05小升初几何专题
小升初几何经典难题55道含答案
D
C
审题要点:要求边扫过的面积,只需分别看一边旋转所得图形。
25.求圆中阴影部分与大圆的面积之比和周长之比。
26.如图,半圆半径=40CM,BM=CN=DP=22,每个阴影部分的弧长为半圆弧长的 1 , 3
求阴影部分面积?( p =3)
27.如图,哨所门前的两个正三角形哨台拴了两条狼狗,拴狼狗的铁链子长为 10 米,每个哨台的面积为 42.5 平方米现在要绿化哨所所在地(哨所面积忽略不计, 把其看做一点,在其周围 20 米范围内铺上草地)为了防止狼狗践踏,则绿化的
47.将 NNN(N 是正整数)正方体的一些面涂上颜色以后,再将它切割成 111 的小 正方体。已知至少有一面涂色的小正方体恰好占总数的 52%,N 是多少?
48.小红的生日舞会,做了一顶圆锥形帽子,要将帽子涂成红色和蓝色,O 点为 顶点,BC 为底面圆直径 30cm,A 点是 OB 的下三分之一处,OB=30cm,从 A 点出 发,CA 之间最短的距离之上涂成红色,下边涂成蓝色。那么小红的帽子有多大
F 是 AC 的中点,若△ABC 的面积是 2,则△DEF 的面积是多少?
A F E
B C
D
16.如图,长方形 ABCD 中,E 为 AD 中点,AF 与 BE、 BD 分别交于 G、H,已知 AH=5cm,HF=3cm,求 AG。
A
E
D
G
O
H F
B
C
17.在边长为 1 的正方形 ABCD 中,BE=2EC,DF=2FC; 求四边形 ABGD 的面积。
21.如图,ABCG 是 4×7 的长方形,DEFG 是 2×10 的长方形,那么,三角形 BCM 的面积与三角形 DCM 的面积之差是多少? 审题要点:要求两个三角形的面积之差,题目没有给出可以直接求出两个三角形 面积的条件,那么我们只能考虑应用差不变原理。
小升初专题复习几何图形
小升初专题复习——几何图形一、三视图及展开图例题1:用同样大小的正方体摆成的物体,从正面看到,从上面看到,从右面看到〔 〕A .B .C .D .变式练习:如图,它是用6个棱长为1分米的正方体拼成的. ①它的外表积是 . ②它的体积是 .二、三角形的底边及面积关系例题1:如图.A 、B 是长方形长和宽的中点,阴影局部的面积是长方形面积的 %.例题2:如图,三角形ABC 面积为27平方厘米,AE=CE ,BF=BC ,求三角形BEF 的面积.变式练习1:如图,直角梯形ADCB 中,三角形BEC 、四边形CEAF 和三角形CFD 的面积一样大.BC=16、AD=20、AB=12,求三角形AEF 的面积.教师姓名 学科 数学 上课时间 讲义序号 (同一学生)学生姓名年级六年级组长签字日期课题名称 几何图形变式练习2:如图,梯形ABCD中共有〔〕对面积相等的三角形A. 22 B. 3 C. 4 D. 5变式练习3:在如图中,平行四边形的面积是20平方厘米,图中甲、丙两个三角形的面积比是,阴影局部的面积是平方厘米.三、多边形内角和例题1:把表填完整多边形…边数 3 4 5 6 …内角和180°180°×2 180°×3 180°×5 …变式练习:探索〔1〕完成表格中未填局部.〔2〕根据表中规律,八边形的内角和是度.〔3〕假设图形的边数为a,内角和为s,请你用一个含有字母的关系式表示图形边数及内角和的关系..图形边数 3 4 5内角和180 180×2 180×3四、长度比拟例题1:面积相等的情况下,长方形、正方形和圆相比,〔〕的周长最短.A.长方形B.正方形C.圆例题2:如图,A是一个圆,B是由三个半圆围成的图形,那么它们周长的大小关系是C A C B.变式练习1:下面三个图形中,哪两个图形的周长相等?〔〕A.图形①和②B.图形②和③C.图形①和③变式练习2:在图形中甲的周长〔〕乙的周长.A.大于B.小于C.等于拓展提升:某高层公寓大火时,小王逃生的时候看了下疏散通道如下图,那么最快逃离到楼梯〔图中阴影〕的通道共有〔〕条.A. 3 B. 9 C. 6 D. 12五、组合图形计数例题1:如图中直角的个数为〔〕个.A. 4 B. 8 C. 10 D. 12例题2:如图,共有〔〕条线段.A. 4 B. 8 C. 10 D. 12例题3:数一数,在右图中共有〔〕个三角形.A.10 B. 11 C. 12 D. 13 E.14A.4 B. 8 C. 10 D. 12变式练习2:如图中直角有〔〕个.A. 1 B. 2 C. 3 D. 4变式练习3:这里共有〔〕条线段.A.三条B.四条C.五条D.六条变式练习4:如下图的7×7的方格内,有许多边长为整数的正方形,其中在有的正方形中黑方格及白方格的个数占一半〔同样多〕.像这样的正方形有〔〕个.A.26 B. 36 C. 46 D. 56E.66变式练习5:图中共有〔〕个长方形.A. 30 B. 28 C. 26 D. 24变式练习6:如图,三角形一共有个.拓展提升1:如图是半个正方形,它被分成一个一个小的等腰三角形,图中,正方形有10 个,三角形有47 个.拓展提升2:如图中,三角形的个数有多少?六、图形的拆拼〔切拼〕例题1:一个圆的周长是15.7分米,把这个圆等分成假设干个小扇形,拼成一个近似的长方形,这个近似的长方形的长是分米,宽是分米.例题2:爸爸给女儿买了一个圆柱形的大生日蛋糕,女儿把蛋糕竖直方向切成22块分给22个小朋友,切成的大小不一定相等.那么至少需切的刀数为?变式练习1:在一块边长为4厘米的正方形的铁皮上,剪出直径为2厘米的小圆片,最多可剪〔〕片.A. 3 B. 4 C. 5 D. 6变式练习2:用一条直线将一个正方形分成两个完全一样的两局部,有几种分法〔〕A. 1种B. 2种C. 3种D. 4种变式练习3:在一块长10分米、宽5分米的长方形铁板上,最多能截取11 个直径是2分米的圆形铁板.拓展提升:请将下面等边三角形按要求分割成假设干个形状和大小都一样的三角形〔1〕分成2个〔2〕分成3个〔3〕分成4个〔4〕分成6个七、立体图形的外表积例题1:把14个棱长为1的正方体,在地面上堆叠成如下图的立体,然后将露出的外表局部染成红色.那么红色局部的面积为〔〕A. 21 B. 24 C. 33 D. 37例题2:如图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,那么所得物体的外表积为.变式练习2:把假设干个边长2厘米的正方体重叠起来堆成如下图的立体图形,这个立体图形的外表积是平方厘米.变式练习3:如图是一个长3厘米、宽及高都是2厘米的长方体.将它挖掉一个棱长1厘米的小正方体,它的外表积〔〕A.比原来大B.比原来小C.不变拓展提升〔难〕:在一个棱长为8的立方体上切去一个三棱柱〔如图〕,那么外表积减少.八、立体图形的体积例题1:如图的体积是.〔单位:厘米〕例题2:一支没有用过的圆柱形铅笔,长18厘米,体积是9立方厘米,使用一段时间后变成了如图的样子,这时铅笔的体积是多少立方厘米?变式练习1:有一棱长为5cm的正方体机器零件,现在它的上下面挖去了一个直径为2cm的圆孔,求剩下机器零件的外表积和体积?九、等积变形例题1:如下图,把底面直径8厘米的圆柱切成假设干等分,拼成一个近似的长方体.这个长方体的外表积比原来增加80平方厘米,那么长方体的体积是立方厘米.例题2:一个酸奶瓶〔如图〕,它的瓶身呈圆柱形〔不包括瓶颈〕,容积是32.4立方厘米.当瓶子正放时,瓶内酸奶高为8厘米,瓶子倒放时,空余局部高为2厘米.请你算一算,瓶内酸奶体积是多少立方厘米?变式练习1:一个圆锥形沙堆,底面积是3.6平方米,高1.2米.把这堆沙装在长2米、宽1.5米的沙坑里,可以装多高?变式练习2:有一种饮料瓶的容积是50立方厘米,瓶身呈圆柱形〔不包括瓶颈〕.现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余局部的高度为5厘米.瓶内现有饮料立方厘米.变式练习3:水平桌面上放着高度都为10厘米的两个圆柱形容器A和B,在它们高度的一半处有一连通管相连〔连通管的容积忽略不计〕,容器A、B底面直径分别为10厘米和16厘米.关闭连通管,10秒钟可注满容器B,如果翻开连通管,水管向B容器注水6秒钟后,容器A中水的高度是多少呢?〔π取3.14〕变式练习4:A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A 注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通〔连通管的容积忽略不计〕,仍用该水龙头向A注水,求〔1〕2分钟容器A中的水有多高?〔2〕3分钟时容器A中的水有多高.十、数阵图中找规律的问题例题1:把自然数依次排成以下数阵:1,2,4,7,11,…3,5,8,12,…6,9,13,…10,14,…15,……现规定横为行,纵为列.求〔1〕第10行第5列排的是哪一个数?〔2〕第5行第10列排的是哪一个数?〔3〕2004排在第几行第几列?变式练习1:淘气用小棒搭房子,他搭3间用了13根小棒,像这样搭15间房子要用〔〕根小棒.A. 60 B. 61 C. 65 D. 75。
小升初典型几何题专项训练例题及常规训练(附有答案))
小升初典型几何题专项训练例题及常规训练班级姓名得分卷Ⅰ例题训练类型1:【与圆和扇形有关的题型】【例1】如下图,等腰直角三角形ABC的腰为10厘米;以A为圆心,EF为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等。
求扇形所在的圆面积。
【例2】草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。
问:这只羊能够活动的范围有多大?【例3】在右图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差。
【例4】如图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积。
(取π=3)⌒【例5】如下图,AB与CD是两条垂直的直径,圆O的半径为15厘米,AEB是以C为圆心,AC为半径的圆弧,求阴影部分的面积。
类型2:与立体几何有关的题型 【例6】用棱长是1厘米的正方块拼成如下图所示的立体图形,问该图形的表面积是多少平方厘米?【例7】在边长为4厘米的正方体木块的每个面中心打一个边与正方体的边平行的洞.洞口是边长为1厘米的正方形,洞深1厘米(如下图). 求挖洞后木块的表面积和体积.【例8】如图是一个边长为2厘米的正方体。
在正方体的上面的正中向下挖一个边长为1厘米的正方体小洞;接着在小洞的底面正中再向下挖一个边长为21厘米的小洞;第三个小洞的挖法与前两个相同,边长为41厘米。
那么最后得到的立体图形的表面积是多少平方厘米?类型3 : 水位问题【例9】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米.瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【例10】一个高为30厘米,底面为边长是10厘米的正方形的长方体水桶,其中装有21容积的水,现在向桶中投入边长为2厘米⨯2厘米⨯3厘米的长方体石块,问需要投入多少块这种石块才能使水面恰与桶高相齐?【例11】有甲、乙、丙3种大小的正方体,棱长比是1:2:3。
小升初数学几何图形专题训练含参考答案(5篇)
小升初数学几何图形专题知识训练含答案一、单选题1.甲数和乙数的比是4∶7,甲数是乙数的()A.47B.74C.342.甲数的14和乙数的34相等,那么甲数()乙数。
A.大于B.小于C.等于D.不能比较3.在一张长8厘米,宽6厘米的长方形纸上,剪下一个最大的正方形,这个正方形的面积是()。
A.36平方厘米B.48平方厘米C.64平方厘米4.下面图形都是由3个边长1厘米的小正方形组成的,其中周长最长的是()。
A.B.C.5.旋转能得到()A.圆柱B.圆锥C.一个空心的球6.如图,图中的物体从()看到的形状是相同的.A.正面和上面B.正面和右面C.上面和右面7.下面运用“转化”思想方法的是()。
A.①和②B.①和③C.②和③8.下列叙述正确的是()A.两个数的最小公倍数是它们最大公因数的倍数。
B.三角形的底和高扩大2倍,它的面积也扩大2倍。
C.相邻两个非0的自然数,其中一定有一个是合数。
9.两个完全相同的长方形(如图),将图①和图②阴影部分的面积相比,()A.图①大B.图②大C.图①和图②相等10.下列说法中正确的有()。
①2厘米长的线段向上平移10厘米,线段的长还是2厘米。
②8080008000这个数只读出一个“零”。
③万级包括亿万、千万、百万、十万、万五个数位。
④三位数乘两位数,积不可能是六位数。
A.2个B.3个C.4个二、填空题11.在一个宽为6厘米的长方形里恰好能画两个同样尽量大的圆(如图).圆的直径为厘米,半径为厘米;一个圆的周长为厘米,面积为平方厘米;长方形的面积是平方厘米,阴影部分的面积是平方厘米.12.一个梯形的上底是5.8厘米,下底是6.2厘米,高是2.5厘米,它的面积是平方厘米。
13.是由几个拼成的。
;;。
14.在横线上填上“平移”或“旋转”。
汽车行驶中车轮的运动是现象;推拉门被推开是现象。
15.把一个棱长为6 cm的正方体木块削成一个最大的圆柱,圆柱的体积是,再把这个圆柱削成一个最大的圆锥,这个圆锥的体积是。
小升初数学之几何题专题
小升初数学之几何题专题引言本文档旨在讲解小升初数学中的几何题专题,帮助学生更好地掌握数学几何知识,提高解题能力。
一、直线与角1.1 直线的概念直线是由无数个点连成的,无始无终,且任意两点之间可以连成一条直线。
1.2 角的定义角是由两条射线共享一个端点而成的图形,通常用大写字母表示,如∠ABC。
1.3 角的分类根据角的度数可以将角分为锐角、钝角和直角。
二、三角形2.1 三角形的定义三角形是由三条线段组成的闭合图形,每两条线段的交点称为一个顶点,三条线段称为三角形的边。
2.2 三角形的分类根据三角形的边和角的关系,可以将三角形分为等边三角形、等腰三角形和一般三角形。
三、平行线与平行四边形3.1 平行线的定义平行线是指在同一平面内永不相交的直线。
3.2 平行四边形的性质平行四边形的对边相等且平行,对角线互相平分。
四、相似图形4.1 相似图形的定义相似图形是指对应角相等,对应边成比例的两个图形。
4.2 相似三角形的判定如果两个三角形的对应角相等,对应边成比例,则这两个三角形是相似的。
五、圆与圆的性质5.1 圆的概念圆是平面上一点到另一点距离相等的所有点的集合。
5.2 圆的性质- 圆的直径是圆上任意两点之间的最长线段。
- 圆的弦是圆上的任意两点之间的线段。
- 圆的切线是直接与圆相切的直线,与半径垂直。
结论通过本文档的学习,相信大家对小升初数学中的几何题有了更深入的了解,希望能够帮助大家在解题过程中更加得心应手。
如果对某些知识点还有疑惑,建议学生再多阅读相关教材或向老师请教。
小升初经典几何题大全
小升初经典几何题大全【实用版】目录1.小升初几何题目的概述2.小升初几何题目的类型3.小升初几何题目的解题方法与技巧4.小升初几何题目的实战练习5.小升初几何题目的备考建议正文一、小升初几何题目的概述几何学是数学中的一个重要分支,主要研究空间中点、线、面的性质和相互关系。
在小升初阶段,几何题目主要涉及基本的几何图形(如三角形、四边形、圆等)及其性质、几何变换(如平移、旋转、对称等)、几何计算(如面积、周长等)和几何证明等。
二、小升初几何题目的类型1.计算类题目:主要包括求解几何图形的面积、周长、体积等。
2.性质类题目:主要包括判断几何图形的形状、稳定性、相似性、全等性等。
3.变换类题目:主要包括对几何图形进行平移、旋转、对称等变换。
4.证明类题目:主要包括运用几何定理和性质证明给定的几何命题。
5.应用类题目:主要包括将几何知识应用于实际问题,如解决实际生活中的几何问题、设计几何图案等。
三、小升初几何题目的解题方法与技巧1.熟悉基本几何图形的性质和计算公式,掌握常用几何定理和性质。
2.善于利用几何图形的相似性、全等性进行变换和计算。
3.学会通过画图、构建模型等方式直观地解决问题。
4.注意分类讨论,防止遗漏特殊情况。
5.勤于练习,积累解题经验,提高解题速度和准确率。
四、小升初几何题目的实战练习1.题目一:已知一个三角形的两边长分别为 3 和 4,夹角为 60 度,求这个三角形的面积。
2.题目二:已知一个圆的半径为 5,求这个圆的周长和面积。
3.题目三:已知一个四边形的对角线互相垂直且等长,求这个四边形的面积。
五、小升初几何题目的备考建议1.系统学习几何知识,掌握基本概念、定理和性质。
2.多做练习题,总结解题方法和技巧,提高解题能力。
3.注重实际应用,学会将几何知识应用于实际问题。
4.及时复习巩固,避免遗忘。
小升初数学几何综合 (学生版)
习题课2之三角形面积、一半模型、等积变形一、面积公式长方形面积=长×宽(正方形面积=边长×边长=对角线2÷2)1.如图,有一块长方形田地被分成了五小块,分别栽种了茄子、黄瓜、豆角、莴笋和苦瓜.其中栽种茄子的面积是16平方米,栽种黄瓜的面积是28平方米,栽种豆角的面积是32平方米,栽种莴笋的面积是72平方米,而且左上角栽种茄子的田地恰好是一个正方形.请问:剩下的栽种苦瓜的田地面积是多少?2.如图,在正方形ABCD中,对角线AC的长度为8厘米,那么正方形的面积是多少平方厘米?平行四边形面积=底×高3.如图,小、中、大三个正方形从左到右依次紧挨着摆放,边长分别是3、7、9.图中两个阴影平行四边形的面积分别是多少?4.如图,两个边长10厘米的正方形相互错开3厘米,那么图中阴影平行四边形的面积是多少?5.如图,从梯形ABCD中分出两个平行四边形ABEF和CDFG.其中ABEF的面积等于60平方米,且AF的长度为10米,FD的长度为4米.平行四边形CDFG的面积等于多少平方米?三角形面积=底×高÷26.如图,把大、小两个正方形拼在一起,它们的边长分别是8厘米和6厘米,那么左图和右图中阴影部分的面积分别是多少平方厘米?7.如图,平行四边形ABCD中,AD的长度为20厘米,高CH的长度为9厘米;E是底边BC上的一点,且BE长6厘米,那么两个阴影三角形的面积之和是多少平方厘米?8.图中,平行四边形ABCD的面积是32平方厘米,三角形CED是一个直角三角形.已知AE=5厘米,CE=4厘米,那么阴影部分的面积是多少平方厘米?9.如图,在平行四边形ABCD中,三角形BCE的面积是42平方厘米,BC的长度为14厘米,AE的长度为9厘米,那么平行四边形ABCD的面积是多少平方厘米?三角形BCE的面积又是多少平方厘米?10.如图,小正方形ABCD放在大正方形EFGH的上面.已知小正方形的边长为4厘米,且梯形AEHD的面积是28平方厘米,那么梯形AFGD的面积多少平方厘米?二、几何变换和模型田字模型11.一块长方形的土地被分割成4个小长方形,其中三块的面积如图所示(单位:平方米),剩下一块的面积应该是多少平方米?12.如图8-11,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米。
小升初衔接课程——几何初步知识(知识讲解)_题型归纳
小升初衔接课程——几何初步知识(知识讲解)_题型归纳
暑期专题辅导材料一
【教学内容】
小升初衔接课程几何初步知识
【教学目的】
1、掌握直线、射线、线段三者之间的联系和区别;能熟练地辨别垂线与平行线以及常见的几种角;会画已知直线的平行线与垂线。
2、掌握长方形、正方形、平行四边行、三角形、梯形、圆、长方体、正方体、圆柱、圆锥的主要特征;会画长方形、正方形、圆;进一步认识轴对称图形与对称轴。
3、加深对平面图形的周长、面积、体积意义的理解;通过公式的推导,加深对辩证唯物主义事物都是联系的观点,使学生能熟练掌握已学过平面图形的周长、面积、立体图形的表面积体积公式计算,并能应用公式来解答一些实际问题。
小升初平面几何题目
小升初模块(二)几何1.如图:一个三角形的三个顶点分别为三个半径为3 厘米的圆的圆心,则图中阴影部分的面积是__________.(保留π)2.如图,在三角形ABC 中,BD:DC=1:2,E 为AD 的中点,若三角形ABC 的面积为120 平方厘米,则阴影部分的面积是多少平方厘米?3.求图中阴影部分的面积(单位:厘米)4. 在△ABC 中,BD=DE=EC,CF:AC=1:3.若△ADH 的面积比△HEF 的面积多24 平方厘米,求三角形ABC的面积是多少平方厘米?5、求阴影部分的面积.(单位:厘米)6、如图,长方形的ABCD 面积被线段AE,AF 分成三等份,且三角形AEF 的面积是35 平方厘米,求长方形的面积.7.求下列图形的周长和面积.8.有一种圆锥形容器,给里面装入1 千克水后,水面正好到圆锥高的一半,如下图所示.若要将此容器装满水,还需要注入多少千克水?9.将方格里的梯形面积按1:2:3 分成三个三角形.10.如图,一个正方形的每条边上的半圆直径都相等,每条边在半圆外的两条线段都分别长8 厘米、3 厘米.中间阴影面积减去四个角阴影面积的和,差为平方厘米.11.如图所示,正方形ABCD 的面积为9 平方厘米,正方形EFGH 的面积为64 平方厘米,边BC落在EH上.已知三角形AGC的面积为6.75平方厘米,求三角形ABE的面积.12.如图是学校一个正方形花圃的设计图,图中阴影部分是花圃,空白部分是草坪.求花圃的面积是多少平方米?13.如图,这个无盖长方体铁皮水箱的容积是40 升,底面面积是10 平方分米,距箱口0.8 分米处出现了漏洞,现在这个水箱平放在地面上,最多能装水多少升?(铁皮厚度不计)14. 已知梯形的面积是75 平方厘米,求图中阴影部分的面积.。
小升初平面几何常考五大模型
一、等积变换模型1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。
)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2-c( c+4)-2(c+4)+2c+16=16。
1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。
已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。
又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。
小升初数学几何图形知识点
小升初数学几何图形知识点
小升初数学几何图形知识点
(1)平面图形知识
①直线、射线、线段的特点、联系与区别。
②角的特征、角的分类、角的度量方法。
③垂直与平行。
④三角形的特征,分类(按边分、按角分)。
⑤四边形。
每类图形的特征,特殊与一般的关系。
⑥圆与扇形。
圆的特征、直径、半径的特点,扇形与圆的关系。
⑦轴对称图形。
(能画出学过的轴对称图形的对称轴)
要求:①掌握特征、建立联系,让学生感受到点到线,线到面、面到体的联系。
②能根据图形特征进行合理的判断、选择。
(2)平面图形的周长和面积
①理解周长与面积概念。
②掌握每种图形的周长与面积计算公式及推导过程。
③能应用公式灵活解决问题。
①长方体、正方体、圆柱、圆锥的特征。
②长、正方体的关系。
(3)立体图形的.表面积和体积
②会求长方体、正方体、圆柱的表面积和体积;圆锥的体积。
③建立这四种立体图形体积计算的联系。
④加强体积与表面积的区别、体积与容积的区别的对比训练。
【小学数学】小升初数学精选几何题30题(含标准答案和解析)
小升初数学精选几何题30题(1)一.选择题(共30小题))1.如图;阴影部分的面积相等;那么半圆的面积与三角形的面积比较;(2.一个长方形和正方形的周长相等;( )的面积比较大.A. 正方形B.长方形C.一样大D.不好判断3.右边的两个物体是用相同的小正方体摆成的;()物体的表面积大些.A.正方体大B. 长方体大 C. 同样大4.如图阴影部分面积()长方形面积的.A.大于B.等于C.小于5.如图两个完全相同的平行四边形中;甲的面积()乙的面积.6.下图四个图形的面积相等;()图形中的阴影部分面积最小.A. B. C.D.7.比较如图长方形内阴影部分面积的大小甲()乙.8.(•泉州)下列各图中的正方形面积相等;图()的阴影面积与另外三图不同.A. B. C. D.9.如图中的涂色部分是连接梯形的顶点和边的中点形成的.涂色部分的面积不等于所在梯形面积的是()A. B. C. D.10.如图所示;比较A和B的面积大小;其结果是( )A.S A>SB B. SA<S BC. S A=S BD. 条件不够;不能确定11.右面方格图中有A、B两个三角形;那么()A. A的面积大B. B的面积大C.A、B的面积一样大D. 无法确定12.用两根同样长的铁丝分别围成一个长方形和一个正方形;这两个图形的面积相比()A. 正方形大B. 长方形大C.一样大D.无法确定13.一个长方形的长增加;宽缩短;这个长方形的面积与原来面积相比()A.不变B.增加了C.减少了D.减少14.如图所示的正方形的边长都是2厘米;阴影部分的面积相等的有()A.①②③B.②③④C.①②③④ D. ①③④。
小升初数学几何图形30道经典题(含解析).docx
30道典型几何题解析1. 〔加减法求面积】如图是一个直径为3cm的半圆.让这个半圆以,4点为轴沿逆时针方向旋转6任,此时H点移动到步点.求阴影部分的面枳・(图中长度单位为cm,圆周率按3计算). 【解析】面积二同心角为朋的扇形面积十半回-空白部分而积(也董半圆)=国心角为60°的扇形面积二x jix 二七二 4.5(cm2).360 22. 【割补法求面枳】求下列各图中阴影部分的面枳(图中长度单位为cm,圆周率按3计算),3. 【差不变】三角形彳灰:是直角三角形,阴影I的面积比阴影II的面枳小25cm2 , = 求8(•的长度.【解析】由于阴影1时而积比阴影II的面积小25cm2 ,根据是不变原理,立向三吊形面积疲去半圆而枳为25cm',则直角三角形X8C,西权为1 - R v-K*一十25 = 8兀十25( cm')■2 \ 2 ;况的长度为的卜25) x 2仙=2" 6.25 = 12.53( cm ).4. 【等H代挽】下图(单位;际米)是两个相同的宜伟梯形重龛在一起,求阴影部分的面机【解析】所求面枳等于田中阴影部分的面积,为(20-5 ♦ 20)x8 42= 140(平方厘米).5. 【等面根变形】如卜图,长方形AFEB和长方形FDCE拼成了长方形ABCD ,长方形ABCD的长是20,宽是12.则它内部阴影部分的面积是多少?【解析】根据面枳比例模型可知阴影部分面秋等于长方形面枳的一半,为ix 20x12 = 120.26-【面枳与旋转】如图所示,直角三角形4AC的斜边成长为I。
厘米,匕相C = ", 此时3。
长5厘米.以点8为中心.将顺时针旋转I2(T •点,4、。
分别到达点E、。
的位置.求火•边扫过的图形即图中阴影部分的面积・3取3)[解析】注*分割、平移-补站如图所示,将田形⑴被补到图形⑵的位里,因为 = ,那么= 12(T ,则阴影部分为一圆环的;.7 .【图形与平移】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示.如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?【解析】我们可以让静止的瓷砖动起来.把时角线上的黑瓷砖.通过平程这神劫态的处理,移到两条边上(如图2).在这一转化过程中瓷碎的位置发生了夜化,但数量没有变,此时白色逢珪组成一个正方形.大正方形的辿长上能放(101 + 1) + 2二51 (块),白色瓷砖组成.的正方形的边长上能放:51-1 = 50(块),所以白色瓷砖共用了:5Ox 50= 25((块).8.【化整为等】1E方形ABCD与等腰直角三角形BEF放在一起(如图),虬N点为正方形的边的中点,阴影部分的面积是14c此三用形BEF的面积是务少平方厘米?【解析】因为M. N是中点.故我们可以精该图形此行分割.所得图形加下图形中的三角形面积都相竽,阴影和分由7个三角形纽成、且许而积为14平方厘农. 故一个三角形的面枳为2平方厘米,那么三角形BET的血枳是18平方厘黑.9.【幻补法】如图所示的四边形的面积等于多少?【骅析】题目中要求的四边形既不是正方形也不是长方形.椎以运用公式直检求面仅我11可以利用旋转的方法对图形实施变挽:把三角形OAB顶点。
小升初数学几何必考题型
小升初数学几何必考题型
小升初数学几何必考题型包括但不限于以下几种:
1. 计算图形面积:这是最常见的几何题型之一,主要考察学生对于不同图形面积计算公式的掌握情况。
2. 计算周长:这也是常见的几何题型,主要考察学生对于不同图形周长计算公式的掌握情况。
3. 图形判断:这类题型要求学生根据题目给出的条件判断某个图形是否正确,例如判断一个三角形是否为等腰三角形或等边三角形。
4. 立体几何:这类题型考察学生的空间想象能力,例如判断一个立体图形的展开图是什么形状,或者计算一个立体图形的表面积或体积。
5. 图形运动:这类题型考察学生对于图形运动规律的理解,例如判断一个图形在平移或旋转后与原图的关系。
6. 角度计算:这类题型要求学生计算出某个图形的内角或外角,或者利用给定的条件判断某个角度是否相等或互补。
7. 几何定理应用:这类题型要求学生根据已知的几何定理,判断某个命题是否成立,或者应用几何定理解决问题。
这些题型要求学生掌握基本的几何知识和定理,并且能够灵活运用。
同时,还需要学生具备良好的空间想象能力和问题解决能力。
小升初试题——几何篇含解析
小升初名校真题专项测试-----几何篇引言:随着小升初考察难度的增加,几何问题变越来越难,一方面,几何问题仍是中学考察的重点,各学校更喜欢几何思维好的学生,这样更有利于小学和初中的衔接;另一方面几何问题由于类型众多,很多知识点需要提前学,这就加快了学生知识的综合运用,而这恰恰是重点中学学校所期望的。
所以近几年的几何难度年年在增加,很多学校的考题可以说超出小学的围,本节主要是通过分析例题来讲解其中的相关知识点和解题思维。
测试时间:15分钟 _________ 测试成绩_________1、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,四边形EDCA 的面积是35,求三角形ABC 的面积.【解】根据定理:ABC BED ∆∆=3211⨯⨯=61,所以四边形ACDE 的面积就是6-1=5份,这样三角形35÷5×6=42。
2、四个完全一样的直角三角形和一个小正方形拼成一个大正方(如图)如果小正方形面积是1平方米,大正方形面积是5平方米,那麽直角三角形中,最短的直角边长度是______米.【解】小正方形面积是1平方米,大正方形面积是5平方米,所以外边四个面积和是5-1=4,所以每个三角形的面积是1,这个图形是"玄形〞,所以长直角边和短直角边差就是中间正方形的边长,所以求出短边长就是1。
3、如图在长方形ABCD 中,△ABE 、△ADF 、四边形AECF 的面积相等。
△AEF 的面积是长方形ABCD 面积的______ (填几分之几)。
【解】连接AC ,首先△ABC 和△ADC 的面积相等,又△ABE 和△ADF 的面积相等,则△AEC 和△AFC 的面积也相等且等于ABCD 的1/6,不难得△AEC 与△ABE 的面积之比为1/2,由于这两个三角形同高,则EC 与BE 之比为1/2,同理FC 与DF 之比也为1/2。
从而△ECF 相当于ABCD 面积的1/18,而四边形AECF 相当于ABCD 面积的1/3,从而答案为1/3-1/18=5/18。
小升初试题——几何篇含解析
小升初名校真题专项测试-----几何篇引言:随着小升初考察难度的增加,几何问题变越来越难,一方面,几何问题仍是中学考察的重点,各学校更喜欢几何思维好的学生,这样更有利于小学和初中的衔接;另一方面几何问题由于类型众多,很多知识点需要提前学,这就加快了学生知识的综合运用,而这恰恰是重点中学学校所期望的。
所以近几年的几何难度年年在增加,很多学校的考题可以说超出小学的范围,本节主要是通过分析例题来讲解其中的相关知识点和解题思维。
测试时间:15分钟 姓名_________ 测试成绩_________1、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.【解】根据定理:ABC BED ∆∆=3211⨯⨯=61,所以四边形ACDE 的面积就是6-1=5份,这样三角形35÷5×6=42。
2、四个完全一样的直角三角形和一个小正方形拼成一个大正方(如图)如果小正方形面积是1平方米,大正方形面积是5平方米,那麽直角三角形中,最短的直角边长度是______米.【解】小正方形面积是1平方米,大正方形面积是5平方米,所以外边四个面积和是5-1=4,所以每个三角形的面积是1,这个图形是“玄形”,所以长直角边和短直角边差就是中间正方形的边长,所以求出短边长就是1。
3、如图在长方形ABCD 中,△ABE 、△ADF 、四边形AECF 的面积相等。
△AEF 的面积是长方形ABCD 面积的______ (填几分之几)。
【解】连接AC,首先△ABC和△ADC的面积相等,又△ABE和△ADF的面积相等,则△AEC 和△AFC的面积也相等且等于ABCD的1/6,不难得△AEC与△ABE的面积之比为1/2,由于这两个三角形同高,则EC与BE之比为1/2,同理FC与DF之比也为1/2。
从而△ECF相当于ABCD面积的1/18,而四边形AECF相当于ABCD面积的1/3,从而答案为1/3-1/18=5/18。
小升初 几何专项PDF.pdf
相似三角形
燕尾定理
二、 基础知识 小学奥数的平面几何问题,是以等积变形为主导思想,结合五大模型的变化应
用,交织而成。攻克奥数平面几何,一定要从等积变形开始。 1、等积变形。
等积变形,它的特点是利用面积相等而进行相互转换,面积相等的两个图形 我们就称之为等积形。我们所研究的等积变形,更多的是三角形的等积变形, 三角形等积变形的中心思想是等底等高,因为三角形的面积=底×高÷2,所
8
书山有路 角形高相同,则面积之比等于底边之比,得出 AO= 1 CO。
3
【例 4】:(☆☆☆☆)如下图所示,AE︰EC=1︰2,CD︰DB=1︰4,BF︰FA =1︰3, 三角形 ABC 的面积等于 1,那么四边形 AFHG 的面积是__________。
A
FH
GE
B
DC
审题要点:四边形 AFHG 的面积可以看作是三角形 ABC 的面积减去三角形 BEC 的面积再分别减去三角形 BFH 和三角形 AGE 的面积得到的。如何把三角形边 的倍比关系和要求的面积相联系,是这道题的重点问题。 详解过程: 以下各图为了强调相关部分,暂去掉另外线条。 解: 如下图所示,我们分别求出 BFH、AGE 的面积问题也就解决。
A
B
C
D
(因为平行线间的距离是处处相等的哦!,聪明的你想到了吗?) ﹙2﹚两个三角形高相等,面积比等于它们的底之比;
1
书山有路 两个三角形底相等,面积比等于它们的高之比; 特别地,我们有 等腰三角形底边上的高线平分三角形面积
三角形一边上的中线平分这个三角形的面积。 平行四边形的对角线平分它的面积
﹙3﹚共边定理:若△ PAB和△ QAB 的公共边 AB 所在直线与直线 PQ交于 M , 则 SPAB : SQAB = PM : QM ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【直线型面积】1.在图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。
已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。
2.图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米,求CD的长。
3.有红、黄、绿三块同样大小的正方形纸片,放在一个正方形盒的底部,它们之间互相叠合。
已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10,求正方形盒子底部的面积。
【三角形的等积变换】:4.如左下图是两个相同的直角三角形叠在一起组成的,求阴影部分的面积。
(单位:分米)5.如图所示,在平行四边形ABCD中,DE=EF=FC,BG=GD.已知三角形GEF的面积是4平方厘米,求平行四边形的面积。
EDC B A7. 如图所示,O 是边长为6的正方形ABCD 的中心,EOF 为直角三角形,OE=8,OF=6,求阴影部分的面积。
[圆与扇形]8. 一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .9. 如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)10. 如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为 .11. 扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角 是 度.12. 右图中正方形周长是20厘米.图形的总面积是 平方厘米.拓展:在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.13. 如图,已知圆心是O,半径r=9厘米,1521=∠=∠,那么阴影部分的面积是 平方厘米。
)14.3(≈π1120 CBA1 215.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积是立方体长方体:16.把两个相同的正方体拼在一起成一个长方体,这个长方体的表面积是两个正方体表面积之和的分之 .17.把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积之和最大.这时表面积之和是平方厘米.18.一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方表面积多了200平方厘米,原来长方体的表面积是19.把三个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是多少,比原来3个正方体表面积之和减少了20.用27个体积是1立方厘米的小正方体粘合成一个大正方体,粘合后的大正方体的表面积是平方厘米。
21.有一个长方体,它的侧面展开图是个正方形,它的底面也是个正方形,那么底面正方形的边长是长方体高的倍。
22.一个木料长3米,宽和厚都是20厘米,把它截成4段,表面积增加平方米。
圆柱与圆锥:23.如下图,有六个圆柱体,表面积都是50.24平方厘米;底面积相等,都是12.56平方厘米。
把这六个圆柱连接起来,成为一个大圆柱,这个大圆柱的表面积是平方厘米。
24.一根圆柱形木材长20分米,把它截成4个相等的圆柱体。
表面积增加了18.84平方分米,截后每段圆柱体积是立方分米。
25.如右图,一个正方体的纸盒中恰好能放入一个体积是628立方厘米的圆柱体,纸盒的容积是26.用一块长80厘米、宽60厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。
这样做成的铁桶的容积最大是(精确到1立方厘米)27.有两个边长为8厘米的正方体盒子。
A盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B盒中放入直径为4厘米、高为8厘米的圆柱体铁块四个。
现在A盒注满水,把A 盒的水倒入B盒,使B盒也注满水。
问A盒余下的水是立方厘米。
28.(1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是立方分米。
(2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是立方分米。
29.张师傅要把一根圆柱形木料,木料的底面直径是2分米,高是3分米,削成一个圆锥。
削成的圆锥的体积最大是立方分米。
拓展:用长30厘米宽20厘米的铁皮做一个圆柱形容器的侧面,另取一块铁皮做底,怎样设计30.甲乙两个圆柱形水桶容积相同,甲桶底半径是乙桶的1.5倍,乙桶比甲桶高25厘米,两个桶的高度是【直线型面积】1.在图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。
已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。
解答:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边形ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50(厘米2)。
2.图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米,求CD的长。
解答:连结CB。
三角形DCB的面积为4×4÷2-2=6(厘米2), CD=6÷4×2=3(厘米)。
3.有红、黄、绿三块同样大小的正方形纸片,放在一个正方形盒的底部,它们之间互相叠合。
已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10,求正方形盒子底部的面积。
解答:把黄色正方形纸片向左移动并靠紧盒子的左边。
由于三个正方形纸片面积相等,所以原题图可以转化成下页右上图。
此时露出的黄、绿两部分的面积相等,都等于(14+10)÷2=12。
因为绿:红=A∶黄,所以绿×黄=红×A,A=绿×黄÷红=12×12÷20=7.2。
正方形盒子底部的面积是红+黄+绿+A=20+12+12+7.2=51.2。
【三角形的等积变换】:4.如左下图是两个相同的直角三角形叠在一起组成的,求阴影部分的面积。
(单位:分米)答案:32.5平方分米。
拓展:如图所示,已知正方形ABCD和正方形EFGC,且正方形EFGC的边长为6厘米,请问图中阴影部分面积是多少?答案:18平方厘米。
5.如图所示,在平行四边形ABCD中,DE=EF=FC,BG=GD.已知三角形GEF的面积是4平方厘米,求平行四边形的面积。
拓展:如图,直线DF 与平行四边形ABCD 的BC 交于E 点,与直线AB 交于F 点。
已知AB=28厘米,EG=7厘米,那么三角形CEF 的面积是多少平方厘米?答案:98平方米。
6. 如图所示,E,F,G,H 分别为正方形ABCD 各边的中点,已知正方形ABCD 的面积是80平方分米,求阴影部分的面积。
答案:16平方米。
7. 如图所示,O 是边长为6的正方形ABCD 的中心,EOF 为直角三角形,OE=8,OF=6,求阴影部分的面积。
答案:15。
圆与扇形8. 一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .解:由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为6.12536012012014.3=⨯⨯(平EDCBA米.(保留两位小数)解:连结BE、CE,则BE=CE=BC=1(厘米),故三角形BCE为等边三角形.于是60=∠=∠BCEEBC.BE=CE=045.136060214.3=⨯⨯(厘米).于是阴影部分周长为09.312045.1=+⨯(厘米).10.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为 .解:将等腰直角三角形补成一个正方形,设正方形边长为x厘米,则圆的半径为2x厘米.图中阴影部分面积是正方形与圆的面积之差的81,于是有282114.322⨯=⎪⎭⎫⎝⎛⨯-xx,解得1332002=x.故等腰直角三角形的面积为1393721133200=⨯(平方厘米).11.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是度.解:扇形面积是圆面积的511574.31=÷,故扇形圆心角为360的51即72.12.右图中正方形周长是20厘米.图形的总面积是平方厘米.图形总面积为两个43圆面积加上正方形的面积, 即75.1425243514.322=+⨯⨯⨯(平方厘米).拓展:在右图中(单位:厘米.即()902114.3)220(2115122114.3)216(2114.3212222=⨯⨯÷-⨯⨯+⨯⨯÷+⨯⨯÷ (平方厘米).13. 如图,已知圆心是O,半径r=91521=∠=∠,那么阴影部分的面积是 平方厘米。
)14.3(≈π解:因OA=OB,故三角形OAB 即150215180,151=⨯-=∠=∠=∠AOB OBA ,同理150=∠AOC ,于是602150360=⨯-=∠BOC .扇形面积为:39.42914.3360602=⨯⨯(平方厘米).14. 右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是 平方厘米。
解:正方形可以分割成两个底为2,高为1的三角形, 其面积为221221=⨯⨯⨯(平方厘米). 正方形内空白部分面积为4个41圆 即一个圆的面积与正方形面积之差,即2212-=-⨯ππ(平方厘米),所有空白部分面积为)2(2-π平方厘米.故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为8)2(22412=-⨯-⨯⨯ππ(平方厘米).15. 已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积是 .解:将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一半,即阴影部分面积等于10242622=÷-÷(平方厘米).立方体长方体:16. 把两个相同的正方体拼在一起成一个长方体,这个长方体的表面积是两个正方体表面积之和的 分之 .答案:六分之五.设一个正方体的一个面积为1,则两个正方体表面积为1×6×2=12.而将两个正方体拼成一个长方体之后,这个长方体的表面积是10,它是12的65. 17. 把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积之和最大.这时表面积之和是 平方厘米.答案:298.把一个长方体截成两个长方体,只截一次,增加两个横截面,由题意应增加面积为7×6=42(平方厘米)的横截面,其表面之和最大,最大面积为(7×6+7×5+6×5)×2+7×6×2=298(平方厘米).18. 一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方表面积多了200平方厘米,原来长方体的表面积是答案:500平方厘米19. 把三个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是多少,比原来3个正方体表面积之和减少了 答案:14平方厘米,减少4平方厘米20. 用27个体积是1立方厘米的小正方体粘合成一个大正方体,粘合后的大正方体的表面积 是 平方厘米。