AB=AB',AC=AC',∠BAB'=∠CAC',∴=,∴△ABB'∽△ACC',∴=,∵AB'=B'G,∠AB'G=∠ABC=90°,∴△AB'G是等腰直角三角形,∴AG=AB',设AB=AB'=x,则AG=x,DG=x﹣4,∵Rt△ADG中,AD2+DG2=AG2,∴72+(x﹣4)2=(x)2,解得x1=5,x2=﹣13(舍去),∴AB=5,∴Rt△ABC中,AC===,∴==,故答案为:.【点评】本题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将转化为,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB,这也是本题的难点所在.三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)(2017•苏州)计算:|﹣1|+﹣(π﹣3)0.【分析】直接利用绝对值的性质以及二次根式的性质和零指数幂的性质分别化简求出答案.【解答】解:原式=1+2﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)(2017•苏州)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由x+1≥4,解得x≥3,由2(x﹣1)>3x﹣6,解得x<4,所以不等式组的解集是3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•苏州)先化简,再求值:(1﹣)÷,其中x=﹣2.【分析】把分式进行化简,再把x的值代入即可求出结果.【解答】解:原式=.当时,原式=.【点评】本题主要考查了分式的混合运算﹣化简求值问题,在解题时要乘法公式的应用进行化简.22.(6分)(2017•苏州)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.【分析】(1)根据(20,2)、(50,8)利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【解答】解:(1)设y与x的函数表达式为y=kx+b.将(20,2)、(50,8)代入y=kx+b中,,解得:,∴当行李的质量x超过规定时,y与x之间的函数表达式为y=x﹣2.(2)当y=0时,x﹣2=0,解得:x=10.答:旅客最多可免费携带行李10kg.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出y与x之间的函数表达式;(2)令y=0,求出x值.23.(8分)(2017•苏州)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m= 8 ,n= 3 ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为144 °;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【分析】(1)由航模的人数和其所占的百分比可求出总人数,进而可求出3D打印的人数,则m 的值可求出,从而n的值也可求出;(2)由机器人项目的人数所占总人数的百分比即可求出所对应扇形的圆心角度数;(3)应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,故答案为:144;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1名男生、1名女生”有8种可能.所以P( 1名男生、1名女生)=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.24.(8分)(2017•苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.25.(8分)(2017•苏州)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.【分析】(1)利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA的长,得出C点坐标即可得出答案;(2)首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标,再利用勾股定理得出CO的长.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC=.【点评】此题主要考查了等腰三角形的性质以及勾股定理和反比例函数图象上的性质,正确得出C点坐标是解题关键.26.(10分)(2017•苏州)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段 PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.【分析】(1)作AT⊥BD,垂足为T,由题意得到AB=8,AT=,在Rt△ABT中,根据勾股定理得到BT=,根据三角函数的定义即可得到结论;(2)如图,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.根据平行线的性质得到d1=d2,得到P1Q1=P2Q2.根据平行线分线段成比例定理得到.设M,N的横坐标分别为t1,t2,于是得到结论.【解答】解:(1)作AT⊥BD,垂足为T,由题意得,AB=8,AT=,在Rt△ABT中,AB2=BT2+AT2,∴BT=,∵tan∠ABD=,∴AD=6,即BC=6;(2)在图①中,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.∵在图②中,线段MN平行于横轴,∴d1=d2,即P1Q1=P2Q2.∴P1P2∥BD.∴.即.又∵CP1+CP2=7,∴CP1=3,CP2=4.设M,N的横坐标分别为t1,t2,由题意得,CP1=15﹣t1,CP2=t2﹣16,∴t1=12,t2=20.【点评】本题考查了动点问题的函数图象,勾股定理矩形的性质,平行线分线段成比例定理,正确的作出辅助线是解题的关键.27.(10分)(2017•苏州)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.【分析】(1)根据圆周角定理和垂直求出∠DEO=∠ACB,根据平行得出∠DOE=∠ABC,根据相似三角形的判定得出即可;(2)根据相似三角形的性质得出∠ODE=∠A,根据圆周角定理得出∠A=∠BDC,推出∠ODE=∠BDC 即可;(3)根据△DOE~△ABC求出S△ABC=4S△DOE=4S1,求出S△BOC=2S1,求出2BE=OE,解直角三角形求出即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE~△ABC;(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;(3)解:∵△DOE~△ABC,∴,即S△ABC=4S△DOE=4S1,∵OA=OB,∴,即S△BOC=2S1,∵,∴,∴,即,∴.【点评】本题考查了相似三角形的性质和判定,圆周角定理,平行线的性质,三角形的面积等知识点,能综合运用知识点进行推理是解此题的关键.28.(10分)(2017•苏州)如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出PA、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标,【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.【点评】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR的长,用勾股定理得到关于n的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.。

江苏省苏州市中考数学押题试卷(含解析)【含解析】

江苏省苏州市中考数学押题试卷(含解析)【含解析】

江苏省苏州市2016年中考数学押题试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.考察人们保护海洋的意识3.从下列不等式中选择一个与x+1≥2组成不等式组,使该不等式组的解集为x≥1,那么这个不等式可以是()A.x>﹣1 B.x>2 C.x<﹣1 D.x<24.计算a5(﹣)2的结果是()A.﹣a3B.a3C.a7D.a105.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2 B.5 C.6 D.126.如图,已知a∥b,∠1=115°,则∠2的度数是()A.45° B.55° C.65° D.85°7.如图是小刘做的一个风筝支架示意图,已知BC∥PQ,AB:AP=2:5,AQ=20cm,则CQ的长是()A.8cm B.12cm C.30cm D.50cm8.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90° B.180°C.210°D.270°9.已知点A,B的坐标分别为(﹣4,0)和(2,0),在直线y=﹣x+2上取一点C,若△ABC是直角三角形,则满足条件的点C有()A.1个B.2个C.3个D.4个10.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图象的交点坐标与其相应的二元一次方程组的解之间的关系,请通过此经验推断:在同一平面直角坐标系中,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数有()A.0个B.1个C.2个D.无数个二、填空题(本大题共8小题,每小题3分,共24分)11.若式子在实数范围内有意义,则x的取值范围是.12.温家宝总理强调,“十二五”期间,将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是.13.分解因式:ab2﹣a= .14.已知a,b是一元二次方程x2﹣x﹣2=0的两根,则a+b= .15.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.16.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.17.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.18.如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为.三、解答题(本大题共10小题,共76分,解答时应写出文字说明、证明过程或演算步骤)19.计算:()0++|﹣3|.20.解不等式组并写出不等式组的整数解.21.÷(x﹣),再从1、0、中选一个你所喜欢的数代入求值.22.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km 和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发h时,两车相距200km.23.某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次你调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24.已知:如图,矩形ABCD的一条边AB=10,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,折痕为AO.(1)求证:△OCP∽△PDA;(2)若△OCP与△PDA的面积比为1:4,求边AD的长.25.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).26.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(Ⅰ)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.27.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个交点和该抛物线的顶点、对称轴上一点为顶点的菱形称为这条抛物线的“抛物菱形”.(1)若抛物线y=﹣x2+bx(b>0)的“抛物菱形”是正方形,求b的值;(2)如图,四边形OABC是抛物线y=﹣x2+b′x(b′>0)的“抛物菱形”,且∠OAB=60°.①“抛物菱形OABC”的面积为.②将直角三角板中含有“60°角”的顶点与坐标原点O重合,两边与“抛物菱形OA BC”的边AB、BC交于E、F,△OEF的面积是否存在最小值?若存在,求出此时△OEF的面积;若不存在,说明理由.28.如图,将两块直角三角板摆放在平面直角坐标系中,有∠COD=∠ABO=Rt∠,∠OCD=45°,∠AOB=60°,且AO=CD=8.现将Rt△AOB绕点O逆时针旋转,旋转角为β(0°≤β≤180°).在旋转过程中,直线CD分别与直线AB,OA交于点F,G.(1)当旋转角β=45°时,求点B的坐标;(2)在旋转过程中,当∠BOD=60°时,求直线AB的解析式;(3)在旋转过程中,△AFG能否为等腰三角形?若能,请求出所有满足条件的β值;若不能,请说明理由.2016年江苏省苏州市中考数学押题试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.D.【考点】有理数的加法.【分析】设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.【点评】此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.考察人们保护海洋的意识【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、了解一批圆珠笔的寿命适宜采用抽样调查方式,A错误;B、了解全国九年级学生身高的现状适宜采用抽样调查方式,B错误;C、检查一枚用于发射卫星的运载火箭的各零部件适宜采用普查方式,B正确;D、考察人们保护海洋的意识适宜采用抽样调查方式,D错误;故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.从下列不等式中选择一个与x+1≥2组成不等式组,使该不等式组的解集为x≥1,那么这个不等式可以是()A.x>﹣1 B.x>2 C.x<﹣1 D.x<2【考点】解一元一次不等式组.【分析】求出已知不等式的解集,根据不等式组取解集的方法判断即可得到结果.【解答】解:不等式x+1≥2,解得:x≥1,使该不等式组的解集为x≥1,那么这个不等式可以是x>﹣1,故选A【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.计算a5(﹣)2的结果是()A.﹣a3B.a3C.a7D.a10【考点】分式的乘除法.【分析】首先计算分式的乘方,然后再相乘即可.【解答】解:原式=a5=a3,故选:B.【点评】此题主要考查了分式的乘法,关键是掌握分式的乘、除、乘方混合运算.运算顺序应先把各个分式进行乘方运算,再进行分式的乘除运算,即“先乘方,再乘除”.5.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2 B.5 C.6 D.12【考点】估算无理数的大小.【分析】依据平方数越大对应的算术平方根越大可求得a、b的值,最后依据有理数的乘法法则求解即可.【解答】解:∵4<8<9,∴2<<3,即2<2<3.∴a=2,b=3.∴ab=6.故选:C.【点评】本题主要考查的是估算无理数的大小,掌握夹逼法估算无理数的大小是解题的关键.6.如图,已知a∥b,∠1=115°,则∠2的度数是()A.45° B.55° C.65° D.85°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠3,再根据对顶角相等解答.【解答】解:如图,∵a∥b,∠1=115°,∴∠3=180°﹣∠1=180°﹣115°=65°,∴∠3=∠2=65°.故选C.【点评】本题考查了平行线的性质,对顶角相等的性质,熟记各性质并准确识图是解题的关键.7.如图是小刘做的一个风筝支架示意图,已知BC∥PQ,AB:AP=2:5,AQ=20cm,则CQ的长是()A.8cm B.12cm C.30cm D.50cm【考点】平行线分线段成比例.【分析】利用相似三角形的判定与性质得出==,求出AC的长,进而求出CQ的长.【解答】解:∵BC∥PQ,∴△ABC∽△APQ,∴=,∵AB:AP=2:5,AQ=20cm,∴=,解得:AC=8cm,∴CQ=AQ﹣AC=20﹣8=12(cm),故选B.【点评】此题主要考查了相似三角形的应用,得出△ABC∽△APQ是解题关键.8.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90° B.180°C.210°D.270°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【解答】解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选B.【点评】本题考查了平行线的性质,多边形的外角和定理,是基础题,理清求解思路是解题的关键.9.已知点A,B的坐标分别为(﹣4,0)和(2,0),在直线y=﹣x+2上取一点C,若△ABC是直角三角形,则满足条件的点C有()A.1个B.2个C.3个D.4个【考点】勾股定理的逆定理;一次函数图象上点的坐标特征.【分析】根据∠A为直角,∠B为直角与∠C为直角三种情况进行分析.【解答】解:由题意知,直线y=﹣x+2与x轴的交点为(4,0),与y轴的交点为(0,2),如图:当∠A为直角时,过点A作x轴的垂线与直线的交点W(﹣4,4),当∠B为直角时,过点B作x轴的垂线与直线的交点S(2,1),当∠C为直角时,过AB中点E(﹣1,0),作x轴的垂线与直线的交点为F(﹣1,2.5),则EF=2.5<3,所以以3为半径,以点E为圆心的圆与直线必有两个交点,综上所述,共有四个点能与点A,点B组成直角三角形.故选D.【点评】本题考查的是一次函数图象上点的坐标特征,直角三角形的性质,在解答此题时要分三种情况进行讨论,不要漏解.10.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图象的交点坐标与其相应的二元一次方程组的解之间的关系,请通过此经验推断:在同一平面直角坐标系中,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数有()A.0个B.1个C.2个D.无数个【考点】二次函数的性质;一次函数与二元一次方程(组).【分析】由题意知函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数即方程组的解的个数,即可判断.【解答】解:根据题意,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数即方程组的解的个数,解方程组得:,所以函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点只有一个交点(1,6),故选:B.【点评】本题主要考查二次函数的性质,根据题意得出二次函数图象交点个数即为联立的方程组的解得个数是关键.二、填空题(本大题共8小题,每小题3分,共24分)11.若式子在实数范围内有意义,则x的取值范围是x≥2 .【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.温家宝总理强调,“十二五”期间,将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是 3.6×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:36000000=3.6×107.故答案为:3.6×107.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.分解因式:ab2﹣a= a(b+1)(b﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.已知a,b是一元二次方程x2﹣x﹣2=0的两根,则a+b= 1 .【考点】根与系数的关系.【分析】直接根据一元二次方程根与系数关系进行填空即可.【解答】解:∵a,b是一元二次方程x2﹣x﹣2=0的两根,∴a+b=1,故答案为1.【点评】本题主要考查了根与系数的关系的知识,解答本题的关键是掌握一元二次方程两根之和与两根之积与系数的关系,此题难度不大.15.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为3π.【考点】弧长的计算.【分析】根据弧长公式L=求解.【解答】解:L===3π.故答案为:3π.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式L=.16.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故答案为4.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.17.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为10.5 .【考点】圆周角定理;三角形中位线定理.【分析】由点E、F分别是AC、BC的中点,根据三角形中位线定理得出EF=AB=3.5为定值,则GE+FH=GH﹣EF=GH﹣3.5,所以当GH取最大值时,GE+FH有最大值.而直径是圆中最长的弦,故当GH为⊙O的直径时,GE+FH有最大值14﹣3.5=10.5.【解答】解:当GH为⊙O的直径时,GE+FH有最大值.当GH为直径时,E点与O点重合,∴AC也是直径,AC=14.∵∠ABC是直径上的圆周角,∴∠ABC=90°,∵∠C=30°,∴AB=AC=7.∵点E、F分别为AC、BC的中点,∴EF=AB=3.5,∴GE+FH=GH﹣EF=14﹣3.5=10.5.故答案为:10.5.【点评】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键.18.如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为.【考点】翻折变换(折叠问题).【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【解答】解:∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2﹣x)2,解得x=,∴sin∠BED=sin∠CDF==,故答案为:【点评】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.三、解答题(本大题共10小题,共76分,解答时应写出文字说明、证明过程或演算步骤)19.计算:()0++|﹣3|.【考点】实数的运算;零指数幂.【分析】原式第一项利用零指数幂法则计算,第二项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+3+3=4+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解不等式组并写出不等式组的整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式,得x≥﹣1.解不等式2x﹣3<0,得x<.所以不等式组的解集是﹣1≤x<.故不等式组的整数解为﹣1、0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.÷(x﹣),再从1、0、中选一个你所喜欢的数代入求值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.【解答】解:原式=﹒=,当x=时,原式=+2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km 和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发2或5 h时,两车相距200km.【考点】一次函数的应用.【分析】(1)待定系数求出OA解析式,继而根据点D的纵坐标为300求得其横坐标,即可得答案;(2)根据休息前2.4小时行驶300km可得行驶后行驶300km也需要2.4h,即可得点E坐标,待定系数法即可求得DE所在直线解析式;(3)先求出BC所在直线解析式,再根据①轿车休息前与货车相距200km,②轿车休息后与货车相距200km,分别列出方程求解可得.【解答】解:(1)设OA所在直线解析式为y=mx,将x=8、y=600代入,求得m=75,∴OA所在直线解析式为y=75x,令y=300得:75x=300,解得:x=4,∴点D 坐标为( 4,300 ),其实际意义为:点D是指货车出发4h后,与轿车在距离A地300 km处相遇.(2)由图象知,轿车在休息前2.4小时行驶300km,∴根据题意,行驶后300km需2.4h,故点E 坐标( 6.4,0 ).设DE所在直线的函数表达式为y=kx+b,将点D ( 4,300 ),E ( 6.4,0)代入y=kx+b得:,解得,∴DE所在直线的函数表达式为y=﹣125x+800.(3)设BC段函数解析式为:y=px+q,将点B(0,600)、C(2.4,300)代入,得:,解得:y=﹣125x+600,①当轿车休息前与货车相距200km时,有:﹣125x+600﹣75x=200,解得:x=2;②当轿车休息后与货车相距200km时,有:75x﹣(﹣125x+800)=200,解得:x=5;故答案为:2或5.【点评】本题考查了一次函数的应用,待定系数法是求函数解析式的关键,注意分类讨论思想的渗透.23.某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为50 ,图①中m的值是20 ;(2)求本次你调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数;众数.【分析】(1)根据捐款数是5元的,所占的百分比是8%,即可求得总人数,然后根据百分比的意义求得m的值;(2)根据平均数、众数、中位数的定义即可求解;(3)利用总人数2900乘以对应的百分比即可求解.【解答】解:(1)调查的学生数是:4÷8%=50(人),m=×100=32.故答案是:50,32;(2)平均数是: =16(元),众数是:10元,中位数是:15元;(3)该校本次活动捐款金额为10元的学生人数是:2900×32%=928(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.已知:如图,矩形ABCD的一条边AB=10,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,折痕为AO.(1)求证:△OCP∽△PDA;(2)若△OCP与△PDA的面积比为1:4,求边AD的长.【考点】翻折变换(折叠问题);相似三角形的判定与性质.【分析】(1)根据两角对应相等的两个三角形相似即可判定.(2)根据相似三角形的性质面积比等于相似比的平方,得到AD=2PC,设PC=x,则AD=2x,在RT△ADP中利用勾股定理即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°,由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B,∴∠APO=90°,∴∠APD=90°﹣∠CPO=∠POC,∵∠D=∠C,∠APD=∠POC,∴△OCP∽△PDA.(2)解:∵△OCP与△PDA的面积比为1:4,∴==,∴DA=2CP.设PC=x,则AD=2x,PD=10﹣x,AP=AB=10,在Rt△PDA中,∵∠D=90°,PD2+AD2=AP2,∴(10﹣x)2+(2x)2=102,解得:x=4,∴AD=2x=8.【点评】本题考查相似三角形的判定和性质、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握相似三角形的判定,学会用方程的思想解决数学问题,属于中考常考题型.25.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).【考点】解直角三角形的应用-仰角俯角问题.【分析】过点A作AF⊥DE于F,可得四边形ABEF为矩形,设DE=x,在Rt△DCE和Rt△ABC 中分别表示出CE,BC的长度,求出DF的长度,然后在Rt△ADF中表示出AF的长度,根据AF=BE,代入解方程求出x的值即可.【解答】解:如图,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3米,设DE=x,在Rt△CDE中,CE==x,在Rt△ABC中,∵=,AB=3,∴BC=3,在Rt△AFD中,DF=DE﹣EF=x﹣3,∴AF==(x﹣3),∵AF=BE=BC+CE,∴(x﹣3)=3+x,解得x=9(米).答:树高为9米.【点评】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形,难度一般.26.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(Ⅰ)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.【考点】切线的性质;圆周角定理;直线与圆的位置关系.【分析】(Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.【解答】解:(Ⅰ)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=90°﹣72°=18°.【点评】此题考查了切线的性质、圆周角定理以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.27.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个交点和该抛物线的顶点、对称轴上一点为顶点的菱形称为这条抛物线的“抛物菱形”.(1)若抛物线y=﹣x2+bx(b>0)的“抛物菱形”是正方形,求b的值;(2)如图,四边形OABC是抛物线y=﹣x2+b′x(b′>0)的“抛物菱形”,且∠OAB=60°.①“抛物菱形OABC”的面积为6.②将直角三角板中含有“60°角”的顶点与坐标原点O重合,两边与“抛物菱形OABC”的边AB、BC交于E、F,△OEF的面积是否存在最小值?若存在,求出此时△OEF的面积;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)根据正方形的性质求得A点的横纵坐标相等,然后把y=﹣x2+bx化成y=﹣(x﹣)2+,求得顶点坐标A(,),得出=,即可求得b的值;(2)①根据“抛物菱形”的性质,依据∠OAB=60°求得OB的长,然后根据勾股定理求得AC的值,即可求得菱形的面积;②当三角板的两边分别垂直与AB和BC时三角形OEF的面积最小,从而求得△OEF是等边三角形,根据勾股定理求得OE=1,然后求边长为1的等边三角形的面积即可.【解答】解:(1)∵抛物线y=﹣x2+bx(b>0)的“抛物菱形”是正方形,∴∠AOB=45°∠OAB=90°,∴A点的横坐标、纵坐标相等,∵A是抛物线y=﹣x2+bx(b>0)的顶点,y=﹣x2+bx=﹣(x﹣)2+,∴A(,),∴=,解得:b=2,(2)①∵由抛物线y=﹣x2+bx(b>0)可知OB=b,∵∠OAB=60°,∴A(, b),代入y=﹣x 2+bx 得:b=﹣()2+b ,解得:b=2,∴OB=2,AC=6, ∴“抛物菱形OABC”的面积=OBAC=6;②存在; 当三角板的两边分别垂直与AB 和BC 时三角形OEF 的面积最小,∵OE ⊥AB ,∴∠EOB=∠AOB=30°,同理∠BOF=30°,∵∠EOF=60°∴OB 垂直EF 且平分EF ,∴三角形OEF 是等边三角形,∵OB=2,∴OE=3,∴OE=OF=EF=3,∴△OEF 的面积=.【点评】本题考查了“抛物菱形”的性质,抛物线的顶点坐标,正方形的性质,等边三角形的性质,勾股定理的应用等.28.如图,将两块直角三角板摆放在平面直角坐标系中,有∠COD=∠ABO=Rt ∠,∠OCD=45°,∠AOB=60°,且AO=CD=8.现将Rt △AOB 绕点O 逆时针旋转,旋转角为β(0°≤β≤180°).在旋转过程中,直线CD 分别与直线AB ,OA 交于点F ,G .(1)当旋转角β=45°时,求点B 的坐标;(2)在旋转过程中,当∠BOD=60°时,求直线AB 的解析式;(3)在旋转过程中,△AFG 能否为等腰三角形?若能,请求出所有满足条件的β值;若不能,请说明理由.。

2017年江苏省苏州市中考数学试卷-答案

2017年江苏省苏州市中考数学试卷-答案

江苏省苏州市2017年中考试卷数学答案解析【提示】依据题意四边形CDPP '是平行四边形,平行四边形ABCD 的高为DF , 则CDPP '的高为DF PH -,之后按平行四边形的面积公式计算即可.【考点】平移的性质,菱形的性质,平行四边形的判定,勾股定理,解三角形. 二、填空题 11.【答案】4a【解析】解:22224()a a a ⨯==【提示】底数不变,括号外的指数与a 的指数相乘得的积作为底数的新指数. 【考点】幂的运算. 12.【答案】50【解析】解:因为OC 是AOB ∠的平分线, 所以2150AOB ∠=∠=o ,因为ED OB ∥, 所以50AED AOB ∠=∠=o【提示】由角平分线的定义,不难得出2150AOB ∠=∠=o ;而ED OB ∥,两直线平行,同位角相等, 可得50AED AOB ∠=∠=o .【考点】平行线的性质,角平分线的性质. 13.【答案】8【解析】解:一共有11个数据,所以中位数是把这组数据从小到大排列的第6个数据,而156+=,故第6个数为8,即中位数为8.【提示】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;这里的数据是奇数个,故中位数是它们排列后的最中间的那个数据. 【考点】条形统计图,中位数. 14.【答案】2(21)a -【解析】解:原式2222)41((21)a a a =-+=-63【解析】解:连接AG,设AB B G x'='=,则4x DG x=-,.在Rt ADG△中,由²²²AG AD DG=+,得(x)²=7²+(x-4)²,整理得²8650x x+-=,∴12513x x==-,(舍)5BB AB'CC AC'24由PQN APM S S =△△,可列出方程求出1QR =,分类讨论点Q 在直线PN 的左侧和Q 在直线PN 的右侧时即可.【考点】二次函数的图像及其性质,待定系数法求解析式,轴对称的性质.。

江苏省苏州市2017年中考数学真题试题(含扫描答案)

江苏省苏州市2017年中考数学真题试题(含扫描答案)

2017年苏州市初中毕业暨升学考试试卷数学第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()217−÷的结果是A .3B .3−C .13D .13− 2.有一组数据:2,5,5,6,7,这组数据的平均数为A .3B .4C .5D .63.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为A .2B .2.0C .2.02D .2.034.关于x 的一元二次方程220x x k −+=有两个相等的实数根,则k 的值为A .1B .1− C.2 D .2−5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为A .70B .720 C.1680 D .23706.若点(),m n A 在一次函数3y x b =+的图像上,且32m n −>,则b 的取值范围为A .2b >B .2b >− C.2b < D .2b <−7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36 C.54 D .728.若二次函数21y ax =+的图像经过点()2,0−,则关于x 的方程()2210a x −+=的实数根为A .10x =,24x =B .12x =−,26x = C.132x =,252x = D .14x =−,20x = 9.如图,在Rt C ∆AB 中,C 90∠A B =,56∠A =.以C B 为直径的O 交AB 于点D ,E 是O 上一点,且C CD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为A .92B .108 C.112 D .12410.如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283.243323.3238第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.计算:()22a = .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠=,则D ∠AE 的度数为.13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.14.因式分解:2441a a −+= .15.如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 .16.如图,AB 是O 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若用扇形C OA (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .17.如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60的方向,在码头B 北偏西45的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号). 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分5分) 计算:()0143π−+−.20. (本题满分5分)解不等式组:()142136x x x +≥⎧⎪⎨−>−⎪⎩. 21. (本题满分6分) 先化简,再求值:259123x x x −⎛⎫−÷ ⎪++⎝⎭,其中32x =. 22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23. (本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ;(2)若142∠=,求D ∠B E 的度数.25.(本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数k y x =(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =.(1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.26.(本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形CD AB 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为1个单位长度/s ,移动至拐角处调整方向需要1s (即在B 、C 处拐弯时分别用时1s ).设机器人所用时间为()s t 时,其所在位置用点P 表示,P 到对角线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与t 的函数图像如图②所示.(1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平行于横轴,M 、N 的横坐标分别为1t 、2t .设机器人用了()1s t 到达点1P 处,用了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.27.(本题满分10分)如图,已知C ∆AB 内接于O ,AB 是直径,点D 在O 上,D//C O B ,过点D 作D E ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:D ∆OE ∽C ∆AB ;(2)求证:DF D ∠O =∠B E ;(3)连接C O ,设D ∆OE 的面积为1S ,四边形C D B O 的面积为2S ,若1227S S =,求sin A 的值.28.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.一、选择题1-5:BCDAC 6-10:DBACA二、填空题11.4a 12.50 13.8 14.()221a − 15. 13 16.12274三、解答题19. 解:原式1212=+−=.20. 解:由44x +≥,解得3x ≥,由()2136x x −>−,解得4x <,所以不等式组的解集是34x ≤<.21. 解:原式()()()()333331232332x x x x x x x x x x x −+−−+=÷=⋅=++++−+.当32x =时, 原式333223===−+. 22. 解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=−⎩,所求函数表达式为125y x =−. (2) 当0y =时,1205x −=,得10x =. 答:旅客最多可免费携带行李10kg .23. 解:(1)8,3m n ==;(2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1 名男生、1 名女生”有8种可能.P ∴( 1 名男生、1 名女生)82123==.(如用树状图,酌情相应给分) 24. 解:(1)证明:AE 和BD 相交于点,O AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠.在AEC ∆和BED ∆中, (),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠.在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=,69BDE C ∴∠=∠=.25.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴点的坐标为5,22⎛⎫ ⎪⎝⎭,点C 在k y x =的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=.,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭. 点,C D 都在k y x =的图象上,332,6,22m m m C ⎛⎫∴=−∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫ ⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,22297,2OC OF CF OC =+∴=. 26. (1)作,AT BD ⊥ 垂足为T ,由题意得,248,.5AB AT ==在Rt ABT ∆中,22232,.5AB BT AT BT =+∴= tan ,6,AD AT ABD AD AB BT∠==∴= 即 6.BC =(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ PQ .在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ PQ =.1212..CP CP PP BD CB CD ∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20.CP t CP t t t =−=−∴==27.解:AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠. //,,OD BC DOE ABC DOE ∴∠=∠∴∆~ ABC ∆.(2)DOE ∆~ ABC ∆.ODE A A ∴∠=∠∠和BDC ∠是BC 所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭ ,即144ABC DOE S S S ∆∆== ,OA OB =,12BOC ABC S S ∆∆∴=,即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++ ,112DBE S S ∆∴= ,12BE OE ∴= ,即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠== . 28.解:(1)CD x 轴,2CD = ,∴ 抛物线对称轴为直线 1.l x =: ()1, 2.,0,,2b b OB OC Cc ∴−==−=∴B 点的坐标为(),0,c − 202,c c c ∴=++ 解得3c =− 或0c = (舍去), 3.c ∴=− (2)设点F 的坐标为()0,.m 对称轴为直线1,l x =∴:点F 关于直线l 的对称点F 的坐标为()2,m . 直线BE 经过点()()3,0,1,4,B E −∴ 利用待定系数法可得直线BE 的表达式为26y x =− . 因为点F 在BE 上,∴ 2262,m =⨯−=− 即点F 的坐标为()0,2.−(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==−=−++ 作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+−=−++ 1.QR ∴=①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R −−点的坐标为()2,4,n n n N −点的坐标为()2,23.n n n −− ∴ 在Rt QRN ∆中,()223123,2NQ n n =+−∴= 时,NQ 取最小值1 .此时Q 点的坐标为115,.24⎛⎫− ⎪⎝⎭②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +−同理,()221121,2NQ n n =+−∴= 时,NQ 取最小值1 .此时Q 点的坐标为315,.24⎛⎫− ⎪⎝⎭综上所述:满足题意得点Q 的坐标为115,24⎛⎫− ⎪⎝⎭和315,.24⎛⎫− ⎪⎝⎭。

江苏省苏州市2017年中考数学真题试题(含扫描答案)

江苏省苏州市2017年中考数学真题试题(含扫描答案)

2017年苏州市初中毕业暨升学考试试卷数学第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()217−÷的结果是A .3B .3−C .13D .13− 2.有一组数据:2,5,5,6,7,这组数据的平均数为A .3B .4C .5D .63.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为A .2B .2.0C .2.02D .2.034.关于x 的一元二次方程220x x k −+=有两个相等的实数根,则k 的值为A .1B .1− C.2 D .2−5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为A .70B .720 C.1680 D .23706.若点(),m n A 在一次函数3y x b =+的图像上,且32m n −>,则b 的取值范围为A .2b >B .2b >− C.2b < D .2b <−7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36 C.54 D .728.若二次函数21y ax =+的图像经过点()2,0−,则关于x 的方程()2210a x −+=的实数根为A .10x =,24x =B .12x =−,26x = C.132x =,252x = D .14x =−,20x = 9.如图,在Rt C ∆AB 中,C 90∠A B =,56∠A =.以C B 为直径的O 交AB 于点D ,E 是O 上一点,且C CD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为A .92B .108 C.112 D .12410.如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283.243323.3238第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.计算:()22a = .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠=,则D ∠AE 的度数为.13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.14.因式分解:2441a a −+= .15.如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 .16.如图,AB 是O 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若用扇形C OA (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .17.如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60的方向,在码头B 北偏西45的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号). 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分5分) 计算:()0143π−+−.20. (本题满分5分)解不等式组:()142136x x x +≥⎧⎪⎨−>−⎪⎩. 21. (本题满分6分) 先化简,再求值:259123x x x −⎛⎫−÷ ⎪++⎝⎭,其中32x =. 22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23. (本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ;(2)若142∠=,求D ∠B E 的度数.25.(本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数k y x =(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =.(1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.26.(本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形CD AB 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为1个单位长度/s ,移动至拐角处调整方向需要1s (即在B 、C 处拐弯时分别用时1s ).设机器人所用时间为()s t 时,其所在位置用点P 表示,P 到对角线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与t 的函数图像如图②所示.(1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平行于横轴,M 、N 的横坐标分别为1t 、2t .设机器人用了()1s t 到达点1P 处,用了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.27.(本题满分10分)如图,已知C ∆AB 内接于O ,AB 是直径,点D 在O 上,D//C O B ,过点D 作D E ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:D ∆OE ∽C ∆AB ;(2)求证:DF D ∠O =∠B E ;(3)连接C O ,设D ∆OE 的面积为1S ,四边形C D B O 的面积为2S ,若1227S S =,求sin A 的值.28.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.一、选择题1-5:BCDAC 6-10:DBACA二、填空题11.4a 12.50 13.8 14.()221a − 15. 13 16.122 18.745三、解答题19. 解:原式1212=+−=.20. 解:由44x +≥,解得3x ≥,由()2136x x −>−,解得4x <,所以不等式组的解集是34x ≤<.21. 解:原式()()()()333331232332x x x x x x x x x x x −+−−+=÷=⋅=++++−+.当32x =时, 原式33223===−+22. 解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=−⎩,所求函数表达式为125y x =−. (2) 当0y =时,1205x −=,得10x =. 答:旅客最多可免费携带行李10kg .23. 解:(1)8,3m n ==;(2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1 名男生、1 名女生”有8种可能.P ∴( 1 名男生、1 名女生)82123==.(如用树状图,酌情相应给分) 24. 解:(1)证明:AE 和BD 相交于点,O AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠.在AEC ∆和BED ∆中, (),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠.在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=,69BDE C ∴∠=∠=.25.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴点的坐标为5,22⎛⎫ ⎪⎝⎭,点C 在k y x =的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=.,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭. 点,C D 都在k y x =的图象上,332,6,22m m m C ⎛⎫∴=−∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫ ⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,22297,2OC OF CF OC =+∴=. 26. (1)作,AT BD ⊥ 垂足为T ,由题意得,248,.5AB AT ==在Rt ABT ∆中,22232,.5AB BT AT BT =+∴= tan ,6,AD AT ABD AD AB BT∠==∴= 即 6.BC =(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ PQ .在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ PQ =.1212..CP CP PP BD CB CD ∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20.CP t CP t t t =−=−∴==27.解:AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠. //,,OD BC DOE ABC DOE ∴∠=∠∴∆~ ABC ∆.(2)DOE ∆~ ABC ∆.ODE A A ∴∠=∠∠和BDC ∠是BC 所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭ ,即144ABC DOE S S S ∆∆== ,OA OB =,12BOC ABC S S ∆∆∴=,即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++ ,112DBE S S ∆∴= ,12BE OE ∴= ,即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠== . 28.解:(1)CD x 轴,2CD = ,∴ 抛物线对称轴为直线 1.l x =: ()1, 2.,0,,2b b OB OC Cc ∴−==−=∴B 点的坐标为(),0,c − 202,c c c ∴=++ 解得3c =− 或0c = (舍去), 3.c ∴=− (2)设点F 的坐标为()0,.m 对称轴为直线1,l x =∴:点F 关于直线l 的对称点F 的坐标为()2,m . 直线BE 经过点()()3,0,1,4,B E −∴ 利用待定系数法可得直线BE 的表达式为26y x =− . 因为点F 在BE 上,∴ 2262,m =⨯−=− 即点F 的坐标为()0,2.−(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==−=−++ 作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+−=−++ 1.QR ∴=①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R −−点的坐标为()2,4,n n n N −点的坐标为()2,23.n n n −− ∴ 在Rt QRN ∆中,()223123,2NQ n n =+−∴= 时,NQ 取最小值1 .此时Q 点的坐标为115,.24⎛⎫− ⎪⎝⎭②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +−同理,()221121,2NQ n n =+−∴= 时,NQ 取最小值1 .此时Q 点的坐标为315,.24⎛⎫− ⎪⎝⎭综上所述:满足题意得点Q 的坐标为115,24⎛⎫− ⎪⎝⎭和315,.24⎛⎫− ⎪⎝⎭。

2018年江苏省苏州市中考数学试卷及答案解析

2018年江苏省苏州市中考数学试卷及答案解析

2018年江苏省苏州市初中毕业、升学考试数学学科一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.(2018江苏苏州,1,3分)在下列四个实数中,最大的数是A.-3 B.0 C.32D.34【答案】C【解析】本题解答时要利用有理数大小比较的规则.根据正数大于零,零大于一切负数,可知最大的数为32,故选C.2.(2018江苏苏州,2,3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C【解析】本题解答时要确定好底数和10上的指数,384 000有6位整数,用科学记数法可表示成:53.8410⨯,故选C.3.(2018江苏苏州,3,3分)下列四个图案中,不是轴对称图案的是A.B.C.D.【答案】B【解析】本题解答时要找出图形的对称轴.A,C,D都是轴对称图形,只有B是中心对称图形,故选B. 4.(2018江苏苏州,4,3分)若2x+在实数范围内有意义,则x的取值范围在数轴上表示正确的是A.B.C.D.【答案】D【解析】本题解答时要利用二次根式有意义的概念进行解答.由二次根式的意义可知:20x+≥,解得2x≥-,故选D.5.(2018江苏苏州,5,3分)计算2121(1)x xx x+++÷的结果是A .x +1B .11x + C .1x x + D .1x x+ 【答案】B【解析】 本题解答时要利用分式的运算顺序和法则进行计算.原式=2111(1)x x x x x +⨯=++ ,故选B .6.(2018江苏苏州,6,3分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是A .12B .13C .49D .59【答案】C【解析】 本题解答时要分别算出正方形的面积和阴影部分的面积,然后利用概率公式进行计算.设小正方形的边长为a ,则大正方形的面积为9a 2,阴影部分的面积为214242a a a ⨯⨯⨯=,则飞镖落在阴影部分的概率为:224499a a=,故选C .7.(2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是»AC 上的点.若∠BOC =40°,则∠D 的度数为A .100°B .110°C .120°D .130°【答案】B【解析】 本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC =OB ,∠BOC =40゜,∴∠B =70゜,∴∠D =180゜-70゜=110゜,故选B .8.(2018江苏苏州,8,3分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏两30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之问的距离(即PC 的长)为A .40海里B .60海里C .203海里D .403海里【答案】D【解析】本题解答时要利用直角三角形的边角关键和勾股定理来进行计算.由题意可知AB=20,∠APB=30゜,∴P A=203,∵BC=2⨯20=40,∴AC=60,∴PC=2222(203)60403PA AC+=+=(海里),故选D.9.(2018江苏苏州,9,3分)如图,在△ABC中,延长BC至D,使得CD=12BC.过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD.连接DF,若AB=8,则DF的长为()A.3 B.4 C.23D.32【答案】B【解析】本题解答时要取AB的中点,然后利用三角形的中位线和平行四边形的判定和性质来解答.取AB的中点M,则ME∥BC,ME=12BC,∵EF∥CD,∴M,E,F三点共线,∵EF=2CD,∴MF=BD,∴四边形MBDF是平行四边形,∴DF=BM=4,故选B.E FMBA10.(2018江苏苏州,10,3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=kx在第一象限内的图像经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为()A.3 B.23C.6 D.12【答案】A【解析】本题解答时要把三角形函数数值化,用参数表示D的坐标,再求出E点的坐标,利用点在反比例函数上,得到方程,解这个方程即可求出k.设AD=3m,OA=4m,∵BC=AD,∴BC=3m,∵CE=2BE,∴BE=m,∴点E的坐标为(4m+4,m),∵点D,E都在反比例函数kyx=上,∴3m⨯4m=m(4m+4),解得m=12,∴k=3m⨯4m=3,故选A.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上.11.(2018江苏苏州,11,3分)计算:a4÷a=.【答案】a3【解析】本题解答时要利用同底数幂的除法法则.43a a a÷=.12.(2018江苏苏州,12,3分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.【答案】8【解析】本题解答时要掌握众数的概念.在这组数据中,由8出现了3次为最多,所以这组数据的众数为8.13.(2018江苏苏州,13,3分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.【答案】-2【解析】本题解答时要把方程的解代入方程进行计算.把x=2代入方程有:4+2m+2n=0,∴m+n=-2.14.(2018江苏苏州,14,3分)若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为.【答案】12【解析】本题解答时要把要求值的代数式进行因式分解变形,然后整体代入即可.22(1)(1)()(2)4312a b a b a b+--=+-+=⨯=.15.(2018江苏苏州,15,3分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°.现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.【答案】80【解析】本题先用直角的性质求出∠CAF的度数,再利用平行线求出∠BDE的度数,最后利用三角形的内角和定理求出∠BED的度数.∵∠CAB=90゜,∠CAF=20゜,∴∠F AB=70゜,∵DE∥FA,∴∠BDE=∠F AD=70゜,∴∠BED=180゜-30゜-70゜=80゜.16.(2018江苏苏州,16,3分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则12rr的值为.【答案】23【解析】 本题解答时要注意圆锥展开图是扇形,扇形的弧长是圆锥底面圆的周长.12180AOB rOA ππ∠=⨯,22180AOB r OB ππ∠=⨯,∴12r OA r OC = , ∵AB ∥CD ,∴4263OA AB OC CD ===,∴1223r OA r OC ==17.(2018江苏苏州,17,3分)如图,在Rt △ABC 中,∠B =90°,AB =25,BC =5.将△ABC 绕点A按逆时针方向旋转90°得到△AB C '',连接B C ',则sin ∠ACB '= .【答案】45【解析】 本题解答时要过B ’作B ’D ⊥AC 于D ,利用用等角的三角函数值相等中,旋转的性质,直角三角形三边的关系以及勾股定理来进行计算.过点B ’作B ’D ⊥AC 于D ,由旋转可知:∠B ’AB =90゜,AB ’=AB 5 ∴∠AB ’D +∠B ’AD =∠B ’AD +∠CAB ,∴∠AB ’D =∠CAB . ∵AB 5BC =5AC =5∴B ’D =AB ’sin 'AB D ∠ ==AB ’sin CAB ∠=5252=, ∴CD =5-2=3,∴B ’D 22(25)24-, ∴B ’C =5, ∴sin ∠ACB ’='4'5B D BC =.DC'B'CA18.(2018江苏苏州,18,3分)如图,已知AB =8,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,∠DAP =60°.M ,N 分别是对角线AC ,BE 的中点.当点P 在线段AB 上移动时,点M ,N 之问的距离最短为 (结果保留根号).【答案】3【解析】 本题解答时要连接MP ,PN ,利用菱形的性质,得出△PMN 为直角三角形,然后利用勾股定理,求出用PA 的长来表示的MN 的长,最后利用二次函数的性质求出MN 的最小值.连接PM ,PN ,∵四边形APCD ,PBFE 是菱形, ∴P A =PC ,∵AM =MC ,∴PM ⊥AC ,同理PN ⊥BE . ∴∠CPM +∠CPN =119022APC BPE ∠+∠=゜,∵∠DAP =60゜,∴∠CAP ==∠NPB =30゜, 设AP =x ,则PB =8-x , ∴PM =12x ,PN 3)x - NMCFD ABP∴2222213()[(8)](6)1222PM PN x x x ++--+∴当x =6时,MN 有最小值,最小值为23三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(2018江苏苏州,19,5分)(本题5分)计算:2129()22-+-. 【思路分析】 解答本题时要分别求出绝对值,二次根式,乘方的值,然后再做加减运算. 【解答过程】原式=12+3-12=3.20.(2018江苏苏州,20,5分)(本题5分)解不等式组:3242(21)x x x x ≥+⎧⎨+<-⎩.【思路分析】 解答本题时,先分别求出两个不等式的解集,然后再根据“同大取大,同小取小,大于小数小于大数取中间,大于大数小于小数无解”来求不等式组的解集.【解答过程】由3x >x +2,解得x ≥1,由x +4<2(2x -1),解得x >2, ∴不等式组的解集是x >2.21.(2018江苏苏州,21,6分)如图,点A ,F ,C ,D 在一条直线上,AB ∥DE ,AB =DE ,AF =DC .求证:BC ∥EF .【思路分析】 解答本题时,先根据边角边判定△ABC ≌△DEF ,再由全等三角形的性质得到∠BCA =∠EFC ,由此判别BC ∥EF .【解答过程】证明:∵AB ∥DE ,∴∠A =∠D .∵AF =DC ,∴AC =DF .在△ABC 和△DEF 中,AB =DE ,∠A =∠D ,AC =DF , ∴△ABC ≌△DEF (SAS ). ∴∠ACB =∠DFE , ∴BC ∥EF .22.(2018江苏苏州,22,6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3. (1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为__________; (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【思路分析】本题考查概率的应用.解答(1)时,这一小题是一步事件,直接应用概率公式进行计算;解答第(2)时,这一小题是二步事件,先用树状图或列表法找出所有的等可能事件,然后再找出满足题目条件的情况,最后利用公式进行计算.【解答过程】(1)23;(2)用“树状图”或利用表格列出所有可能的结果∴P(两个数字之和是3的倍数)=39=13.23.(2018江苏苏州,23,8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【思路分析】本题考查与条形统计图和扇形统计图相关的计算.(1)由乒乓球人数和所占的百分比求出样本容量,再利用样本容量和已知组的人数求出羽毛球的人数,再补全条形图;(2)求出篮球人数的百分比,乘以360゜即可;(3)用样本的百分率来估算总体.【解答过程】(1)1428%=50,答:参加这次调查的学生人数为50人,补全条形统计图如图所示:(2)1050×360°=72°.答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.(3)600×850=96.答:估计该校选择“足球”项目的学生有96人.24.(2018江苏苏州,24,8分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多l台,那么该学校至多能购买多少台B型打印机?【思路分析】本题考查了二元一次方程组和不等式的应用.解答第(1)时,根据题意列出地二元一次方程组来解决问题;解答第(2)时,根据题目中的不等式关系列出不等式来解决问题.【解答过程】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元.根据题意得:25900229400x yx y+=⎧⎨+=⎩,解这个方程组,得x=3500,y=1200.答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元.(2)设学校购买胛台B型打印机,则购买A型电脑为(n-l)台,根据题意得:3500(n-1)+1200n≤20000,解这个不等式,得n≤5.答:该学校至多能购买5台B型打印机.25.(2018江苏苏州,25,8分)如图,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C 为顶点.直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C '.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC '平行于直线AD ,求新抛物线对应的函数表达式.【思路分析】 本题本题考查二次函数与一元二次方程的关系.解答第(1)时,分别求出A ,D 两点的坐标,然后利用勾股定理可求出AD 的长;解答第(2)时,把二次函数配成顶点式,得到C ’点的坐标,再求出直线CC ’的解析式,最后把C ’点的坐标解入直线即可求出二次函数的解析式.【解答过程】 解:(1)由x 2-4=0解得x 1=2,x 2=-2.∵点A 位于点B 的左侧,∴A (-2,0). ∵直线y =x +m 经过点A ,∴-2+m =0, ∴m =2,∴D (0,2).∴AD 22OA OD +2(2)解法一:设新抛物线对应的函数表达式为y =x 2+bx +2,∴y =x 2+bx +2=(x +2b )2+2-24b .∵直线CC '平行于直线AD ,并且经过点C (0,-4),∴直线CC '的函数表达式为y =x -4.∴2-24b =-2b-4,整理得b 2-2b -24=0,解得b 1=-4,b 2=6.∴新抛物线对应的函数表达式为y =x 2-4x +2或y =x 2+6x +2. 解法二:∵直线CC '平行于直线AD ,并且经过点C (0,-4), ∴直线CC '的函数表达式为y =x -4.∵新抛物线的顶点C '在直线y =x -4上,∴设顶点C '的坐标为(n ,n -4), ∴新抛物线对应的函数表达式为y =(x -n )2+n -4. ∵新抛物线经过点D (0,2),∴n 2+n -4=2,解得n 1=-3,n 2=2.∴新抛物线对应的函数表达式为y =(x +3)2-7或y =(x -2)2-2.26.(2018江苏苏州,26,10分)如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D ,CE 垂直AB ,垂足为E .延长DA 交⊙O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC . (1)求证:CD =CE ;(2)若AE =GE ,求证:△CEO 是等腰直角三角形.【思路分析】本题本题考查圆的切线的性质,圆的基本性质以及全等三角形的判定和性质等.(1)连接AC,BC,证明△CDA≌△CEA,即可得CD=CE;(2)利用(1)中的全等形,和直径所对的圆周是直角等性质求出∠AOC=2∠F=45゜,即可证明△CEO是等腰直角三角形.【解答过程】证明:(1)连接AC.∵CD为OO的切线,∴OC⊥CD.又∵AD⊥CD,∴∠DCO=∠D=90°.∴AD∥OC,∴∠DAC=∠ACO.又∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO.又∵CE⊥AB,∴∠CEA=90°.在△CDA和△CEA中,∵∠D=∠CEA,∠DAC=∠EAC,AC=AC,∴△CDA≌△CEA(AAS),∴CD=CE.(2)证法一:连接BC.∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG.∴∠ECA=∠ECG.∵AB是⊙O直径,∴∠ACB=90°.又∵CE⊥AB,∴∠ACE=∠B.又∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG.又∵∠D=90°.∴∠DCF+∠F=90°.∴∠F=∠DCA=∠ACE=∠ECG=22.5.∴∠AOC=2∠F=45°.∴△CEO是等腰直角三角形,证法二:设∠F=x°.则∠AOC=2∠F=2x°.∵AD∥OC,∴∠OAF=∠AOC=2x°.∴∠CGA=∠ECA+∠F=3x°.∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x°.义∵∠DAC+∠EAC+∠OAF=180°.∴3x°+3x°+2x°=180°.∴x=22.5,∴∠AOC=2x°=45°.∴△CEO是等腰直角三角形.27.(2018江苏苏州,27,10分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S'.(1)当AD=3时,S S'=_______;(2)设AD=m,请你用含字母m的代数式表示SS'.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=12BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S'.请你利用问题1的解法或结论,用含字母n的代数式表示SS'.【思路分析】本题考查相似三角形的性质以及三角形面积的计算.问1:(1)先求出△ADC的面积,再求出△CDE的面积与△ADC的面积的比,最后求出两三角形的面积比;(2)类比(1)中的方法进行求解;问题2:把梯形的问题转化为三角形的问题,仍然利用平行线截得线段成比例,相似三角形的面积比等于相似比的平方以及等式的性质来求解.【解答过程】解:问题1:(1)316;(2)解法一:∵AB=4,AD=m.∴BD=4-m.又∵CE∥BC,∴4CE BD mEA DA m-==,∴4DECADES mS m-=VV.又∵CE∥BC,∴△ADE∽△ABC,∴216ADEABCS mS=VV.∴22441616DEC DEC ADEABC ADE ABCS S S m m m mS S S m--+=⨯=⨯=V V VV V V.即2416S m mS-+=′.解法二:过点B作BH⊥AC,垂足为H,过点D作DF⊥AC,垂足为F.则DF∥BH,∴△ADF∽△ABH.∴4DF AD mBH AB==.∵DE∥BC,∴44CE BD mCA BA-==,∴21442144162DECABCCE DFS m m m mS CA BH⋅--+==⨯=⋅VV.即2416S m mS-+=′.问题2:解法一:分别延长BA,CD,相交于点D.∵AD∥BC,∴△OAD∽△OBC,∴12OA ADOB BC==.∴OA=AB=4,∴OB=8.∵AE=n,∴OE=4+n.∵EF∥BC.由问题1的解法可知24416()4864CEF CEF OEFOBC OEF OBCS S S n n nS S S n-+-=⨯=⨯=+V V VV V V,∵21()4OADABCDS OAS OB==VV.∴23()4ABCDOBCS OAS OB==V.∴22416163364484CEF CEFABCDOBCS S n nS S--==⨯=△△△,即SS=′21648n-.解法二:连接AC交EF于M.∵AD∥BC,且AD=12BC,∴12ADCABCSS=△△.∴S△ADC=13S,S△ABC=23S.由问题1的结论可知,EMCABCSS=VV2416n n-+.∴S△EMC=2416n n-+×23S=2424n nS-+.∵MF∥AD,∴△CFM∽△CDA,∴243()143CFM CFM CFM CDA S S S n S S S -==⨯=△△△△, ∴S △CFM =2(4)48n S -. ∴S △EFC =S △EMC +S △CFM =2424n n S -++2(4)48n S -=21648n S -, ∴S S=′21648n -.28.(2018江苏苏州,28,10分)如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正方形草地,点A ,D 在直线l 上.小明从点A 出发,沿公路l 向两走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设AE =x 米(其中x >0),GA =y 米.已知y 与x 之间的函数关系如图②所示.(1)求图②中线段MN 所在直线的函数表达式;(2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即△EFG )是否可以是一个等腰三角形?如果可以,求出相应x 的值;如果不可以,说明理由.【思路分析】 本题考查一次函数的性质以及动点问题中等腰三角形存在性质的探究.(1)利用待定系数法坟出y 与x 之间的函数关系式;(2)用含x 的代数式来表示AE ,AG ,GD 的长度,然后分EF =FG ,FG =EG ,EF =EG 来进行讨论,利用勾股定理和相似三角形和性质来求x .【解答过程】解:(1)设线段MN 所在直线的函数表达式为y =kx +b .∵M ,N 两点的坐标分别为(30,230),(100,300),∴30230100300k b k b +=⎧⎨+=⎩,解这个方程组,得1200k b =⎧⎨=⎩. ∴线段MN 所在直线的函数表达式为y =x +200.(2)①第一种情况:考虑FE =FG 是否成立,连接EC .∵AE =x ,AD =100,GA =x +200,∴ED =GD =x +100.又∵CD ⊥EG ,∴CE =CG ,∴∠CGE =∠CEG ,∴∠FEG>∠CGE.∴FE≠FG.②第二种情况:考虑FG=EG是否成立,∵四边形ABCD是正方形,∴BC∥EG,∴△FBC≌△FEG.假设FG=EG成立,则FC=BC亦成立.∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG-FC=2x+200-100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,解这个方程,得x1=-100,x2=1003.∵x>0,∴x=1003.③第三种情况:考虑EF=EG是否成立.与②同理,假设EF=EG成立,则FB=BC亦成立.∴BE=EF-FB=2x+200-100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,解这个方程,得x1=0,x2=-4003(不合题意,均舍去).综上所述,当x=1003时,△EFG是一个等腰三角形.。

2017年江苏省苏州市中考数学试题及答案

2017年江苏省苏州市中考数学试题及答案

2017年苏州市初中毕业暨升学考试试卷数 学第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()217-÷的结果是A .3B .3-C .13 D .13- 2.有一组数据:2,5,5,6,7,这组数据的平均数为 A .3 B .4 C .5 D .63.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为A .2B .2.0C .2.02D .2.034.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1 B .1- C.2 D .2-5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为 A .70 B .720 C.1680 D .23706.若点(),m n A 在一次函数3y x b =+的图像上,且32m n ->,则b 的取值范围为 A .2b > B .2b >- C.2b < D .2b <-7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为 A .30 B .36 C.54 D .728.若二次函数21y ax =+的图像经过点()2,0-,则关于x 的方程()2210a x -+=的实数根为A .10x =,24x =B .12x =-,26x = C.132x =,252x = D .14x =-,20x = 9.如图,在Rt C ∆AB 中,C 90∠A B =,56∠A =.以C B 为直径的O 交AB 于点D ,E 是O 上一点,且C CD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为A .92B .108 C.112 D .12410.如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆A E 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .B . C. D .8第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.计算:()22a = .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠=,则D ∠A E 的度数为 .13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环. 14.因式分解:2441a a -+= .15.如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 .16.如图,AB 是O 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若用扇形C OA (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .17.如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60的方向,在码头B 北偏西45的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分5分)计算:()013π--.20. (本题满分5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.21. (本题满分6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23. (本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ; (2)若142∠=,求D ∠B E 的度数.25.(本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数k y x =(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =. (1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.26.(本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形CD AB 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为1个单位长度/s ,移动至拐角处调整方向需要1s (即在B 、C 处拐弯时分别用时1s ).设机器人所用时间为()s t 时,其所在位置用点P 表示,P 到对角线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与t 的函数图像如图②所示. (1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平行于横轴,M 、N 的横坐标分别为1t 、2t .设机器人用了()1s t 到达点1P 处,用了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.27.(本题满分10分)如图,已知C ∆AB 内接于O ,AB 是直径,点D 在O 上,D//C O B ,过点D 作D E ⊥AB ,垂足为E ,连接CD 交OE 边于点F . (1)求证:D ∆OE ∽C ∆AB ; (2)求证:DF D ∠O =∠B E ;(3)连接C O ,设D ∆O E 的面积为1S ,四边形C D B O 的面积为2S ,若1227S S =,求sin A 的值.28.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点. (1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.参考答案一、选择题1-5:BCDAC 6-10:DBACA二、填空题11.4a 12.50 13.8 14.()221a -15.13 16.12三、解答题19. 解:原式1212=+-=.20. 解:由44x +≥,解得3x ≥,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<. 21. 解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =时,原式3===. 22. 解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg . 23. 解:(1)8,3m n ==; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1 名男生、1 名女生”有8种可能.P ∴( 1 名男生、1 名女生)82123==.(如用树状图,酌情相应给分) 24. 解:(1)证明:AE 和BD 相交于点,O AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠.在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠.在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=,69BDE C ∴∠=∠=.25.解:(1)作C E A B⊥,垂足为,,4E AC BC AB ==,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴点的坐标为5,22⎛⎫⎪⎝⎭,点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=.,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. 点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,222,2OC OF CF OC =+∴=. 26. (1)作,AT BD ⊥ 垂足为T ,由题意得,248,.5AB AT ==在Rt ABT ∆中,22232,.5AB BT AT BT =+∴=tan ,6,AD ATABD AD AB BT∠==∴= 即 6.BC =(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQP Q . 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得,11221215,16,12,20.CP t CP t t t =-=-∴==27.解:AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠.//,,OD BC DOE ABC DOE ∴∠=∠∴∆~ ABC ∆.(2)DOE ∆~ ABC ∆.ODE A A ∴∠=∠∠和BDC ∠是BC 所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOEABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭ ,即144ABC DOE S S S ∆∆== ,OA OB =,12BOC ABC S S ∆∆∴=,即12BO C S S ∆= .121122,27BOC DOE DBE DBES S S S S S S S S ∆∆∆∆==++=++,112DBE S S ∆∴=,12BE OE∴=,即222,s i n si n333OE OE OB OD A ODE OD==∴=∠== .28.解:(1)CD x 轴,2CD = ,∴ 抛物线对称轴为直线 1.l x =:()1, 2.,0,,2bb OB OC Cc ∴-==-=∴B 点的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c = (舍去), 3.c ∴=-(2)设点F 的坐标为()0,.m 对称轴为直线1,l x =∴:点F 关于直线l 的对称点F 的坐标为()2,m .直线BE 经过点()()3,0,1,4,B E -∴ 利用待定系数法可得直线BE 的表达式为26y x =- .因为点F 在BE 上,∴ 2262,m =⨯-=- 即点F 的坐标为()0,2.- (3)存在点Q 满足题意.设点P 坐标为(),0n , 则21,3,2 3.PA n PB PM n PN n n =+==-=-++ 作,QR PN ⊥ 垂足为,R()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++ 1.QR ∴=①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n n n -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴=时,NQ 取最小值1 .此时Q 点的坐标为115,.24⎛⎫-⎪⎝⎭②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n+-同理,()221121,2N Q n n =+-∴= 时,NQ 取最小值1 .此时Q 点的坐标为315,.24⎛⎫- ⎪⎝⎭综上所述:满足题意得点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

2018年江苏省苏州市中考数学试卷含答案解析(Word版)

2018年江苏省苏州市中考数学试卷含答案解析(Word版)

2018 年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00 分)在下列四个实数中,最大的数是()A.﹣3B.0 C.D.2.(3.00 分)地球与月球之间的平均距离大约为384000km,384000 用科学记数法可表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1063.(3.00 分)下列四个图案中,不是轴对称图案的是()A.B.C.D.4.(3.00 分)若在实数范围内有意义,则x 的取值范围在数轴上表示正确的是()A.B.C.D.5.(3.00 分)计算(1+)÷的结果是()A.x+1 B.C.D.6.(3.00 分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.7.(3.00 分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是上的点,若∠BOC=40°,则∠D 的度数为()A.100°B.110°C.120° D.130°8.(3.00 分)如图,某海监船以20 海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1 小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2 小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为()A.40 海里B.60 海里C.20 海里D.40 海里9.(3.00 分)如图,在△ABC 中,延长BC 至D,使得CD= BC,过AC 中点E 作EF∥CD(点F 位于点E 右侧),且EF=2CD,连接DF.若AB=8,则DF 的长为()A.3 B.4 C.2 D.310.(3.00 分)如图,矩形ABCD 的顶点A,B 在x 轴的正半轴上,反比例函数y= 在第一象限内的图象经过点D,交BC 于点E.若AB=4,CE=2BE,tan∠AOD= ,则k 的值为()A.3 B.2 C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00 分)计算:a4÷a=.12.(3.00 分)在“献爱心”捐款活动中,某校7 名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13 .(3.00 分)若关于x 的一元二次方程x2+mx+2n=0 有一个根是2 ,则m+n=.14.(3.00 分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2 的值为.15.(3.00 分)如图,△ABC 是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A 落在直尺的一边上,AB 与直尺的另一边交于点D,BC 与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED 的度数为°.16.(3.00 分)如图,8×8 的正方形网格纸上有扇形OAB 和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD 围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.17.(3.00 分)如图,在Rt△ABC 中,∠B=90°,AB=2 ,BC= .将△ABC 绕点A 按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.18.(3.00 分)如图,已知AB=8,P 为线段AB 上的一个动点,分别以AP,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE,点P,C,E 在一条直线上,∠DAP=60°.M,N 分别是对角线AC,BE 的中点.当点P 在线段AB 上移动时,点M,N 之间的距离最短为(结果留根号).三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00 分)计算:|﹣|+﹣()2.20.(5.00 分)解不等式组:21.(6.00 分)如图,点A,F,C,D 在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.22.(6.00 分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3 的倍数的概率(用画树状图或列表等方法求解).23.(8.00 分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600 名学生,试估计该校选择“足球”项目的学生有多少人?24.(8.00 分)某学校准备购买若干台A 型电脑和B 型打印机.如果购买1 台A 型电脑,2 台B 型打印机,一共需要花费5900 元;如果购买2 台A 型电脑,2 台B 型打印机,一共需要花费9400 元.(1)求每台A 型电脑和每台B 型打印机的价格分别是多少元?(2)如果学校购买A 型电脑和B 型打印机的预算费用不超过20000 元,并且购买B 型打印机的台数要比购买A 型电脑的台数多1 台,那么该学校至多能购买多少台B 型打印机?25.(8.00 分)如图,已知抛物线y=x2﹣4 与x 轴交于点A,B(点A 位于点B 的左侧),C 为顶点,直线y=x+m 经过点A,与y 轴交于点D.(1)求线段AD 的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26.(10.00 分)如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D,CE 垂直AB,垂足为E.延长DA 交⊙O 于点F,连接FC,FC 与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO 是等腰直角三角形.27.(10.00 分)问题1:如图①,在△ABC 中,AB=4,D 是AB 上一点(不与A,B 重合),DE∥BC,交AC 于点E,连接CD.设△ABC 的面积为S,△DEC 的面积为S′.(1)当AD=3 时,=;(2)设AD=m,请你用含字母m 的代数式表示.问题2:如图②,在四边形ABCD 中,AB=4,AD∥BC,AD= BC,E 是AB 上一点(不与A,B 重合),EF∥BC,交CD 于点F,连接CE.设AE=n,四边形ABCD 的面积为S,△EFC 的面积为S′.请你利用问题1 的解法或结论,用含字母n 的代数式表示.28.(10.00 分)如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100 米的正方形草地,点A,D 在直线l 上,小明从点A 出发,沿公路l 向西走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设AE=x 米(其中x>0),GA=y 米,已知y 与x 之间的函数关系如图②所示,(1)求图②中线段MN 所在直线的函数表达式;(2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.2018年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00 分)在下列四个实数中,最大的数是()A.﹣3B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.【点评】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.2.(3.00 分)地球与月球之间的平均距离大约为384000km,384000 用科学记数法可表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.8 4×106【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于384 000 有6 位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.3.(3.00 分)下列四个图案中,不是轴对称图案的是()A.B.C.D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3.00 分)若在实数范围内有意义,则x 的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.(3.00 分)计算(1+)÷的结果是()A.x+1 B.C.D.【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】解:原式=(+)÷= •= ,故选:B.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.6.(3.00 分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.7.(3.00 分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是上的点,若∠BOC=40°,则∠D 的度数为()A.100°B.110°C.120° D.130°【分析】根据互补得出∠AOC 的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D= ,故选:B.【点评】此题考查圆周角定理,关键是根据互补得出∠AOC 的度数.8.(3.00 分)如图,某海监船以20 海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1 小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2 小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为()A.40 海里B.60 海里C.20 海里D.40 海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA 即可解决问题;【解答】解:在Rt△PAB 中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40 (海里),故选:D.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.9.(3.00 分)如图,在△ABC 中,延长BC 至D,使得CD= BC,过AC 中点E 作EF∥CD(点F 位于点E 右侧),且EF=2CD,连接DF.若AB=8,则DF 的长为()A.3 B.4 C.2 D.3【分析】取BC 的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF 是平行四边形,可得DF=EG=4.【解答】解:取BC 的中点G,连接EG,∵E 是AC 的中点,∴EG 是△ABC 的中位线,∴EG= AB= =4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF 是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.10.(3.00 分)如图,矩形ABCD 的顶点A,B 在x 轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC 于点E.若AB=4,CE=2BE,tan∠AOD=,则k 的值为()A.3 B.2 C.6 D.12【分析】由tan∠AOD= = 可设AD=3a、OA=4a,在表示出点D、E 的坐标,由反比例函数经过点D、E 列出关于a 的方程,解之求得a 的值即可得出答案.【解答】解:∵tan∠AOD= = ,∴设AD=3a、OA=4a,则BC=AD=3a,点D 坐标为(4a,3a),∵CE=2BE,∴BE= BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y= 经过点D、E,∴k=12a2=(4+4a)a,解得:a= 或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00 分)计算:a4÷a=a3.【分析】根据同底数幂的除法解答即可.【解答】解:a4÷a=a3,故答案为:a3【点评】此题主要考查了同底数幂的除法,对于相关的同底数幂的除法的法则要求学生很熟练,才能正确求出结果.12.(3.00 分)在“献爱心”捐款活动中,某校7 名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是8.【分析】根据众数的概念解答.【解答】解:在5,8,6,8,5,10,8,这组数据中,8 出现了3 次,出现的次数最多,∴这组数据的众数是8,故答案为:8.【点评】本题考查的是众数的确定,一组数据中出现次数最多的数据叫做众数.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=﹣2.【分析】根据一元二次方程的解的定义把x=2 代入x2+mx+2n=0 得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.【解答】解:∵2(n≠0)是关于x 的一元二次方程x2+mx+2n=0 的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.(3.00 分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2 的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点评】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.15.(3.00 分)如图,△ABC 是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A 落在直尺的一边上,AB 与直尺的另一边交于点D,BC 与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED 的度数为80°.【分析】依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°.【解答】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=60°,∴∠BFA=20°+60°=80°,∴∠BED=80°,故答案为:80.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.16.(3.00 分)如图,8×8 的正方形网格纸上有扇形OAB 和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD 围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.【分析】由2πr1= 、2πr2= 知r1= 、r2= ,据此可得= ,利用勾股定理计算可得.【解答】解:∵2πr1= 、2πr2= ,∴r1= 、r2= ,∴= = = = ,故答案为:.【点评】本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理.17.(3.00 分)如图,在Rt△ABC 中,∠B=90°,AB=2 ,BC= .将△ABC 绕点A 按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.【分析】根据勾股定理求出AC,过C 作CM⊥AB′于M,过A 作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt △ABC 中,由勾股定理得:AC= =5 ,过C 作CM⊥AB′于M,过A 作AN⊥CB′于N,∵根据旋转得出AB′=AB=2,∠B′AB=90°,即∠CMA=∠MAB=∠B=90°,∴CM=AB=2 ,AM=BC= ,∴B′M=2﹣= ,在Rt△B′MC中,由勾股定理得:B′C== =5,∴S△AB′C= = ,∴5×AN=2 ×2 ,解得:AN=4,∴sin∠ACB′== ,故答案为:.【点评】本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键.18.(3.00 分)如图,已知AB=8,P 为线段AB 上的一个动点,分别以AP,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE,点P,C,E 在一条直线上,∠DAP=60°.M,N 分别是对角线AC,BE 的中点.当点P 在线段AB 上移动时,点M,N 之间的距离最短为 2 (结果留根号).【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN= (4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE 是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N 分别是对角线AC,BE 的中点,∴∠CPM= ∠APC=60°,∠EPN= ∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN= (4﹣a),∴MN= = = ,∴a=3 时,MN 有最小值,最小值为2 ,故答案为2 .【点评】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00 分)计算:|﹣|+﹣()2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式= +3﹣=3【点评】本题考查实数的运算,解题的关键是熟练运用运算法则,本题属于基础题型.20.(5.00 分)解不等式组:【分析】首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可.【解答】解:由3x≥x+2,解得x≥1,由x+4<2(2x﹣1),解得x>2,所以不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6.00 分)如图,点A,F,C,D 在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【分析】由全等三角形的性质SAS 判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC 与△DEF 中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(6.00 分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3 的倍数的概率(用画树状图或列表等方法求解).【分析】(1)由标有数字1、2、3 的3 个转盘中,奇数的有1、3 这2 个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3 的倍数的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵在标有数字1、2、3 的3 个转盘中,奇数的有1、3 这2 个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)由表可知,所有等可能的情况数为9 种,其中这两个数字之和是3 的倍数的有3 种,所以这两个数字之和是3 的倍数的概率为= .【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8.00 分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600 名学生,试估计该校选择“足球”项目的学生有多少人?【分析】(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1),答:参加这次调查的学生人数是50 人;补全条形统计图如下:(2),答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3),答:估计该校选择“足球”项目的学生有96 人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00 分)某学校准备购买若干台A 型电脑和B 型打印机.如果购买1 台A型电脑,2 台B 型打印机,一共需要花费5900 元;如果购买2 台A 型电脑,2台B 型打印机,一共需要花费9400 元.(1)求每台A 型电脑和每台B 型打印机的价格分别是多少元?(2)如果学校购买A 型电脑和B 型打印机的预算费用不超过20000 元,并且购买B 型打印机的台数要比购买A 型电脑的台数多1 台,那么该学校至多能购买多少台B 型打印机?【分析】(1)设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元,根据“1台A 型电脑的钱数+2 台B 型打印机的钱数=5900,2 台A 型电脑的钱数+2台B 型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a 台B 型打印机,则购买A 型电脑为(a﹣1)台,根据“(a﹣1)台A 型电脑的钱数+a 台B 型打印机的钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元,根据题意,得:,解得:,答:每台A 型电脑的价格为3500 元,每台B 型打印机的价格为1200 元;(2)设学校购买a 台B 型打印机,则购买A 型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5 台B 型打印机.【点评】本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.25.(8.00 分)如图,已知抛物线y=x2﹣4 与x 轴交于点A,B(点A 位于点B 的左侧),C 为顶点,直线y=x+m 经过点A,与y 轴交于点D.(1)求线段AD 的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.【分析】(1)解方程求出点A 的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【解答】解:(1)由x2﹣4=0 得,x1=﹣2,x2=2,∵点A 位于点B 的左侧,∴A(﹣2,0),∵直线y=x+m 经过点A,∴﹣2+m=0,解得,m=2,∴点D 的坐标为(0,2),∴AD= =2 ;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′的坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣4x+2 或y=x2+6x+2.【点评】本题考查的是抛物线与x 轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x 轴的交点的求法是解题的关键.26.(10.00 分)如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D,CE 垂直AB,垂足为E.延长DA 交⊙O 于点F,连接FC,FC 与AB 相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO 是等腰直角三角形.【分析】(1)连接AC,根据切线的性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS 证明△CDA≌△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F= ∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.【解答】证明:(1)连接AC,∵CD 是⊙O 的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA 和△CEA 中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB 是⊙O 的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO 是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO 是等腰直角三角形.【点评】此题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.27.(10.00 分)问题1:如图①,在△ABC 中,AB=4,D 是AB 上一点(不与A,B 重合),DE∥BC,交AC 于点E,连接CD.设△ABC 的面积为S,△DEC 的面积为S′.(1)当AD=3 时,=;(2)设AD=m,请你用含字母m 的代数式表示.问题2:如图②,在四边形ABCD 中,AB=4,AD∥BC,AD= BC,E 是AB 上一点(不与A,B 重合),EF∥BC,交CD 于点F,连接CE.设AE=n,四边形ABCD 的面积为S,△EFC 的面积为S′.请你利用问题1 的解法或结论,用含字母n 的代数式表示.【分析】问题1:(1)先根据平行线分线段成比例定理可得:,由同高三角形面积的比等于对应底边的比,则= = ,根据相似三角形面积比等于相似比的平方得:= = ,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:= ,分别表示和的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1 的解法可知:= = = ,根据相似三角形的性质得:= ,可得结论;解法二:如图3,连接AC 交EF 于M,根据AD= BC,可得= ,得:S△ADC= S,S△ABC= ,由问题1 的结论可知:= ,证明△CFM∽△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论.【解答】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE∥BC,∴,∴= = ,∵DE∥BC,∴△ADE∽△ABC,∴= = ,∴= ,即,故答案为:;(2)解法一:∵AB=4,AD=m,∴BD=4﹣m,∵DE∥BC,∴= = ,∴= = ,∵DE∥BC,∴△ADE∽△ABC,∴= = ,∴= = = ,即= ;解法二:如图1,过点B 作BH⊥AC 于H,过D 作DF⊥AC 于F,则DF∥BH,∴△ADF∽△ABH,∴= ,∴= = = ,即= ;问题2:如图②,解法一:如图2,分别延长BD、CE 交于点O,∵AD∥BC,∴△OAD∽△OBC,∴,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF∥BC,由问题1 的解法可知:= = = ,∵= = ,∴= ,∴= = = ,即= ;解法二:如图3,连接AC 交EF 于M,∵AD∥BC,且AD= BC,∴= ,∴S△ADC= ,∴S△ADC= S,S△ABC= ,由问题1 的结论可知:= ,∵MF∥AD,∴△CFM∽△CDA,∴= = = ,∴S△CFM= ×S,∴S△EFC=S△EMC+S△CFM= +×S= ,∴= .【点评】本题考查了相似三角形的性质和判定、平行线分线段成比例定理,熟练掌握相似三角形的性质:相似三角形面积比等于相似比的平方是关键,并运用了类比的思想解决问题,本题有难度.28.(10.00 分)如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100 米的正方形草地,点A,D 在直线l 上,小明从点A 出发,沿公路l 向西走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着。

2018年江苏省苏州市中考数学试卷(含答案与解析)

2018年江苏省苏州市中考数学试卷(含答案与解析)

数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前江苏省苏州市2018年初中学业水平考试数 学(满分:130分考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在下列四个实数中,最大的数是( ) A .3-B .0C .32D .342.地球与月球之间的平均距离大约为384000km ,384000用科学记数法可表示为( ) A .33.8410⨯B .43.8410⨯C .53.8410⨯D .63.8410⨯3.下列四个图案中,不是轴对称图案的是( )ABCD4.在实数范围内有意义,则x 的取值范围在数轴上表示正确的是 ( ) A . B .C .D .5.计算21211+x x x x ++⎛⎫÷ ⎪⎝⎭的结果是( )A .+1xB .11x + C .1x x + D .1x x+ 6.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是 ( )A .12B .13C .49D .59(第6题)(第7题)(第8题)7.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点D 是AC 上的点.若40BOC ∠=︒,则D ∠的度数为( )A .100︒B .110︒C .120︒D .130︒8.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30︒方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( ) A .40海里B .60海里C .D .9.如图,在ABC 中,延长BC 至D ,使得12CD BC =,过AC 中点E 作EF CD (点F 位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为( ) A .3B .4C .D .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)(第9题)(第10题)10.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数ky x =在第一象限内的图像经过点D ,交BC 于点E .若4AB =,2CE BE =,3tan 4AOD ∠=,则k 的值为( ) A .3B.C .6D .12二、填空题(本大题共8小题,每小题3分,共24分)11.计算:4a a ÷= .12.在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是 .13.若关于x 的一元二次方程220x mx n ++=有一个根是2,则m n += . 14.若4a b +=,1a b -=,则()()2211a b +--的值为 .15.如图,ABC 是一块直角三角板,90BAC ∠=︒,=30B ∠︒.现将三角板叠放在一把直尺上,使得点A 落在直尺的一边上,AB 与直尺的另一边交于点D ,BC 与直尺的两边分别交于点E ,F .若20CAF ∠=︒,则BED ∠的度数为 ︒.(第15题) (第16题)16.如图,88⨯的正方形网格纸上有扇形OAB 和扇形OCD ,点,,,,O A B C D 均在格点上,若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为1r ;若用扇形OCD 围成另一个圆锥的侧面,记这个圆锥的底面半径为2r ,则12rr 的值为 .17.如图,在Rt ABC 中,=90B ∠︒,AB BC ==将ABC 绕点A 按逆时针方向旋转90︒得到AB C '',连接B C ',则sin ACB '∠= .(第17题) (第18题)18.如图,已知=8AB ,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,60.DAP ∠=︒M ,N 分别是对角线AC ,BE 的中点,当点P 在线段AB 上移动时,点M ,N 之间的距离最短为 (结果保留根号).三、解答题(本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明) 19.(本题满分5分)计算:21||.2-⎝⎭20.(本题满分5分)解不等式组:()32,4221.x x x x ≥+⎧⎪⎨+<-⎪⎩21.(本题满分6分)如图,点A ,F ,C ,D 在一条直线上,,,.AB DE AB DE AF DC ==∥求证:.BC EF ∥22.(本题满分6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 .;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两数学试卷 第5页(共24页) 数学试卷 第6页(共24页)个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(本题满分8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(本题满分8分)某学校准备购买若干台A 型电脑和B 型打印机.如果购买1台A 型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A 型电脑,2台B 型打印机,一共需要花费9400元.(1)求每台A 型电脑和每台B 型打印机的价格分别是多少元?(2)如果学校购买A 型电脑和每台B 型打印机的预算费用不超过20000元,并且购买B 型打印机的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台B 型打印机?25.(本题满分8分)如图,已知抛物线24y x =-与x 轴交于点A ,B (点A 位于点B 的左侧),C 为顶点.直线y x m =+经过点A ,与y 轴交于点D . (1)求线段AD 的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C '.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC '平行于直线AD ,求新抛物线对应的函数表达式.26.(本题满分10分)如图,AB 是O 的直径,点C 在O 上,AD 垂直于过点C 的切线,垂足为D ,CE 垂直于AB ,垂足为E .延长DA 交O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC .(1)求证:CD CE =;(2)若AE GE =,求证:CEO 是等腰直角三角形.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)27.(本题满分10分)问题1:如图①,在ABC △中,4AB =,D 是AB 上一点(不与A ,B 重合),DE BC ∥,交AC 于点E ,连接CD .设ABC △的面积为S ,DEC △的面积为S '. (1)当3AD =时,S S'= . (2)设AD m =,请你用含字母m 的代数式表示S S'. 问题2:如图②,在四边形ABCD 中,4AB =,AD BC ∥,12AD BC =,E 是AB 上一点(不与A ,B 重合),EF BC ∥,交CD 于点F ,连接CE .设AE n =,四边形ABCD 的面积为S ,EFC △的面积为S '.请即利用问题1的解法或结论,用含字母n 的代数式表示S S'.28.(本题满分10分)如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正方形草地,点A ,D 在直线l 上.小明从点A 出发,沿公路l 向西走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设=AE x 米(其中0x >),GA y =米,已知y 与x 之间的函数关系如图②所示. (1)求图②线段MN 所在直线的函数表达式;(2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即EFG △)是否可以使一个等腰三角形?如果可以,求出相应x 的值;如果不可以,说明理由.数学试卷 第9页(共24页) 数学试卷 第10页(共24页)江苏省苏州市2018年初中学业水平考试2.【答案】C【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.5384000=3.84100000=3.8410⨯⨯.故选C .【考点】科学记数法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年苏州市初三中考数学押题试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列数中,与﹣2的和为0的数是( ▲ ) A .2B .﹣2C .21 D .21-2.下列调查中,适宜采用普查方式的是( ▲ ) A .了解一批圆珠笔的寿命B .了解全国九年级学生身高的现状C .检查一枚用于发射卫星的运载火箭的各零部件D .考察人们保护海洋的意识3.从下列不等式中选择一个与12x +≥组成不等式组,使该不等式组的解集为1x ≥,那么这个不等式可以是( ▲ ) A .1x >-B .2x >C .1x <-D .2x <4.计算a 5·(-1a )2的结果是( ▲ )A .-a 3B .a 3C .a 7D .a 105.若a <22<b ,其中a 、b 为两个连续的整数,则ab 的值为( ▲ ) A .2 B .5 C .6 D .12 6.如图,已知a ∥b ,∠1=115°,则∠2的度数是( ▲ )A .45°B .55°C .65°D .85°7.如图是小刘做的一个风筝支架示意图,已知BC ∥PQ ,:2:5AB AP =, AQ =20cm ,则CQ 的长是( ▲ )A .8 cmB .12 cmC .30 cmD .50 cm8.如图,在五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、∠EDC 的外角,则∠1+∠2+∠3等于( ▲ ) A .90° B .180°C .210°D .270°(第6题) (第7题) ( 第8题 ) (第9题)9.如图,已知点A ,B 的坐标分别为(-4,0)和(2,0),在直线 y =21-x+2上取一点C ,若△ABC 是直角三角形,则满足条件的点C 有( ▲ ) A . 1个 B .2个 C .3个 D .4个10.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y =5x 2-3x +4与y =4x 2-x +3的图像交点个数有( ▲ ) A .0个B .1个C .2个D .无数个二、填空题(本大题共8小题,每小题3分,共24分)11.若式子x -2在实数范围内有意义,则x 的取值范围是 ▲ .12.“十二五”期间,我国将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求,把36 000 000用科学记数法表示应是 ▲ . 13.分解因式:ab 2-a =▲ .14.已知a ,b 是一元二次方程220x x --=的两根,则a b +=▲ .15.已知扇形的圆心角为45°,半径长为12 cm ,则该扇形的弧长为 ▲ cm . 16.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为▲.第16题 第17题17.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为▲ .18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC 的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值为 ▲ .(第18题)一、选择题: 1 2 3 4 5 6 7 8 9 10二、填空题11.;12.;13.;14.; 15.;16.;17.;18.;三、解答题(本大题共10小题,共76分,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分5分)计算:(13 )0+27 +| -3 |.20.(5分)解不等式组⎩⎪⎨⎪⎧x +92≥4,2x -3<0,并写出不等式组的整数解.21.(本题满分6分)2112x x x x x ⎛⎫++÷- ⎪⎝⎭,再从1、0、2中选一个你所喜欢的数代入求值。

22.(6分)货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh 后,货车、轿车分别到达离甲地y 1km 和y 2 km 的地方,图中的线段OA 、折线BCDE 分别表示y 1、y 2与x 之间的函数关系.(1)求点D 的坐标,并解释点D 的实际意义; (2)求线段DE 所在直线的函数表达式; (3)当货车出发 ▲ h 时,两车相距200km .23.(本题满分8分) 某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24.(本题满分8分)已知:如图,矩形ABCD的一条边AB=10,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,折痕为AO.(1)求证:△OCP∽△PDA;(2)若△OCP与△PDA的面积比为1:4,求边AD的长.25.(本题满分8分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30o,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60o.已知A点的高度AB为2m,台阶AC的倾斜角∠ACB为30°,且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).26.(10分)已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.27.(10分)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个交点和该抛物线的顶点、对称轴上一点为顶点的菱形称为这条抛物线的“抛物菱形”.(1)若抛物线y=ax2+bx+c(a≠0)与x轴的两个交点为(-1,0)、(3,0),且这条抛物线的“抛物菱形”是正方形,则这条抛物线的顶点坐标是;(2)如图,四边形OABC是抛物线y=-x2+bx(b>0)的“抛物菱形”,且∠OAB=60°.①求b的值;②将直角三角板中含有“60°角”的顶点与坐标原点O重合,两边所在直线与“抛物菱形OABC”的边AB、BC交于点E、F,△OEF的面积是否存在最小值?若存在,请直接写出此时△OEF的面积;若不存在,说明理由.28.(10分)如图,将两块直角三角板摆放在平面直角坐标系中,有∠COD=∠ABO=Rt ∠,∠OCD=45°,∠AOB=60°,且AO=CD=8.现将Rt△AOB绕点O逆时针旋转,旋转角为β(0°≤β≤180°).在旋转过程中,直线CD分别与直线AB,OA交于点F,G.(1)当旋转角β=45°时,求点B的坐标;(2)在旋转过程中,当∠BOD=60°时,求直线AB的解析式;(3)在旋转过程中,△AFG能否为等腰三角形?若能,请直接写出所有满足条件的β值;若不能,请说明理由.参考答案及评分标准一、选择题(本题有10个小题,每小题3分,共30分) ACABC CBBDB二、填空题(本大题共8小题,每小题3分,共计24分.)11. x ≥2 ;12.3.6×107;13.a (b +1)(b-1);14.1;15. 3π;16.42;17.10.5;18.35。

三、解答题(本大题共有11小题,共88分)19.原式=1+33+3…………4分=4+3 3 ………5分20. 解:解不等式①,得x ≥-1. ···················· 2分解不等式②,得x <. ······················· 3分 所以不等式组的解集是-1≤x <. ·················· 4分 不等式组的整数解为-1、0、1. ·················· 5分 21..原式=x 1x +﹒1-22x x ………………(2分)=12-x ……………… (4分) 当x=2时,原式=22+2(6分,只可取2代入)…………… (6分) 22. 解:(1)求出点坐标D ( 4,300 ). ················· 1分 点D 是指货车出发4h 后,与轿车在距离A 地300 km 处相遇. ··· 2分 (2)求出点坐标E ( 6.4,0 ). ······················· 3分 设DE 所在直线的函数表达式为y =kx +b ,将点D ( 4,300 ),E ( 6.4,0)代入y =kx +b 得:⎩⎨⎧4k +b =300,6.4k +b =0,解得 ⎩⎨⎧b =800,k =-125,∴DE 所在直线的函数表达式为y =-125x +800. ········ 4分 (3) 2或5. ···························· 6分 23.(1)50,32…………………………(2分)(2)∵541016151220103081650x ⨯+⨯+⨯+⨯+⨯==∴这组数据的平均数为16………………(4分)∵在这组样本数据中,10出现次数最多为16次,出现次数最多 ∴这组数据的众数为10,………………(5分)∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,有1515152+=∴这组数据的中位数为15 ………………(6分) (3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608∴该校本次活动捐款金额为10元的学生约有608名. ……………(8分)24.(1)∵四边形ABCD 是矩形,∴AD=BC ,DC=AB ,∠DAB=∠B=∠C=∠D=90°. 由折叠可得:AP=AB ,PO=BO ,∠PAO=∠BAO .∠APO=∠B . ∴∠APO=90°.∴∠APD=90°﹣∠CPO=∠POC .∵∠D=∠C ,∠APD=∠POC .∴△OCP ∽△PDA .……………(4分) (2)∵△OCP 与△PDA 的面积比为1:4,∴==.∴DA=2CP .设PC=x ,则AD=2x ,PD =10﹣x ,AP= AB=10.在Rt △PDA 中,∵∠D=90°,PD 2+AD 2= AP 2.∴(10﹣x )2+(2x )2=102. 解得:x=4.∴AD=2x=8.……………(8分)25.6米 …………………………(8分) 26.(1)如图①,连接OC ,∵直线l 与⊙O 相切于点C ,∴OC ⊥l , ∵AD ⊥l ,∴OC ∥AD ,∴∠OCA=∠DAC ,∵OA=OC ,∴∠BAC=∠OCA ,∴∠BAC=∠DAC=30°;………………(4分) (2)如图②,连接BF ,∵AB 是⊙O 的直径,∴∠AFB=90°,∴∠BAF=90°-∠B , ∴∠AEF=∠ADE+∠DAE=90°+18°=108° ………………(7分) 在⊙O 中,四边形ABFE 是圆的内接四边形,∴∠AEF+∠B=180° ∴∠B=180°-108°=72°∴∠BAF=90°-∠B=90°-72°=18°. ………………(10分) 27.(1)(1,2)或(1,﹣2), ………………(4分)(2)6,附解答: ………………(6分)①∵由抛物线y=﹣x2+bx(b>0)可知OB=b,∵∠OAB=60°,∴A(,b),代入y=﹣x2+bx得:b=﹣()2+b,解得:b=2,…………………………(8分)②存在;当三角板的两边分别垂直与AB和BC时三角形OEF的面积最小,∵OE⊥AB,∴∠EOB==30°,同理∠BOF=30°,∵∠EOF=60°∴OB垂直EF且平分EF,∴三角形OEF是等边三角形,∵OB=2,∴OE=3,∴OE=OF=EF=3,∴△OEF的面积=.…………………………(10分)28.(1)过点B 作BH⊥x轴于点H在Rt△AOB中,∠AOB=60°,OA=8∴142OB OA==……………(1分)当β=45°时,即∠BOC=45°,∴OH=BH=22∴B(22,22)……………(2分)(2)Ⅰ当点B在第一象限时(如图2)∵∠BOD=60°∴∠BOC=30°∴B(23,2)∵点A在y轴上∴A(0,8)∴直线AB:y=-3x+8……………(4分)Ⅱ当点B在第二象限时,(如图3)过点B作BE⊥x轴于E,过点A作AF⊥BE于H ∵∠BOD=60°∴∠BOE=30°又∵OB=4 ∴B(-23,2)由△OBE∽△BAH∴13BE OE OBAH BH AB===∴AH=23,BH=6,∴A(-43,-4)∴直线AB:y=3x+8 ……………(6分)(3)15°或60°或105°或150°,附解答:……………(10分)Ⅰ当0°<β<45°时(如图4)∵∠AGF为钝角∴当GA=GF时∴∠A=∠AFG=30°,∴∠OGC=60°又∵∠GCO=45°,∴∠GOC=180°-60°-45°=75°,∴β=∠BOC=75°-60°=15°Ⅱ当45°<β<75°时(如图5)∵∠GAF为钝角,∴当AF=AG时∴∠AGF=∠AFG=12∠OAB=15°∴∠GOC=180°-15°-45°=120°∴β=∠BOC=120°-60°=60°Ⅲ当75°<β<180°时①FA=FG(如图6)∴∠A=∠FGA=30°∴∠COG=45°-30°=15°=∠AOM∴β=∠BOC=180°-15°-60°=105°②AF=AG(如图7)∴∠AFG=∠AGF=(180°-30°)÷2=75°∴∠AOM=∠COG=75°-45°=30°∴∠BOM=30°,∴β=∠BOC=180°-30°=150°③GA=GF(如图8),∴∠A=∠AFG=30°∴∠AMO=∠F+∠BCF=75°,∴∠BOM=15°β=∠BOC=180°+15°=195°(舍去)综上所述当β为15°或60°或105°或150°时△AFG为等腰三角形.讲评备选题:11.若a -b =3,a +b =-2,则a 2-b 2= ▲ .12.据统计,2016年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880 000人.将4 880 000用科学记数法表示为▲.13.若△ABC ∽△A'B'C',相似比为1:3,则△ABC 与△A'B'C'的面积比为 ▲ . 14.已知圆锥的底面半径为1cm ,母线长为3cm ,则其侧面积为 ▲ cm 2(结果保留π). 如图,在正十边形A 1A 2A 3A 4A 5A 6A 7A 8A 9A 10中,连接A 1A 4、A 1A 7,则∠A 4A 1A 7=▲°. 15.已知关于x 的方程x 2+mx -3=0的一个根是1,则它的另一个根是 ▲ . 16.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.甲 乙 丙 丁 平均数/环 9.7 9.5 9.5 9.7 方差/环25.14.74.54.5请你根据表中数据选一人参加比赛,最合适的人选是 ▲ .17.在同一平面直角坐标系中,正比例函数y =k 1x 的图像与反比例函数y 的图像一个交点的坐标是(-2,3),则它们另一个交点的坐标是 ▲ .18.如图①,在等边△ABC 中,CD ⊥AB ,垂足为D ,⊙O 的圆心与点D 重合,⊙O 与线段CD 交于点E ,且CE =4cm .将⊙O 沿DC 方向向上平移1cm 后,如图②,⊙O 恰与△ABC 的边AC 、BC 相切,则等边△ABC 的边长为 ▲ cm .19.(6分)先化简,再求值:(1a -1b )÷a 2-b 2ab,其中a =2+1,b =2-1.(第14题)20.(6分)某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务。

相关文档
最新文档