九年级上册图形的相似知识点归纳

合集下载

北师大版九年级数学上册第四章《图形的相似》知识点总结

北师大版九年级数学上册第四章《图形的相似》知识点总结

北师大版九年级数学上册第四章《图形的相似》知识点总结
一.比例线段:
1两条线段的比是 的比。

将“形”的问题转化为“数”的问题。

2.成比例线段:四条线段a,b,c,d 中,如果 ,那么这四条线段a,b,c,d 叫做成比例线段。

比例线段是有顺序的,即a,b,c,d 是成比例线段,则是a:b=c:d
3.如果c
b b
a ,那么
b 叫做a 和
c 的比例中项; 4.比例的性质:
(1)基本性质:如果 ,那么 。

()等比性质:如果 ,那么 5.平行线分线段成比例定理:
如图,321////l l l ,则可得比例式: DE//AB,则所得比例式:
6.黄金分割: 黄金比 二.相似三角形:
1.相似三角形的判定方法:
(1)两角对应 的两个三角形相似。

(2)两边对应 且 相等的两个三角形相似。

(3)三边 的两个三角形相似
2.相似三角形的性质:
3.位似图形:
4.位似图形有同向和 两种。

在坐标系中,图形上点的坐标都乘以k 时,得到的图形与原图形关于原点位似,且位似比是|k|.
5.判定两个三角形相似的常用步骤:
先通过已知,平行、对顶角、公共角等,看能否找到两对相等的角; 若只能找到一对相等的角,再分析夹这个角的两边是否成比例; 若找不到相等的角,就分析三边是否成比例。

5.常见的基本模型有 :
D E F
1l 3
l 2
l m n
B A C。

华师大版九年级上册第24章图形的相似复习

华师大版九年级上册第24章图形的相似复习

平行法
如果两个多边形一组对应边平行且 对应边的比相等,则这两个多边形 相似。
交错相乘法
如果两个多边形一组对应边的交错 相乘之和等于另一组对应边的交错 相乘之和,则这两个多边形相似。
相似多边形的性质
对应角相等
01
相似多边形的对应角相等,这是相似的基本性质。
对应边成比例
02
相似多边形的对应边成比例,这是判定相似多边形的重要依据。
面积比等于相似比的平方
03
相似多边形的面积比等于其相似比的平方,这是计算面积比的
一个重要公式。
相似多边形的应用
01
02
03
测量
在测量中,常常需要比较 两个相似物体的大小,通 过测量和计算可以得出它 们的相似比和大小关系。
建筑设计
在建筑设计中,常常需要 设计出与原建筑相似的模 型,通过相似多边形可以 方便地实现这一目标。
相似图形的判定方法
根据定义,可以通过测量角度和边长比例来判断两 个图形是否相似。
相似图形的性质
02
01
03
相似三角形的性质
相似三角形的对应边长度的比值相等,对应角相等。
相似多边形的性质
相似多边形的对应边长度的比值相等,对应角相等。
相似多边形的面积比
相似多边形的面积比等于对应边长度的比的平方。
相似图形的应用
图形变换
在图形变换中,可以通过 相似变换将一个图形变为 另一个图形,保持其形状 不变。
04
图形相似的综合应用
图形相似的几何证明
掌握相似图形的定义和 性质,能够判断两个图 形是否相似。
掌握相似三角形的判定 定理,能够根据给定条 件证明两个三角形是否 相似。
掌握相似多边形的性质 ,能够证明两个多边形 是否相似。

九年级数学相似的知识点

九年级数学相似的知识点

九年级数学相似的知识点
1. 相似三角形:了解相似三角形的定义和性质,掌握判定两个三角形是否相似的几何条件,了解相似三角形的比例关系以及应用。

2. 相似多边形:了解相似多边形的定义和性质,掌握判断两个多边形是否相似的几何条件,了解相似多边形的比例关系以及应用。

3. 相似比例:学习相似比例的定义,掌握相似比例的计算和应用,了解相似比例与比例的关系。

4. 相似形状的尺寸关系:通过相似性的特点和比例关系,掌握计算相似形状的尺寸关系,实际应用中解决实际问题。

5. 相似图形的面积和体积:了解相似图形的面积和体积之间的关系,掌握计算相似图形的面积和体积的方法。

6. 相似三角形的三线合一定理:了解相似三角形的三线合一定理,掌握计算相似三角形的高、中线、角平分线以及重心、垂心和外心的方法。

7. 三角形的判定:了解判定三角形是否相似的几何条件,掌握相似三角形中角的性质和边的关系,应用相似三角形解决实际问题。

8. 相似函数的性质:了解相似函数的定义和性质,掌握相似函数的图像特点和变化规律,应用相似函数解决实际问题。

9. 相似变换:了解平移、旋转、翻折和缩放等相似变换的性质,掌握相似变换的基本概念、性质和运算法则,应用相似变换解决实际问题。

10. 相似图形中的角度关系:通过相似图形的角度关系,学习解决相似图形中的角度问题。

以上是九年级数学中与相似相关的知识点,希望对你有帮助!。

九年级数学相似的知识点

九年级数学相似的知识点

九年级数学相似的知识点1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。

相似三角形的性质包括对应角相等、对应边成比例等。

通过相似三角形,可以解决一些几何问题,如计算不可测量的长度或距离。

2. 比例与相似:比例是指两个量之间的相对关系。

在相似三角形中,对应边的长度之比等于对应角的边之比。

比例与相似问题常用于解决物体的放大缩小、图形的变换等。

3. 相似多边形:相似多边形是指具有相同形状但大小不同的多边形。

相似多边形的性质包括对应角相等、对应边成比例等。

通过相似多边形,可以解决一些面积和体积比较的问题。

4. 黄金分割:黄金分割是指一条线段分割成两部分,较长部分与整体的比例等于整体与较短部分的比例。

黄金分割在艺术、建筑、设计等领域中广泛应用。

5. 图形的相似性变换:图形的相似性变换是指通过平移、旋转、镜像和缩放等变换操作使两个图形成为相似图形。

相似性变换常用于解决图形的构造、定位和证明问题。

6. 相似三角形的勾股定理:相似三角形的勾股定理是指在两个相似三角形中,两个直角边的平方的比等于两个斜边的平方的比。

7. 外接圆和内切圆:在相似三角形和相似多边形中,外接圆和内切圆分别是能够通过所有顶点(或顶点所在的边)的圆和能够被所有边(或边上的顶点)所切的圆。

外接圆和内切圆之间存在着一定的关系,如半径比例等。

8. 相似三角形的角平分线定理和中线定理:相似三角形的角平分线定理是指两个相似三角形中,两个对应角的角平分线也相似;相似三角形的中线定理是指两个相似三角形中,两个对应中位线也相似。

这些是九年级数学中与相似有关的知识点,希望对你有帮助!。

九年级相似知识点归纳

九年级相似知识点归纳

九年级相似知识点归纳一、数学方面的相似知识点归纳1. 相似三角形相似三角形是指具有相同形状但不同大小的三角形。

相似三角形的性质包括:对应角相等,对应边成比例。

利用这些性质,我们可以求解各种与相似三角形相关的问题。

2. 相似比与比例相似比是指相似图形(包括三角形和多边形)的对应边的比值。

比例是指两个数之间的相对关系。

在解题中,我们需要用到相似比和比例来确定图形的相似性质以及求解未知数。

3. 相似多边形相似多边形是指具有相同形状但不同大小的多边形。

相似多边形的性质与相似三角形类似,对应角相等,对应边成比例。

我们可以利用相似多边形的性质来求解各类相关问题。

二、科学方面的相似知识点归纳1. 生物相似性在生物学中,相似性是指不同物种之间在形态特征、生理功能等方面存在相似之处。

相似性可以用来推断物种之间的亲缘关系,进行分类和进化研究。

2. 物理相似性在物理学中,相似性是指两个事物在某些性质上的相似程度。

物理相似性的研究可以帮助我们更好地理解和预测不同物体或系统的行为,比如利用相似性原理可以在实验室中进行模型实验,进而推广到真实情况。

3. 化学相似性在化学领域,相似性是指化合物或元素之间具有相似的化学性质或结构特征。

化学相似性可以用来预测物质的性质、反应行为,以及设计新的化合物或材料。

三、语文方面的相似知识点归纳1. 同义词与近义词同义词是指意思相同或相近的词语,而近义词指意思相近但不完全相同的词语。

在写作中,我们可以利用同义词和近义词来丰富文章的表达方式,避免重复使用相同的词汇。

2. 反义词与对义词反义词是指意思相反的词语,而对义词指相对应关系的词语。

在阅读理解和写作中,我们需要对反义词和对义词进行准确理解,以便正确地领会作者的意图和准确表达自己的思想。

3. 成语与俗语成语是特定社会和历史背景下形成的固定词组,具有特定的意义。

俗语是反映民间传统和智慧的短小词句。

在语文学习中,我们需要理解和运用成语和俗语,以提升语言表达的准确性和韵律感。

数学图形相似九年级知识点

数学图形相似九年级知识点

数学图形相似九年级知识点数学中的图形相似是指两个或多个图形在形状上相似,即它们的对应角度相等,对应边的比例相等。

图形相似在几何学中有重要的应用,能够帮助我们分析和解决各种数学问题。

本文将介绍九年级数学中关于图形相似的知识点。

1. 判断图形相似的条件在九年级数学中,判断两个图形是否相似,需要满足以下三个条件:(1)对应角相等:两个图形的对应角度相等。

(2)对应边比例相等:两个图形中,对应边的长度之比相等。

(3)对应边平行:两个图形中,对应边之间相互平行。

2. 图形相似的性质图形相似具有以下性质:(1)对应角的性质:相似图形的对应角相等,即它们的内角相等,外角相等。

(2)对应边的比例:相似图形的对应边之比等于它们的周长、面积之比。

即若图形A与图形B相似,那么两个图形的对应边AB与A'B'的比例等于它们的周长或面积之比。

3. 相似三角形的定理在相似三角形中,我们可以应用以下定理来求解各种问题:(1)AAA相似定理:如果两个三角形的三个内角分别相等,则这两个三角形相似。

(2)AA相似定理:如果两个三角形的一个内角相等,并且两个三角形的对应边比例相等,则这两个三角形相似。

(3)SAS相似定理:如果两个三角形的一个内角相等,并且两个三角形的一个对边与这个角的对边的比例相等,则这两个三角形相似。

4. 图形相似应用图形相似在实际问题中有广泛的应用,比如:(1)计算高塔的高度:通过相似三角形的定理,我们可以计算高塔的高度。

例如,利用影子定理可以测量高塔的高度,其中就用到了相似三角形的概念。

(2)建模问题:在建模问题中,相似图形的概念可以帮助我们将实际物体或建筑的比例缩小或放大,以便进行实际测量或设计。

总结:数学图形相似是九年级数学中的重要知识点,它可以帮助我们分析和解决各种数学问题。

相似图形的判断条件、性质以及应用都需要我们掌握。

通过学习相似图形的知识,我们可以更好地理解几何学中的概念和应用,提升数学解题能力。

初三---相似图形思维导图内容---1

初三---相似图形思维导图内容---1

初三相似图形思维导图内容1一、相似图形的定义相似图形是指两个图形的形状相同,但大小不同。

换句话说,如果将一个图形放大或缩小,并且保持其形状不变,那么放大或缩小后的图形与原图形相似。

二、相似图形的性质1. 对应角相等:相似图形的对应角是相等的。

这意味着,如果两个图形相似,那么它们的对应角具有相同的大小。

2. 对应边成比例:相似图形的对应边长度成比例。

也就是说,如果两个图形相似,那么它们的对应边的长度比例是相同的。

3. 相似多边形的面积比等于边长比的平方:如果两个多边形相似,那么它们的面积比等于对应边长比的平方。

三、相似图形的判定1. AA相似准则:如果两个三角形的两个角分别相等,那么这两个三角形相似。

2. SAS相似准则:如果两个三角形的两个角和它们之间的夹边分别相等,那么这两个三角形相似。

3. SSS相似准则:如果两个三角形的三边分别成比例,那么这两个三角形相似。

四、相似图形的应用相似图形在现实生活中有着广泛的应用。

例如,在建筑、设计、工程等领域,设计师和工程师经常使用相似图形来简化设计过程,提高工作效率。

相似图形也是数学中许多问题解决的关键,例如在几何证明、比例计算等方面都有重要应用。

初三相似图形思维导图内容1五、相似图形的变换相似图形的变换包括缩放、旋转和平移。

缩放是指将图形放大或缩小,旋转是指将图形绕一个点旋转一定角度,平移是指将图形沿某一方向移动一定距离。

这些变换不会改变图形的形状,只会改变图形的大小、位置或方向。

六、相似图形的证明1. 确定两个图形是否满足相似图形的定义,即形状相同但大小不同。

2. 根据相似图形的性质,检查对应角是否相等,对应边是否成比例。

3. 如果满足相似图形的性质,那么可以得出结论:两个图形相似。

七、相似图形的练习题1. 证明两个三角形相似。

2. 已知一个三角形的两个角和它们之间的夹边,求另一个相似三角形的对应边长。

3. 已知两个相似三角形的面积比,求它们对应边长的比例。

九年级数学上册知识归纳 图形的相似

九年级数学上册知识归纳  图形的相似

作品编号:GLK520321119875425963854145698357 学 校: 黄莺读市仙鹤镇喜鹊小学* 教 师: 悟性中* 班 级: 凤翔2班*图形的相似1. 比例线段的有关概念==在比例式::中,、叫外项,、叫内项,、叫前项,a c(a b c d )a d b c a c b db 、d 叫后项,d 叫第四比例项,如果b =c ,那么b 叫做a 、d 的比例中项. 2. 比例性质①基本性质:a b cdad bc =⇔= ②更比性质(交换比例的内项或外项): ()()()()⎧=⎪⎪⎪=⎪=⇒⎨⎪=⎪⎪⎪=⎩交换内项交换外项同时交换内外项同时交换比的前项和后项a bc d d c a cb a d b b dc a b da c②合比性质:±±a b c d a b b c d d =⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 黄金分割在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB ×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中AB AC 215-=≈0.618AB . 4. 平行线分线段成比例定理①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3.则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 5. 相似三角形的判定①两角对应相等,两个三角形相似;②两边对应成比例且夹角相等,两三角形相似;③三边对应成比例,两三角形相似. 6. 相似三角形的性质①相似三角形的对应角相等,对应边成比例;②相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;面积的比等于相似比的平方. 7. 六种相似基本模型:C ABDCABDE E D BACDE ∥BC∠B =∠AED∠B =∠ACDABCDO B ACO DC BAX 型 母子型AC ∥BD∠B =∠C AD 是Rt △ABC 斜边上的高8. 射影定理由_____________,得______________,即_______________; 由_____________,得______________,即_______________; 由_____________,得______________,即_______________.9. 中位线1) 三角形的中位线:连结三角形两边中点的线段. 三角形的中位线平行于第三边并且等于第三边的一半.三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的线段的长是对应中线长的31.2) 梯形的中位线:连结梯形两腰中点的线段.ADBC梯形的中位线平行于两底边,并且等于两底边和的一半.10. 位似①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.②位似图形上任意一对对应点到位似中心的距离之比等于位似比.。

初三期中数学复习资料之图形的相似知识点总结

初三期中数学复习资料之图形的相似知识点总结

初三期中数学复习资料之图形的相似知识点总结
家长朋友们一定要注意孩子的学习问题。

初中频道为大家提供了初三期中数学复习资料,希望对大家有所帮助。

知识点1.概念
把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形) 解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.比例线段
对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确对应关系.
(2)明确相似多边形的对应来自于书写,且要明确相似比具有顺序性.
知识点4.相似三角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
解读:(1)相似三角形是相似多边形中的一种;
(2)应结合相似多边形的性质来理解相似三角形;
(3)相似三角形应满足形状一样,但大小可以不同;
(4)相似用∽表示,读作相似于
(5)相似三角形的对应边之比叫做相似比.
现在是不是感觉初中频道为大家准备的初三期中数学复习资料很关键呢?欢迎
大家阅读与选择!。

九年级相似图形知识点归纳

九年级相似图形知识点归纳

九年级相似图形知识点归纳相似图形是几何学中的一个基本概念,它指的是形状相似但尺寸不同的两个或多个图形。

在九年级的数学学习中,相似图形是一个重要的知识点,涉及到比例、比例尺、相似比等概念。

本文将对九年级相似图形的相关知识进行归纳总结。

一、相似图形的定义相似图形是指在形状上相似但尺寸不同的两个或多个图形。

相似图形具有以下特点:1. 对应角相等:两个相似图形的对应角都相等;2. 对应边成比例:两个相似图形的对应边的长度成比例。

二、相似图形的判定方法1. AAA判定法:若两个图形的对应角分别相等,则它们是相似图形。

2. AA判定法:若两个图形的两组对应角分别相等,则它们是相似图形。

三、相似图形的性质和定理1. 三角形的相似定理:a. AA相似定理:如果两个三角形的两组对应角相等,则这两个三角形是相似的。

b. SSS相似定理:如果两个三角形的三组对边成比例,则这两个三角形是相似的。

c. SAS相似定理:如果两个三角形的一组对边成比例且对应角相等,则这两个三角形是相似的。

2. 相似三角形的性质:a. 对应边成比例:相似三角形的对应边的长度成比例。

b. 三角形内角对应:相似三角形的内角都对应相等。

四、相似图形的应用相似图形的知识在实际生活和实际问题中有广泛应用,例如:1. 测量:利用相似图形的知识可以进行测量,如通过测量一个三角形的边长和另一个相似三角形的边长,可以得到未知边长的长度。

2. 设计:在设计中,相似图形的概念可以应用于建筑、道路等方面,通过对已知图形进行放大或缩小,使其与实际需求相适应。

3. 地图测绘:地图上的比例尺就是利用相似图形的原理进行测绘的。

五、示例题目1. 已知两个三角形的对边成比例,但两个三角形的对应角不全等,是否可以判定这两个三角形是相似的?2. 若一个平面图形与一个已知的相似图形所对应的角相等,并且对应边成比例,能否判断这两个图形是相似的?六、总结九年级相似图形是一个重要的几何学知识点,它涵盖了相似图形的定义、判定方法、性质和应用等方面。

九年级数学图形的相似

九年级数学图形的相似

九年级数学图形的相似1、黄金分割点:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

其中AB AC 215-=≈0.618AB 。

2、黄金分割的几何作图:已知:线段AB.求作:点C 使C 是线段AB 的黄金分割点.作法:(1)过点B 作BD ⊥AB ,使BD=0.5AB ; (2)连结AD ,在DA 上截取DE=DB ;(3)在AB 上截取AC=AE ,则点C 就是所求作的线段AB 的黄金分割点。

(4)矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形 3、相似三角形1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。

几种特殊三角形的相似关系:两个全等三角形一定相似。

两个等腰直角三角形一定相似。

两个等边三角形一定相似。

两个直角三角形和两个等腰三角形不一定相似。

补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等); 4、性质:两个相似三角形中,对应角相等、对应边成比例。

5、相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。

如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。

相似比为k 。

6、判定:①定义法:对应角相等,对应边成比例的两个三角形相似。

②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。

三角形相似的判定定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似。

(此定理用的最多)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似。

中考知识点总结图形的相似

中考知识点总结图形的相似

中考知识点总结图形的相似图形的相似是中考数学中的一个重要知识点,理解和掌握这部分内容对于解决相关问题至关重要。

接下来,让我们一起系统地梳理一下图形的相似的知识点。

一、相似图形的定义相似图形是指形状相同,但大小不一定相同的图形。

两个图形相似,对应角相等,对应边的比相等。

比如,两个大小不同的正方形就是相似图形,它们的角都是直角,对应边的比例相同。

二、相似多边形1、相似多边形的定义如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形叫做相似多边形。

2、相似比相似多边形对应边的比叫做相似比。

需要注意的是,相似比为1 时,两个多边形全等。

3、相似多边形的性质(1)相似多边形的对应角相等,对应边的比相等。

(2)相似多边形周长的比等于相似比。

(3)相似多边形面积的比等于相似比的平方。

三、相似三角形1、相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形。

2、相似三角形的判定(1)两角分别相等的两个三角形相似。

(2)两边成比例且夹角相等的两个三角形相似。

(3)三边成比例的两个三角形相似。

3、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例。

(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比。

(3)相似三角形周长的比等于相似比,面积的比等于相似比的平方。

四、位似图形1、位似图形的定义如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。

2、位似图形的性质(1)位似图形上任意一对对应点到位似中心的距离之比等于位似比。

(2)在位似变换中,位似图形的对应边互相平行或在同一条直线上。

五、相似三角形的应用相似三角形在实际生活中有广泛的应用,比如测量物体的高度、宽度,计算不能直接测量的距离等。

例如,要测量一棵大树的高度,可以在同一时刻,测量一根直立的标杆的高度以及它的影长,同时测量大树的影长。

利用相似三角形对应边成比例的性质,就可以计算出大树的高度。

初三数学九年级上册知识点——图形的相似

初三数学九年级上册知识点——图形的相似

九年级数学上册知识点图形的相似一、成比例线段1.定义:(1)线段比:如果选用一个长度单位量得两条线段AB、CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB:CD=m:n,或者写成AB/CD=m/n. (2)成比例线段:四条线段a、b、c、d中,如果a与b的比等于c与d的比,即a/b=c/d,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。

2.定理:如果a/b=c/d==m/n(b+d++n≠0),那么(a+c+m)/(b+d++n)=a/b二、平行线分线段成比例1.两条直线被一组平行线所截,所得的对应线段成比例。

2.平行于三角形一边的直线与其他两边相交。

截得的线段成比例。

三、相似多边形定义:各角分别相等,各边成比例的两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比。

四、探索三角形相似的条件1.两角分别相等的两个三角形相似。

2.两边成比例且夹角相等的两个三角形相似。

3.三边成比例的两个三角形相似。

4.概念:一般地,点C把线段AB分成两条线段AC和BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。

五、相似三角形判定定理的证明判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

简述为:两角对应相等,两三角形相似。

(此定理用的最多)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

简述为:两边对应成比例且夹角相等,两三角形相似。

判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

简述为:三边对应成比例,两三角形相似。

六、利用相似三角形测高1.利用阳光下的影子2.利用标杆3.利用镜子的反射七、相似三角形的性质1.相似三角形对应高的比、对应角平分线的比、对应中线的比等于相似比。

北师大数学九年级上册图形的相似知识点详细(一)

北师大数学九年级上册图形的相似知识点详细(一)

图形的相似(一)一、比例线段1、比例线段的相关概念如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项。

在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项,线段的d 叫做a ,b ,c 的第四比例项。

如果作为比例内项的是两条相同的线段,即c bb a 或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项。

2、比例的性质(1)基本性质①a :b=c :d ad=bc②a :b=b :c acb 2(2)更比性质(交换比例的内项或外项)d bc a (交换内项)d c b a a cb d (交换外项)a bc d (同时交换内项和外项)(3)反比性质(交换比的前项、后项):cda b d c b a (4)合比性质:ddc b b ad c b a (5)等比性质:ban f d b m e c a n f d b n mf e d c b a )0(n m b a d c b a3、黄金分割1.黄金分割定义:点C 把线段AB 分成两条线段AC 和BC ,如果AC:AB=BC:AC ,那么称线段AB 被点C 黄金分割.点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2.618.0215AB AC 二、平行线分线段成比例定理定理:三条平行线截两条直线,所得的对应线段成比例。

则,,,…AB BC DE EF AB AC DEDF BC AC EFDF 推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

图形的相似九年级知识点

图形的相似九年级知识点

图形的相似九年级知识点相似是数学中的一个重要概念,在几何学中也有着广泛的应用。

图形的相似是指两个形状在形状和比例上相似,但大小不同。

本文将介绍九年级学生需要了解的有关图形相似的知识点。

一、图形的相似定义图形的相似是指两个图形具有相同的形状,但是可能存在不同的大小。

两个相似图形的对应边长之间成比例。

当两个图形相似时,它们的对应角度也相等。

二、图形的相似比例在相似图形中,可以通过比较对应边长的比值来确定它们的相似比例。

相似比例可以用以下公式表示:相似比例 = 对应边长1 / 对应边长2 = 对应边长2 / 对应边长3= ...三、判断图形的相似1. AAA准则:如果两个三角形的对应角度相等,则它们是相似的。

2. SAS准则:如果两个三角形有一个相等的对角和对应边长的比值也相等,则它们是相似的。

四、相似三角形性质相似三角形具有以下性质:1. 对应角度相等。

2. 对应边长之间成比例。

3. 对应中线之间成比例。

4. 对应高线之间成比例。

五、相似三角形的应用相似三角形在实际生活和工作中有广泛的应用,例如:1. 比例尺:地图上使用的比例尺是相似三角形的应用之一。

通过将实际距离与地图上的距离相比较,可以得出比例尺。

2. 影子问题:当太阳光照射物体时,物体和它的影子是相似的。

可以通过测量物体和影子的长度来计算物体的高度或长度。

3. 相似图形的缩放和放大:在设计和建筑中,可以通过相似图形的缩放和放大来确定比例和尺寸。

六、与相似图形相关的概念1. 比例:比例是指两个量或两个数值之间的关系或比较。

在相似图形中,角度和边长之间的比值就是比例。

2. 比例因子:比例因子是指相似图形中对应边长之间的比。

比例因子可以用来确定缩放或放大图形的尺寸。

3. 缩放因子:缩放因子是指相似图形中的线段比例因子。

通过乘以缩放因子,可以确定图形的尺寸调整比例。

结论:相似是几何学中一个重要的概念,对于九年级的学生来说,掌握图形的相似知识是非常重要的。

九年级数学上册知识归纳 图形的相似

九年级数学上册知识归纳  图形的相似

作品编号:578912354698310.2567 学 校: 星宿市龟卜镇殷商小学* 教 师: 大鹏金翅鸟* 班 级: 螭吻玖班*图形的相似1. 比例线段的有关概念==在比例式::中,、叫外项,、叫内项,、叫前项,a c(a b c d )a d b c a c b db 、d 叫后项,d 叫第四比例项,如果b =c ,那么b 叫做a 、d 的比例中项. 2. 比例性质①基本性质:a b cdad bc =⇔= ②更比性质(交换比例的内项或外项): ()()()()⎧=⎪⎪⎪=⎪=⇒⎨⎪=⎪⎪⎪=⎩交换内项交换外项同时交换内外项同时交换比的前项和后项a bc d d c a cb a d b b dc a b da c②合比性质:±±a b c d a b b c d d =⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 黄金分割在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB ×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中AB AC 215-=≈0.618AB . 4. 平行线分线段成比例定理①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3.则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 5. 相似三角形的判定①两角对应相等,两个三角形相似;②两边对应成比例且夹角相等,两三角形相似;③三边对应成比例,两三角形相似. 6. 相似三角形的性质①相似三角形的对应角相等,对应边成比例;②相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;面积的比等于相似比的平方. 7. 六种相似基本模型:C ABDCABDE E D BACDE ∥BC∠B =∠AED∠B =∠ACDADBCDO B ACO DCBAX 型 母子型AC ∥BD∠B =∠C AD 是Rt △ABC 斜边上的高8. 射影定理由_____________,得______________,即_______________; 由_____________,得______________,即_______________; 由_____________,得______________,即_______________.9. 中位线1) 三角形的中位线:连结三角形两边中点的线段. 三角形的中位线平行于第三边并且等于第三边的一半.三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的线段的长是对应中线长的31.2) 梯形的中位线:连结梯形两腰中点的线段.梯形的中位线平行于两底边,并且等于两底边和的一半. 10. 位似①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.ADBC②位似图形上任意一对对应点到位似中心的距离之比等于位似比.。

数学九年级相似重点知识点

数学九年级相似重点知识点

数学九年级相似重点知识点相似是数学中一个重要的概念,在数学九年级的学习中占据着重要的地位。

相似涉及到几何图形的形状和尺寸的比较,它们之间存在着一定的关系和性质。

本文将介绍数学九年级相似的重点知识点,帮助同学们更好地理解和掌握相关内容。

一、相似三角形相似三角形是相似中最基本的概念,其定义是:在两个三角形中,如果对应角相等,则这两个三角形是相似的。

根据相似三角形的定义,可以得到以下重要结论:1. AA判定法:如果两个三角形的两个角分别相等,则这两个三角形是相似的。

2. SAS判定法:如果两个三角形的一个角相等,而这个角的两边与另一个三角形的两边成比例,则这两个三角形是相似的。

3. SSS判定法:如果两个三角形的三条边分别成比例,则这两个三角形是相似的。

二、相似比例相似三角形中,对应边之间的比例关系也是需要注意的一个重点知识点。

假设有两个相似三角形,它们的三个顶点分别为ABC和A'B'C',则可以得到以下比例关系:1. AB / A'B' = BC / B'C' = AC / A'C':三角形对应边之间的比例关系。

2. AB / BC = A'B' / B'C' = AC / A'C':三角形邻边和对角线之间的比例关系。

三、相似图形除了三角形,其他几何图形也可以是相似的。

在数学九年级中,常见的相似图形包括矩形、正方形和圆。

以下是关于这些相似图形的重点知识点:1. 矩形的相似性质:如果两个矩形的对应边长成比例,则这两个矩形是相似的。

2. 正方形的相似性质:所有正方形都相似,因为它们的边长相等。

3. 圆的相似性质:所有圆都相似,因为圆不仅可以通过缩放改变大小,也可以通过旋转改变方向。

四、相似的应用相似的概念在实际生活中有着广泛的应用。

以下是一些常见的相似应用问题:1. 长度比例应用:根据两个相似图形的边长比例,计算缩放前后的尺寸。

九年级数学知识点归纳:相似图形

九年级数学知识点归纳:相似图形

九年级数学知识点归纳:相似图形常见考法(1)判定某两个图形是不是相似;(2)判定一组数据是不是成比例线段;(3)已知图上距离和比例尺大小求实际距离;(4)利用比例的性质求值。

误区提示(1)在判定四条线段是不是成比例问题时忽略单位统一;(2)在用图上距离求实际距离时忽略了单位换算问题。

【典型例题】(XX江苏淮安)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4,那么A,B两地间的实际距离为.【解析】4×200=9000=9相似三角形一、平行线分线段成比例定理及其推论:定理:三条平行线截两条直线,所得的对应线段成比例。

2推论:平行于三角形一边的直线截其他两边所得的对应线段成比例。

3推论的逆定理:若是一条直线截三角形的两边所得的对应线段成比例,那么这条线段平行于三角形的第三边。

二、相似预备定理:平行于三角形的一边,而且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

三、相似三角形:概念:对应角相等,对应边成比例的三角形叫做相似三角形。

2性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。

3判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)若是一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。

四、三角形相似的证题思路:五、利用相似三角形证明线段成比例的一样步骤:一“定”:先确信四条线段在哪两个可能相似的三角形中;二“找”:再找出两个三角形相似所需的条;三“证”:依照分析,写出证明进程。

若是这两个三角形不相似,只能采纳其他方式,如找中间比或引平行线等。

六、相似与全等:全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:一起点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册图形的相似知识点归纳
【篇一:九年级上册图形的相似知识点归纳】
图形的相似考点一、比例线段 1、比例线段的相关概念如果选用同
一长度单位量得两 a m 条线段 a, b 的长度分别为 m, ? n,那么
就说这两条线段的比是,b n 或写成 a:b=m:n 在两条线段的比 a:b 中,a 叫做比的前项,b 叫做比的后项。

在四条线段中,如果其中两条线段的比等于另外两条线段的比,那
么这四条线段叫做成比例线段,简称比例线段a c ? b d若四条 a,b,c,d 满足或a:b=c:d,那么 a,b,c,d 叫做组成比例的项,线段 a,d 叫做比例外项,线段 b,c 叫做比例内项,线段的 d 叫做a,b,c 的第四比例项。

如果作为比例内项的是两条相同的线段,即 ? 或 a:b=b:c,那么
线段 b 叫做线段 a,c 的比例中项。

推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的
对应线段成比例,那么这条直线平行于三角形的第三边。

(2)平行于三角形一边且和其他两边相交的直线截得的三角形的三
边与原三角形的三边对应成比例。

考点三、相似三角形(3~8 分)1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。

相似用符号“∽” 来表示,读作“相似于” 。

相似三角形对应边的比叫
做相似比(或相似系数)。

3、三角形相似的判定(1)三角形相似的判定方法①定义法:对应
角相等,对应边成比例的两个三角形相似②平行法:平行于三角形
一边的直线和其他两边(或两边的延长线)相交,所构成的三角形
与原三角形相似③判定定理 1:如果一个三角形的两个角与另一个
三角形的两个角对应相等,那么这两个三角形相似,可简述为两角
对应相等,两三角形相似。

相关文档
最新文档