数二高数课后题(考研)

合集下载

2023考研数学二真题+详解答案解析(超清版)

2023考研数学二真题+详解答案解析(超清版)

2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。

2021年全国硕士研究生入学统一考试数学(二)真题完整版(含答案及解析)

2021年全国硕士研究生入学统一考试数学(二)真题完整版(含答案及解析)

dt
dt
dt dt
dt
dt
当 r = 10, h = 5 时, dV = −100 , dS = −40 ,故选 D.
dt
dt
(4)设函数 f (x) = ax − b ln x(a 0) 有两个零点,则 b 的取值范围是( ) a
A.(0, + )
B.(0,0)
C.(0, 1 ) e
【答案】A.
.
x (0,2)
【答案】1.
【解析】方程两边对 x 求导可得 z + (x +1) z x
+
y1 z
z x

1
+
2y 4x2
y
2
=0.
将 x = 0, y = 2 代入可得 z = 1 ,再将 x = 0, y = 2, z = 1代入可得 z = 1. x
(14)已知函数 f (t) =
t
dx
dt
有因为 x et2 dt = x (1+ t2 + (t2 ))dt = x + 1 x3 + (x3 ) ,故
0
0
3
原式
=
lim
x→0
x

1 x3 3!
+
(
x3
)
1
+
x
+
1 x3 3!
x2
+
(
x3
)

x

1 2
x2
+ (x2 )
=
lim
x→0
1 2
x2
+ (x2 ) x2
=
1 2

考研数学二(高等数学)历年真题试卷汇编22(题后含答案及解析)

考研数学二(高等数学)历年真题试卷汇编22(题后含答案及解析)

考研数学二(高等数学)历年真题试卷汇编22(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设函数f(x)=arctanx,若f(x)=xf’(ξ),则ξ2/x2=( )A.1。

B.2/3。

C.1/2。

D.1/3。

正确答案:D解析:故选D。

知识模块:函数、极限与连续2.设an=3/2∫0n/(n+1)xn-1dx,则极限nan等于( )A.(1+e)3/2+1。

B.(1+e-1)3/2-1。

C.(1+e-1)3/2+1。

D.(1+e)3/2-1。

正确答案:B解析:因为=1/n(1+xn)3/2|0n/(n+1)=1/n{[1+()n]3/2-1},所以=(1+e -1)3/2-1。

知识模块:函数、极限与连续3.A.∫12ln2xdx。

B.2∫12lnxdx。

C.2∫12ln(1+x)dx。

D.∫12ln2(1+x)dx。

正确答案:B解析:由题干可知,=2∫01ln(1+x)dx2∫12lntdt=2∫12lnxdx。

故选B。

知识模块:函数、极限与连续4.A.∫01dx∫0xdy。

B.∫01dx∫0xdy。

C.∫01dx∫01dy。

D.∫01dx∫01dy。

正确答案:D解析:=∫01dx∫01dy。

知识模块:函数、极限与连续填空题5.正确答案:-1/6解析:方法一:本题为0/0未定型极限的求解,利用洛必达法则即可。

方法二:泰勒公式。

知识模块:函数、极限与连续6.正确答案:解析:由于因此原式=eln2/2= 知识模块:函数、极限与连续7.正确答案:e1/2解析:因此原式=e1/2。

知识模块:函数、极限与连续8.正确答案:解析:知识模块:函数、极限与连续9.正确答案:π/4解析:=arctanx|01=π/4。

知识模块:函数、极限与连续10.正确答案:sin1-cos1解析:由定积分的定义=∫01xsinxdx=sin1-cos1。

2023年考研数学(二)答案解析

2023年考研数学(二)答案解析

2023年全国硕士研究生统一入学考试数学(二)试题解析一、选择题:1-10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合要求的请将所选项前的字母填在答题纸指定位置上.1.【答案】:B【解析】:1ln()11lim lim limln(11x x x x e y x k e x x x)11lim()lim[ln()]lim [ln()1]11x x x b y kx x e x x e x x 11lim ln[1]lim (1)(1)x x x x e x e x e所以斜渐近线方程为:1y x e2.【答案】:D 【解析】:当0x时1()ln(f x dx x C 当0x 时()(1)cos (1)sin sin f x dx x xdx x x xdx2(1)sin cos x x x C 原函数在(,) 内连续,则在0x处1122lim ln(,lim(1)sin cos 1x x x C C x x x C C所以121C C ,令2C C ,则11C C,故ln(1,0()(1)sin cos ,0x C x f x dx x x x C x结合选项,令0C ,则()f x的一个原函数为ln(1,0()()(1)sin cos ,0x x f x dx F x x x x x3.【答案】:B【解析】:在(0,2 中,2sin x x 故12sin n n nx x x112n n y y111112()()2444n nn n n n n n y yy y x x x xlim0nn ny x,故n y 是n x 的高阶无穷小4.【答案】:C【解析】:微分方程"'0y ay by 的特征方程为20a b ,当240a b 时,特征方程有2个不同的实数根12, ,则12, 至少有一个不等于零,若12,C C 都不为零,则微分方程的解1212xx y C eC e 在(,) 无界当240a b ,特征方程有2个相等的实根,1,22a若20C ,则微分方程的解212()ax y C C x e 在(,) 无界当240a b时,特征方程的根为1,222a i则通解为:212(cos sin )22ax y e C C 5.【答案】:C【解析】1)当0t 时,3sin cos ,sin 3x t dy t t ty t t dx;当0t 时,,sin sin sin x t dyt t t y t t dx;当0t 时,因为'00()(0)sin (0)lim lim 03x t f x f t tf x t'00()(0)sin (0)lim lim 0x t f x f t tf x t所以'(0)0f 2)0sin cos lim '()lim 0'(0)3x t t t t f x f;'00sin cos lim '()lim 0(0);3x t t t t f x f所以0lim '()'(0)0x f x f ,所以'()f x 在0x 处连续3)当0t 时,因为"00'()'(0)sin cos 2(0)lim lim 339x t f x f t t t f xt"00'()'(0)sin cos (0)lim lim 2x t f x f t t tf x t所以"(0)f 不存在6.【答案】:A【解析】当0 时,21211111()|(ln )(ln )(ln 2)f dx x x x所以211ln(ln 2)1111'()(ln ln 2)0(ln 2)(ln 2)(ln 2)f ,即01ln(ln 2)7.【答案】:C 【解析】方法一:已知 f x 没有极值点,等价于 '0fx 至多一个解, '220x f x x x a e 至多一个解即是:220x x a 至多一个解,那么判别式:4401a a ,另外曲线 y f x 有拐点,则等价于 ''2420x f x x x a e 有解,即是:164802a a ,则a 的取值范围是:12a 8.【答案】:D【解析】110000A E A E A E A E A B B B B B,另外:1234000X X A E E X X B E,解出111121340X X A A B X X B,则:0A E B****0B A A B A B9.【答案】:B【解析】:令:11221333y x x y x x y x ,22222212312121274,,4333y f x x x y y y y y y,可见规范形为2212y y 10.【答案】:D 【解析】根据题意,即是存在1234,,,k k k k ,使得11223344k k k k ,等价于求解12123434(,,,)0k k k k ,得到通解:12343111k k k k k,代入34,k k k k ,得到:15,8k k R二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.【解析】:注意到22220ln 1ln 11limlim1cos 11cos x x x x ax bx x x x bx x a e xe x,首先得到:1a ,另外根据等价无穷小替换, 2222001ln 12lim lim 1311cos 2x x x b x x x bx x e x,得到:2b ,则2ab 12.【解析】:根据230t x ,则弧长计算为:s,进行换元:2sin t ,原积分为: 23344cos 3s d13.【解析】:两边同时对想求导两次得式子222220zz z z z z z e e x x x x x x 将x=1,y=1,z=0带入,223=-2|z x 1,114.【解析】两边分别对x 求导,可得'911y ,所以'911y,所以法线斜率为11915.【解析】32323112122121111u+2u+21=++2=++x =2f x dx f x dx f x dx f x dx f d f x dx f x dx f x dx f x dx dx 16.【解析】:由已知(A)(A,b)34r r ,故A,b 0,即14440111101110A,b 1(1)122(1)11012001202a a a a a a a a baa b所以111280a a a b三、解答题:17~22小题,共70分.请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程或演算步骤.17.【解析】:(1)曲线L 在点 x,y P 处的切线方程为'y=y (X -x)Y ,令X=0,切线在y 轴上的截距为'Y y xy ,即'11y y x,解得 ln y x x c x ,由经过点 2,0e ,所以c=2,2ln y x x x 设曲线L 在点x,x(2lnx) 处的切线与坐标所围面积最小,此时切线方程为2ln =1-lnx (X -x)Y x x ,故切线与两坐标所围三角形面积为22ln 1x s x x令 3'20,s x x e ,由单调性知,最小值在32x e处取得,332s e e18.【解析】'cos 1'cos (,)0(((,)sin 0yx yy f x y e x x e x e k k f x y x ye y k y k 为奇数),为偶数),则''''cos ''cos 2(,)1(,)sin (,)(cos sin )xx y xy y yyf x y f x y yef x y xe y y ,代入1(,)e k 得2210,0A B AC B C e 故1(,)e k 不是极值点,代入(,)e k 得2210,0A B AC B C e且0A 故极小值为2(,)2e f e k ,其中k 为偶数.19.【解析】(1)由题设条件可知面积2111S (1)D x21112ln 1x t)(2)2222211111111arctan 11(14V dx dx dx x x x x x x20.【解析】332222002333222220011ln 33cos sin 11ln 2ln 21ln 2cos 3cos sin 223cos sin 23tan Ddxdy d r x y d dd3 21.【证明】(1)22111''()''()()(0)'(0)'(0),022f f f x f f x x f x x 介于与之间,则222''()()'(0),(0,)2f f a f a a a ,233''()()'(0),,0)2f f a f a a a (-,则223()()''()''()2a f a f a f f ,由()f x 在 ,a a 上具有2阶连续导数,故()f x 在 32, 上具有2阶连续导数,所以()f x 在 32, 上必存在最大值M 和最小值m ,使得 231''()''()2m f f M 由介值定理存在存在 32,(,)a a ,使得 23211''()''()''()()()2f f f f a f a a,得证.(2)设()f x 在x x 点处取得极值,则0'()0f x ,221100000010''()''()()()'()())()(),22f f f x f x f x x x x x f x x x x x介于与之间,220020''()()()(),,2f f a f x a x a x (),230030''()()()(),,2f f a f x a x a x (),222232003020''()''()1|()()||()()||''()|()|''()|()222f f f a f a a x a x f a x f a x 32(,),''()max{|''()|,|''()|}a a f f f ,故223020222001|()()||''()|()|''()|()2|''()|[()()]2|''()|2f a f a f a x f a x f a x a x a f命题得证。

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】一、选择题:1~10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

1.1ln 1y x e x ⎛⎫=+⎪-⎝⎭曲线的渐近线方程为( )。

A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e 【参考答案】B【参考解析】1ln 11lim lim lim ln 1,1x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭ ()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢⎥--⎣⎦所以斜渐近线方程为y =x +1/e .2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。

A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【参考答案】D【参考解析】当x ≤0时,()(1d ln f x x x C ==+⎰当x >0时,()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx x x x x x x x x C =+=+=+-=+++⎰⎰⎰⎰原函数在(-∞,+∞)内连续,则在x =0处(110lim ln x x C C -→++=,()220lim 1sin cos 1x x x x C C +→+++=+ 所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧++≤⎪=⎨⎪+++>⎩⎰,综合选项,令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩.3.设数列{x n },{y n }满足x 1=y 1=1/2,x n +1=sinx n ,y n +1=y n 2,当n →∞时( )。

高数二考研真题答案解析

高数二考研真题答案解析

高数二考研真题答案解析高等数学二是考研数学科目中的一门重要课程,对于考生来说是不可忽视的。

为了帮助考生更好地复习和备考,下面将对高数二的一道考研真题进行答案解析。

题目如下:设函数$f(x)=x^3-3x+1$,则$f(x)$在区间$[-2, 2]$内的零点的个数是()。

A. 1B. 2C. 3D. 4解析:要求函数$f(x)$在区间$[-2,2]$内的零点的个数,即要求解$f(x)=0$在该区间内的解的个数。

我们可以通过绘制函数图像或应用定理来解答这道题目。

首先,我们可以通过绘制函数图像来观察函数在该区间内的零点情况。

由于题目中的函数为一个三次函数,我们可以利用函数的性质来作出函数的大致图像。

观察得知,函数$f(x)$在$x=0$附近有一零点,且函数曲线在$x=-2$和$x=2$处分别与$x$轴相交,这表示在区间$[-2,2]$内至少有3个零点。

因此,我们可以排除选项A和B,将答案限定在选项C和D之间。

接下来,我们可以应用代数方法来进一步验证答案。

我们可以对$f(x)$进行求导来寻找极值点,因为极值点可能是函数的零点之一。

求导得到$f'(x)=3x^2-3$,令$f'(x)=0$,解得$x=-1,1$。

我们再对$f(x)$进行二阶求导得到$f''(x)=6x$,可以发现$f''(-1)=-6<0$和$f''(1)=6>0$,这说明$x=-1$处为函数的一个极大值点,而$x=1$则为函数的一个极小值点。

根据函数的性质,当函数曲线从负值转向正值时,必然穿过$x$轴,即函数存在一个零点。

我们可以发现在$x=-2$和$x=-1$之间,函数由负值转向正值,因此在该区间内存在一个零点。

同样地,在$x=-1$和$x=1$之间,函数由正值转向负值,所以在该区间内也存在一个零点。

最后,在$x=1$和$x=2$之间,函数又由负值转向正值,因此在该区间内也存在一个零点。

考研数学二-高等数学(二).doc

考研数学二-高等数学(二).doc

考研数学二-高等数学(二)(总分:64.00,做题时间:90分钟)一、填空题(总题数:17,分数:17.00)1.[*]=______.(分数:1.00)填空项1:__________________2.[*]=______.(分数:1.00)填空项1:__________________3.[*]______.(分数:1.00)填空项1:__________________4.[*]=______.(分数:1.00)填空项1:__________________5.[*]=______.(分数:1.00)填空项1:__________________6.[*] 1.(分数:1.00)填空项1:__________________7.[*]=______.(分数:1.00)填空项1:__________________8.[*]=______.(分数:1.00)填空项1:__________________9.[*]______.(分数:1.00)填空项1:__________________10.若[*]存在,则常数a=______.(分数:1.00)填空项1:__________________11.[*]=______.(分数:1.00)填空项1:__________________12.[*]=______.(分数:1.00)填空项1:__________________13.[*]______.(分数:1.00)填空项1:__________________14.[*]=______.(分数:1.00)填空项1:__________________15.设f(x)是满足[*]的连续函数,且当x→0时[*]是与Ax n等价的无穷小,则A=______,n=______.(分数:1.00)填空项1:__________________16.设f(x)连续,且当x→0时[*]是与x3等价的无穷小,则f(0)=______.(分数:1.00)填空项1:__________________17.设f(x)具有连续导数,且f(0)=0,f'(0)=6,则[*]______.(分数:1.00)填空项1:__________________二、选择题(总题数:3,分数:12.00)18.已知[*]和h(x)=tanx-sinx当x→0时都是无穷小量,若按照它们关于x的阶数从低到高的顺序排列起来,则是(A) f(x),g(x),h(x). (B) h(x),f(x),g(x).(C) f(x),h(x),g(x). (D) h(x),g(x),f(x).(分数:4.00)A.B.C.D.19.[*]上是(A) 有界的偶函数. (B) 无界的偶函数.(C) 有界的奇函数. (D) 无界的奇函数.(分数:4.00)A.B.C.D.20.设函数[*],则函数f(x)有(A) 两个第一类间断点.(B) 三个第一类间断点.(C) 两个第一类间断点与一个第二类间断点.(D) 一个第一类间断点与一个第二类间断点.(分数:4.00)A.B.C.D.三、解答题(总题数:7,分数:35.00)21.确定常数a和b的值,使[*].(分数:5.00)__________________________________________________________________________________________ 22.已知常数a>0,bc≠0,使得[*]求a,b,c.(分数:5.00)__________________________________________________________________________________________ 23.确定常数a和b>0的值,使函数[*](分数:5.00)__________________________________________________________________________________________ 24.设函数[*],(Ⅰ)求证:对每个正整数n,方程f n(x)=1存在唯一的正根x n;(Ⅱ)求极限[*].(分数:5.00)__________________________________________________________________________________________ 25.设f(x)在x=1处连续,且[*].证明:f(x)在x=1处可导,并求f'(1).(分数:5.00)__________________________________________________________________________________________ 26.设f(x)是周期为3的连续函数,f(x)在点x=1处可导,且满足恒等式f(1+tanx)-4f(1-3tanx)=26x+g(x),其中g(x)当x→0时是比x高阶的无穷小量.求曲线y=f(x)在点(4,f(4))处的切线方程.(分数:5.00)__________________________________________________________________________________________ 27.设直角坐标(x,y)与极坐标(r,θ)满足x=rcosθ,y=rsinθ.若曲线Г的极坐标方程是r=3-2sinθ,求,上对应于[*]处的切线与法线的直角坐标方程.(分数:5.00)__________________________________________________________________________________________。

历年高数考研试题及答案

历年高数考研试题及答案

历年高数考研试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)。

A. 3x^2-3B. x^3-3C. 3x^2+3D. x^3+3答案:A2. 已知数列{an}满足a1=1,an+1=2an+1,求a3。

A. 5B. 7C. 9D. 11答案:C3. 求定积分∫(0,1) x^2 dx。

A. 1/3B. 1/2C. 1/4D. 1/6答案:B4. 设函数f(x)=sin(x),求f'(x)。

A. cos(x)B. -sin(x)C. -cos(x)D. sin(x)答案:A二、填空题(每题5分,共20分)5. 设函数f(x)=x^2+3x+2,求f(-1)的值为____。

答案:16. 求极限lim(x→0) (sin(x)/x)的值为____。

答案:17. 设数列{an}满足a1=1,an+1=an+2,求a5的值为____。

答案:58. 求定积分∫(0,π) sin(x) dx的值为____。

答案:2三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6在x=2处的导数。

解:首先求出f(x)的导数f'(x)=3x^2-12x+11,然后将x=2代入,得到f'(2)=3*2^2-12*2+11=-1。

10. 求极限lim(x→∞) (1/x)。

解:由于x趋向于无穷大,1/x趋向于0,所以lim(x→∞)(1/x)=0。

11. 设数列{an}满足a1=2,an+1=an+3,求a10的值。

解:根据递推公式,可以依次计算出a2=5,a3=8,...,a10=29。

12. 求定积分∫(1,2) (x^2-4x+4) dx。

解:首先求出被积函数的原函数F(x)=1/3*x^3-2x^2+4x,然后计算F(2)-F(1)=1/3*2^3-2*2^2+4*2-(1/3*1^3-2*1^2+4*1)=4/3-4+8-1/3+2-4=4。

高等数学2二课后习题答案

高等数学2二课后习题答案

高等数学2二课后习题答案高等数学2二课后习题答案高等数学是大学数学的重要组成部分,对于理工科学生来说尤为重要。

而高等数学2二作为高等数学的延伸和深化,对于学生来说难度也相应增加。

在学习过程中,课后习题是巩固知识、提高能力的重要途径。

本文将为大家提供高等数学2二课后习题的答案,希望对大家的学习有所帮助。

一、函数极限与连续1. 设函数f(x) = 3x^2 + 2x - 1,求lim(x→2)f(x)的值。

解:将x代入函数f(x),得到f(2) = 3(2)^2 + 2(2) - 1 = 17。

所以lim(x→2)f(x) = 17。

2. 已知函数f(x) = (x^2 + 1) / (x - 1),求lim(x→1)f(x)的值。

解:将x代入函数f(x),得到f(1) = (1^2 + 1) / (1 - 1) = 2 / 0。

由于0不能作为分母,所以lim(x→1)f(x)不存在。

3. 设函数f(x) = √(x + 1),求lim(x→∞)f(x)的值。

解:将x代入函数f(x),得到f(∞) = √(∞ + 1) = ∞。

所以lim(x→∞)f(x) = ∞。

二、导数与微分1. 求函数f(x) = x^3 - 3x^2 + 2x的导数。

解:对函数f(x)求导,得到f'(x) = 3x^2 - 6x + 2。

2. 求函数f(x) = √x的导数。

解:对函数f(x)求导,得到f'(x) = 1 / (2√x)。

3. 求函数f(x) = e^x的导数。

解:对函数f(x)求导,得到f'(x) = e^x。

三、定积分1. 求函数f(x) = 2x在区间[0, 1]上的定积分。

解:对函数f(x)在区间[0, 1]上进行定积分,得到∫[0, 1]2xdx = [x^2]0^1 = 1。

2. 求函数f(x) = x^2在区间[-1, 1]上的定积分。

解:对函数f(x)在区间[-1, 1]上进行定积分,得到∫[-1, 1]x^2dx = [x^3/3](-1)^1 = 2/3。

数二高数课后题(考研)

数二高数课后题(考研)

2012届钻石卡学员考研数学学习计划(基础阶段)数学二——高等数学第一单元学习计划——函数、极限、连续本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版在第一单元中我们应当学习-—1.函数的概念及表示方法;2.函数的有界性、单调性、周期性和奇偶性;3.复合函数、分段函数、反函数及隐函数的概念;4.基本初等函数的性质及其图形;5.极限及左右极限的概念,极限存在与左右极限之间的关系;6.极限的性质及四则运算法则;7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质。

第一单元调整学习计划第二单元学习计划——一元函数微分学本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版在第一单元中我们应当学习——1.导数和微分的概念、关系,导数的几何意义、物理意义,会求平面曲线的切线方程和法线方程,函数的可导性与连续性之间的关系;2.导数和微分的四则运算法则,复合函数的求导法则,基本初等函数的导数公式,一阶微分形式的不变性;3.高阶导数的概念,会求简单函数的高阶导数;4.会求以下函数的导数:分段函数、隐函数、由参数方程所确定的函数、反函数;5.罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理、泰勒(Taylor)定理、柯西(Cauchy)中值定理,会用这四个定理证明;6.会用洛必达法则求未定式的极限;7.函数极值的概念,用导数判断函数的单调性,用导数求函数的极值,会求函数的最大值和最小值;8.会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求函数的水平、铅直和斜渐近线;9.曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.第二单元学习计划调整任务第三单元学习计划——不定积分本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版在第一单元中我们应当学习——1.原函数、不定积分的概念;2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;第三单元学习计划调整任务第四单元学习计划——定积分及其应用本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版在第一单元中我们应当学习—-1.定积分的概念和性质,定积分中值定理;2.定积分的换元积分法与分部积分法;3.积分上限的函数的概念和它的导数,牛顿—莱布尼茨公式;4.反常积分的概念与计算;5.用定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力,函数的平均值.第五单元学习计划——常微分方程本计划对应教材:高等数学上册 同济大学数学系编 高等教育出版社 第六版 在第一单元中我们应当学习——1. 微分方程及其阶、解、通解、初始条件和特解等概念;2. 变量可分离的微分方程及一阶线性微分方程的解法;3. 齐次微分方程的解法;4. 可降阶微分方程:()(),(,)(,)n yf x y f x y y f y y ''''''===和的解法;5. 线性微分方程解的性质及解的结构;6. 二阶常系数齐次线性微分方程的解法;7. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.第五单元学习计划调整任务第六单元——向量代数和空间解析几何(考研数学二不要求)第七单元学习计划——多元函数微分学本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版在第一单元中我们应当学习—-1.二元函数的概念与几何意义;2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;4.多元复合函数一阶、二阶偏导数的求法;5.隐函数存在定理,计算多元隐函数的偏导数;6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.第七单元学习计划调整任务第八单元学习计划——重积分本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版在第一单元中我们应当学习——1.二重积分的概念和性质,二重积分的中值定理;2.会利用直角坐标、极坐标计算二重积分.第八单元学习计划调整任务第九单元——曲线积分与曲面积分(考研数学二不要求)第十单元——无穷级数(考研数学二不要求)。

考研数学二(高等数学)历年真题试卷汇编9(题后含答案及解析)

考研数学二(高等数学)历年真题试卷汇编9(题后含答案及解析)

考研数学二(高等数学)历年真题试卷汇编9(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设函数f(x)在x=0处可导,且f(0)=0,则A.一2f’(0).B.一f’(0).C.f’(0).D.0正确答案:B解析:2.函数f(x)=ln|(x一1)(x一2)(x一3)|的驻点个数为A.0B.1C.2D.3正确答案:C解析:令3x2—12x+11=0由于△= 122一12x+11>0,则该方程有两个实根,f(x)有两个驻点.3.曲线y=渐近线的条数为A.0B.1C.2D.3正确答案:C解析:由于=1,则该曲线有水平渐近线y=1.又=∞,则x=1为该曲线的一条垂直渐近线,故应选(C).4.设函数f(x)=(ex一1)(e2x一2)…(enx一n),其中n为正整数,则f’(0)= A.(一1)n一1(n一1)!.B.(一1)n(n一1)!.C.(一1)n1n!.D.(一1)nn!.正确答案:A解析:排除法:当n=2时,f(x)=(ex一1)(e2x一2)f’(x)=ex(e2x一2)+2e2x(ex一1)f’(0)=一1显然,(B)(C)(D)都不正确,故应选(A).5.设函数y=f(x)由方程cos(xy)+lny一x=1确定,则A.2B.1C.一1D.一2正确答案:A解析:由方程cos(xy)+lny一x=1知,当x=0时,y=1,即f(0)=1,以上方程两端对x求导得将x=0,y=1代入上式得y’|x=0=1,即f’(0)=1,6.下列曲线中有渐近线的是A.y=x+sinxB.y=x2+sinxC.y=x+sinD.y=x2+sin正确答案:C解析:由于所以曲线y=x+有斜渐近线y=x,故应选(C).7.设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上A.当f’(x)≥0时,f(x)≥g(x)B.当f’(x)≥0时,f(x)≤g(x)C.当f”(x)≥0时,f(z)≥g(x)D.当f”(x)≥0时,f(x)≤g(x)正确答案:D解析:由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1一x)+f(1)x过点(0,f(0))和(1,f(1)),当f”(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1一x)+f(1)x的下方,即f(x)≤g(x) 故应选(D).8.曲线上对应于t=1的点处的曲率半径是A.B.C.D.正确答案:C解析:故应选(C).9.设函数f(x)=arctanx,若f(x)=xf’(ξ),则A.B.C.D.正确答案:D解析:由f(x)= arctanx,及f(x)=xf’(ξ)得故应选(D).10.设函数f(x)=(α>0,β>0).若f’(x)在x=0处连续,则A.α一β>1.B.0<α一β≤1.C.α一β>2.D.0<α一β≤2.正确答案:A解析:f一’(0)=0,f+’(0)=该极限存在当且仅当α一1>0,即α>1.此时,α>1,f+’(0)=0,f’(0)=0.当x>0时,f’(x)=axα一1+βxα一β一1cos要使上式的极限存在且为0,当且仅当α一β一1>0.则α一β>1.故应选(A).11.设函数f(x)在(一∞,+∞)内连续,其2阶导函数f”(x)的图形如右图所示,则曲线y=f(x)的拐点个数为A.0B.1C.2D.3正确答案:C解析:由右图知f”(x1)=f”(x2)=0,f”(0)不存在,其余点上二阶导数f”(x)存在且非零,则曲线y=f(x)最多三个拐点,但在x=x1两侧的二阶导数不变号,因此不是拐点,而在x=0和x=x2两侧的二阶导数变号,则曲线y=f(x)有两个拐点,故应选(C).12.设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则A.函数f(x)有2个极值点,曲线y=f(x)有2个拐点.B.函数f(x)有2个极值点,曲线y=f(x)有3个拐点.C.函数f(x)有3个极值点,曲线y=f(x)有1个拐点.D.函数f(x)有3个极值点,曲线y=f(x)有2个拐点.正确答案:B解析:x1,x3,x5为驻点,而在x1和x3两侧一阶导数f’(x)变号,则为极值点,在x5两侧一阶导数f’(x)不变号,则不是极值点,在x2处一阶导数不存在,但在x2两侧f’(x)不变号,则不是极值点.在x2处二阶导数不存在,在x4和x5处二阶导数为零,在这三个点两侧一阶导函数的增减性发生变化,则都为拐点,故应选(B).13.设函数fi(x)(i=1,2)具有二阶连续导数,且fi”(x0)<0(i=1,2).若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有A.f1(x)≤f2(x)≤g(x).B.f2(x)≤f1(x)≤g(x).C.f1(x)≤g(x)≤f2(x).D.f2(x)≤g(x)≤f1(x).正确答案:A解析:由函数fi(x)(i=1,2)具有二阶连续导数,且fi”(x0)<0(i=1,2)可知,在x0某邻域内曲线y =fi(x)(i=1,2)是凸的,而两曲线y=fi(x)(i=1,2)在点(x0,y0)处有公共切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某邻域内三条曲线如图所示,故在x0点的该邻域内f1(x)≤f2(x)≤g(x)故应选(A).填空题14.曲线y=的渐近线方程为________.正确答案:y=2x.解析:显然曲线y=无水平渐近线和垂直渐近线,则原曲线有斜渐近线y=2x.15.函数y=ln(1一2x)在x=0处的n阶导数y(n)(0)=________.正确答案:一2n(n一1)!.解析:利用ln(l+x)的麦克劳林展开式16.已知一个长方形的长l以2cm/s的速率增加,宽ω以3 cm/s的速率增加,则当l=12 cm,ω=5 cm时,它的对角线增加的速率为________.正确答案:3.解析:设l=x(t),ω=y(t),其对角线长为z(t),则z2(t)=x2(t)+y2(t),2z(t)z’(t)=2x(t)x’(t)+2y(t)y’(t)将x(t)=12,y(t)=5,x’(t)=2,y’(t)=3,z(t)==13代入上式得z’(t)=3.17.设y=y(x)是由方程x2一y+1=ey所确定的隐函数,则|x=0=________.正确答案:1.解析:在方程x2一y+1=ey中令x=0,得y=0,该方程两端对x求导得2x 一y’=eyy’将x=0,y=0代入上式得y’(0)=0,上式再对x求导2一y”=eyy’2+eyy”将x=0,y=0,y’(0)代入上式得y”(0)=1.18.曲线y=x2+x(x<0)上曲率为的点的坐标是________.正确答案:(一1,0).解析:由y=x2+x得,y’=2x+1,y”=2,代入曲率计算公式得由K=得(2x+1)2=1解得x=0或x=一1,又x<0,则x=一1,这时y=0,故所求点的坐标为(一1,0).19.曲线上对应于t=1的点处的法线方程为________.正确答案:y+x=解析:而t=1时,x=则t=1处的法线方程为20.设f(x)是周期为4的可导奇函数,且f’(x)=2(x 一1),x∈[0,2],则f(7)=________.正确答案:1.解析:由f’(x)=2(x一1),x∈[0,2]知,f(x)=(x一1)2+C.又f(x)为奇函数,则f(0)=0,C=一1.f(x)=(x一1)2一1.由于f(x)以4为周期,则f(7)=f[8+(一1)]=f(一1)=一f(1)=1.21.曲线L的极坐标方程是r=θ,则L在点(r,θ)=处的切线的直角坐标方程是________.正确答案:解析:22.=________.正确答案:48.解析:23.函数f(x)=x22x在x=0处的竹阶导数f(n)(0)=________.正确答案:n(n一1)(ln2)n一2.解析:24.曲线y=+arctan(1+x2)的斜渐近线方程为________.正确答案:y=x+解析:则该曲线的斜渐近线方程为y=x+25.已知函数f(x)在(一∞,+∞)上连续,且f(x)=(x+1)2+2∫0xf(t) dt,则当n≥2时,f(n)(0)=________.正确答案:5.2n一1.解析:等式f(x)=(x+1)2+2∫0xf (t)dt两边对x求导得f’(x)=2(x+1)+2f(x),f’(0)=2+2f(0)=4f”(x)=2+2f’(x),f”(0)=2+2f’(0)=10f”‘(x)=2f”(x)f(n)(x)=2f(n一1)(x)=22f(n一2)(x)=…=2n一2f”(x) (n>2)f(n)(0)=2n一22f”(0) (n>2)= 2n一2.10=2n一1.5.26.已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l.若点P的横坐标对时间的变化率为常数υ0,则当点P运动到点(1,1)时,l对时间的变化率是________.正确答案:解析:由题设知解答题解答应写出文字说明、证明过程或演算步骤。

2022年全国硕士研究生考试《数学》(二)真题及答案

2022年全国硕士研究生考试《数学》(二)真题及答案

2022年全国硕士研究生考试《数学》(二)真题及答案2022年全国硕士研究生考试《数学》(二)真题一、单选题(共14题,共56分)1.设函数f(x)=ln(3x),则'f(2)=()A.4B.ln6C.1/2D.1/62.设函数f ( x) =1-x^2 在区间( , )A.单调增加B.单调减少C.先单调增加,后单调减少D.先单调减少,后单调增加3.设A,B是两随机事件,则事件AB表示()A.事件A,B都发生B.事件B.发生而事件A不发生C.事件A发生而事件B不发生D.事件A,B都不发生4.设函数f (x)= ln(3x) ,则f' (2) =()A.6C.1/2D.1/65.设函数f (x) =1-x^3在区间( , )A.单调增加B.单调减少C.先单调增加,后单调减少D.先单调减少,后单调增加6.曲线y =| x |与直线y=2所围成的平面图形的面积为()A.2B.4C.6D.87.设A,B是两随机事件,则事件AB表示()A.事件A,B都发生B.事件B发生而事件A不发生C.事件A发生而事件B不发生D.事件A,B都不发生8.曲线的渐近线条数()A.0B.1C.29.设函数,其中n为正整数,则f'(0)=()A.B.C.D.10.设,则数列sn 有界是数列an 收敛的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.即非充分地非必要条件11.设函数f (x, y)为可微函数,且对任意的x, y 都有则使不等式成立的一个充分条件是A.B.C.D.12.设区域D由曲线围成,则A.πB.2C.-2D.-π13.设,其中为任意常数,则下列向量组线性相关的为()A.B.C.D.14.A.B.C.D.二、填空题(共10题,共40分)15.曲线y=x^3 3x^2 5x4的拐点坐标为()16.设函数y=e^x+1,则y''=()17.设曲线y=ax^2+2x 在点(1,a+2) 处的切线与直线y=4x 平行,则a=()18.19.设y =y(x) 是由方程所确定的隐函数,则.=20.21.22.23.24.设A 为3阶矩阵,|A| =3 ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则|BA|=()三、计算题(共10题,共40分)25.已知函数1 1 sin x f x x x ,记0 lim x a f x ,(I) 求a 的值(II) 若x 0 时,f x a 与k x 是同阶无穷小,求常数k 的值.26.证明方程x x x 1 n n-1 + n 1的整数,在区间1 ,1 2 内有且仅有一个实根;(II) 记(I) 中的实根为xn,证明lim n n x 存在,并求此极限27.已知函数f ( x) 满足方程f (x) f (x) 2 f (x) 0 及( ) ( ) 2 x f x f x e , (I) 求f (x) 的表达式(II) 求曲线2 2 0 ( ) ( )d x y f x f t t 的拐点.28.计算二重积分d D xy ,其中区域D为曲线r 1 cos 0 与极轴围成.29.求曲线y=x^2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积V.30.求函数f (x) =x^3-3x^-9x+2的单调区间和极值.31.求函数f (x, y)=x^2+y^2在条件2x+3y=1下的极值.32.设函数y=sinx^2+2x ,求dy.33.已知离散型随机变量X 的概率分布为X 10 20 30 40P 0.2 0.1 0.5 a(1)求常数a ; (2)求X 的数学期望EX .34.求曲线y=x^2与直线y=0,x=1所围成的平面图形绕x 轴旋转一周所得旋转体的体积V .35.36.过(0,1)点作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.37.38.设(I) 计算行列式A ;(II) 当实数a为何值时,方程组有无穷多解,并求其通解39.已知,二次型的秩为2,(I) 求实数a的值;(II) 求正交变换x=Qy 将f 化为标准形.40.设函数y=sin x^2+2x,求dy41.已知离散型随机变量X的概率分布为X 10 20 30 40Pa(1)求常数a;(2)求X的数学期望EX.。

考研高数2试题及答案

考研高数2试题及答案

考研高数2试题及答案模拟试题:考研高等数学(二)一、选择题(每题3分,共30分)1. 下列函数中,满足条件f(-x) = -f(x)的是()A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)2. 设函数f(x)在区间(a, b)内可导,且f'(x) > 0,则f(x)在该区间内是()A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 曲线y = x^3 - 6x^2 + 12x + 5在点(2,12)处的切线斜率为()A. -3B. 0C. 3D. 64. 设数列{an}是等差数列,且a3 + a7 + a11 = 27,a4 + a8 > 0,a10 < 0,则此等差数列的公差d为()A. -1B. 1D. 25. 函数f(x) = ln(x^2 - 4x + 3)的值域是()A. (-∞, 0)B. RC. (0, +∞)D. [0, +∞)6. 设函数F(x) = ∫(0, x) f(t) dt,则F(x)是f(x)的一个()A. 原函数B. 导数C. 定积分D. 微分7. 曲线y^2 = 4x与直线x = 2y联立后,它们的交点个数是()A. 0B. 1C. 2D. 无穷多8. 已知某工厂生产函数为Q = K^(1/3)L^(2/3),其中K是资本,L是劳动。

若劳动增加20%,资本不变,则产量增加()A. 少于20%B. 20%C. 多于20%D. 40%9. 设随机变量X服从参数为λ的泊松分布,P(X=1) = λ。

则λ的值为()A. 1C. 3D. 410. 微分方程y'' - 2y' + y = 0的通解是()A. y = e^(t) + e^(2t)B. y = e^(t) + e^(-t)C. y = e^(t) + e^(3t)D. y = e^(t) + e^(t/2)答案:1. C2. A3. B4. A5. D6. A7. C8. A9. B10. B二、填空题(每题4分,共20分)11. 若函数f(x) = x^3 - 3x在区间[-1, 2]上的最大值为M,则M = ____。

2020年全国研究生考试数学(二)真题+答案详解

2020年全国研究生考试数学(二)真题+答案详解

(1- x)n
(1- x)n -1
2
(1- x)n -2
\ f (n) (0) = - n! . n-2
ìxy
5.关于函数
f
(x,
y)
=
ï í
x
ï î
y
xy ¹ 0 y = 0 给出以下结论 x=0
¶f

=1
¶x (0,0)
¶2 f

=1
¶x¶y
(0,0)
③ lim f ( x, y) = 0
( x, y )®(0,0)
ò = 1
1
1 (x3 + 1) 2 d (x3 + 1)
30
=
1
×
2
(x3
+ 1)
3 2
1
33 0
=
2
æ ç
3
22
ö - 1÷
9è ø
11.
|(0,p)= .
设 z = arctan[xy + sin(x + y)] ,则 dz
解析:
dz = ¶z dx + ¶z dy
¶x ¶x
¶z =
1
[ y + cos(x + y)], ¶z = π- 1
a 0 -1 1
14.行列式 0
a
1 -1 =
-1 1 a 0
1 -1 0 a
解析:
a 0 -1 1 a 0 -1 1
0 a 1 -1 0 a 1 -1 =
-1 1 a 0 -1 1 a 0
1 -1 0 a 0 0 a a
0 a -1 + a 2 1
a -1+ a 2 1

2020年全国硕士研究生入学统一考试(高等数学二)真题及答案解析

2020年全国硕士研究生入学统一考试(高等数学二)真题及答案解析

x = −1: lim f (x) = ∞ ,则 x = −1 为第二类间断点; x→−1
1
1
x=
0 : lim x→0
f (x) =
lim
x→0
e1− (ex
x ln(1+ x) −1)(x − 2)
=
lim e1−x ⋅ x x→0 x(x − 2)
=
−1 2e
,则 x = 0 为可 = ∞ ,则 x = 1 为第二类间断点; x→1+
1
2 arcsin
xd arcsin
x
0 x(1− x)
0 1− ( x)2
0
=
(arcsin
x= )2 |10
(= π )2 2
π2 4
故应选(A)
(4)已知函数= f (x) x2 ln(1− x) ,当 n ≥ 3 时, f (n) (0) = ( )
(A) − n! n−2
【答案】A 【解析】
(D)
sin3 tdt= , m
3= , n
2 ,则 n(m +1) =5
0
2
故应选(D)
1
(2)函数
f
(x)
=
e x−1 ln |1+ x | (ex −1)(x − 2)
的第二类间断点的个数为(
)
(A)1
(B)2
(C)3
(D)4
【答案】C
【解析】由 f (x) 的表达式可知, f (x) 共有四个间断点,分别为
(B) n! n−2
(C) − (n − 2)! n
(D) (n − 2)! n
由 ln(1+ x) =x − x2 + x3 − + (−1)n−1 xn + ο (xn ) 2 3 n

考研真题数学二(2000——2018)高数大题

考研真题数学二(2000——2018)高数大题

数学二高数(2018)(15)(本题满分10分)(一元函数积分学的计算)2.x e ⎰求不定积分(2018)(16)(本题满分10分)20()()()x xf x f t dt tf x t dt ax +-=⎰⎰已知连续函数满足(I )()f x 求;(II )()[0,1]1,.f x a 若在区间上的平均值为求的值(2018)(17)(本题满分10分)(二重积分)sin ,(02),(2).1cos Dx t t D t x x y d y t πσ=-⎧≤≤+⎨=-⎩⎰⎰设平面区域由曲线与轴围成计算二重积分(2018)(18)(本题满分10分)(一元函数微分学的应用,微分不等式)已知常数ln 2 1.k ≥-证明:2(1)(ln 2ln 1)0.x x x k x --+-≥ (2018)(19)(本题满分10分)(多元函数微分学,条件极值)2m 将长为的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最.若存在,求出最小值(2018)(20)(本题满分11分)(一元函数微分学的应用)已知曲线()()24:(0),0,0,0,1.9L y x x O A P L S OA AP L =≥点点设是上的动点,是直线与直线及曲线()3,4.P x S t 所围成图形的面积,若运动到点时沿轴正向的速度是4,求此时关于时间的变化率(2018)(21)(本题满分11分)(数列存在性与计算){}{}110,1(1,2,),lim .n n x x n n n n n x x x e e n x x +→∞>=-=L 设数列满足:证明收敛,并求求+→0lim xt x dt(16)(本题满分10分)设函数(),f u v 具有2阶连续偏导数,()y ,xf e cosx =,求dyd x x=,220d y d x x =(17)(本题满分10分)求21limln 1nn k k k n n →∞=⎛⎫+ ⎪⎝⎭∑(18)(本题满分10分)已知函数)(x y 由方程023333=-+-+y x y x 确定,求)(x y 的极值 (19)(本题满分10分)设函数()f x 在[]0,1上具有2阶导数,0()(1)0,lim 0x f x f x+→><,证明 (1)方程()0f x =在区间(0,1)内至少存在一个实根;(2)方程2)]([)()(x f x f x f '+'' 在区间(0,1)内至少存在两个不同的实根.(20)(本题满分11分)已知平面区域(){}22,2D x y xy y =+≤,计算二重积分()21Dx dxdy +⎰⎰(2017)(21)(本题满分11分)设()y x 是区间3(0,)2内的可导函数,且(1)0y =,点P 是曲线:()L y y x =上的任意一点,L 在点P 处的切线与y 轴相交于点(0,)P Y ,法线与x 轴相交于点(,0)P X ,若p P X Y =,求L 上点的坐标(,)x y 满足的方程。

考研(数学二)真题及参考答案2024解析

考研(数学二)真题及参考答案2024解析

考研(数学二)真题及参考答案2024解析考研(数学二)真题及参考答案2024考研数学二一般人能考多少分考研数学二总分150分,其中高数117分(约占78%)、线性代数33分(约占22%),不考概率统计。

考试时间为180分钟。

一般人能考80,90左右,60左右就能及格了。

数学二比较简单,一般考80-100之间,但是也要掌握相应的技巧。

目标80-100这个档位的同学在复习的过程中要把大部分的精力都集中在【夯实基础】,证明题、数列极限等较难的题目可以适当取舍。

可以找学长学姐或教授,让他们推荐给你几门名师的书籍、练习册或视频。

考研数学二难不难考研数学二偏重基础,题目难度不高,但不容易算。

这也跟很多同学的感觉是一样的,拿到题第一眼感觉很熟悉,比较简单,但做的时候发现又没有想象中那么容易。

未来考研数学会更加偏重于对基础知识的考查。

考研的同学要注意备考数学时不仅要注重各样方法技巧,基础知识同样也不能落下。

每年考完试后都会有同学觉得难,也会有同学觉得没那么难。

2024年考研国家线预测2024考研预计金融、应用统计、资产评估、保险、国际商务、税务这几个专业的专硕的分数线大概会是在364左右,审计的国家线大概是190分左右,汉语应用心理学,国际教育和教育学为354分。

材料,能源,化工,土木,水利,生物医药,交通运输等专业的分数线在269分左右,风景,园林,农业,兽医的录取分数线在251分左右,药学和护理学的录取分数线在304分左右。

2024年考研国家线上调还是下降2024考研国家线预计呈现上升趋势。

考研分初试和复试环节,初试通过后才能进入复试,个体考生在初试通过后,都会根据自己的成绩判断自己是否能够进入复试,若无法达到复试分数线的话,学生就要提前做好调剂的准备,以免滑档。

随着高等教育的普及和就业压力的增大,越来越多的本科生选择继续深造,因此考研报名人数也在逐年增加。

预计2024考研国家线会上调。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学二——高等数学
第一单元学习计划——函数、极限、连续
本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版
在第一单元中我们应当学习——
1.函数的概念及表示方法;
2.函数的有界性、单调性、周期性和奇偶性;
3.复合函数、分段函数、反函数及隐函数的概念;
4.基本初等函数的性质及其图形;
5.极限及左右极限的概念,极限存在与左右极限之间的关系;
6.极限的性质及四则运算法则;
7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;
8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;
9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;
10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最
小值定理、介值定理),会用这些性质.
第二单元学习计划——一元函数微分学
本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版
在第一单元中我们应当学习——
1.导数和微分的概念、关系,导数的几何意义、物理意义,会求平面曲线的切线方程和法
线方程,函数的可导性与连续性之间的关系;
2.导数和微分的四则运算法则,复合函数的求导法则,基本初等函数的导数公式,一阶微
分形式的不变性;
3.高阶导数的概念,会求简单函数的高阶导数;
4.会求以下函数的导数:分段函数、隐函数、由参数方程所确定的函数、反函数;
5.罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理、泰勒(Taylor)定理、柯西(Cauchy)中值定
理,会用这四个定理证明;
6.会用洛必达法则求未定式的极限;
7.函数极值的概念,用导数判断函数的单调性,用导数求函数的极值,会求函数的最大值
和最小值;
8.会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求函数的水平、铅直和斜渐
近线;
9.曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.
第三单元学习计划——不定积分
本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版在第一单元中我们应当学习——
1.原函数、不定积分的概念;
2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;
第四单元学习计划——定积分及其应用
本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版
在第一单元中我们应当学习——
1.定积分的概念和性质,定积分中值定理;
2.定积分的换元积分法与分部积分法;
3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;
4.反常积分的概念与计算;
5.用定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面
积为已知的立体体积、功、引力、压力,函数的平均值.
第五单元学习计划——常微分方程
本计划对应教材:高等数学上册 同济大学数学系编 高等教育出版社 第六版 在第一单元中我们应当学习——
1. 微分方程及其阶、解、通解、初始条件和特解等概念;
2. 变量可分离的微分方程及一阶线性微分方程的解法;
3. 齐次微分方程的解法;
4. 可降阶微分方程:()(),(,)(,)n y f x y f x y y f y y ''''''===和的解法;
5. 线性微分方程解的性质及解的结构;
6. 二阶常系数齐次线性微分方程的解法;
7. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数
非齐次线性微分方程.
第六单元——向量代数和空间解析几何(考研数学二不要求)
第七单元学习计划——多元函数微分学
本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版
在第一单元中我们应当学习——
1.二元函数的概念与几何意义;
2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;
3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不
变性,会求全微分;
4.多元复合函数一阶、二阶偏导数的求法;
5.隐函数存在定理,计算多元隐函数的偏导数;
6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元
函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.
第八单元学习计划——重积分
本计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版
在第一单元中我们应当学习——
1.二重积分的概念和性质,二重积分的中值定理;
第九单元——曲线积分与曲面积分(考研数学二不要求)第十单元——无穷级数(考研数学二不要求)。

相关文档
最新文档