2015-2016年江苏省无锡市江阴市华士片八年级(上)期中数学试卷(解析版)

合集下载

江苏省无锡市锡北片2015-2016学年八年级上学期期中考试数学试题解析(解析版)

江苏省无锡市锡北片2015-2016学年八年级上学期期中考试数学试题解析(解析版)

一、选择题 (本大题共10小题,每小题3分,共30分.)1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【答案】D【解析】试题分析:将图形沿着某条直线对称,如果直线两边的图形能够完全重叠,则图象就是轴对称图形.根据定义可得D是轴对称图形.考点:轴对称图形2.已知等腰三角形的两条边长分别是3和7,则它的周长是()A.17 B.15 C.13 D.13或17【答案】A【解析】试题分析:当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17. 考点:等腰三角形的性质3.下列能判定△ABC为等腰三角形的是()A.∠A=40º、∠B=50ºB.∠A=40º、∠B=70ºC.AB=AC=3,BC=6 D.AB=3、BC=8,周长为16【答案】B【解析】试题分析:A、根据题意可得:∠C=90°,则为直角三角形;B、根据题意可得:∠C=70°,则三角形为等腰三角形;C、3+3=6,无法构成三角形;D、根据题意可得:AC=5,则3+5=8,无法构成三角形.考点:等腰三角形的判定4.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.3,4,5C.2,3,4D.1,2,3【答案】B【解析】试题分析:根据勾股定理的逆定理进行判定,A、C不是直角三角形;D不能构成三角形,则C为直角三角形.考点:直角三角形的判定5.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定...成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【答案】C【解析】试题分析:根据AC垂直平分BD可得:△ABD为等腰三角形,即AB=AD,AC平分∠BAD,△BEC≌△DEC. 考点:等腰三角形的性质6.如图,已知AE=CF,∠AFD=∠CEB,那么添加一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【答案】B【解析】试题分析:根据AE=CF可得:AF=CE,A选项可以利用ASA来进行判定;B选项无法判定;C选项可以利用SAS来进行判定;D可以利用ASA来进行判定.考点:三角形全等判定7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()【答案】C【解析】试题分析:根据△ADC 的周长以及AC 的长度可得:AD+CD=17-5=12cm ,根据折叠图形的性质可得:AD=BD ,则BC=BD+CD=AD+CD=12cm.考点:折叠图形的性质8.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是( ) A .5 B .6 C .7 D .8【答案】D【解析】试题分析:本题需要分两种情况分别进行讨论,当AB 为底和AB 为腰两种情况.考点:等腰三角形的判定.9.如图所示的一块地,90ADC ∠=︒,12AD m =,9CD m =,39AB m =,36BC m =,求这块地的面积S 为( )m 2.A. 54B. 108C. 216D.270【答案】C【解析】试题分析:连接AC ,根据CD 和AD 的长度得出AC=15m ,根据AC ,BC 和AB 的长度可得△ABC 为直角三角形,则S=15×36÷2-9×12÷2=270-54=216.考点:直角三角形的性质10.如图,已知△ABC 中,AB=AC=2,∠BAC =90º,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:①图中只有2对全等三角形,②AE=CF; ③△EPF 是等腰直角三角形;④ S 四边形AEPF=12S △ABC ;⑤EF 的最小值为2.上述结论始终正确的有( ) A .2 B .3 C .4 D .5【答案】C【解析】试题分析:根据题意可得:△AEP ≌△CFP ,△BEP ≌△AFP ,△ABP ≌△ACP ,则①错误;根据三角形全等可得AE=CF ,△EPF 为等腰直角三角形,四边形AEPF 的面积等于△ABC 面积的一半,EF. 考点:等腰直角三角形的性质.二、填空题(本大题共10小题,每小题2分,共20分.)11.如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 (答案不唯一,只需填一个)【答案】AC=DC 或∠B=∠E 或∠A=∠D【解析】试题分析:本题根据∠BCE=∠CAD 可得∠BCA=∠ECD ,添加AC=DC 可以利用SAS 来进行判定;添加∠B=∠E 可以利用ASA 来进行判定;添加∠A=∠D 可以利用AAS 来进行判定.考点:三角形全等的判定12.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 __°.【答案】50°【解析】试题分析:设∠A=x °,根据MN 为中垂线可得:∠ABD=∠A=x °,则∠ABC=(x+15)°,根据AB=AC 可得:∠C=∠ABC=(x+15)°,则根据△ABC 的内角和定理可得:x+x+15+x+15=180°,解得:x=50°.考点:等腰三角形的性质、中垂线的性质第10题13.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为 . 【答案】4【解析】试题分析:根据角平分线上的点到角两边的距离相等可得:点D到斜边AB的距离等于CD的长度.考点:角平分线的性质14.如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A的面积为 .【答案】36【解析】试题分析:根据勾股定理可得:A+64=100,则A=36.考点:勾股定理中,三边长分别用a、b、c表示,已知a=3、b=5,则c2=_____________.15.在Rt ABC【答案】16或34【解析】试题分析:当a、b为直角边时,则2c=9+25=34,当b为斜边时,则2c=25-9=16.考点:直角三角形16.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为_______km.【答案】1.2【解析】试题分析:直角三角形斜边上的中线等于斜边的一半,根据这个定理可得:MC=AM=BM=1.2km.考点:直角三角形的性质17.已知┃x -12┃+┃z -13┃+y 2-10y +25=0,则以x 、y 、z 为三边的三角形是 三角形。

江苏省江阴市要塞片2015-2016学年八年级上学期期中考试数学试题解析(解析版)

江苏省江阴市要塞片2015-2016学年八年级上学期期中考试数学试题解析(解析版)

(考试时间100分钟,满分100分)一.选择题(本大题共10小题,每题3分,共30分.)1.下列美丽的车标中是轴对称图形的个数有……………………………………………( )A .1个B .2个C .3个D .4个 【答案】C 考点:轴对称图形2.如图,在边长为1个单位长度的小正方形组成的网格中, A 、B 都是格点,则线段AB 的长度为……………………………… ………………( )A. 5B. 6C.7D. 8【答案】A【解析】 试题分析:如图所示:(第2题图)建立格点三角形,利用勾股定理求解AB的长度.故选:A.考点:勾股定理3.一个等腰三角形的两边长分别是4和9,则它的周长是……………………………………()A.13 B.17 C.22 D.17或22【答案】C【解析】试题分析:根据题意,要分情况讨论:①4是腰;②4是底.必须符合三角形三边的关系,任意两边之和大于第三边.如:①若4是腰,则另一腰也是4,底是9,但是4+4<9,故不能构成三角形,舍去.②若4是底,则腰是9,9,4+9>9,符合条件,成立.故周长为:4+9+9=22.故选C.考点:等腰三角形,三角形三边关系4.下列结论错误的是………………………………………………………………………………()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,若有两组边对应相等,则这两个直角三角形全等【答案】B【解析】试题分析:根据全等三角形的性质和判定(全等三角形的判定定理有SAS,ASA,AAS,SSS)判断即可.B、如教师用得含30°的三角板和学生用的含30°的三角板就不全等,故此选项错误.故选B考点:全等三角形的性质和判定5.如图,请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A'O'B'=∠AOB的依据是……………………()A.SAS B.ASA C.AAS D.SSS【答案】D【解析】试题分析:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'(SSS),则△COD≌△C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故选D.考点:基本作图,全等三角形的判定与性质6.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是……………………………………………………………………()A.∠A:∠B:∠C=3:4:5B.a:b:c=5:12:13 C.a2=b2-c2 D.∠A=∠C-∠B【答案】A考点:直角三角形的判定方法7.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的…………………………………………………………()A. 三边中线的交点B.三边中垂线的交点C.三条角平分线的交点D.三边上高的交点【答案】B【解析】试题分析:根据三角形的三条垂直平分线的交点到中间的凳子的距离相等,所以凳子应放在△ABC的三条垂直平分线的交点最适当.故选:B.考点: 线段垂直平分线的性质.8.如图,BD 是∠ABC 平分线,DE AB 于E ,AB =36cm,BC =24cm,S △ABC =144cm 2,则DE 的长是………( )A .4.8cmB .4.5cmC .4 cmD .2.4cm【答案】A【解析】试题分析:根据角平分线上的点到角的两边距离相等可得点D 到AB 、BC 的距离都等于DE 的长度,然后根据△ABC 的面积列方程S △ABC=12(AB+BC )·DE=144,即12(36+24)·DE=144,解得DE=4.8cm . 故选A .考点:角平分线上的点到角的两边距离相等的性质9.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有…………………………………………………………( )A .2条B .3条C .4条D .5条【答案】C【解析】试题分析:根据轴对称的意义,延某条直线对折能完全重合,可作如下图:因此共有4种可能.故选C考点:轴对称10.如下图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2……按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ2016-θ2015的值为………………………………………………………………( )A .20151802α+B . 20151802α-C .20161802α+D .20161802α- 43B 2A 4A 3A 2OB B 1A 1A【答案】D【解析】试题分析:根据等腰三角形两底角相等用α表示出∠A 1B 1O=12(180°-α),再根据平角等于180°可列式为12(180°-α)+1θ=180°,用α表示出1θ =1802α+ ; 同理可得12(180°-1θ)+2θ=180°,再用1θ表示出2θ=11802θ+ =31804α⨯+ ,并求出2θ-1θ=31804α⨯+ -1802α+ =21802α- ; 依此类推求出3θ-2θ=31802α- , ………20162015θθ-=20161802α- . 故选D考点:等腰三角形,三角形的外角,平角的定义二.填空题(本大题共8小题,每空3分,共24分.)11.正方形是一个轴对称图形,它有 条对称轴.【答案】4考点:轴对称图形12.△ABC是等腰三角形,若∠A=80°,则∠B=.【答案】80°或50°或20°【解析】试题分析:根据等腰三角形的两底角相等,可分两种情况考虑,①当∠A=80°是顶角时,两底角分别为50°和50°,所以∠B=50°;②当∠A=80°是底角时,另一底角为80°,顶角为20°,因此∠B=80°或20°;因此答案为20°,50°,80°.考点:等腰三角形13.某直角三角形的两直角边长分别为6cm,8 cm,则此三角形斜边上的高的长是cm.【答案】4.8【解析】试题分析:10=,然后从直角三角形面积的两种求法入手,可得直角三角形面积=12×一直角边长×另一直角边长=12×斜边长×斜边的高,代入数值可得12×6×8=12×10h,解得h=4.8,即斜边的高为4.8.考点:勾股定理,三角形的面积14.如图,∠1=∠2,要使△ABE ≌△ACE,则还需添加一个条件是.【答案】∠B=∠C等【解析】试题分析:根据题意,易得∠AEB=∠AEC,又由AE公共边,所以根据全等三角形的判定方法容易寻找添加条件为:当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).考点:全等三角形的判定15.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.10【答案】考点:两点之间线段最短,勾股定理,长方体的侧面展开图16.如图,△OAD≌△OBC,且∠O=70°,∠AEB=100°,则∠C=°.OBAED(第16题图)【答案】15°【解析】试题分析:根据全等三角形的性质求出∠C=∠D ,根据三角形的外角性质求出∠CAE=∠O+∠D=∠O+∠C ,推出∠AEB=∠C+∠CAE=∠C+∠O+∠C ,代入求出∠C=15°. 考点:全等三角形的性质,三角形的外角性质的应用17.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据计算图中实线所围成的图形的面积S = .【答案】50考点:全等三角形的判定,18.已知:如图,AD 、BE 分别是△ABC 的中线和角平分线,AD ⊥BE ,AD =8,BF =5,则AC 的长等于 .【答案】13【解析】试题分析:延长AD 到M ,使AD=DM=8,连接BM ,则根据D 为BC 中点,可证得△ADC ≌△MDB (SAS ),可知AC=BM ,然后根据AD ⊥BE ,BE 平分∠ABD ,可知AF=DF=4,∠BFD=90°,因此可知FM=12,根据勾股定理可FB AC DE(第18题图)求的BM=13,即AC=3.考点:三角形全等的判定与性质,等腰三角形,勾股定理三.解答题(本大题共6小题,共46分. 解答需写出必要的文字说明或演算步骤)19.作图题:(6分)(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线.)(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线L成轴对称的△A′B′C′;②请直线L上找到一点P,使得PC + PB的距离之和最小..【答案】见解析(2)根据轴对称的性质的图形,然后连接C1B,与l的交点即为P点.考点:网格问题;作图(应用与设计作图).20.(6分)如图,四边形ABCD中,AB∥CD,AB=CD,A、F、E、C在同一直线上,∠ABE=∠CDF.(1)试说明:△ABE≌△CDF;(2)试说明:AF=CE.【答案】见解析【解析】试题分析:(1)由平行线的性质得到∠BAE=∠DAF ,再根据三角形全等的判定ASA 可证得△ABE ≌△CDF ;(2)根据△ABE ≌△CDF 得到AE=CF ,然后根据等量代换求得结论.试题解析:(1)解:∵AB ∥CD∴∠BAE=∠DCF又∵AB=CD ,∠ABE=∠CDF∴△ABC ≌△DEF(2) ∵ △ABC ≌△DEF∴ AE=CF∴ AE —EF=CF —EF∴ AF=CE考点:三角形全等的判定与性质21.(6分)中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA ⊥OB ,OA =36海里,OB =12海里,黄岩岛位于O 点,我国海监船在点B 处发现有一不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向黄岩岛所在地点O ,我国海监船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C 处的位置;(2)求我国海监船行驶的航程BC 的长.O【答案】见解析【解析】试题分析:(1)由题意得,我渔政船与不明船只行驶的距离相等,即在OA 上找到一点,使其到A 点与B 点的距离相等,所以连接AB,作AB的垂直平分线即可;(2)利用第(1)题中的BC=AC,设BC=x海里,在Rt△BOC中,BC=x海里,OC=(45-x)海里,利用勾股定理列方程即可求得结果.试题解析:(1)∴点C就是所求点考点:基本作图,线段的垂直平分线,勾股定理22.(7分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90º,点D为AB边上的一点,(1)试说明:∠EAC=∠B;(2)若AD=10,BD=24,求DE的长.【答案】DE=26【解析】试题分析:(1)根据等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE即可.(2)根据全等得出AE=BD=24,在Rt△AED中,由勾股定理求出DE即可.试题解析:(1)∵∠ACB=∠ECD=90°∴∠ACB—∠ACD =∠ECD—∠ACD∴∠ECA=∠DCB∵△A CB和△ECD都是等腰三角形∴EC=DC,AC=BC∴△A CE≌△BCD∴∠EAC=∠B(2)∵△A CE≌△BCD∴AE=BD=24∵∠EAC=∠B=45 °∴∠EAD=∠EAC+∠CAD=90°∴在Rt△ADE中,222=+DE EA AD∴222DE=+1024∴DE=26考点:三角形全等的判定与性质,勾股定理23.(6分)如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF的中点吗?试说明理由【答案】E是CF的中点考点:直角三角形斜边上的中线,线段的垂直平分线24.(6分)探索研究.请解决下列问题:(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为(请画出示意图,并标明必要的角度).【答案】(1)见解析(2)45°或36°【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)(2)45°或36°考点:等腰三角形,直角三角形25.(9分)如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试说明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.【答案】(1)见解析(2)综上可知共有三次,移动的时间分别为1秒、2.4秒、4秒、4.2秒,移动的距离分别为4、7.5、7.5、7.2.试题解析:(1)证明:在△ABD和△CDB中AD=BCAB=CDBD=DB∴△ABD≌△CDB∴∠ADB=∠CBD∴AD∥BC(2)解:设G点的移动距离为y,由(1)得∠EDG=∠FBG若△DEG与△BFG全等则有△DEG≌△BFG或△DGE≌△BFG可得:DE=BF,DG=BG;或DE=BG,DG=BF,①当E由D到A,即0<t≤3时,有41215t ty y=-⎧⎨=-⎩,解得2.47.5ty=⎧⎨=⎩或41215t yt y=⎧⎨-=-⎩,解得14ty=⎧⎨=⎩②当F由A返回到D,即3<t≤6时,有2441215t ty y-=-⎧⎨=-⎩,解得47.5ty=⎧⎨=⎩或2441215t yt y-=⎧⎨-=-⎩,解得4.27.2ty=⎧⎨=⎩综上可知共有三次,移动的时间分别为1秒、2.4秒、4秒、4.2秒,移动的距离分别为4、7.5、7.5、7.2.考点:三角形全等,动点几何问题高考一轮复习:。

江苏省无锡市江阴二中八年级(上)期中数学试卷

江苏省无锡市江阴二中八年级(上)期中数学试卷

2015-2016学年江苏省无锡市江阴二中八年级(上)期中数学试卷一.选择题(2×8=16分)1.(3分)(2008•枣庄)下列四副图案中,不是轴对称图形的是()A.B.C.D.2.(3分)(2015秋•工业园区期中)下列各式中,正确的是()A.B.C.D.3.(3分)(2014春•郑州期末)小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.(3分)(2014春•鹿城区校级期末)在下列说法中是错误的()A.在△ABC中,∠C=∠A﹣∠B,则△ABC为直角三角形B.在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形C.在△ABC中,若a=c,b=c,则△ABC为直角三角形D.在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形5.(3分)(2010•巴中)如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE6.(3分)(2015秋•应城市期末)△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个7.(3分)(2015秋•江阴市校级期中)如图一直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.1.5cm D.4cm8.(3分)(2005•河北)将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二.填空题(2x16=32分)9.(3分)(2015秋•江阴市校级期中)64的平方根为______;的立方根是______.10.(3分)(2015秋•江阴市校级期中)一个正数的平方根分别为﹣m﹣3和2m+1,则这个正数为______.11.(3分)(2009•杭州)如图,镜子中号码的实际号码是______.12.(3分)(2015秋•江阴市校级期中)如图,若△ABC≌△ADE,且∠B=60°,∠C=20°则∠DAE=______.13.(3分)(2015秋•宜兴市校级期中)已知直角三角形的两边长分别为6和10,则第三边的长为______.14.(3分)(2015秋•江阴市校级期中)(1)等腰三角形的周长为18,其中一边为5,则另两边的长分别为______.(2)等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是______.(3)在等腰Rt△ABC中,斜边上中线为5,则斜边长为______,面积是______.15.(3分)(2015秋•江阴市校级期中)如图,在△ABC中,PM、QN分别是AB、AC的垂直平分线,∠BAC=100°,则∠PAQ等于______,若BC=10,则△PAQ的周长等于______.16.(3分)(2015秋•江阴市校级期中)如图,△ABC是边长为2的等边三角形,点D是BC边上的任意点,DE⊥AB于E点,DF⊥AC于F点,则DE+DF=______.17.(3分)(2015秋•江阴市校级期中)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)当点M、N运动______秒时,M、N两点重合;(2)当点M、N运动______秒后,M、N与△ABC中的某个顶点可得到等腰三角形.18.(3分)(2014秋•靖江市期末)如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线且AD=12,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为______.三.解答题19.(6分)(2015秋•江阴市校级期中)作图题(1)如图1,作出△ABC关于直线l对称的△DEF;(2)如图2,八年级(1)、(2)班的学生分别在M、N两处参加植树劳动,现要在道路A0、BO的交叉区域内设一个茶水供应点P,使点P到两条道路的距离相等,且到点M,N的距离也相等,请你找出点P.20.(7分)(2015秋•江阴市校级期中)(1)计算:(﹣2)4﹣+(2)若+(y﹣2)2+|x+z|=0,求的值(3)已知y=+﹣4,求x+y的平方根.21.(6分)(2015秋•江阴市校级期中)如图,在等边△ABC中,点D,E分別在边BC,AC上,DE ∥AB,过点E作EF丄DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.22.(6分)(2015秋•江阴市校级期中)已知:如图,△AMN的周长为18,∠B,∠C的平分线相交于点O,过O点的直线MN∥BC交AB、AC于点M、N.求AB+AC的值.23.(6分)(2008•上海模拟)如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.24.(9分)(2008•安徽)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.25.(12分)(2015秋•江阴市校级期中)如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C,作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间和G点的移动距离;(3)爱动脑筋的小明把BD=12改为BD=8,其他都不变,发现仍有△DEG与△BFG全等的情况出现,这样的情况会出现______次,此时的移动时间分别为______.2015-2016学年江苏省无锡市江阴二中八年级(上)期中数学试卷参考答案与试题解析一.选择题(2×8=16分)1.(3分)(2008•枣庄)下列四副图案中,不是轴对称图形的是()A.B.C.D.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.(3分)(2015秋•工业园区期中)下列各式中,正确的是()A.B.C.D.【分析】根据算术平方根及立方根的定义进行解答即可.【解答】解:A、正确;B、=3,故本选项错误;C、≠﹣3,故本选项错误;D、=2,故本选项错误.故选A.【点评】本题考查了算术平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.3.(3分)(2014春•郑州期末)小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.(3分)(2014春•鹿城区校级期末)在下列说法中是错误的()A.在△ABC中,∠C=∠A﹣∠B,则△ABC为直角三角形B.在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形C.在△ABC中,若a=c,b=c,则△ABC为直角三角形D.在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形【分析】根据题意对选项进行一一分析,选择正确答案.【解答】解:A、由三角形内角和定理可求得∠A为90度,故正确;B、利用三角形内角和定理可求得∠A为90度,故正确;C、因为c2=a2+b2,△ABC为直角三角形,故正确;D、没有角为90度,故错误.故选D.【点评】本题考查了三角形内角和定理和勾股定理的逆定理.5.(3分)(2010•巴中)如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.6.(3分)(2015秋•应城市期末)△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个【分析】和△ABC全等,那么必然有一边等于3,有一边等于,又一角等于45°.据此找点即可,注意还需要有一条公共边.【解答】解:分三种情况找点,①公共边是AC,符合条件的是△ACE;②公共边是BC,符合条件的是△BCF、△CBG、△CBH;③公共边是AB,符合条件的三角形有,但是顶点不在网格上.故选D.【点评】本题利用了全等三角形的判定和性质,思考要全面,不重不漏.7.(3分)(2015秋•江阴市校级期中)如图一直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.1.5cm D.4cm【分析】先利用勾股定理求得AB=5,然后由翻折的性质得到AE=AC=3,CD=DE,∠C=∠AED=90°,设CD=DE=x,则DB=4﹣x,最后在Rt△EDB中利用勾股定理列方程求解即可.【解答】解:在Rt△ABC中,由勾股定理得;AB==5.由翻折的性质可知:AE=AC=3,CD=DE,∠C=∠AED=90°.∵BE=AB﹣AE,∴BE=2.设CD=DE=x,则DB=4﹣x.在Rt△EDB中,由勾股定理得:BD2=DE2+BE2,即(4﹣x)2=x2+22.解得:x=1.5.故选:C.【点评】本题主要考查的是翻折的性质、勾股定理的应用,利用勾股定理列出关于x的方程是解题的关键.8.(3分)(2005•河北)将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二.填空题(2x16=32分)9.(3分)(2015秋•江阴市校级期中)64的平方根为±8;的立方根是2.【分析】根据平方根、立方根,即可解答.【解答】解:64的平方根为±8,=8,8的立方根为2,故答案为:±8,2.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.10.(3分)(2015秋•江阴市校级期中)一个正数的平方根分别为﹣m﹣3和2m+1,则这个正数为25.【分析】根据一个正数的平方根互为相反数,即可得到一个关于m的方程,即可求得m,进而求得所求的正数.【解答】解:根据题意得:(﹣m﹣3)+(2m+1)=0,解得:m=2,则这个数是:(﹣2﹣3)2=25.故答案是:25.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.(3分)(2009•杭州)如图,镜子中号码的实际号码是3265.【分析】注意镜面反射与特点与实际问题的结合.【解答】解:根据镜面对称的性质,在镜子中的真实数字应该是:3265.故答案为:3265【点评】本题考查了图形的对称变换,学生在解题时可以再借用镜子看一下即可,也可以在卷子的反面看.12.(3分)(2015秋•江阴市校级期中)如图,若△ABC≌△ADE,且∠B=60°,∠C=20°则∠DAE=100°.【分析】根据全等三角形的性质求出∠ADE=∠B=60°,∠E=∠C=20°,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=60°,∠C=20°,∴∠ADE=∠B=60°,∠E=∠C=20°,∴∠DAE=180°﹣∠ADE﹣∠E=180°﹣60°﹣20°=100°,故答案为:100°.【点评】本题考查了全等三角形的性质和三角形内角和定理的应用,能根据全等三角形的性质求出∠ADE=∠B,∠E=∠C是解此题的关键,注意:全等三角形的对应边相等,对应角相等.13.(3分)(2015秋•宜兴市校级期中)已知直角三角形的两边长分别为6和10,则第三边的长为2或8.【分析】设第三边长为a,再根据a为斜边或10为斜边两种情况进行分类讨论.【解答】解:设第三边长为a,当a为斜边时,a==2;当10为斜边时,10=,解得a=8.综上所述,第三边的长为2或8.故答案为:2或8.【点评】本题考查的是勾股定理,在解答此题时要注意进行分类讨论,不要漏解.14.(3分)(2015秋•江阴市校级期中)(1)等腰三角形的周长为18,其中一边为5,则另两边的长分别为5cm、8cm或6.5cm、6.5cm.(2)等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是62°或118°.(3)在等腰Rt△ABC中,斜边上中线为5,则斜边长为10,面积是25.【分析】(1)分5cm是腰长与底边两种情况讨论求解即可;(2)等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论;(3)根据直角三角形斜边上的中线等于斜边的一半即可求得斜边的长;再根据面积公式不难求得其面积.【解答】解:(1)①5cm是腰长时,底边=18﹣5×2=8cm,所以,另两边长为5cm、8cm;②5cm是底边时,腰长=∵(18﹣5)=6.5cm,所以,另两边长为6.5cm、6.5cm,综上所述,另两边长为5cm、8cm或6.5cm、6.5cm.故答案为:5cm、8cm或6.5cm、6.5cm;(2)分两种情况:①当高在三角形内部时(如图1),∵∠ABD=28°,∴顶角∠A=90°﹣28°=62°;②当高在三角形外部时(如图2),∵∠ABD=28°,∴顶角∠CAB=90°+28°=118°.故答案为:62°或118°;(3)∵在Rt△ABC中,斜边上的中线为5,∴斜边=2×5=10,故答案为:10;∵△ABC是等腰直角三角形,斜边上的中线长为5,∴斜边上的高线长为5,则面积为=25.故答案为:25.【点评】此题主要考查了等腰三角形和直角三角形的性质以及三角形的面积计算.关键是掌握等腰三角形三线合一的性质和直角三角形斜边上的中线等于斜边的一半.15.(3分)(2015秋•江阴市校级期中)如图,在△ABC中,PM、QN分别是AB、AC的垂直平分线,∠BAC=100°,则∠PAQ等于20°,若BC=10,则△PAQ的周长等于10.【分析】由在△ABC中,PM、QN分别是AB、AC的垂直平分线,根据线段垂直平分线的性质,可求得∠PAB=∠B,∠CAQ=∠C,又由∠BAC=110°,易求得∠PAB+∠CAQ的度数,继而求得∠PAQ的度数,根据线段垂直平分线的性质得到PA=PB,AQ=CQ,等量代换即可得到结论.【解答】解:∵在△ABC中,PM、QN分别是AB、AC的垂直平分线,∴PA=PB,AQ=CQ,∴∠PAB=∠B,∠CAQ=∠C,∵∠BAC=100°,∴∠B+∠C=180°﹣∠BAC=80°,∴∠PAB=∠CAQ=80°,∴∠PAQ=∠BAC﹣(∠PAB+∠CAQ)=100°﹣80°=20°,∵PA=PB,AQ=CQ,∴△PAQ的周长=PA+PQ+AQ=PB+PQ+CQ=BC=10,故答案为:20°,10.【点评】此题考查了线段垂直平分线的性质以及三角形内角和定理.此题难度不大,熟练掌握线段垂直平分线的性质是解题的关键.16.(3分)(2015秋•江阴市校级期中)如图,△ABC是边长为2的等边三角形,点D是BC边上的任意点,DE⊥AB于E点,DF⊥AC于F点,则DE+DF=.【分析】先设BD=x,则CD=2﹣x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出ED和DF的长,即可得出DE+DF的值.【解答】解:设BD=x,则CD=2﹣x,∵△ABC是等边三角形,∴∠B=∠C=60°.∴ED=sin60°•BD,即ED=x,同理可证:DF=,∴DE+DF=,故答案为:【点评】此题主要考查了等边三角形的性质,用到的知识点是三角函数,难度不大,有利于培养同学们钻研和探索问题的精神.17.(3分)(2015秋•江阴市校级期中)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)当点M、N运动12秒时,M、N两点重合;(2)当点M、N运动4,8,16秒后,M、N与△ABC中的某个顶点可得到等腰三角形.【分析】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多12cm,列出方程求解即可;(2)①当M在AC上,N在AB上时,根据题意得到AM=AN,△AMN为等边三角形,得到方程t=12﹣2t,解得t=4;②当M、N均在AC上时,根据题意得BM=BN,△BMN为等腰三角形,得到方程12﹣t=2t﹣12,解得t=8;③当M、N均在BC上时,N点已经追过M点,根据题意得到AM=AN,△AMN 为等腰三角形,得到方程t﹣12=36﹣2t,解得t=16.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12,故当点M、N运动12秒时,M、N两点重合;故答案为:12;(2)①当M在AC上,N在AB上时,有AM=AN,△AMN为等边三角形,符合题意,即t=12﹣2t,解得t=4;②当M、N均在AC上时,有BM=BN,△BMN为等腰三角形,符合题意,则CM=AN,即12﹣t=2t﹣12,解得t=8;③当M、N均在BC上时,N点已经追过M点,有AM=AN,△AMN为等腰三角形,符合题意,则CM=BN,即t﹣12=36﹣2t,解得t=16.故答案为4,8,16.【点评】此题主要考查了等边三角形的性质及判定,关键是根据题意设出未知数,理清线段之间的数量关系18.(3分)(2014秋•靖江市期末)如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线且AD=12,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出CN,根据对称性求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.【解答】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,AD=12,∴S△ABC=×BC×AD=×AB×CN,∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,故答案为:.【点评】本题考查了平面展开﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.三.解答题19.(6分)(2015秋•江阴市校级期中)作图题(1)如图1,作出△ABC关于直线l对称的△DEF;(2)如图2,八年级(1)、(2)班的学生分别在M、N两处参加植树劳动,现要在道路A0、BO的交叉区域内设一个茶水供应点P,使点P到两条道路的距离相等,且到点M,N的距离也相等,请你找出点P.【分析】(1)先画出各点关于直线l的对称点,顺次连接即可.(2)分别作出MN的中垂线和∠BAC的交平分线,两线的交点就是P点位置.【解答】解:(1)如图1所示:(2)如图2所示:P点即为所求,【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.也考查了作图与应用设计作图,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等;角的平分线上的点到角的两边的距离相等.20.(7分)(2015秋•江阴市校级期中)(1)计算:(﹣2)4﹣+(2)若+(y﹣2)2+|x+z|=0,求的值(3)已知y=+﹣4,求x+y的平方根.【分析】(1)直接利用二次根式以及立方根的性质化简各数即可得出答案;(2)利用偶次方以及绝对值和算术平方根的性质化简进而得出答案;(3)利用二次根式的性质结合平方根的定义得出答案.【解答】解:(1)(﹣2)4﹣+=16﹣5+=12;(2)∵+(y﹣2)2+|x+z|=0,∴x=1,y=2,x+z=0,则z=﹣1,∴==3;(3)∵y=+﹣4,∴x=9,则y=﹣4,∴x+y=5,则x+y的平方根为:±.【点评】此题主要考查了实数运算以及二次根式的性质和偶次方的性质等知识,正确求出x,y的值是解题关键.21.(6分)(2015秋•江阴市校级期中)如图,在等边△ABC中,点D,E分別在边BC,AC上,DE ∥AB,过点E作EF丄DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4,∴EF DE=2.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,熟记30度的锐角所对的直角边等于斜边的一半是解题的关键.22.(6分)(2015秋•江阴市校级期中)已知:如图,△AMN的周长为18,∠B,∠C的平分线相交于点O,过O点的直线MN∥BC交AB、AC于点M、N.求AB+AC的值.【分析】由∠B,∠C的平分线相交于点O,过O点的直线MN∥BC交AB、AC于点M、N,易证得△BOM与△CON是等腰三角形,继而可得AB+AC=△AMN的周长.【解答】解:∵MN∥BC,∴∠BOM=∠OBC,∠CON=∠OCB,∵∠B,∠C的平分线相交于点O,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠BOM,∠NCO=∠CON,∴BM=OM,CN=ON,∵△AMN的周长为18,∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=18.【点评】本题主要考查等腰三角形的判定与性质,平行线的性质以及角平分线的定义.此题难度适中,注意掌握数形结合思想与转化思想的应用.23.(6分)(2008•上海模拟)如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.【分析】利用直角三角形斜边上的中线等于斜边的一半从而得到EF=AB,根据已知利用SAS来判定△ABE≌△AGE.【解答】证明:(1)连接BE,(1分)∵DB=BC,点E是CD的中点,∴BE⊥CD.(2分)∵点F是Rt△ABE中斜边上的中点,∴EF=;(3分)(2)[方法一]在△ABG中,AF=BF,AG∥EF,∴EF是△ABG的中位线,∴BE=EG.(3分)在△ABE和△AGE中,AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE;(3分)[方法二]由(1)得,EF=AF,∴∠AEF=∠FAE.(1分)∵EF∥AG,∴∠AEF=∠EAG.(1分)∴∠EAF=∠EAG.(1分)∵AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE.(3分)【点评】此题主要考查学生对直角三角形的性质及全等三角形的判定方法的掌握情况.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.(9分)(2008•安徽)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【分析】(1)求证AB=AC,就是求证∠B=∠C,可通过构建全等三角形来求.过点O分别作OE⊥AB 于E,OF⊥AC于F,那么可以用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC来实现;(2)首先得出Rt△OEB≌Rt△OFC,进而得出AB=AC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)【点评】本题的关键是通过辅助线来构建全等三角形.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.(12分)(2015秋•江阴市校级期中)如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C,作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间和G点的移动距离;(3)爱动脑筋的小明把BD=12改为BD=8,其他都不变,发现仍有△DEG与△BFG全等的情况出现,这样的情况会出现4次,此时的移动时间分别为 2.5秒、1秒、5秒,、4.5秒.【分析】(1)由AD=BC=8,AB=CD,BD为公共边,所以可证得△ABD≌△CDB,所以可知∠ADB=∠CBD,所以AD∥BC;(2)设G点的移动距离为y,分两种情况,一种F由C到B,一种F由B到C,再结合△DEG≌△BFG 可得到DE=BF,DG=BG,或DE=BG,DG=BF可得到方程,解出时间t和y的值即可;(3)同(2)即可得出结果.【解答】(1)证明:∵AD=BC=10,AB=CD,∴四边形ABCD是平行四边形,∴AD∥BC;(2)解:设G点的移动距离为y,当△DEG与△BFG时有:∠EDG=∠FBG,∴DE=BF,DG=BG,或DE=BG,DG=BF,当F由C到B,即0<t≤时,则有,解得:;或,解得:(舍去);当F由B到C,即<t≤时,有,解得:;或,解得:;综上可知共有3次,移动的时间分别为2.5秒、5秒、5.5秒,移动的距离分别为6、6、5.5.(3)解:设G点的移动距离为y,当△DEG与△BFG时有:∠EDG=∠FBG,∴DE=BF,DG=BG,或DE=BG,DG=BF,当F由C到B,即0<t≤时,则有,解得:;或,解得:;当F由B到C,即<t≤时,有,解得:;或,解得:.综上可知共有4次,移动的时间分别为2.5秒、1秒、5秒,、4.5秒;故答案为:4,2.5秒、1秒、5秒,、4.5秒【点评】本题主要考查平行四边形的判定与性质、三角形全等的判定与性质、类比思想方法解方程组等知识;第(2)题解题的关键是利用好三角形全等,从而得到方程解得.。

江苏省无锡市江阴市敔山湾实验学校2015-2016学年八年级(上)期中数学试卷【解析版】

江苏省无锡市江阴市敔山湾实验学校2015-2016学年八年级(上)期中数学试卷【解析版】

2015-2016学年江苏省无锡市江阴市敔山湾实验学校八年级(上)期中数学试卷一、精心选一选:(本大题共10小题,每小题3分,共30分.)1.下面有4个汽车标志图案,其中是轴对称图形的有( )A.1个B.2个C.3个D.4个2.在﹣,,,0.3030030003,﹣,3.14中,无理数的个数是( )A.2个B.3个C.4个D.5个3.已知,则a的取值范围是( )A.a≤0 B.a<0 C.0<a≤1 D.a>04.已知点A与点(﹣4,5)关于y轴对称,则A点坐标是( )A.(4,﹣5)B.(﹣4,﹣5)C.(﹣5,﹣4)D.(4,5)5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系式( )A.a<c<b B.a<b<c C.c<a<b D.c<b<a7.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )A.cm2B.8cm2 C.cm2D.16cm28.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( ) A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<39.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走2015m停下,则这个微型机器人停在( )A.点A处B.点B处C.点C处D.点E处10.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是1;④存在实数x,使[x)﹣x=0.5成立;⑤如[x)+x=a,则不大于a的最大整数一定是奇数其中正确的是( )A.①③④ B.②③④ C.③④D.③④⑤二、细心填一填:(本大题共8小题,每题2分,共16分)11.的算术平方根为__________,使代数式有意义的x的取值范围是__________.12.若一个正数的两个平方根分别是2x﹣1和3﹣x,则x=__________.13.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为__________.14.已知y+1与2﹣x成正比,且当x=﹣1时,y=5,则y与x的函数关系是__________.15.已知一直角三角形,两边长为3和4,则斜边上的中线长为__________.16.如图,在△ABC中,∠C=90°,DE垂直平分AB,∠CBE:∠A=1:4,则∠AED=__________°.17.如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B 向左转90°后直行400m到达梅花阁C,则点C的坐标是__________.18.如图,矩形ABCD中,AB=4,BC=3,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为__________.三、用心答一答:(本大题共8小题,共54分)19.计算:(1)﹣(π﹣)0++|1﹣|(2)5x÷3•(3)(1﹣2)(1+2)﹣(2﹣1)2.20.已知:如图,点E、C、D、A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.求证:△ABC≌△DEF.21.已知一次函数y=kx﹣3k+6,回答下列问题:(1)若此函数的图象过原点,求k的值;(2)若此函数与y=3x﹣1平行,求它与坐标轴围成的三角形面积;(3)无论k取何值,该函数图象总经过一个定点,请你直接写出这个定点的坐标.22.如图是边长为1的小正方形组成的格点图,坐标轴的单位长度为1,根据要求解答下列问题:(1)在图中作△A1B1C1,使它与△ABC关于y轴对称;(2)若△PAC为等腰直角三角形,试写出所有满足条件点P的坐标:__________.23.如图,直线CO⊥AB于点O,OA=OB=OC=8,过点A的直线AD交BC于点D,交y轴与点G,△ABD的面积为△ABC面积的.过点C作CE⊥AD,交AB交于F,垂足为E.(1)求线段CE的长;(2)连接GF.请你判断GF与CB的位置关系,并说明理由.24.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=2,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小;(3)根据(2)中的规律和结论,请构图求出代数式的最小值.25.如图,平面直角坐标系中,点P的坐标是(3,4),直线l经过点P且平行于y轴,点Q从点A(3,10)出发,以每秒1个单位长的速度沿AP方向匀速运动.回答下列问题:(1)当t为何值时,△POQ的面积为6?(2)当t为何值时,△POQ为等腰三角形?26.如图,△ABC中,∠C=90°,a、b、c分别是△ABC中∠A、∠B、∠C的对边,C=10.(1)若这个三角形的周长为24,试求它的面积;(2)若a=6,点P在直角边BC、AC上移动,过点P作PQ⊥AB与Q,连结PB(P在AC 上)或连结AP(P在BC上).当PQ与BP(或AP)将△ABC分成的三个直角三角形中有两个是全等三角形,求AP的长.2015-2016学年江苏省无锡市江阴市敔山湾实验学校八年级(上)期中数学试卷一、精心选一选:(本大题共10小题,每小题3分,共30分.)1.下面有4个汽车标志图案,其中是轴对称图形的有( )A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念结合4个汽车标志图案的形状求解.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选C.【点评】本题考查了轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.在﹣,,,0.3030030003,﹣,3.14中,无理数的个数是( )A.2个B.3个C.4个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:﹣,,共有2个.故选A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.已知,则a的取值范围是( )A.a≤0 B.a<0 C.0<a≤1 D.a>0【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,右边的结果应为非负数,且二次根式有意义,故有a>0,且(1﹣a)≥0.【解答】解:由已知,得a>0,且(1﹣a)≥0;解可得:0<a≤1.故选C.【点评】本题考查了二次根式的意义与化简.二次根式化简规律:当a≥0时,=a;当a<0时,=﹣a.4.已知点A与点(﹣4,5)关于y轴对称,则A点坐标是( )A.(4,﹣5)B.(﹣4,﹣5)C.(﹣5,﹣4)D.(4,5)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由点A与点(﹣4,5)关于y轴对称,则A点坐标是(4,5),故选:D.【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系式( )A.a<c<b B.a<b<c C.c<a<b D.c<b<a【考点】勾股定理.【专题】网格型.【分析】通过小正方形网格,可以看出AB=4,AC、BC分别与三角形外构成直角三角形,再利用勾股定理可分别求出AC、BC,然后比较三边的大小即可.【解答】解:∵AC==5=,BC==,AB=4=,∴b>a>c,即c<a<b.故选C.【点评】本题利用了勾股定理,在直角三角形中,两直角边的平方和等于斜边的平方.7.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )A.cm2B.8cm2 C.cm2D.16cm2【考点】翻折变换(折叠问题).【专题】压轴题.【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×4×4=8cm2.故选:B.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.8.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( ) A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<3【考点】一次函数图象与系数的关系.【分析】因为一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,根据一次函数的性质,所以.【解答】解:∵函数y=(3﹣k)x﹣k的图象经过第二、三、四象限∴3﹣k<0,﹣k<0∴k>3故选:A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小;9.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走2015m停下,则这个微型机器人停在( )A.点A处B.点B处C.点C处D.点E处【考点】全等三角形的性质;规律型:图形的变化类;等边三角形的性质.【分析】利用全等三角形的性质得出各边长,进而利用运动规律得出答案.【解答】解:∵两个全等的等边三角形的边长为1m,∴AB=BC=DC=BD=BE=AE=1m,∵微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2015m停下,∴2015÷6=335…5,∴这个微型机器人停在E处.故答案为:D.【点评】此题主要考查了全等三角形的性质以及图形变化类,利用运动顺序得出答案是解题关键.10.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是1;④存在实数x,使[x)﹣x=0.5成立;⑤如[x)+x=a,则不大于a的最大整数一定是奇数其中正确的是( )A.①③④ B.②③④ C.③④D.③④⑤【考点】实数大小比较.【专题】新定义.【分析】①根据[x)表示大于x的最小整数可得出[0)=1;②根据[x)表示大于x的最小整数,可知[x)﹣x的最小值大于0且小于1;③当x为整数时,[x)﹣x=1,当x为小数时,[x)﹣x<1,据此可进行判断;④当x=0.5时,原式成立;⑤可把x代入具体数值进行验证.【解答】解:设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①∵[x)表示大于x的最小整数,∴[0)=1,故本小题错误;②∵[x)表示大于x的最小整数,∴[x)﹣x的最小值大于0且小于1,故本小题错误;③∵[x)表示大于x的最小整数,∴[x)﹣x的最大值是1,故本小题正确;④当x=0.5时,[x)﹣x=0.5成立,故本小题正确;⑤∵[x)表示大于x的最小整数,[x)+x=a,∴不大于a的最大整数一定是奇数,故本小题正确.故选D.【点评】本题考查的是实数大小比较,此题属新定义型题目,明确[x)表示大于x的最小整数是解答此题的关键.二、细心填一填:(本大题共8小题,每题2分,共16分)11.的算术平方根为,使代数式有意义的x的取值范围是x≥﹣.【考点】算术平方根.【分析】先算,再求它的算术平方根即可;使二次根式有意义的条件是:被开方数≥0.【解答】解:∵=2,∴的算术平方根为;由1+2x≥0,得x≥﹣,故答案为,x≥﹣.【点评】本题考查了算术平方根,特别注意:应首先计算的值,然后再求算术平方根.12.若一个正数的两个平方根分别是2x﹣1和3﹣x,则x=﹣2.【考点】平方根.【专题】计算题;实数.【分析】利用平方根的定义列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2x﹣1+3﹣x=0,解得:x=﹣2,故答案为:﹣2【点评】此题考查了平方根,解题的关键是:一个正数的平方根有两个,且互为相反数.13.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为50°,50°或80°,20°.【考点】等腰三角形的性质.【分析】先求出与这个外角相邻的内角是80°,再分这个内角是底角和顶角两种情况讨论.【解答】解:与这个外角相邻的内角为:180°﹣100°=80°.分两种情况:(1)当80°角为底角时,顶角为180°﹣80°×2=20°,与其不相邻的两个内角的度数是80°,20°;(2)当80°角为顶角时,底角为(180°﹣80°)÷2=50°,与其不相邻的两个内角的度数是50°,50°.故与其不相邻的两个内角的度数是50°,50°或80°,20°.故答案为:50°,50°或80°,20°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.已知y+1与2﹣x成正比,且当x=﹣1时,y=5,则y与x的函数关系是y=﹣2x+3.【考点】待定系数法求一次函数解析式.【分析】知y+1与2﹣x成正比,则设y+1=k(2﹣x),然后把x=﹣1,y=5代入求得k的值,则函数的解析式即可求得.【解答】解:设y+1=k(2﹣x),把x=﹣1,y=5代入得5+1=k(2+1),解得:k=﹣2,则y+1=﹣2(2﹣x),即y=﹣2x+3.故答案是:y=﹣2x+3.【点评】本题考查了待定系数法求函数解析式,正确理解y+1与2﹣x成正比,从而正确设出解析式是关键.15.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2.【考点】直角三角形斜边上的中线;勾股定理.【专题】分类讨论.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为:=5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.【点评】本题考查了直角三角形斜边上中线性质和勾股定理的应用,能求出符合的所有情况是解此题的关键.16.如图,在△ABC中,∠C=90°,DE垂直平分AB,∠CBE:∠A=1:4,则∠AED=50°.【考点】线段垂直平分线的性质.【分析】由DE垂直平分AB,可得AE=BE,又由在△ABC中,∠C=90°,∠CBE:∠A=1:4,可设∠A=4x°,即可得方程:4x+5x=90,继而求得答案.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠A=∠ABE,∵在△ABC中,∠C=90°,∠CBE:∠A=1:4,设∠A=4x°,则∠ABC=∠ABE+∠CBE=4x+x=5x°,∴4x+5x=90,解得:x=10,∴∠A=40°,∴∠AED=90°﹣∠A=50°.故答案为:50°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.17.如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B 向左转90°后直行400m到达梅花阁C,则点C的坐标是(400,800).【考点】勾股定理的应用;坐标确定位置;全等三角形的应用.【分析】根据题意结合全等三角形的判定与性质得出△AOD≌△ACB(SAS),进而得出C,A,D也在一条直线上,求出CD的长即可得出C点坐标.【解答】解:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中∵,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).【点评】此题主要考查了全等三角形的判定与性质以及勾股定理,得出C,A,D也在一条直线上是解题关键.18.如图,矩形ABCD中,AB=4,BC=3,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为2.4.【考点】翻折变换(折叠问题).【分析】由折叠的性质得出EP=AP,∠E=∠A=90°,BE=AB=4,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=3﹣x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=3,CD=AB=4,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=4,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=3﹣x,DG=x,∴CG=4﹣x,BG=4﹣(3﹣x)=1+x,根据勾股定理得:BC2+CG2=BG2,即32+(4﹣x)2=(x+1)2,解得:x=2.4,∴AP=2.4;故答案为:2.4.【点评】本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是解决问题的关键.三、用心答一答:(本大题共8小题,共54分)19.计算:(1)﹣(π﹣)0++|1﹣|(2)5x÷3•(3)(1﹣2)(1+2)﹣(2﹣1)2.【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】(1)原式第一项化为最简二次根式,第二项利用零指数幂法则计算,第三项利用立方根定义计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式利用二次根式的乘除法则计算即可得到结果;(3)原式利用平方差公式及完全平方公式化简,计算即可得到结果.【解答】解:(1)原式=2﹣1﹣4+﹣1=3﹣6;(2)原式=5x××=;(3)原式=1﹣12﹣12+4﹣1=﹣24+4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.已知:如图,点E、C、D、A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据平行线的性质可得∠B=∠CPD,∠A=∠FDE,再由∠E=∠CPD可得∠E=∠B,再利用ASA证明△ABC≌△DEF.【解答】证明:∵AB∥DF,∴∠B=∠CPD,∠A=∠FDE,∵∠E=∠CPD.∴∠E=∠B,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.已知一次函数y=kx﹣3k+6,回答下列问题:(1)若此函数的图象过原点,求k的值;(2)若此函数与y=3x﹣1平行,求它与坐标轴围成的三角形面积;(3)无论k取何值,该函数图象总经过一个定点,请你直接写出这个定点的坐标.【考点】两条直线相交或平行问题;一次函数图象上点的坐标特征.【分析】(1)根据正比例函数定义可得:﹣3k+6=0,再解即可;(2)根据两函数图象平行,k值相等可得k的值,再代入k的值可得函数解析式,然后再求出与x、y轴的交点坐标,进而可得它与坐标轴围成的三角形面积;(3)先变形解析式得到关于k的不定方程(x﹣3)k=y﹣6,由于k有无数个解,则x﹣3=0且y﹣6=0,然后求出x和y的值即可得到定点坐标.【解答】解:(1)由题意得:﹣3k+6=0,解得:k=2;(2)∵此函数与y=3x﹣1平行,∴k=3,∴y=3x﹣3,∵当y=0时,x=1,当x=0时,y=﹣3,∴与x轴交于(1,0),与y轴交于(0,﹣3),∴三角形面积为:×1×3=1.5;(3)∵y=kx﹣3k+6,∴(x﹣3)k=y﹣6,∵无论k怎样变化,总经过一个定点,即k有无数个解,∴x﹣3=0且y﹣6=0,解得:x=3,y=6,∴这个定点的坐标是(3,6).【点评】此题主要考查了一次函数图象上点的坐标特点,以及两直线平行问题,关键是掌握直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条线段重合.22.如图是边长为1的小正方形组成的格点图,坐标轴的单位长度为1,根据要求解答下列问题:(1)在图中作△A1B1C1,使它与△ABC关于y轴对称;(2)若△PAC为等腰直角三角形,试写出所有满足条件点P的坐标:(0,2)、(﹣3,1)、(1,4)、(﹣5,2)、(﹣4,﹣1)、(2,1).【考点】作图-轴对称变换;等腰直角三角形.【分析】(1)直接利用轴对称的性质得出对应点位置进而得出答案;(2)利用等腰直角三角形的性质得出符合题意的答案.【解答】解:(1)如图所示:;(2)当△PAC为等腰直角三角形,所有满足条件点P的坐标分别为:(0,2)、(﹣3,1)、(1,4)、(﹣5,2)、(﹣4,﹣1)、(2,1)(写对一个得1分).故答案为:(0,2)、(﹣3,1)、(1,4)、(﹣5,2)、(﹣4,﹣1)、(2,1).【点评】此题主要考查了轴对称变换以及等腰直角三角形的性质,得出所有符合题意的对应点是解题关键.23.如图,直线CO⊥AB于点O,OA=OB=OC=8,过点A的直线AD交BC于点D,交y轴与点G,△ABD的面积为△ABC面积的.过点C作CE⊥AD,交AB交于F,垂足为E.(1)求线段CE的长;(2)连接GF.请你判断GF与CB的位置关系,并说明理由.【考点】一次函数综合题.【专题】综合题;一次函数及其应用.【分析】(1)过D作DH垂直于AB,由OA=OB=OC,求出AB的长,进而求出三角形ABC 面积,根据三角形ABC面积与三角形ABD面积的关系求出三角形ABD面积,进而求出DH的长,根据三角形BOC为等腰直角三角形,得到三角形BDH为等腰直角三角形,求出HB的长,由AB﹣HB求出AH的长,在直角三角形ADH中,利用勾股定理求出AD的长,由三角形ABC面积减去三角形ABD面积求出三角形ACD面积,即可确定出CE的长;(2)连接GF,可得GF与BC平行,理由为:由一对对顶角相等,一对直角相等,利用内角和定理得到一对角相等,再由OA=OC,利用ASA得到三角形AOG与三角形COF全等,利用全等三角形对应边相等得到OG=OF,即三角形GOF为等腰直角三角形,进而得到一对同位角相等,利用同位角相等两直线平行即可得证.【解答】解:(1)过D作DH⊥AB,交AB于点H,∵AO=OB=OC=8,即AB=16,且OC⊥AB,∴△ABC面积为AB•OC=64,∵△ABD的面积为△ABC面积的,∴△ABD面积为AB•DH=×16DH=16,△ACD面积为64﹣16=48,∴DH=2,∵OB=OC,OC⊥OB,∴△BOC为等腰直角三角形,即∠CBO=45°,∴△DBH为等腰直角三角形,即HB=DH=2,∴AH=AB﹣HB=16﹣2=14,在Rt△ADH中,根据勾股定理得:AD==10,∵CE⊥AD,△ACD面积为48,∴AD•CE=48,即×10CE=48,解得:CE=;(2)连接GF,可得GF∥CB,理由为:∵∠CGD=∠AGO,∠COF=∠AOG=90°,∴∠OAG=∠OCF,在△AOG和△COF中,,∴△AOG≌△COF(ASA),∴OG=OF,∴△GOF为等腰直角三角形,∴∠GF0=45°,∵∠B=45°,即∠GFO=∠B,∴GF∥CB.【点评】此题考查了一次函数综合题,涉及的知识有:等腰直角三角形的判定与性质,全等三角形的判定与性质,平行线的判定,以及三角形面积求法,熟练掌握全等三角形的判定与性质是解本题第二问的关键.24.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=2,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小;(3)根据(2)中的规律和结论,请构图求出代数式的最小值.【考点】轴对称-最短路线问题.【专题】综合题;动点型.【分析】(1)由于△ABC和△CDE都是直角三角形,故AC,CE可由勾股定理求得;(2)若点C不在AE的连线上,根据三角形中任意两边之和>第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;(3)由(1)(2)的结果可作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.【解答】解:(1)+;(2)当A、C、E三点共线时,AC+CE的值最小;(3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,设BC=x,则AE的长即为代数的最小值.过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE===13,即的最小值为13.【点评】本题利用了数形结合的思想,求形如的式子的最小值,可通过构造直角三角形,利用勾股定理求解.25.如图,平面直角坐标系中,点P的坐标是(3,4),直线l经过点P且平行于y轴,点Q从点A(3,10)出发,以每秒1个单位长的速度沿AP方向匀速运动.回答下列问题:(1)当t为何值时,△POQ的面积为6?(2)当t为何值时,△POQ为等腰三角形?【考点】一次函数的性质;等腰三角形的判定;勾股定理.【分析】(1)利用三角形面积公式列出关于t的方程,通过解该方程得到t的值即可;(2)需要分类讨论:PO=PQ、PO=OQ、OQ=PQ.【解答】解:(1)①当点P在点Q的下方时,×(10﹣4﹣t)×3=6,则t=2;②当点P在点Q的上方时,×(t﹣6)×3=6,则t=10;综上所述,t=2或10;(2)∵点P的坐标是(3,4),∴由勾股定理得到:OP==5,当PO=PQ时,6﹣t=5或t﹣6=5,解得t=1或11;当PO=OQ时,t=14;当OQ=PQ时,设PQ=x,可得32+(4﹣x)2=x2,解得x=,则AQ=,t=.【点评】本题考查了一次函数的性质,等腰三角形的判定以及勾股定理.解答关于动点问题时,要分类讨论,以防漏解.26.如图,△ABC中,∠C=90°,a、b、c分别是△ABC中∠A、∠B、∠C的对边,C=10.(1)若这个三角形的周长为24,试求它的面积;(2)若a=6,点P在直角边BC、AC上移动,过点P作PQ⊥AB与Q,连结PB(P在AC 上)或连结AP(P在BC上).当PQ与BP(或AP)将△ABC分成的三个直角三角形中有两个是全等三角形,求AP的长.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)利用直角三角形的性质结合已知c的值得出ab的值即可得出答案;(2)分别利用若P在BC上,可有△ACP≌△AQP,若P在AC上,可有△BCP≌△BQP,若P在AC上,也可有△AQP≌△BQP,分别求出答案.【解答】解:(1)由题意得,则(a+b)2=196=a2+b2+2ab,故ab=48,故它的面积为24.(2)①如图1,若P在BC上,可有△ACP≌△AQP,设CP=x,则BP=6﹣x,AQ=AC=8,故BQ=2,则22+x2=(6﹣x)2,解得:x=,利用勾股定理可得:AP==;②如图2,若P在AC上,可有△BCP≌△BQP,设CP=x,易得42+x2=(8﹣x)2,解得x=3.得AP=3;③如图3,若P在AC上,也可有△AQP≌△BQP,设AP=x,易得62+(8﹣x)2=x2,解得:x=.【点评】此题主要考查了全等三角形的判定与性质以及勾股定理和完全平方公式的应用,正确利用分类讨论得出是解题关键.。

江阴XX中学八年级上期中考试数学试题有答案(精选)

江阴XX中学八年级上期中考试数学试题有答案(精选)

第一学期期中考试 八年级 数学试卷 一、精心选一选:(本大题共10小题,每小题3分,共30分.)A . 3、4、5B .6、8、10C .5、12、13D .3、2、5 3.下列正方形中由阴影部分组成的图形,是轴对称图形的有 【 】A .1B .2个C .3个D .4个 4.在平面直角坐标系中,已知点A (4,3),则点A 关于轴的对称点的坐标为 【 】 A .(3,4) B .(4,﹣3) C .(﹣4,3) D .(﹣4,﹣3) 5.在下列各组条件中不能说明△ABC ≌△DEF 的是 【 】 A .AC =DF , BC =EF ,∠A =∠D B .AB =DE ,∠B =∠E ,∠C =∠F C .AB =DE ,∠A =∠D ,∠B =∠E D .AB =DE ,BC =EF ,AC =DF 6.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是 【 】 A .28° B . 118° C . 62° D . 62°或118° 7.如图,△ABC 中,AB =5,AC =6,BC =4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是 【 】 A .8 B .9 C .10 D .11 8.如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为 【 】 A .4 B . C . D .5 9.记n n a a a s +++= 21,令n s s s T n n +++= 21,则称n T 为1a ,2a ,……,n a 这列数的“凯森和”.已知1a ,2a ,……,500a 的“凯森和”为2004,那么16,1a ,2a ,……,500a 的“凯森和”为 【 】学 班 姓名 ………………………………………………密…………………………………封………………………………………………线…………………………………………A .2014B .2016C .2017D .201910.如图,点P 、Q 分别是边长为4cm 的等边△ABC 的边AB 、BC 上动点(其中P 、Q 不与端点重合),点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s ,连接AQ 、CP 交于点M ,则在P 、Q运动的过程中,下列结论:⑴BP =CM ;⑵△ABQ ≌△CAP ;⑶∠CMQ 的度数始终等于60°;⑷当第43秒或第83秒时,△PBQ 为直角三角形.其中正确的结论有A .1个B .2个C .3个D .4个【 】第7题图 第8题图 第10题图二、填空题(本大题共有8小题,每空3分,共24分)11.地球七大洲的总面积约为149 480 0002km ,如对这个数据精确到百万位可表示为2km . 12.16的平方根是 .13.等腰三角形两条边长分别是7cm 和14cm ,则它的周长为________.14.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,若B 、D 、E 在一条直线上,∠1=35°,∠2=30°,则∠3= .15.一直角三角形的两条边长分别为5、12,则斜边上的中线长度为 .16.若△ABC 的周长为12 ,∠A 和∠B 的平分线相交于点P ,点P 到边AB 的距离为1,则△ABC 的面积为____________.17.如图,在△ABC 中∠BAC =90°,AB =15,AC =20,AD ⊥BC ,垂足为D ,则BD 的长为.18.如图, 在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,将边AC 沿CE 翻折,使点A落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则DF 的长为 .第18题图第14题图 第17题图三、简答题(本大题共有9题,共66分)19. 计算:(每题3分,共12分)(1)3164201530---- (2) 188146÷(3)3√1×3√÷3 (4)⎪⎭⎫ ⎝⎛-÷233212y x xy (x ≥0,y ≥0)20.(本题5分)如图,已知△ABC ,用直尺和圆规作△ABC 的角平分线BD 和高AE .21.(本题5分)如图,△ABC 中,AB=AC ,AD ⊥BC ,CE ⊥AB ,AE =CE .求证: (1)△AEF ≌△CEB ; (2)AF =2CD . 22.(本题6分)如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD 、BE =CF . (1)求证:AD 平分∠BAC ; (2)已知AC =15, BE=3,求AB 的长.班 姓名 …………………封………………………………………………线…………………………………………23.(本题6分)一架梯子长2.5米,斜靠在一面墙上,梯子底端离墙0.7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了0.9米到A ′,那么梯子的底端在水平方向滑动了几米?24.(本题6分)(1)如图1,已知△ABC ,以AB 、AC 为边分别向外作正方形ABFD 和正方形ACGE ,连结BE 、CD ,猜想BE 与CD 有什么数量关系?并说明理由;(2)请模仿正方形情景下构造全等三角形的思路,利用构造全等三角形完成下题:如图2,要测量池塘两岸相对的两点B 、E 的距离,已经测得∠ABC =45°,∠CAE =90°,AB =BC =100米,AC =AE ,求BE 的长(结果保留根号).图1图2AA25.(本题8分)如图1,长方形ABCD 中,∠A =∠B =∠C =∠D =90°,AB =CD ,AD =BC ,且60BC -=,点P 、Q 分别是边AD 、AB 上的动点.(1)求BD 的长(长度单位是cm );(2)如图2,若点P 从D 点出发,以2cm /s 的速度沿DA 向点A 运动,点Q 从B 点出发,以1cm /s 的速度沿BA 向点A 运动,P 、Q 同时出发,一个点到达终点时,两点同时停止运动;设运动时间为,用含的代数式表示△CPQ 的面积S .(3)如图3,在BC 上取一点E ,使EB =1,那么当△EPC 是等腰三角形时,请直接写出△EPC 的周长.图1 图2 图326.(本题8分)甲、乙两家超市同价销售同一款可拆分式驱蚊器,1套驱蚊器由1个加热器和1瓶电热蚊香液组成.电热蚊香液作为易耗品可单独购买,1瓶电热蚊香液的售价是1套驱蚊器的15.已知电热蚊香液的利润率为20%,整套驱蚊器的利润率为25%.张阿姨从甲超市买了1套这样的驱蚊器,并另外买了4瓶电热蚊香液,超市从中共获利10元.(1)求1套驱蚊器和1瓶电热蚊香液的售价;(2)为了促进该款驱蚊器的销售,甲超市打8.5折销售,而乙超市采用的销售方法是顾客每买1套驱蚊器送1瓶电热蚊香液.在这段促销期间,甲超市销售2000套驱蚊器,而乙超市在驱蚊器销售上获得的利润不低于甲超市的1.2倍.问乙超市至少销售多少套驱蚊器?27.(本题10分)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形(在图3中)并给予证明.第一学期期中考试八年级数学试卷答案一、精心选一选:(本大题共10小题,每小题3分,共30分.)1.C2. D3. B4. B5. A6. D7. C8. A9. B 10. C二、填空题(本大题共有8小题,每空3分,共24分)11. 1.49×10812.±2 13. 35cm14. 65°15. 6或6.5 16. 6 17.918. 3 5三、简答题(本大题共有9小题,共66分)19. 计算:(每题3分,共12分)(1)3164201530----解:原式=)13()4(1----(2分)=1341+-+=36-(1分)(2) 188146÷)1814()86(=解:原式÷⨯÷ (1分)9743⨯=3743⨯=(1分)47=(1分)(3)3√1×3√÷3 131313=⨯⨯=解:原式(2分)(1分)(4)⎪⎭⎫ ⎝⎛-÷233212y x xy (x ≥0,y ≥0) x y x y yx xy 44)2(22233-=-=⋅-⨯=解:原式 (2分)(1分)20. (本题5分)如图(4分),BD 、AE 即为所求(1分).21. (本题5分)证明:(1)∵AD ⊥BC ,CE ⊥AB , ∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B ,∵∠CFD=∠AFE ,∴∠AFE=∠B由上知∴△AEF ≌△CEB (AAS ); 3分(2)∵AB=AC ,AD ⊥BC ,∴BC=2CD ,∵△AEF ≌△CEB ,∴AF=BC ,∴AF=2CD .2分22. (本题6分)证明:(1)证△DEB ≌△DFC (2分)∴DE=DF (1分)∵DE=DF , DE ⊥AB, DF ⊥AC∴AD 平分∠BAC (1分)(2)AB=9 (2分)23. (本题6分)(1)AB=2.4 (3分) (2)CC ′=1.3 (3分)24. (本题6分)(1)猜想BE=CD (1分)证明BE=CD (2分(2)构造出下图三角形情景或补出正方形情景(1分)求出BE=3100(2分)25. (本题8分)(1)BD =132(2分)(2)S =212x (2分)(3)5210+或895+(4分)26. (本题8分)(1)设1套驱蚊器售价5元,1瓶电热蚊香液的售价元;10%2525.154%202.1=⨯+⨯⨯x x ,解得=6,所以设1套驱蚊器售价30元,1瓶电热蚊香液的售价6元. (4分)(2)设乙超市销售套驱蚊器.W 甲=2000×(30×0.85-24)=3000元;W 乙=×(30-24)-×5=由题意知W 乙≥W 甲解得≥3600.乙超市至少销售3600套驱蚊器. (4分)27. (本题10分) (1)AE ∥BF ,QE=QF(2分) (2)QE=QF ,(1分) 证明:如图2,延长FQ 交AE 于D ,∵AE ∥BF ,∴∠QAD=∠FBQ ,在△FBQ 和△DAQ 中∴△FBQ ≌△DAQ (ASA ),∴QF=QD ,∵AE ⊥CP ,∴EQ 是直角三角形DEF 斜边上的中线,∴QE=QF (3分)(3)(2)中的结论仍然成立,(1分) 证明:画图(1分) ,如图3,延长EQ 、FB 交于D ,∵AE∥BF,∴∠1=∠D,在△AQE和△BQD中,∴△AQE≌△BQD(AAS),∴QE=QD,∵BF⊥CP,∴FQ是直角三角形DEF斜边DE上的中线∴QE=QF. (2分)。

江苏省无锡市滨湖区2015-2016学年八年级上学期期中考试数学试题解析(解析版)

江苏省无锡市滨湖区2015-2016学年八年级上学期期中考试数学试题解析(解析版)

2015年秋学期期中考试试题 2015.11初二数学一、选择题(本大题共10题,每小题3分,共计30分)1.以下分别为绿色食品、回收、节能、节水标志,其中是轴对称图形的是 ----- ( ).【答案】A.【解析】试题分析:轴对称图形是如果一个图形沿着某条直线折叠,直线两旁的部分能互相重合,那么这个图形就是轴对称图形,显然A 选项图形符合定义,故选A.考点:轴对称图形定义.2.下列实数:2、2、227、0.1010010001、327、π,其中无理数的个数为 ----- ( ). A .1 B .2C .3D .4 【答案】B.【解析】,π,有两个,故选B. 考点:无理数概念.3.下列说法正确的是-------------------------------------------------------------------------( ).A .(-3)2的平方根是3B .16=±4C .1的平方根是1D .8的立方根是2【答案】D.【解析】试题分析:A 选项(-3)2的平方根应是±3 ,故A 错误;B,故B 错误;C 选项1的平方根是±1 ,故C 错误;D 正确,故选D.考点:1.平方根的意义;2.立方根的意义.4.等腰三角形的两边长分别为2cm 和7cm ,则其周长为 -------------------------( ).A .11cmB .13cmC .16cmD .11cm 或16cmA .B .C .D .【答案】C.【解析】试题分析:由题意可知,这三边长有2,2,7和2,7,7,两种情况,但2,2,7,不符合三角形两边之和大于第三边,应舍去,故三边为2,7,7,周长为16.故选C.考点:三角形三边关系.5.在下列各组条件中不能说明△ABC ≌△DEF的是 -----------------------------().A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF, BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE, BC=EF, AC=DF6如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是 -------------------------------------------------().A.50° B.60° C.80° D.100°【答案】C.【解析】试题分析:因为DE垂直平分BC,所以DC=DB,所以∠B=∠DCB=25°,所以∠CDA=∠B+∠DCB=50°,因为AC =DC,所以∠CDA=∠A=50°,所以∠ACD=180°-50°-50°=80°.故选C.考点:1.线段垂直平分线的性质;2.三角形内角和定理.7.如图,在数轴上表示1、2的点分别为A、B,点B关于点A的对称点为C,则C点所表示的是--------------------------------------------------------------------------().A.2- 2 B.2-2 C.1- 2 D.2-1【答案】A.【解析】试题分析:因为A 点表示1,B-1,因为点B 关于点A 的对称点为C ,所以-1,所以OC=OA-AC=1--1),故选A.考点:1.利用数轴计算;2.轴对称知识.8.一个钝角三角形的两边长为5、12,则第三边可以为 -------------------------------( ).A .11B .13C .15D .17【答案】C.【解析】试题分析:根据三角形两边之和要大于第三边,所以D 选项排除,若第三边为B 选项的13,则此三角形是直角三角形,所以B 选项排除,若为钝角三角形,则两短边平方和要少于钝角所对边的平方,所以A 选项排除.C 选项符合,故选C.考点:三角形三边关系.9.如图,已知△ABC (AB <BC <AC ),用直尺和圆规在AC 上确定一点P ,使PB +PC =AC ,则下列选项中,一定符合要求的作图痕迹是------------------------------------------( ).【答案】C.【解析】 试题分析:A 选项由作图痕迹可知AP (或AB )+PC =AC ,故A 错误;B 选项由作图痕迹可知AP +PC (或BC )=AC ,故B 错误;C 选项连接PB ,由线段垂直平分线性质可得:PB=AP,所以满足PB +PC =AC ,故C 正确;D 选项由作图痕迹可知AP +PC (或PB )=AC ,故D 错误;所以本题选C.考点:线段垂直平分线性质的应用.10.如图,在△ABC 中,AC =BC ,∠ ACB =90°,AE 平分∠BAC 交BC 于E , BD ⊥AE 于 D ,DF ⊥AC 交AC 的 A . B . C .C B A A A A延长线于F,连接CD,给出三个结论:①AE=2BD;②AB-AC=CE;③CE=2FC;其中正确的结论有-------------------------------------------------------().A.0个 B.1个 C.2个 D.3个第10题图考点:1.角平分线性质;2.三角形全等的判定与性质;3.等腰三角形性质.二、填空题(本大题共8题,每空2分,共计18分)11.9的平方根是;的立方根是-2.【答案】±3 ;-8 .【解析】试题分析:一个正数的平方根有两个,这两个数互为相反数,所以9的平方根是±3 ,因为-2的立方是-8,所以-8的立方根是-2.考点:平方根,立方根的意义.12.式子x+2有意义,则x的取值范围是.【答案】x ≥-2.【解析】试题分析:由二次根式性质得:x+2≥0,所以x ≥-2.考点:二次根式性质.13.若一个正数的两个不同的平方根为2m-5与m+2,则这个正数为.【答案】9.【解析】试题分析:一个正数的平方根有两个,这两个数互为相反数,所以(2m-5)+(m+2)=0,解得:m=1,所以这个正数的两个不同的平方根为±3,所以这个正数是9.考点:平方根的意义.14.若等腰三角形的一个外角为80°,则它的顶角是为°.【答案】100.【解析】试题分析:若这个外角是等腰三角形底角的外角,则相邻内角是100度,三角形内角和超过了180度,故不合题意舍去,若这个外角是等腰三角形顶角的外角,则相邻的顶角是100度,符合三角形内角和定理,所以它的顶角是100度.考点:1.三角形内角和定理;2.三角形外角性质.15.如图,已知AB∥CF,E为DF的中点,若AB=7 cm,BD=3 cm,则CF= cm.【答案】4.【解析】试题分析:因为E为DF的中点,所以DE=FE,因为AB∥CF,所以∠A=∠ECF,又有∠AED=∠CEF,所以△AED≌△CEF(AAS),所以AD=CF,因为AD=AB-DB=7-3=4,所以CF=4cm.考点:全等三角形的判定与性质.16.如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=6,CD=8,则DE的长等于.【答案】5.【解析】试题分析:因为CD⊥AB,AD=6,CD=8,由勾股定理计算出AC=10,又因为E是直角三角形ADC中斜边AC的中点,所以DE=12AC=5.故DE的长等于5.考点:1.勾股定理;2.直角三角形性质.17. 如图,△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰△ACD,过点D作∠ADC的平分线分别交AB、AC于点E、F.若AC=12cm,BC=5cm,点P是直线DE上的一个动点,则△PBC的周长的最小值是_________cm.【答案】18.【解析】试题分析:由题意可知DE平分等腰△ACD中∠ADC,所以直线DE是AC边的垂直平分线,连接CE,则CE=AE,使△PBC的周长的最小值P点,与E点重合,由勾股定理算出AB=13,此时△PBC的周长等于CE+EB+BC=AE+EB+BC=AB+BC=13+5=18.故△PBC的周长的最小值是18cm.考点:利用线段垂直平分线性质和等腰三角形性质求周长最小值.18.如图,四边形ABCD中,AD∥BC,∠B=90°,AB=AD=4cm,BC=7cm,现要在形如四边形ABCD的纸片上剪下一个腰长为3cm的等腰三角形(要求:等腰三角形的一个顶点与四边形ABCD的一个顶点重合,其余两个顶点在四边形ABCD的边上),则剪下的等腰三角形的底边的长度的值有种可能.【答案】7.【解析】试题分析:剪下的符合条件的等腰三角形共有7种不同的情形,所以底边的长度值有7种可能.分别是:①分别以A,B为圆心,3cm长为半径作弧,分别交于相邻的两边各一点,分别和A,B点形成两个腰长是3cm的等腰直角三角形,底边长度是同一个值;②以D为圆心,3cm长为半径作弧,交于相邻两边各一点,和D点形成腰长是3cm的钝角三角形;底边长度是一个值;③以C为圆心,3cm长为半径作弧,交于CD,CB边一点,形成一个符合条件的等腰三角形,底边长度是同一个值;④以C为圆心,3cm长为半径作弧,交CD于E,再以E为圆心3cm长为半径作弧,交于CB一点,和C,ED点形成符合条件的等腰三角形,底边长度是一个值;⑤以C为圆心,3cm长为半径作弧,交于CB于一点F,再以F为圆心,3cm长为半径作弧,交于CD一点,和C,F点形成符合条件的等腰三角形,底边长度是一个值;⑥以D为圆心,3cm长为半径作弧,交AD于P点,再以P为圆心3cm长为半径作弧,交于AB一点,和P,D点形成符合条件的等腰三角形,底边长度是一个值;⑦以D为圆心,3cm长为半径作弧,交CD于M点,再以M为圆心3cm长为半径作弧,交于BC一点,和M,D 点形成符合条件的等腰三角形,底边长度是一个值;综上所述,三角形底边的长度的值有7种可能.考点:1.等腰三角形的判定.三、解答题(本大题共9题,共计72分.解答需写出必要的文字说明或演算步骤.)19.计算题.(每小题5分,共10分)(1)计算:16-3-8+20150;(2)(-5)2+|1-2|-(12)-2.【答案】(1)7;(2.【解析】试题分析:(1)先算出16的算术平方根,-8的立方根,及2015的0指数幂,然后按照顺序计算即可;(2)先算出25的算术平方根,正确脱掉绝对值符号,计算二分之一的负整数指数幂,然后按照顺序计算即可. 试题解析:(1)原式=4-(-2)+1=4+2+1=7;(2)原式= 5+(2-1)-4=5+2-1-4= 2.考点:1.平方根与立方根的计算;2.0指数幂与负整数指数幂的计算;3.绝对值意义.20.求出下列x 的值.(每小题5分,共10分)(1)4x 2-9=0 ; (2) (x+1)3=-27.【答案】(1) x =±32;(2) x =-4 . 【解析】试题分析:(1)先移项,然后把二次项系数化为1,再开方求解;(2)因为-3的立方是-27,所以左边底数是-3,然后解方程求解.试题解析:(1)移项: 4x 2=9,二次项系数化为1: x 2=94 ,开方: x =±32;(2)因为-3的立方是-27,所以 x +1=-3 ,解得: x =-4.考点:1.平方根的意义;2.立方根的意义.21.(本题满分6分) 在4×4的方格中有三个同样大小的正方形如图摆放,请你在图1—图3中的空白处添加一个正方形方格(涂黑),使它与其余三个正方形组成的新图形是一个轴对称图形.【答案】参见解析.【解析】试题分析:轴对称图形沿着某条直线折叠,直线两旁的部分能重合,由题意可得,使涂黑的正方形和原来的正方形组成轴对称图案即可.试题解析:(1)将图1的第三行第一个正方形方格涂黑,便组成一个轴对称图形;(2)将图2的第一行第四个正方形方格涂黑,便组成一个轴对称图形;(3)将图3的第四行最后一个正方形涂黑,便组成一个轴对称图形.考点:轴对称图形概念.22.(本题满分6分) 已知x -2的算术平方根是3,2x -y +12的立方根是1,求x +y 的值.【答案】44.【解析】试题分析:根据9的算术平方根是3,1的立方根是1,求出x 和y 值,即可得出结论.GD E CB A 试题解析:因为9的算术平方根是3所以,x -2=9 ,解得,x =11.因为1的立方根是1,所以2x -y +12=1,解得,y =33, ∴x +y =11+33=44 .考点:1.算术平方根的意义;2.立方根的意义.23.(本题满分6分)如图,C 为线段AB 的中点,CD ∥BE ,CD =BE .求证:AD ∥CE .D EC BA【答案】参见解析.【解析】试题分析:此题证得∠A=∠ECB 是解题的关键,由题意可证△ACD ≌△CBE ,利用全等三角形的对应角相等得到∠A=∠ECB ,通过已知条件C 为线段AB 的中点,CD ∥BE ,CD =BE .得到全等三角形的判定条件,于是利用同位角相等,两直线平行得到AD ∥CE .试题解析:因为C 为线段AB 的中点,所以 AC =BC ,因为CD ∥BE ,所以∠ACD =∠B ,又因为CD =BE ,所以 △ACD ≌△CBE (SAS ),所以∠A=∠ECB ,所以AD ∥CE .考点:1.全等三角形的判定与性质;2.平行线的判定与性质.24.(本题满分8分)如图,将长方形纸片ABCD 沿对角线BD 折叠得到△BDE ,DE 交AB 于点G.(1)求证:DG =BG ;(2) 若AD =4,AB =8,求△BDG 的面积.【答案】(1)参见解析;(2)10.【解析】试题分析:(1)因为等角对等边,所以只要证明∠GDB =∠DBG 就可以了,通过折叠角相等和平行线的性质即可得出结论;(2)因为BG=DG ,设DG =BG =x ,则AG =8-x ,在Rt △ADG 中,用勾股定理求出DG ,于是△BDG 的面积就求出来了.试题解析:(1)由折叠角相等,可得:∠CDB =∠GDB ,由矩形ABCD 可得DC ∥AB,于是有 ∠CDB =∠DBG, ∴ ∠GDB =∠DBG ,∴DG =BG ;(2)设DG =BG =x ,则AG =8-x ,在△ADG 中,∠A =90°, ∴ 42+(8-x)2=x 2 , 解得x =5 ,所以BG=5,又AD =4,所以△BDG 的面积=12×5×4=10 . 考点:1.矩形性质;2.勾股定理;3.折叠性质.25.(本题满分8分)爱动脑筋的小明在学习了全等三角形和等腰三角形有关知识后作了如下探索:(1)已知,如图,△ABC 中,∠BAC 是锐角,AB =AC ,高AD 、BG 所在的直线相交于点H , 且AG =BG ,则AH 和BC 的关系是:_____________________;(2)若把⑴中的“∠BAC 是锐角”改为“∠BAC 是钝角”(如图2),其他条件都不变, AH 和BC 的关系是否仍然成立, 若成立,请在图2中用三角板和量角器画出完整的图形并证明;若不成立,请说明理由.【答案】(1)AH 平分BC 且AH =BC ;(2)成立,理由参见解析.【解析】试题分析:(1)通过ASA 证△AGH ≌△BGC ,得到AH =BC ,又因为AB=AC ,AD ⊥BC ,所以AD 平分BC ,即AH 平分BC ,于是得出结论;(2)作BG 垂直CA 交CA 的延长线于G ,作AD 垂直BC 于D,DA 的延长线与BG 的延长线交于H ,仍可通过AAS 证明△AGH ≌△BGC ,得到AH =BC ,又因为AB=AC ,AD ⊥BC ,所以AD 平分BC ,即AH 平分BC ,于是得出结论;试题解析:(1)由题意可知∠AGH=∠BGC=90º,∠CBG 和∠HAG 同是∠C 的余角,所以∠CBG=∠HAG ,又有AG =BG ,所以△AGH ≌△BGC (ASA ),所以AH =BC ,又因为AB=AC ,AD ⊥BC ,所以AD 平分BC ,即AH 平分BC ,所以AH 平分BC 且AH =BC ;(2)正确画出图形:作BG 垂直CA 交CA 的延长线于G ,作AD 垂直BC 于D,DA 的延长线与BG 的延长线交于H ,因为∠C 和∠H 同是∠GBC 的余角,于是∠C=∠H ,又有∠AGH=∠BGC=90º,AG =BG ,所以△AHG ≌△BCG (AAS ),所以AH =BC ,又因为AB=AC ,AD ⊥BC ,所以AD 平分BC ,即AH 平图2图1 HG D CB A分BC ,所以结论仍成立.考点:1.全等三角形的判定与性质;2.等腰三角形性质.26.(本题满分9分)已知:如图1,射线MN ⊥AB ,AM =1cm ,MB =4cm. 点C 从M 出发以2cm/s 的 速度沿射线MN 运动,设点 C 的运动时间为t(s)(1) 当△ABC 为等腰三角形时,求t 的值;(2)当△ABC 为直角三角形时,求t 的值;(3)当t 满足条件:__________时,△ABC 为钝角三角形; 当_________时,△ABC 为锐角三角形.【答案】(1)t=32或t=6;(2)t=1; (3)0<t <1;t >1 【解析】试题分析:(1)当△ABC 为等腰三角形时,分三种情况讨论,t 值可以用勾股定理建立等量关系求出;(2)当△ABC 为直角三角形时,由题意可得,有一种情况:∠ACB =90°,利用勾股定理求出t 值;(3)利用勾股定理可证出锐角三角形三边关系是两边平方和大于第三边平方,钝角三角形三边关系是两短边平方和小于钝角所对边的平方.建立不等关系式,求出t 的取值范围.试题解析:由题意可得:CM=2t,(t>0).(1)当△ABC 为等腰三角形时,分三种情况讨论,①当CB =AB 时,N B A N B A NBA 图1 备用图 备用图在Rt △MCB 中,由勾股定理得: BC 2=42+(2t)2 ,所以42+(2t)2 = 25,解得:t =32;② 当AB =AC 时,12+(2t)2= 25,解得:t =6,③当AC =BC 时,C 在AB 的垂直平分线上,与条件不合,故这种情况不存在;综上所述t=32或t=6时△ABC 为等腰三角形.(2)当△ABC 为直角三角形时,由题意可得,有一种情况:∠ACB =90°,∴AC 2+BC 2 =AB 2 ,CM =2t ,在Rt △MCB 中,由勾股定理得:BC 2=(2t )2+42 , 在Rt △MCA 中,由勾股定理得:AC 2=(2t )2+12 , ∴4t 2+42+4t 2+12=52 , 解得:t =1 ,所以t 的值为1时△ABC 为直角三角形.(3)利用勾股定理可证出钝角三角形三边关系是两短边平方和小于钝角所对边的平方.建立不等关系式,(2t )2+12 +(2t )2+42 <25 ,解得:t 2<1,所以 0<t <1时,△ABC 为钝角三角形;而锐角三角形三边关系是两边平方和大于第三边平方,所以(2t )2+12 +(2t )2+42 >25 ,解得:t 2>1,所以 t>1时,△ABC 为锐角三角形;考点:1.特殊三角形的判定;2.动点问题;3.勾股定理的运用.27.(本题满分9分)【问题背景】如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.小明同学的方法是将△ABE 绕点A 逆时针旋转120°到△ADG 的位置,然后再证明△AFE ≌△AFG ,从而得出结论:___________________.【探索延伸】如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由.B AC E F DGB A CFD【结论应用】如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏东60°的A 处,舰艇乙在指挥中心南偏西20°的B 处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正南方向以40海里/小时的速度前进,舰艇乙沿南偏东40°的方向以50海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇与指挥中心O 之间夹角∠EOF =70°,试求此时两舰艇之间的距离.图1 图2【答案】问题背景:EF =BE +FD ;探索延伸: EF =BE +FD 仍然成立.结论应用:180海里.【解析】试题分析:问题背景:将△ABE 绕点A 逆时针旋转120°到△ADG 的位置后,AE=AG ,DG=BE,∠EAF =∠FAG=60°,利用SAS 证明△AFE ≌△AFG 即可得出结论;探索延伸:延长FD 到点G ,使DG =BE ,连接AG ,通过SAS 可证得△ABE ≌△ADG ,∴AE =AG ,∠BAE =∠DAG ,∠EAF =∠FAG=60°,于是△AEF ≌△AGF . EF=FG .所以FG =DG +DF =BE +DF . ∴EF =BE +FD 仍然成立. 结论应用:连接EF ,∵∠AOB =140°,∠FOE =70°=12∠AOB ,又∵OA =OB ,∠A +∠B =60°+120°=180°,符合探索延伸中的条件,即结论EF =AE +FB 成立.因为AE=80,FB=100,于是求出此时两舰艇之间的距离EF .试题解析:问题背景:将△ABE 绕点A 逆时针旋转120°到△ADG 的位置后,AE=AG ,DG=BE,∠BAE =∠DAG ,∠EAF =60°,∠EAG =120°,所以∠FAG=60°,∠EAG =∠FAG ,所以△AFE ≌△AFG (SAS ), ∴EF=FG .∵FG =DG +DF ,所以EF =BE +FD .探索延伸: EF =BE +FD 仍然成立,延长FD 到点G ,使DG =BE ,连接AG ,因为AB=AD ,∠B =∠ADG =90°,所以△ABE ≌△ADG ,所以 ∴AE =AG ,∠BAE =∠DAG ,所以∠EAG =∠FAG=60°,所以△AEF ≌△AGF (SAS ). ∴EF=FG .又∵FG =DG +DF =BE +DF . ∴EF =BE +FD . 结论应用:连接EF ,∵∠AOB =30°+90°+20°=140°,∠FOE =70°=12∠AOB ,又∵OA =OB ,∠A +∠B =60°+120°=180°,符合探索延伸中的条件,∴结论EF =AE +FB 成立.因为BF=50×2=100,AE=40×2=80, 所以此时两舰艇之间的距离EF =AE +FB=80+100=180海里,即此时两舰艇之间的距离为180海里.考点:1.全等三角形的判定与性质;2.线段的和差转化.图3高考一轮复习:。

江苏省江阴初级中学2015-2016学年八年级上学期期中考试数学试题解析(解析版)

江苏省江阴初级中学2015-2016学年八年级上学期期中考试数学试题解析(解析版)

(满分:100分,考试时间:120分钟)一、选择题:(本大题共10小题,每题3分,共30分)1.下列图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个【答案】C考点:轴对称图形2.16的平方根是()A.4 B.±4 C.4D.±4【答案】B【解析】试题分析:根据16=(±4)2可知16的平方根为±4.故选B考点:平方根3.下列式子中,属于最简二次根式的是()A.9.0B.C.D.【答案】D【解析】试题分析:根据最简二次根式的意义,被开方数中不含有开放开的尽的数,(根号中不含有分母,分母中不含有根号)=====.故选D考点:最简二次根式4.下列运算中错误的是()A.2×3= 6 B.12=22C.22+33=5 5 D.(-4)2=4【答案】C【解析】=a≥0,b≥0)====根据与4=,故正确.故选C考点:二次根式的化简5.下列说法正确的是()A.平方根等于本身的数是0;B.36表示6的算术平方根;C.无限小数都是无理数;D.数轴上的每一个点都表示一个有理数.【答案】A考点:平方根,算术平方根,无理数,实数与数轴6. 一个正方形的面积是20,估计它的边长大小在 ( )A . 2与3之间B . 3与4之间C . 4与5之间D . 5与6之间【答案】C 【解析】,即4<5. 故选C考点:二次根式的近似值7. 在△ABC 中,∠A 、∠B 、∠C 的对应边分别是a 、b 、c ,若∠A +∠C =90°,则下列等式中成立的是( )A . c 2-a 2=b 2B . a 2+b 2=c 2C . b 2+c 2=a 2D . a 2+c 2=b 2【答案】D 【解析】试题分析:根据三角形边角的对应关系,可知a 与∠A ,b 与∠B ,c 与∠C 对应,因此由∠A+∠C=90°,可知222a c b +=. 故选D考点:勾股定理8.已知等腰三角形的两边长分别是3与6,那么它的周长等于 ( )A . 12B . 12或15C . 15D . 15或18【答案】C 【解析】试题分析:由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况:① 当腰为6时,三角形的周长为:6+6+3=15; ② 当腰为3时,3+3=6,三角形不成立; 因此可知等腰三角形的周长是15. 故选C .考点:等腰三角形,三角形的三边关系9.如图,点D 在AB 上,点E 在AC 上,且∠B =∠C ,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC【答案】B考点:全等三角形的判定10.如图是一张足够长的矩形纸条ABCD,以点A所在直线为折痕,折叠纸条,使点B落在边AD上,折痕与边BC交于点E;然后将其展平,再以点E所在直线为折痕,使点A落在边BC上,折痕EF交边AD于点F.则∠AFE的大小是()A.67.5°B.60°C.45°D.22.5°【答案】A【解析】试题分析:以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E点,∠AEB=45°,然后将其展平,再以点E所在直线为折痕,使点A落在边BC上,折痕EF交边AD于点F,则可求得∠FEC=∠FEA=180452=67.5°,然后根据平行线的性质:两直线平行,内错角相等,由AF∥EC,可求得∠AFE=∠FEC=67.5°.故选D.考点:折叠变换二、填空题(本大题共8小题,每空2分,共16分)11.21-的相反数是 . 【答案】12- 【解析】试题分析:根据只有符号不同的两数互为相反数,因此可知的相反数为-()-1. 考点:相反数12. 若2)3(-x =3﹣x ,则x 的取值范围是 . 【答案】3≤x13. 2015年我市参加中考的学生人数大约为6.60×104人,对于这个用科学记数法表示的近似数,它精确到了 位. 【答案】百 【解析】试题分析:在标准形式a ×10n中a 的部分中,从左边第一个不为0的数字数起,共有3个有效数字是6,6,0,且其展开后可看出精确到的是百位. 考点:精确数,近似数,科学记数法14.已知实数错误!未找到引用源。

【精品】2015年江苏省无锡市江阴市华士片八年级上学期期中数学试卷带解析答案

【精品】2015年江苏省无锡市江阴市华士片八年级上学期期中数学试卷带解析答案

2014-2015学年江苏省无锡市江阴市华士片八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)下列四个图案不是轴对称图形的是()A.B.C.D.2.(3分)如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A.SSS B.SAS C.SSA D.AAS3.(3分)下列长度的各组线段中,能组成直角三角形的是()A.4、5、6 B.6、8、10 C.5、9、12 D.3、9、134.(3分)如果等腰三角形两边长是8cm和4cm,那么它的周长是()A.20cm B.16cm C.20cm或16cm D.12cm5.(3分)如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05 B.20:01 C.20:10 D.10:026.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD7.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cm B.2cm C.3cm D.4cm8.(3分)如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.115°B.130°C.120° D.65°9.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A.2个 B.3个 C.4个 D.5个10.(3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19二、填空题:(每空2分,共16分)11.(2分)1纳米=10﹣9米,某种花粉的直径是36 000纳米,用科学记数法表示为米.12.(2分)等腰三角形一个角等于100°,则它的一个底角是°.13.(2分)已知一直角三角形的两条直角边长分别为5和12,则第三边的长为.14.(2分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).15.(2分)如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,点B与点A重合,折痕为DE,则CD的长为cm.16.(2分)在Rt△ABC中,∠C=90°,若AB=20,AC=16,AD平分∠BAC交BC 于点D,则点D到线段AB的距离为.17.(2分)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.18.(2分)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画条.三、解答题(本大题8小题,共54分)19.(8分)计算或化简:(1);(2)(a+3)2﹣(a﹣2)(a+2)20.(4分)解方程组.21.(6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.22.(6分)等腰△ABC的腰长AB=10cm,BC=7cm,∠A=50°;DE为腰AB的垂直平分线.①求△BCD的周长;②求∠CBD的度数.23.(6分)如图,∠AOB=90°,OA=49cm,OB=7cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?24.(8分)作图题:(1)利用如图1所示的网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP上找一点Q,使QB=QC.(2)如图2,等边△ABC,AD是BC边上的中线,M是AD上的动点,E是AC 边上一点.①作点E关于直线AD的对称点点E′;②当EM+CM的值最小时,作出此时点M的位置(标注为M′)25.(6分)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,求:(1)等边三角形△ABC的边长;(2)以DE为边长的正方形的面积.26.(10分)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若,则△ABC≌△DEF.2014-2015学年江苏省无锡市江阴市华士片八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列四个图案不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选:A.2.(3分)如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A.SSS B.SAS C.SSA D.AAS【解答】解:∵PD⊥AB,PE⊥AF,∴∠PDA=∠PEA=90°,∵AP平分∠BAF,∴∠DAP=∠EAP,在△APD和△APE中∴△APD≌△APE(AAS),故选:D.3.(3分)下列长度的各组线段中,能组成直角三角形的是()A.4、5、6 B.6、8、10 C.5、9、12 D.3、9、13【解答】解:A、42+52≠62,根据勾股定理的逆定理不是直角三角形,故此选项错误;B、62+82=102,根据勾股定理的逆定理是直角三角形,故此选项正确;C、52+92≠122,根据勾股定理的逆定理不是直角三角形,故此选项错误;D、32+92≠132,根据勾股定理的逆定理不是直角三角形,故此选项错误.故选:B.4.(3分)如果等腰三角形两边长是8cm和4cm,那么它的周长是()A.20cm B.16cm C.20cm或16cm D.12cm【解答】解:当腰长为8cm时,则三角形的三边长分别为8cm、8cm、4cm,满足三角形的三边关系,此时周长为20cm;当腰长为4cm时,则三角形的三边长分别为4cm、4cm、8cm,此时4+4=8,不满足三角形的三边关系,不符合题意;故选:A.5.(3分)如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05 B.20:01 C.20:10 D.10:02【解答】解:由图分析可得题中所给的“10:05”与“20:01”成轴对称,这时的时间应是20:01.故选:B.6.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.7.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cm B.2cm C.3cm D.4cm【解答】解:∵△ABC≌△DEF,∴EF=BC=5cm,∵BF=7cm,BC=5cm,∴CF=7cm﹣5cm=2cm,∴EC=EF﹣CF=3cm,故选:C.8.(3分)如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.115°B.130°C.120° D.65°【解答】解:∵∠1=50°,∴∠AEF=180°﹣∠BFE=180°﹣(180°﹣50°)÷2=115°故选:A.9.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A.2个 B.3个 C.4个 D.5个【解答】解:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,∵AD是角平分线,∴∠CAD=∠BAD=30°,∴AD=BD.∴△ABD是等腰三角形.∵AD是角平分线,∠ACB=90°,DE⊥AB,∴CD=ED∴AC=AE∴△CDE、△ACE是等腰三角形;又△CEB也是等腰三角形显然此图中有4个等腰三角形.故选:C.10.(3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,∴AB=BC,DE=DC,∠ABC=∠D=90°,∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD,又∵AD=AC+CD=6,∴CD==2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点,∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故选:B.二、填空题:(每空2分,共16分)11.(2分)1纳米=10﹣9米,某种花粉的直径是36 000纳米,用科学记数法表示为 3.6×10﹣5米.【解答】解:36 000×10﹣9=3.6×10﹣5米.答:用科学记数法表示为3.6×10﹣5米.12.(2分)等腰三角形一个角等于100°,则它的一个底角是40°.【解答】解:∵该角为100°,∴这个角只能是等腰三角形的顶角,∴该等腰三角形的顶角为100°,∴底角为=40°,故答案为:40.13.(2分)已知一直角三角形的两条直角边长分别为5和12,则第三边的长为13.【解答】解:∵直角三角形的两条直角边长分别为5和12,∴第三边的长==13.故答案为:13.14.(2分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).15.(2分)如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,点B与点A重合,折痕为DE,则CD的长为cm.【解答】解:设CD=x,则易证得BD=AD=10﹣x.在Rt△ACD中,(10﹣x)2=x2+52,100+x 2﹣20x=x2+52,∴20x=75,解得:.16.(2分)在Rt△ABC中,∠C=90°,若AB=20,AC=16,AD平分∠BAC交BC 于点D,则点D到线段AB的距离为3.【解答】解:∵∠C=90°,AB=20,AC=16,∴BC===12,∵BD:CD=3:1,∴CD=12×=3,∵AD平分∠BAC,∴DE=CD=3,即点D到线段AB的距离为3.故答案为:3.17.(2分)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.【解答】解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为:3.18.(2分)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画7条.【解答】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故答案为:7.三、解答题(本大题8小题,共54分)19.(8分)计算或化简:(1);(2)(a+3)2﹣(a﹣2)(a+2)【解答】解:(1)+(﹣2)3×(﹣2013)0=4+(﹣8)×1=4﹣8=﹣4;(2)(a+3)2﹣(a﹣2)(a+2)=a2+6a+9﹣(a2﹣4)=a2+6a+9﹣a2+4=6a+13.20.(4分)解方程组.【解答】解:,①×2﹣②得:﹣7y=﹣7,即y=1,把y=1代入①得:x=1,则方程组的解为.21.(6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.【解答】(1)证明:∵点C是线段AB的中点,∴AC=BC,又∵CD平分∠ACE,CE平分∠BCD,∴∠1=∠2,∠2=∠3,∴∠1=∠3,∵在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).(2)解:∵∠1+∠2+∠3=180°,∴∠1=∠2=∠3=60°,∵△ACD≌△BCE,∴∠E=∠D=50°,∴∠B=180°﹣∠E﹣∠3=70°22.(6分)等腰△ABC的腰长AB=10cm,BC=7cm,∠A=50°;DE为腰AB的垂直平分线.①求△BCD的周长;②求∠CBD的度数.【解答】解:①∵DE是AB的垂直平分线,∴BD=AD,∴△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC,即:△BCD的周长=AC+BC.∵等腰△ABC的腰长AB=10cm,BC=7cm,∴△BCD的周长=10+7=17(cm).②∵∠A=50°,∴∠ABC=∠C=65°,又∵DE垂直平分AB,∴∠A=∠ABD=50°,∴∠CBD=∠ABC﹣∠ABD=15°.23.(6分)如图,∠AOB=90°,OA=49cm,OB=7cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【解答】解:由题意得:小球滚动的速度与机器人行走的速度相等,运动时间相等,即BC=CA,设AC为x,则OC=49﹣x,由勾股定理可知OB2+OC2=BC2,又∵OA=49,OB=7,∴72+(49﹣x)2=x2,解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是25cm.24.(8分)作图题:(1)利用如图1所示的网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP上找一点Q,使QB=QC.(2)如图2,等边△ABC,AD是BC边上的中线,M是AD上的动点,E是AC 边上一点.①作点E关于直线AD的对称点点E′;②当EM+CM的值最小时,作出此时点M的位置(标注为M′)【解答】解:(1)如图1所示:(2)如图2所示:作出点E′,其中没加垂直符号扣(1分);连接CE′(或BE)与AD的交点即为M′.25.(6分)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,求:(1)等边三角形△ABC的边长;(2)以DE为边长的正方形的面积.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∴AC=1;(2)∵△ABC是等边三角形,∴BC=AC=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,∴DE2=()2=3,∴正方形的面积为3.26.(10分)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

八年级上期中数学试卷含答案解析

八年级上期中数学试卷含答案解析

八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列标志中,可以看作是轴对称图形的是( )A.B. C.D.2.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF3.下列四组线段中,可以构成直角三角形的是( )A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,34.如图,在△ABC中,∠C=90°,AC=BC,AD是∠CAB的角平分线,DE⊥AB于点E,若AB=6cm,则△DEB的周长是( )A.5cm B.6cm C.7cm D.8cm5.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是( )A.垂直 B.相等 C.平分 D.平分且垂直6.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②△PMN为等边三角形;下面判断正确是( )A.①正确B.②正确C.①②都正确D.①②都不正确7.一等腰三角形底边长为8cm,腰长为5cm,则腰上的高为( )A.3cm B.cm C.cm D.cm8.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延长线于F,连接CD,给出四个结论:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB﹣BC=2FC;其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题(本大题共11小题,每空2分,共22分.)9.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC ≌△ADC,只需再添加的一个条件可以是__________.10.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是__________.11.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于__________.12.如图,有一块直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD=__________.13.等腰三角形的两边长分别为2cm和4cm,则这个三角形的周长为__________cm.14.一个等腰三角形的一个角为80°,则它的顶角的度数是__________.15.直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积是__________cm2.16.△ABC中,点O是△ABC内一点且到△ABC三边的距离相等,∠A=40°,则∠BOC=__________.17.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是__________.18.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为__________.19.如图,在△ABC中AB=17,AC=10,BC边上的高AD=8,则边BC的长为__________.三、简答题:(本大题共7小题,共54分)20.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短,这个最短长度的平方值是__________.21.如图,已知△ABC,AC<AB.(1)用直尺和圆规作出一条过点A的直线l,使得点C关于直线l的对称点落在边AB上(不写作法,保留作图痕迹);(2)设直线l与边BC的交点为D,且∠C=2∠B,请你通过观察或测量,猜想线段AB、AC、CD之间的数量关系,并说明理由.22.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.23.如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?24.如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是__________,CF的对应线段是__________;(2)若AB=8,DE=10,求CF的长度.25.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.26.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?2015-2016学年江苏省无锡市江阴市青阳片八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列标志中,可以看作是轴对称图形的是( )A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.2.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.下列四组线段中,可以构成直角三角形的是( )A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3【考点】勾股定理的逆定理.【专题】计算题.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,在△ABC中,∠C=90°,AC=BC,AD是∠CAB的角平分线,DE⊥AB于点E,若AB=6cm,则△DEB的周长是( )A.5cm B.6cm C.7cm D.8cm【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线的性质得到DC=DE,AC=AE,根据三角形的周长公式计算即可.【解答】解:∵AD是∠CAB的角平分线,DE⊥AB,∠C=90°,∴DC=DE,AC=AE,∴△DEB的周长=DE+BE+BD=BE+DC+BD=BE+BC=BE+AE=AB=6cm.故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是( )A.垂直 B.相等 C.平分 D.平分且垂直【考点】平移的性质;勾股定理.【专题】网格型.【分析】先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC 的关系.【解答】解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.∵A′O=OB=,AO=OC=2,∴线段A′B与线段AC互相平分,又∵∠AOA′=45°+45°=90°,∴A′B⊥AC,∴线段A′B与线段AC互相垂直平分.故选:D.【点评】本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.6.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②△PMN为等边三角形;下面判断正确是( )A.①正确B.②正确C.①②都正确D.①②都不正确【考点】直角三角形斜边上的中线;等边三角形的判定.【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断②正确.【解答】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;所以①②都正确.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等边三角形的判定与性质,熟练掌握性质是解题的关键.7.一等腰三角形底边长为8cm,腰长为5cm,则腰上的高为( )A.3cm B.cm C.cm D.cm【考点】勾股定理;等腰三角形的性质.【分析】作AD⊥BC于D,作CE⊥AB于E,由等腰三角形的性质得出BD,由勾股定理求出AD,由三角形面积的计算方法即可求出腰上的高.【解答】解:如图所示:作AD⊥BC于D,作CE⊥AB于E,则∠ADB=90°,∵AB=AC,∴BD=BC=4cm,∴AD===3(cm),∵△ABC的面积=AB•CE=BC•AD,∴AB•CE=BC•AD,即5×CE=8×3,解得:CE=,即腰上的高为;故选:C.【点评】本题考查了勾股定理、等腰三角形的性质三角形面积的计算;熟练掌握等腰三角形的性质,运用勾股定理求出AD是解决问题的关键.8.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延长线于F,连接CD,给出四个结论:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB﹣BC=2FC;其中正确的结论有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【分析】过E作EQ⊥AB于Q,作∠ACN=∠BCD,交AD于N,过D作DH⊥AB于H,根据角平分线性质求出CE=EQ,DF=DH,根据勾股定理求出AC=AQ,AF=AH,根据等腰三角形的性质和判定求出BQ=QE,即可求出③;根据三角形外角性质求出∠CND=45°,证△ACN≌△BCD,推出CD=CN,即可求出②①;证△DCF≌△DBH,得到CF=BH,AF=AH,即可求出④.【解答】解:如图,过E作EQ⊥AB于Q,∵∠ACB=90°,AE平分∠CAB,∴CE=EQ,∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵EQ⊥AB,∴∠EQA=∠EQB=90°,由勾股定理得:AC=AQ,∴∠QEB=45°=∠CBA,∴EQ=BQ,∴AB=AQ+BQ=AC+CE,∴③正确;作∠ACN=∠BCD,交AD于N,∵∠CAD=∠CAB=22.5°=∠BAD,∴∠ABD=90°﹣22.5°=67.5°,∴∠DBC=67.5°﹣45°=22.5°=∠CAD,∴∠DBC=∠CAD,在△ACN和△BCD中,,∴△ACN≌△BCD,∴CN=CD,AN=BD,∵∠ACN+∠NCE=90°,∴∠NCB+∠BCD=90°,∴∠CND=∠CDA=45°,∴∠ACN=45°﹣22.5°=22.5°=∠CAN,∴AN=CN,∴∠NCE=∠AEC=67.5°,∴CN=NE,∴CD=AN=EN=AE,∵AN=BD,∴BD=AE,∴①正确,②正确;过D作DH⊥AB于H,∵∠FCD=∠CAD+∠CDA=67.5°,∠DBA=90°﹣∠DAB=67.5°,∴∠FCD=∠DBA,∵AE平分∠CAB,DF⊥AC,DH⊥AB,∴DF=DH,在△DCF和△DBH中,∴△DCF≌△DBH,∴BH=CF,由勾股定理得:AF=AH,∴====2,∴AC+AB=2AF,AC+AB=2AC+2CF,AB﹣AC=2CF,∵AC=CB,∴AB﹣CB=2CF,∴④正确.故选D【点评】本题主要考查了三角形的外角性质,三角形的内角和定理,等腰三角形的性质和判定,直角三角形斜边上中线性质,全等三角形的性质和判定,等腰直角三角形性质等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.二、填空题(本大题共11小题,每空2分,共22分.)9.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC ≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【考点】全等三角形的判定.【专题】开放型.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS 即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DA C=∠BAC【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.10.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形的性质,熟记性质并用∠A表示出△ABC的另两个角,然后列出方程是解题的关键.11.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8.【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD 中,利用勾股定理来求线段CD的长度即可.【解答】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.【点评】本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.12.如图,有一块直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD=cm.【考点】翻折变换(折叠问题).【分析】先利用勾股定理求得AB=5,然后由翻折的性质得到AE=AC=3,CD=DE,则EB=2,设CD=EC=x,则BD=4﹣x,然后在Rt△DEB中利用勾股定理列方程求解即可.【解答】解:在Rt△ACB中,AB==5,由翻折的性质可知:AE=AC=3,CD=DE,则BE=2.设CD=DE=x,则BD=4﹣x.Rt△DEB中,由勾股定理得:DB2=DE2+EB2,即(4﹣x)2=x2+22,解得:x=.∴CD=.故答案为:cm.【点评】本题主要考查的是翻折的性质、勾股定理的应用,利用翻折的性质和勾股定理列出关于x的方程是解题的关键.13.等腰三角形的两边长分别为2cm和4cm,则这个三角形的周长为10cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:(1)当三边是2cm,2cm,4cm时,2+2=4cm,不符合三角形的三边关系,应舍去;(2)当三边是2cm,4cm,4cm时,符合三角形的三边关系,此时周长是10cm;所以这个三角形的周长是10cm.故填10.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.一个等腰三角形的一个角为80°,则它的顶角的度数是80°或20°.【考点】等腰三角形的性质.【分析】等腰三角形一内角为80°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当80°角为顶角,顶角度数即为80°;(2)当80°为底角时,顶角=180°﹣2×80°=20°.故答案为:80°或20°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积是30cm2.【考点】直角三角形斜边上的中线.【分析】由于直角三角形斜边上的中线是6cm,因而斜边是12cm,而高线已知,因而可以根据面积公式求出三角形的面积.【解答】解:∵直角三角形斜边上的中线是6cm,∴斜边是12cm,∴S△=×5×12=30cm2∴它的面积是30cm2.故填:30cm2.【点评】本题主要考查了直角三角形的性质:斜边上的中线等于斜边的一半.16.△ABC中,点O是△ABC内一点且到△ABC三边的距离相等,∠A=40°,则∠BOC=110°.【考点】角平分线的性质.【分析】根据O到三角形三边距离相等,得到O是内心,再利用三角形内角和定理和角平分线的概念即可求出∠BOC的度数.【解答】解:∵O到三角形三边距离相等,∴O是内心,∴AO,BO,CO都是角平分线,∴∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∠ABC+∠ACB=180°﹣40°=140°,∠OBC+∠OCB=70°,∠BOC=180°﹣70°=110°.故答案为:110°.【点评】本题考查的是角平分线的定义和三角形的内心的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是30°.【考点】轴对称-最短路线问题.【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.故答案为:30°.【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.18.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为63°或27°.【考点】等腰三角形的性质.【专题】分类讨论.【分析】分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.【解答】解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.19.如图,在△ABC中AB=17,AC=10,BC边上的高AD=8,则边BC的长为21.【考点】勾股定理.【专题】计算题.【分析】在直角三角形ACD中,利用勾股定理求出CD的长,在直角三角形ABD中,利用勾股定理求出BD的长,由CD+BD求出BC的长即可.【解答】解:在Rt△ACD中,AC=10,AD=8,根据勾股定理得:CD==6,在Rt△ABD中,AB=17,AD=8,根据勾股定理得:BD==15,则BC=6+15=21,故答案为:21【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.三、简答题:(本大题共7小题,共54分)20.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短,这个最短长度的平方值是13.【考点】作图-轴对称变换.【分析】(1)分别找到各点的对称点,顺次连接可得△A′B′C′.(2)连接B'C,则B'C与l的交点即是点P的位置,求出PB+PC的值即可.【解答】解:(1)如图所示:.(2)如图所示:PB+PC=PB'+PC=B'C==.则这个最短长度的平方值是13.【点评】本题考查了轴对称作图及最短路线问题,解答本题的关键是掌握轴对称的性质,难度一般.21.如图,已知△ABC,AC<AB.(1)用直尺和圆规作出一条过点A的直线l,使得点C关于直线l的对称点落在边AB上(不写作法,保留作图痕迹);(2)设直线l与边BC的交点为D,且∠C=2∠B,请你通过观察或测量,猜想线段AB、AC、CD之间的数量关系,并说明理由.【考点】作图—复杂作图;全等三角形的判定与性质;角平分线的性质.【专题】作图题.【分析】(1)先作∠BAC的平分线l,再过点C作CF⊥l交AB于F,则可得到点C和F点关于l对称,所以l为所作;(2)连结DF,如图,利用等腰三角形的判定方法得到AF=AC,则AD垂直平分CF,所以DF=DC,则∠DCF=∠DFC,再利用三角形外角性质得∠BDF=2∠DCF,接着证明∠B=2∠BCF,于是得到∠B=∠BDF,则FB=FD=CD,则易得AB=AF+FB=AC+CD.【解答】解:(1)如图,直线l为所作;(2)AB=AC+CD.理由如下:连结DF,如图,∵AD平分∠BAC,AD⊥CF,∴AF=AC,∴AD垂直平分CF,∴DF=DC,∴∠DCF=∠DFC,∴∠BDF=∠DCF+∠DFC=2∠DCF,∵∠AFC=∠ACF,∵∠AFC=∠B+∠BCF,∴∠ACF=∠B+∠BCF,∵∠ACB=2∠B,∴2∠B﹣∠BCF=∠B+∠BCF,∴∠B=2∠BCF,∴∠B=∠BDF,∴FB=FD,∴FB=CD,∴AB=AF+FB=AC+CD.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了角平分线的性质.22.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由等式的性质就可以得出BF=CE,由平行线的性质就可以得出∠B=∠C,根据SAS就可以得出结论;(2)由△ABF≌△DCE就可以得出∠AFB=∠DEC就可以得出结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE.∵AB∥CD,∴∠B=∠C.在△ABF和△DCE中,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴AF∥DE.【点评】本题考查了等式的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.23.如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?【考点】勾股定理;勾股定理的逆定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.【解答】解:连结AC,如图所示:在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC==10(米),∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴∠ACB=90°,∴该区域面积S=S△ACB﹣S△ADC=×10×24﹣×6×8=96(平方米),∴铺满这块空地共需花费=96×100=9600元.【点评】本题考查了勾股定理,三角形面积,勾股定理的逆定理的应用;解此题的关键是求出区域的面积.24.如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是BC′,CF的对应线段是FC′;(2)若AB=8,DE=10,求CF的长度.【考点】翻折变换(折叠问题).【分析】(1)根据翻折后的对应点确定出对应线段即可;(2)在Rt△ABE中由勾股定理可求得AE=6,从而得到AD=16,然后证明BE=BF=10,从而可求得FC=16﹣10=6.【解答】解:(1)∵点D与点B重合,点C落在点C′的位置上,∴DC的对应线段是BC′,CF的对应线段是FC′.故答案为:BC′;FC′.(2)由翻折的性质可知:DE=BE=10,∠2=∠BEF.∵AD∥BC,∴∠2=∠1.∴∠1=∠BEF.∴BE=BF=10.在Rt△A BE中,由勾股定理得:AE===6,∴AD=AE+ED=6+10=16.∴CF=CB﹣BF=16﹣10=6.【点评】本题主要考查的是翻折的性质、勾股定理的应用,证得BE=BF=10是解题的关键.25.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【考点】勾股定理的证明.【分析】首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.【解答】证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.【点评】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.26.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B →C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【考点】等腰三角形的判定与性质.【专题】计算题;动点型.【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)因为AB与CB,由勾股定理得AC=4 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.(3)分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,t+2t﹣3=6;当P点在AB上,Q在AC上,则AC=t﹣4,AQ=2t﹣8,t﹣4+2t﹣8=6.【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。

八年级上期中数学试卷(2)含答案解析A卷

八年级上期中数学试卷(2)含答案解析A卷

八年级(上)期中数学试卷一、选择题1.下列等式正确的是()A.=﹣3 B.=±12 C.=﹣7 D.=2 2.下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等3.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9 cm B.12 cm C.15 cm或12 cm D.15 cm4.如图,∠ACD=90°,∠D=15°,B点在AD的垂直平分线上,若AC=4,则BD=()A.4 B.6 C.8 D.105.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD7.如图,BI,CI分别是∠ABC和∠ACB的平分线,DE过I点且DE∥BC,则下列结论错误的是()A.AI平分∠BAC B.I到三边的距离相等C.AI=ID D.DE=BD+CE8.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为()A.110°B.105°C.90°D.85°9.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是()A.B.C.1 D.2+10.若x、y为实数,,则4y﹣3x是.二、填空题11.16的平方根是,=.12.等腰三角形一个角为50°,则此等腰三角形顶角为.13.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为.14.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=,这个正数是.15.若|x﹣1|+(y﹣2)2+=0,则x+y+z=.16.如图,在Rt△ABC中,BE平分∠ABC,ED⊥AB于D,AC=3cm,则AE+DE=cm.17.若△ABC中,∠A:∠B:∠C=1:2:3,且最长边为10cm,则最短边长为cm.18.若,且ab<0,则a+b=.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是cm.20.若,则b c+a的值为.三、解答与证明21.解方程:(1)x2﹣25=0(2)(x﹣1)2=16.22.如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD,过点D 作DF⊥BE,垂足为F.试说明:BF=EF.23.如图,A、D、E三点在同一直线上,∠BAE=∠CAE,∠BDE=∠CDE,(1)求证:AB=AC;(2)求证:AE⊥BC.24.已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠B,CF∥DE,求证:AC∥BD.25.已知等腰三角形的三边长a=5x﹣1,b=6﹣x,c=4,求x的值.26.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?27.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,求出AE的长度.28.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.29.如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A﹣B﹣C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②③为备用图)(1)当P在AB上,t为何值时,△APE的面积为长方形面积的?(2)整个运动过程中,t为何值时,△APE为直角三角形?(3)整个运动过程中,t为何值时,△APE为等腰三角形?2015-2016学年江苏省无锡市宜兴市XX中学八年级(上)期中数学试卷参考答案与试题解析一、选择题1.下列等式正确的是()A.=﹣3 B.=±12 C.=﹣7 D.=2 【考点】二次根式的性质与化简.【分析】直接利用二次根式的定义以及二次根式的性质分别化简求出答案.【解答】解:A、,无意义,故此选项错误;B、=12,故此选项错误;C、=7,故此选项错误;D、(﹣)2=2,正确.故选:D.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.2.下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等【考点】等腰三角形的性质;全等三角形的判定.【分析】由等腰三角形的性质得出A不正确、D正确;由全等三角形的判定方法得出B、C 不正确;即可得出结果.【解答】解:∵等腰三角形的底边上的高、底边上的中线、顶角平分线互相重合,∴A不正确;∵顶角相等的两个等腰三角形相似,不一定全等,∴B不正确;∵面积相等的两个三角形不一定全等,∴C不正确;∵等腰三角形的两个底角相等,∴D正确;故选D.【点评】本题考查了等腰三角形的性质、全等三角形的判定方法;熟练掌握等腰三角形的性质和全等三角形的判定方法是解决问题的关键.3.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9 cm B.12 cm C.15 cm或12 cm D.15 cm【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选D.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.如图,∠ACD=90°,∠D=15°,B点在AD的垂直平分线上,若AC=4,则BD=()A.4 B.6 C.8 D.10【考点】线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得到AB=BD,∠D=∠DAB,由三角形内角与外角的关系得到∠ABC的度数,再根据直角三角形的性质求解即可.【解答】解:∵B点在AD的垂直平分线上,∠D=15°,∴AB=BD,∠D=∠DAB=15°,∴∠ABC=∠D+∠DAB=30°,∴AB=2AC,∵AC=4,∴AB=8,∵AB=BD,∴BD=8.故选C.【点评】本题考查的是线段垂直平分线的性质及三角形内角与外角的关系,熟知线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.5.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°【考点】线段垂直平分线的性质.【分析】利用线段的垂直平分线的性质计算.通过已知条件由∠B=90°,∠BAE=10°⇒∠AEB,∠AEB=∠EAC+∠C=2∠C.【解答】解:∵ED是AC的垂直平分线,∴AE=CE∴∠EAC=∠C,又∵∠B=90°,∠BAE=10°,∴∠AEB=80°,又∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°.故选:B.【点评】此题主要考查线段的垂直平分线的性质、直角三角形的两锐角互余、三角形的一个外角等于它不相邻的两个内角和.6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【考点】等腰三角形的性质.【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质7.如图,BI,CI分别是∠ABC和∠ACB的平分线,DE过I点且DE∥BC,则下列结论错误的是()A.AI平分∠BAC B.I到三边的距离相等C.AI=ID D.DE=BD+CE【考点】角平分线的性质;平行线的性质;等腰三角形的判定与性质.【分析】根据三角形的角平分线相交于一点,根据角平分线上的点到角的两边的距离相等,角平分线的定义,平行线的性质对各选项分析判断后利用排除法求解.【解答】解:A、∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC正确,故本选项错误;B、I为△ABC角平分线的交点,I到三边的距离相等正确,故本选项错误;C、AI与DI的大小无法判断,故本选项正确;D、∵BI,CI分别是∠ABC和∠ACB的平分线,∴∠DBI=∠CBI,∠ECI=∠BCI,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠BCI,∴∠DBI=∠DIB,∠ECI=∠EIC,∴BD=DI,CE=EI,∴DE=DI+EI=BD+CE,即DE=BD+CE正确,故本选项错误.故选C.【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定,熟记三角形的角平分线相交于一点,角平分线上的点到角的两边的距离相等的解题的关键.8.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为()A.110°B.105°C.90°D.85°【考点】等边三角形的性质.【分析】根据等边三角形的性质可得∠A=∠B=60°,又因为AM=BN,AB=AB,所以△AMB ≌△BNA,从而得到∠NAB=∠MBA=60°﹣∠MBC=35°,则∠MON=∠AOB=180°﹣2×35°=110°.【解答】解:∵△ABC是等边三角形∴∠A=∠B=60°∵AM=BN,AB=AB∴△AMB≌△BNA∴∠NAB=∠MBA=60°﹣∠MBC=35°∴∠AOB=180°﹣2×35°=110°∵∠MON=∠AOB∴∠MON=110°故选A.【点评】考查了等腰三角形的性质,根据等边三角形的性质,结合全等三角形求解.9.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是()A.B.C.1 D.2+【考点】平面展开-最短路径问题.【分析】根据已知得出蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是如图BM的长度,进而利用勾股定理求出即可.【解答】解:∵蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,∴蚂蚁爬行的最短距离是如图BM的长度,∵无盖的正方体盒子的棱长为2,BC的中点为M,∴A1B=2+2=4,A1M=1,∴BM==.故选B.【点评】此题主要考查了平面展开﹣最短路径问题,利用图形得出最短路径为BM是解题关键.10.若x、y为实数,,则4y﹣3x是6.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得x2﹣4≥0且4﹣x2≥0,根据分式有意义的条件可得x﹣2≠0,再解不等式即可.【解答】解:由题意得:x2﹣4≥0且4﹣x2≥0,x﹣2≠0,解得:x=﹣2,则y=0,4y﹣3x=6,故答案为:6.【点评】此题主要考查了二次根式有意义和分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.二次根式中的被开方数是非负数.二、填空题11.16的平方根是±4,= 1.2.【考点】算术平方根;平方根.【分析】一个正数的平方根有两个,它们互为相反数;算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵(±4)2=16,∴16的平方根是±4;=1.2.【点评】此题主要考查了平方根与算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为90.【考点】勾股定理.【分析】连续自然数,两数的差是1,较大的是斜边,根据勾股定理就可解得.【解答】解:设另一直角边为a,斜边为a+1.根据勾股定理可得,(a+1)2﹣a2=92.解之得a=40.则a+1=41,则直角三角形的周长为9+40+41=90.故答案为:90.【点评】本题综合考查了勾股定理,解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.14.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=﹣1,这个正数是9.【考点】平方根.【分析】由于一个正数的平方根有两个,且它们互为相反数,由此即可列出方程求解.【解答】解:依题意得,2a﹣1+(﹣a+2)=0,解得:a=﹣1.则这个数是(2a﹣1)2=(﹣3)2=9.故答案为:﹣1,9【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.15.若|x﹣1|+(y﹣2)2+=0,则x+y+z=6.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y、z的值,代入所求代数式计算即可.【解答】解:∵|x﹣1|+(y﹣2)2+=0,∴x﹣1=0,y﹣2=0,z﹣3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,在Rt△ABC中,BE平分∠ABC,ED⊥AB于D,AC=3cm,则AE+DE=3cm.【考点】角平分线的性质.【分析】要求AE+DE,现知道AC=3cm,即AE+CE=3cm,只要CE=DE则问题可以解决,而应用其它条件利用角平分线的性质正好可求出CE=DE.【解答】解:∵∠ACB=90°,∴EC⊥CB,又BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC=3cm故答案为:3【点评】此题主要考查角平分线性质:角平分线上的任意一点到角的两边距离相等;做题时要认真观察各已知条件在图形上的位置,根据位置结合相应的知识进行思考是一种很好的方法.17.若△ABC中,∠A:∠B:∠C=1:2:3,且最长边为10cm,则最短边长为5cm.【考点】含30度角的直角三角形.【分析】根据比例设∠A、∠B、∠C分别为k、2k、3k,然后根据三角形的内角和等于180°列式求出各角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵∠A:∠B:∠C=1:2:3,∴设∠A、∠B、∠C分别为k、2k、3k,k+2k+3k=180°,解得k=30°,∴∠A=30°,∠B=60°,∠C=90°,∵最长边为10cm,∴最短边长=×10=5cm.故答案为:5.【点评】本题考查了含30°角的直角三角形,主要利用了30°角所对的直角边等于斜边的一半的性质,根据比例求出各角的度数是解题的关键.18.若,且ab<0,则a+b=﹣1.【考点】算术平方根.【分析】直接利用绝对值的性质以及二次根式的性质进而得出a,b的值,即可得出答案.【解答】解:∵|a|=5,=2,∴a=±5,b=4,∵ab<0,∴a=﹣5,b=4,∴a+b=﹣1.故答案为:﹣1.【点评】此题主要考查了绝对值的性质以及二次根式的性质,正确把握相关性质是解题关键.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是5cm.【考点】勾股定理.【分析】先根据面积求出三角形另一边的长,再根据勾股定理求出直角三角形斜边长即可.【解答】解:∵该长方形的一边长为3cm,面积为12cm2,∴另一边长为4cm,∴对角线长==5cm.【点评】此题主要涉及的知识点:长方形的面积公式和勾股定理的应用.20.若,则b c+a的值为﹣3.【考点】二次根式有意义的条件;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据二次根式的意义,被开方数是非负数.则a﹣5≥0,5﹣a≥0,求得a的值,再根据非负数的性质,求得b,c的值,代入计算即可.【解答】解:∵a﹣5≥0,5﹣a≥0,∴a=5,∴+|2c﹣6|=0,∴b+2=0,2c﹣6=0,解得b=﹣2,c=3,∴b c+a=(﹣2)3+5=﹣8+5=﹣3,故答案为﹣3.【点评】本题考查了二次根式有意义的条件和非负数的性质,同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0三、解答与证明21.解方程:(1)x2﹣25=0(2)(x﹣1)2=16.【考点】解一元二次方程-直接开平方法.【分析】(1)先移项,然后开平方即可;(2)将(x﹣1)看作一个整体,然后开平方求出(x﹣1),继而再求x的值.【解答】解:(1)x2﹣25=0,x2=25,x1=﹣5,x2=﹣﹣5;(2)(x﹣1)2=16,x﹣1=±4,x1=﹣3,x2=5.【点评】本题考查了解一元二次方程﹣﹣直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c (a,c同号且a≠0).22.如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD,过点D 作DF⊥BE,垂足为F.试说明:BF=EF.【考点】等边三角形的性质.【分析】【分析】因为△ABC是等边三角形,所以∠ABC=∠ACB=60°,点D是AC的中点,则∠DBC=30°,再由题中条件求出∠E=30°,易得△DBE为等腰三角形,由等腰三角形的性质可证得结论.【解答】证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵点D是AC的中点,∴∠DBC=∠ABC=30°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBE=∠E,∴△DBE为等腰三角形,∵DF⊥BE,∴BF=EF.【点评】本题考查了等边三角形的性质,掌握等腰三角形“三线合一”是解答此题的关键.23.如图,A、D、E三点在同一直线上,∠BAE=∠CAE,∠BDE=∠CDE,(1)求证:AB=AC;(2)求证:AE⊥BC.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由题中条件两角夹一边判定△ADC≌△ADB,得出AB=AC,进而亦可得出第二问的结论.【解答】证明:(1)∵∠BDE=∠CDE,∠BAE=∠CAE,∴∠ADB=∠ADC,又AD=AD,∴△ADC≌△ADB,∴AB=AC,(2)在△ABC中,AB=AC,∠BAE=∠CAE,∴AE⊥BC.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定及性质问题,能够熟练掌握.24.已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠B,CF∥DE,求证:AC∥BD.【考点】全等三角形的判定与性质;平行线的判定与性质.【分析】求出AF=BE,根据平行线性质求出∠CFE=∠BED,根据AAS推出△ACF≌△BDE 即可.【解答】证明:∵CF∥DE,∴∠CFE=∠BED,∵AE=BF,∴AF=BE,∵∠C=∠B,在△ACF和△BDE中,∴△ACF≌△BDE(AAS),∴∠A=∠B,∴AC∥BD【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,解此题的关键是推出△ACF≌△BDE,注意:全等三角形的对应边相等,对应角相等.25.已知等腰三角形的三边长a=5x﹣1,b=6﹣x,c=4,求x的值.【考点】等腰三角形的性质;三角形三边关系.【分析】分三种情况求解后利用三角形的三边关系验证.【解答】解:若a=b,则5x﹣1=6﹣x,得x=,三边长分别为,,5,符合三角形三边关系;若a=c,则5x﹣1=4,得x=1,三角形的三边长为4,5,4,符合三角形三边关系;若b=c,则6﹣x=4,得x=2,三角形的三边长为9,4,4,不构成三角形;综上所述,符合要求的x值为或1;【点评】本题考查了等腰三角形的性质及三角形的三边关系,解题的关键是分类讨论.26.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?【考点】勾股定理的应用.【分析】本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.【解答】解:如图所示:根据题意,得AC=AD﹣BE=13﹣8=5m,BC=12m.根据勾股定理,得AB==13m.则小鸟所用的时间是13÷2=6.5(s).答:这只小鸟至少6.5秒才可能到达小树和伙伴在一起.【点评】此题主要考查勾股定理的运用.关键是构造直角三角形,同时注意:时间=路程÷速度.27.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,求出AE的长度.【考点】翻折变换(折叠问题).【分析】利用等腰直角三角形的性质得出BC的长,进而得出BH,DH的长,再利用勾股定理得出AE的长.【解答】解:作DH⊥AB于H,可得等腰Rt△DBH,由AB=4,可知BC=sin45°×AB=×4=2,于是BD=,BH=DH=×=1,设AE=DE=x,则EH=4﹣1﹣AE=3﹣x,在Rt△DEH中,(3﹣x)2+12=x2,解得:x=,故AE的长度为.【点评】此题主要考查了翻折变换以及勾股定理等知识,根据已知得出BH=DH的长是解题关键.28.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为14cm;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为35°;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.【考点】翻折变换(折叠问题).【分析】操作一利用对称找准相等的量:BD=AD,∠BAD=∠B,然后分别利用周长及三角形的内角和可求得答案;操作二利用折叠找着AC=AE,利用勾股定理列式求出AB,设CD=x,表示出BD,AE,在Rt△BDE中,利用勾股定理可得答案;【解答】解:操作一:(1)由折叠的性质可得AD=BD,∵△ACD的周长=AC+CD+AD,∴△ACD的周长=AC+CD+BD=AC+BC=8+6=14(cm);故填:14cm;(2)设∠CAD=4x,∠BAD=7x由题意得方程:7x+7x+4x=90,解之得x=5,所以∠B=35°;故填:35°;操作二:∵AC=9cm,BC=12cm,∴AB===15(cm),根据折叠性质可得AC=AE=9cm,∴BE=AB﹣AE=6cm,设CD=x,则BD=12﹣x,DE=x,在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2,解之得x=4.5,∴CD=4.5cm.【点评】本题考查了直角三角形中的勾股定理的应用及图形的翻折问题;解决翻折问题时一般要找着相等的量,然后结合有关的知识列出方程进行解答.29.如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A﹣B﹣C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②③为备用图)(1)当P在AB上,t为何值时,△APE的面积为长方形面积的?(2)整个运动过程中,t为何值时,△APE为直角三角形?(3)整个运动过程中,t为何值时,△APE为等腰三角形?【考点】四边形综合题.【分析】(1)设t秒后,△APE的面积为长方形面积的,根据题意得:△APE的面积= APAD=t×4=,从而求得t值;(2)当P运动到AB中点时AEP为直角三角形,此时角APE为直角,t=3;还有一种情况,当P运动到BC上时,角AEP为直角时利用相似三角形求得AP的长即可求得t值;(3))第一种情况,当P在AE垂直平分线上时,AP=EP;第二种情况,P运动到点B上时APE为等腰三角形,此时AE=EP,t=6;第三种情况,P在AB上,AP=PE;【解答】解:(1)设t秒后,△APE的面积为长方形面积的,根据题意得:AP=t,∴△APE的面积=APAD=t×4=,解得:t=4,∴4秒后,△APE的面积为长方形面积的;(2)显然当t=3时,PE⊥AB,∴△APE是直角三角形,当P在BC上时,△ADE∽△ECP,此时,解得:CP=,∴PB=BC﹣PC=4﹣=,∴t=6+=;(3)①当P在AE垂直平分线上时,AP=EP,过P作PQ⊥AE于Q,∵AD=4,DE=3,∴AE=5,∴AQ=2.5,由△AQP∽△EDA,得:,即:,解得:AP=,∴t=;.②当EA=EB时,AP=6,∴t=6,③当AE=AP时,∴t=5.∴当t=、5、6时,△APE是等腰三角形.【点评】本题考查了四边形的综合知识和动点问题,动点问题更是中考中的热点考题,有一定的难度,解题的关键是能够化动为静,利用等腰三角形的性质求解.。

江苏省江阴市华士片2016-2017学年八年级上学期期中考试数学试卷

江苏省江阴市华士片2016-2017学年八年级上学期期中考试数学试卷

△EBC的周长分别是 40cm, 24cm,则 AB=
cm.
15.如图,△ ABC中, AD⊥ BC于 D, BE⊥AC于 E,AD与 BE相交于点 F,若 BF= AC,
则∠ ABC=
°.
第 13 题图
第 15 题图
第 14 题图
16.如图, 在△ ABC中,AB=AC=7,BC=5,AF⊥BC 于 F,BE⊥AC 于 E,D是 AB的中点, 则△ DEF
的周长是

17. 如图, E 为等腰直角△ ABC 的边 AB上的一点,要使 AE= 3, BE= 1, P 为 AC上的动点,
则 PB+ PE的最小值为

18. 如图, Rt△ABC纸片中, ∠C=90°, AC=6,BC=8,点 D 在边 BC 上运动, 以 AD为折痕△ ABD
折叠得到△ AB′D,AB′与边 BC交于点 E.若∠ B′ED=90°,则 BD的长是
则下列关系式中不正确的是
()
A. x+y=14
B.
x- y=2
C.
xy=48
D.
x + y =144.
9.如图 , BD是∠ ABC平分线, DE AB于 E,AB=36cm,BC=24cm,S△ ABC=120cm2, DE长是(

A. 4cm
B. 4.8cm
C
. 5cm
10.如图所示的正方形网格中,网格线的交点称为格点.已知
b 于 C、 B 两点,连接 AC、 BC,若∠ ABC=54°,则∠ 1 的大小为
A .36°
B .54°
C .72°


D
. 63°
第 4 题图
第5题 图

江苏省江阴市要塞片2015-2016学年八年级数学上学期期中试题(解析版) 新人教版

江苏省江阴市要塞片2015-2016学年八年级数学上学期期中试题(解析版) 新人教版

江苏省江阴市要塞片2014-2015学年八年级数学上学期期中试题(考试时间100分钟,满分100分)一、选择题(本大题共10小题,每小题3分,共30分.)1.下列图形中,是轴对称图形的个数是………………………………………………( )2.有下列长度的三条线段,能组成等腰三角形的是…………………………………( )A.2cm,2cm,4cm B.3cm,8cm,3cm C.3cm,4cm,6cm D.5cm,4cm,4cm3.如图,下列条件中,不能证明△ABD≌△ACD的是…………………………………( )A.AB=AC ,BD=CD B.∠B=∠C,∠BAD=∠CADC.∠B=∠C,BD=CD D.∠ADB=∠ADC,DB=DC4.给出的下列说法中:①以1 ,2,3为三边长的的三角形是直角三角形;②如果直角三角形的两边长分别是3和4,那么斜边必定是5;③一个等腰直角三角形的三边长分别是a、b、c,其中c为斜边,那么a︰b︰c=1︰1︰2.其中正确的是…………( )A.①② B.①③ C.②③ D.①②③5.等腰三角形有一个角为50°,则它的顶角度数是…………………………………( )A.50° B. 65° C.80° D.50°或80°【答案】D【解析】6.小明不慎将一块三角形的玻璃摔碎成四块(即图中标有1、2、3、4的四块),如果将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带 ( ) A.第1块B.第2块C.第3块D.第4块7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为………………………………………………………………( )A.7cm B.10cm C.12cm D.22cm【答案】C【解析】试题分析:首先根据折叠可得AD=BD,再由△ADC的周长为17cm,AC=5cm,可以得到AD+DC的长12㎝,利用等量代换可得BC的长BD+CD=12cm.考点:线段的垂直平分线8.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在……………………………………………( )A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条高所在直线的交点 D.△ABC三条角平分线的交点9.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是……………………… ( )A.13B.17C.1 D.5210.如图,∠AOB =45°,在OA 上截取OA 1=1,OA 2=3,OA 3=5,OA 4=7,OA 5=9,…,过点A 1、A 2、A 3、A 4、A 5分别作OA 的垂线与OB 相交,得到并标出一组阴影部分,它们的面积分别为S 1,S 2,S 3,….观察图中的规律,第n 个阴影部分的面积S n 为…………………………………… ( )A .8n-4B .4nC .8n+4D .3n+2 二、填空题(本大题共8小题,每小题2分,共16分.)11.如图,∠ADC= °.【答案】70【解析】o 50A B CD试题分析:由图知AD是∠CAB的角平分线,再由∠C=90°,∠B=50°,可求得∠CAD=20°,因此∠ADC=90°-∠CAD=20°考点:角平分线,三角形的内角和12.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=_______°.13.等腰三角形的两边长分别为3cm和6cm,则它的周长是_________cm.14.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是 . (只添一个条件即可).15.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为__________.16.如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A的面积为 .17.如图,把一张直角三角形纸片按照图①~③的过程折叠.若直角三角形的两条直角边分别是5和12,则最后折成的图形的面积(按单层计算)为 .18.如图,∠MON=90°,△ABC的顶点A、B分别在OM、ON上,当A点从O点出发沿着OM向右运动时,同时点B在ON上运动,连结OC. 若AC=4,BC=3,AB=5,则OC的长度的最大值是.考点:勾股定理的逆定理,三、解答题(本大题共7小题,共54分.解答时应写出文字说明、说理过程或演算步骤.)19.(本题满分6分)⑴画出△ABC关于直线MN的对称图形△A´B´C´.⑵如图:某通信公司在A区要修建一座信号发射塔M,要求发射塔到两城镇P、Q的距离相等,同时到两条高速公路l1、l2的距离也相等.在图中作出发射塔M的位置.(不写作法,保留作图痕迹)20.(本题满分6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴21.(本题满分6分)已知:如图,同一直线上有四点B、E、C、F,且AB∥DE,AC∥DF,BE=CF.请说明:AB=DE.【答案】【解析】试题分析:根据线段间的距离求得BE+EC=CF+BC,即BC=EF,然后由两直线AB∥DE,AC∥DF,推知同位角∠B=∠DEF,∠ACB=∠F,所以根据全等三角形的判定定理ASA证明△ABC≌△DEF;最后由全等三角形的对应22.(本题满分8分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.∴AC=DC∵AB=AC∴AB=CD考点:等腰三角形性质和判定,三角形的内角和23.(本题满分7分)如图,直角三角形的两直角边AC=6 cm,BC=8 cm,沿AD折叠使AC落在AB上.点C与E重合,折痕为AD,试求CD的长.24.(本题满分9分)如图,△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=2.现将△DEF与△ABC按如图所示的方式叠放在一起.现将△ABC保持不动,△DEF运动,且满足:点E在边BC上运动(不与B、C重合),且边DE始终经过点A,EF与AC交于M点.请问:在△DEF运动过程中,△AEM能否构成等腰三角形?若能,请求出BE的长;若不能,请说明理由.∵2∴BE=2-③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°∴∠BAE=45°∴AE平分∠B AC∵AB=AC∴BE=1BC2=1考点:三角形全等的判定和性质,等腰直角三角形的判定25.(本题满分12分)在△ABC中, AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为13、17、20,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为_____________.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是 m2.【解析】(3)∵△ABE是等腰直角三角形,∴AB=AE,∠BAE=90°,第十三章:干燥通过本章的学习,应熟练掌握表示湿空气性质的参数,正确应用空气的H–I 图确定空气的状态点及其性质参数;熟练应用物料衡算及热量衡算解决干燥过程中的计算问题;了解干燥过程的平衡关系和速率特征及干燥时间的计算;了解干燥器的类型及强化干燥操作的基本方法。

2015-2016学年江苏省无锡市江阴市长泾片八年级上学期期中数学试卷(带解析)

2015-2016学年江苏省无锡市江阴市长泾片八年级上学期期中数学试卷(带解析)

绝密★启用前2015-2016学年江苏省无锡市江阴市长泾片八年级上学期期中数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:131分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2015秋•江阴市期中)如图,已知△ABC 中高AD 恰好平分边BC ,∠B=30°,点P 是BA 延长线上一点,点O 是线段AD 上一点且OP=OC ,下面的结论: ①AC=AB ;②∠APO+∠DCO=30°;③△OPC 是等边三角形;④AC=AO+AP . 其中正确的为( )A .①②③B .①②④C .①③④D .①②③④2、(2015秋•江阴市期中)如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E ,且PE=3,AE=5.有一点F 在边AB 上运动,当运动到某一位置时△FAP 面积恰好是△EAP面积的2倍,则此时AF 的长是( )A .10B .8C .6D .43、(2015秋•江阴市期中)如图,D 是△ABC 中BC 边上一点,AB=AC=BD ,则∠1、∠2的关系是( )A .∠2=3∠1﹣180°B .∠2=60°﹣C .∠1=2∠2D .∠1=90°﹣∠24、(2015秋•江阴市期中)如图所示,直线l 是四边形ABCD 的对称轴,若AB=CD ,有下面4个结论:①AB ∥CD ;②AC ⊥BD ;③AO=CO ;④AB ⊥BC . 其中正确的结论有几个( )A .4个B .3个C .2个D .1个5、(2015秋•江阴市期中)如图所示,在△ABC 中,AB=AC ,∠A=36°,两条角平分线BE 、CD 相交于点O ,则图中等腰三角形有( )A .3个B .5个C .7个D .8个6、(2015秋•江阴市期中)已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( ) A .∠A ﹣∠B=∠C B .∠A :∠B :∠C=3:4:5 C .(b+c )(b ﹣c )=a 2 D .a=7,b=24,c=257、(2012•黔东南州)如图,矩形ABCD 边AD 沿折痕AE 折叠,使点D 落在BC 上的F 处,已知AB=6,△ABF 的面积是24,则FC 等于( )A .1B .2C .3D .48、(2015秋•江阴市期中)下列说法错误的是( ) A .两个面积相等的圆一定全等B .全等三角形是指形状、大小都相同的三角形C .底边相等的两个等腰三角形全等D .斜边上中线和一条直角边对应相等的两直角三角形全等9、(2015秋•江阴市期中)等腰三角形的两边长分别为5cm ,3cm ,则该等腰三角形的周长为( )A .13cmB .11cmC .13cm 或11cmD .13cm 或12cm10、(2007•邵阳)下列“QQ 表情”中属于轴对称图形的是( ) A .B .C .D .第II卷(非选择题)二、填空题(题型注释)11、(2015秋•江阴市期中)如图,有一个直角三角形ABC,∠C=90°,AB=8,BC=3,P、Q两点分别在边AC和过点A且垂直于AC的射线AX上运动,PQ交AB于点D,且PQ=AB.问当AD= 时,才能使△ABC≌△PQA.12、(2015秋•江阴市期中)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则BC长为.13、(2015秋•江阴市期中)如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E.∠DCA=40°,则∠DCB= °.14、(2015秋•江阴市期中)如图,△OAD≌△OBC,且∠O=80°,∠C=20°,则∠AEB= °.15、(2015秋•东平县期中)如图,E 点为△ABC 的边AC 中点,CN ∥AB ,过E 点作直线交AB 于M 点,交CN 于N 点.若MB=6cm ,CN=2cm ,则AB= cm .16、(2015春•邳州市期末)在△ABC 中,∠A=100°,当∠B= °时,△ABC 是等腰三角形.17、(2015秋•江阴市期中)等边三角形是一个轴对称图形,它有 条对称轴.三、计算题(题型注释)18、(2015秋•江阴市期中)如图,一个上方无盖的长方体盒子紧贴地面,一只蚂蚁由盒外A 处出发,沿着盒子面爬行到盒内的点B 处,已知,AB=9,BC=9,BF=6,这只蚂蚁爬行的最短距离是 .四、解答题(题型注释)19、(2015•盘锦四模)已知,点P 是Rt △ABC 斜边AB 上一动点(不与A 、B 重合),分别过A 、B 向直线CP 作垂线,垂足分别为E 、F 、Q 为斜边AB 的中点.(1)如图1,当点P 与点Q 重合时,AE 与BF 的位置关系是 ,QE 与QF 的数量关系是 ;(2)如图2,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明;(3)如图3,当点P 在线段BA (或AB )的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.20、(2015秋•江阴市期中)在△ABC 中,AB=4,AC=3,BC=5,动点P 从点C 出发,沿着CB 方向运动,速度为每秒3个单位,到达点B 时运动停止,设运动时间为t 秒,请解答下列问题:(1)求BC 上的高;(2)当t 为何值时,△ACP 为等腰三角形?21、(2015秋•江阴市期中)在小学,我们已经初步了解到,正方形的每个角都是90°,每条边都相等.如图,在正方形ABCD 外侧作直线AQ ,且∠QAD=30°,点D 关于直线AQ 的对称点为E ,连接DE 、BE ,DE 交AQ 于点G ,BE 交AQ 于点F .(1)求∠ABE 的度数; (2)若AB=6,求FG 的长.22、(2015秋•连云港期末)如图,∠AOB=90°,OA=9cm ,OB=3cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿BC 方向匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?23、(2015秋•江阴市期中)如图,已知BD 为∠ABC 的平分线,DE ⊥BC 于E ,DF ⊥BA 于F ,且AD=DC .求证:∠BAD+∠BCD=180°.24、(2012•西城区二模)如图,点F ,G 分别在△ADE 的AD ,DE 边上,C ,B 依次为GF 延长线上两点,AB=AD ,∠BAF=∠CAE ,∠B=∠D .(1)求证:BC=DE ;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB 的度数.25、(2015秋•江阴市期中)(1)在4×4的方格中有五个同样大小的正方形如图1摆放,移动其中一个正方形到空白方格中,与其余四个正方形图2至图5组成的新图形是一个轴对称图形,请在下面网格中画出四种互不全等的新图形.(2)定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN .若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.已知点C 是线段AB 上的一定点,其位置如图2所示,请在BC 上画一个点D ,使点C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);参考答案1、D2、A3、A4、B5、D6、B7、B8、C9、C10、C11、412、BC的长为21cm或11cm.13、3014、12015、816、4017、318、1519、(1)AE∥BF,QE=QF;(2)QE=QF;见解析(3)QE=QF.见解析20、(1)2.4;(2)t=1,,.21、(1)15°;(2)322、5cm.23、见解析24、(1)见解析;(2)67°.25、(1)见解析;(2)见解析【解析】1、试题分析:①根据SAS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论;②利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④首先证明△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP解:∵△ABC中高AD恰好平分边BC,∴∠ADB=∠ADC=90°,BD=CD,在∠ABD与△ACD中,,∴△ABD≌△ACD(SAS),∴AB=AC.故①正确;如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故②正确;∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故③正确;如图2,在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故④正确.故选D.考点:全等三角形的判定与性质;等腰三角形的判定与性质;等边三角形的判定与性质.2、试题分析:过P作PM⊥AB于M,根据角平分线性质求出PM=3,根据已知得出关于AF的方程,求出方程的解即可.解:过P作PM⊥AB于M,∵点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且PE=3,∴PM=PE=3,∵AE=5,△FAP面积恰好是△EAP面积的2倍,∴×AF×3=2××5×3,∴AF=10,故选A.考点:角平分线的性质.3、试题分析:根据等腰三角形的性质和外角定理可得∠B=∠1﹣∠2,然后利用三角形内角和定理即可求出∠1和∠2的关系.解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠1,∵∠1=∠2+∠C=∠2+∠B,∴∠B=∠1﹣∠2,△ABD中,∵∠B+∠1+∠BAD=∠B+2∠1=180°,∴∠1﹣∠2+2∠1=180°,3∠1﹣∠2=180°.故选A.考点:等腰三角形的性质.4、试题分析:根据轴对称的性质得到直线l垂直平分BD,则根据线段垂直平分线的性质得AB=AD,CD=CB,由于AB=CD,则AB=BC=CD=BC,于是可判断四边形ABCD 为菱形,然后根据菱形的性质对4个结论进行判断.解:∵直线l是四边形ABCD的对称轴,∴直线l垂直平分BD,∴AB=AD,CD=CB,∵AB=CD,∴AB=BC=CD=BC,∴四边形ABCD为菱形,∴AC⊥BD,AB∥CD,OA=OC,所以①②③正确.故选:B.考点:轴对称的性质.5、试题分析:由AB=AC,∠A=36°,CD、BE是△ABC的角平分线,可求得∠ABE=∠CBE=∠ACD=∠BCD=∠A=36°,即可得△ABC,△ABE,△ACD,△BOC是等腰三角形,然后由三角形内角和定理与三角形外角的性质,可求得∠BEC=∠BDC=∠ABC=∠ACB=∠BOD=∠COE=72°,继而可得△BOD,△COE,△BCE,△CBD是等腰三角形.解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵CD、BE是△ABC的角平分线,∴∠ABE=∠CBE=∠ACD=∠BCD=∠A=36°,∴AE=BE,AD=CD,OB=OC,∴△ABC,△ABE,△ACD,△BOC是等腰三角形,∵∠BEC=180°﹣∠ACB﹣∠CBE=72°,∠CDB=180°﹣∠ABC﹣∠BCD=72°,∠BOD=∠COE=∠CBE+∠BCD=72°,∴∠BEC=∠BDC=∠ABC=∠ACB=∠BOD=∠COE=72°,∴BD=OB,OC=CE,BC=BE=CD,∴△BOD,△COE,△BCE,△CBD是等腰三角形.∴图中的等腰三角形有8个.故选D.考点:等腰三角形的判定与性质.6、试题分析:根据三角形内角和定理可得A、B是否是直角三角形;根据勾股定理逆定理可判断出C、D是否是直角三角形.解:A、∵∠A﹣∠B=∠C,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;B、∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=75°,故不能判定△ABC是直角三角形;C、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,故△ABC为直角三角形;D、∵72+242=252,∴△ABC为直角三角形;故选:B.考点:勾股定理的逆定理;三角形内角和定理.7、试题分析:由四边形ABCD是矩形与AB=6,△ABF的面积是24,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,继而求得答案.解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,∵AB=6,∴S△ABF=AB•BF=×6×BF=24,∴BF=8,∴AF===10,由折叠的性质:AD=AF=10,∴BC=AD=10,∴FC=BC﹣BF=10﹣8=2.故选B.考点:翻折变换(折叠问题).8、试题分析:根据圆的面积公式可得两个面积相等的圆半径一定也相等,故A说法正确;根据全等三角形的概念可得B说法正确;底边相等的两个等腰三角形,腰长不一定相等,故C说法错误;斜边上中线相等的直角三角形,斜边也相等,再有一条直角边对应相等,故两个直角三角形全等,因此D说法正确.解:A、两个面积相等的圆一定全等,说法正确;B、全等三角形是指形状、大小都相同的三角形,说法正确;C、底边相等的两个等腰三角形全等,说法错误;D、斜边上中线和一条直角边对应相等的两直角三角形全等,说法正确;故选:C.考点:全等图形.9、试题分析:由于未说明两边哪个是腰哪个是底,故需分情况讨论,从而得到其周长.解:当等腰三角形的腰为3cm,底为5cm时,3cm,3cm,5cm能够组成三角形,此时周长为3+3+5=11cm;当等腰三角形的腰为5,底为3cm时,3cm,5cm,5cm能够组成三角形,此时周长为5+5+3=13cm.则这个等腰三角形的周长是11cm或13cm.故选C.考点:等腰三角形的性质;三角形三边关系.10、试题分析:根据轴对称图形的概念求解.解:A、B、D都不是轴对称图形,C关于直线对称.故选C.考点:轴对称图形.11、试题分析:根据三角形全等的性质得出∠BAC=∠APQ,进而得出∠PQA=∠DAQ,从而求出AD=PD=QD,则AD=PQ=AB=4.解:∵△ABC≌△PQA,PQ=AB.∴∠BAC=∠APQ,∴PD=DA,∵∠BAC+∠BAQ=90°,∠APQ+∠AQP=90°,∴∠PQA=∠DAQ,∴AD=DQ,∴AD=PD=QD,∴AD=PQ,∵PQ=AB=8,∴PQ=4.故答案为4.考点:全等三角形的判定.12、试题分析:分两种情况:①∠B为锐角;②∠B为钝角;利用勾股定理求出BD、CD,即可求出BC的长.解:分两种情况:①当∠B为锐角时,如图1所示,在Rt△ABD中,BD===5(cm),在Rt△ADC中,CD===16cm,∴BC=BD+CD=21cm;②当∠B为钝角时,如图2所示,在Rt△ABD中,BD═==5(cm),在Rt△ADC中,CD===16cm,∴BC=CD﹣BD=16﹣5=11(cm);综上所述:BC的长为21cm或11cm.考点:勾股定理.13、试题分析:根据线段垂直平分线性质求出AD=DC,求出∠A=∠DCA=40°,根据等腰三角形性质和三角形内角和定理求出∠ABC,即可得出答案.解:∵AC的垂直平分线分别交AB、AC于点D、E,∴AD=DC,∵∠DCA=40°,∴∠A=∠DCA=40°,∵AB=AC,∴∠ACB=∠B=(180°﹣∠A)=70°,∴∠DCB=∠ABC﹣∠DCA=70°﹣40°=30°,故答案为:30.考点:线段垂直平分线的性质;等腰三角形的性质.14、试题分析:根据全等三角形的性质求出∠D,根据三角形外角性质求出∠DBC,再根据三角形的外角性质求出即可.解:∵△OAD≌△OBC,∠C=20°,∴∠D=∠C=20°,∵∠O=80°,∴∠DBC=∠O+∠C=100°,∴∠AEB=∠D+∠DBC=20°+100°=120°,故答案为:120.考点:全等三角形的性质.15、试题分析:先证△CNE≌△AME,得出AM=CN,那么就可求AB的长.解:∵CN∥AB,∴∠NCE=∠MAE,又∵E是AC中点,∴AE=CE,而∠AEM=∠CEN,在△CNE和△AME中,,∴△CNE≌△AME,∴AM=CN,∴AB=AM+BM=CN+BM=2+6=8,故答案为:8.考点:全等三角形的判定与性质.16、试题分析:直接根据等腰三角形的两底角相等进行解答即可.解:∵△ABC是等腰三角形,∠A=100°,∴∠B==40°.故答案为:40.考点:等腰三角形的判定.17、试题分析:根据轴对称图形和对称轴的概念求解.解:等边三角形是一个轴对称图形,它有3条对称轴.故答案为:3.考点:轴对称图形.18、试题分析:画出长方体的侧面展开图,利用勾股定理求解即可.解:如图所示,AB′==15.故答案为:15.考点:平面展开-最短路径问题.19、试题分析:(1)根据AAS推出△AEQ≌△BFQ,推出AE=BF即可;(2)延长EQ交BF于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可;(3)延长EQ交FB于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可.解:(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF,理由是:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中∴△AEQ≌△BFQ,∴QE=QF,故答案为:AE∥BF,QE=QF;(2)QE=QF,证明:延长EQ交BF于D,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF;(3)当点P在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EQ交FB于D,如图3,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF.考点:全等三角形的判定与性质;直角三角形斜边上的中线.20、试题分析:(1)直接利用勾股定的逆定理得出△ABC是直角三角形,进而利用三角形面积得出答案;(2)分别利用①当AP=AC时,②当AC=CP′时,③当AP″=CP″时,结合锐角三角函数关系得出答案.解:(1)∵32+42=52,∴△ABC是直角三角形,设BC上的高为x,则×AB×AC=×BC×x,=x,解得:x=2.4,故BC边上高为2.4;(2)①当AP=AC时,过A作AD⊥BC,∵cosC==,∴CD=ACcosC=3×=,∴CP=,∵P的速度为每秒3个单位,∴t=÷3=;②当AC=CP′时,∵AC=3,∴CP′=3,∴t=3÷3=1;③当AP″=CP″时,过P″作P″E⊥AC,∵AC=3,AP″=CP″,∴EC=1.5,∵cosC==CP″===2.5,则t=2.5÷3=综上所述:t=1,,.考点:勾股定理的逆定理;等腰三角形的判定.21、试题分析:(1)连接AE,由轴对称的性质和线段垂直平分线的性质得出∠EAQ=∠QAD=30°,由正方形的性质得出∠BAD=90°,AB=AD,得出AE=AB,由等腰三角形的性质和三角形内角和定理即可得出结果;(2)证出△AED是等边三角形,得出ED=6,由线段垂直平分线得出EG=3,∠FGE=90°,证出∠EFG=∠FEG=45°,得出EG=FG=3即可.解:(1)连接AE,如图1所示:∵点D关于直线AQ的对称点为E,∴AE=AD,AQ垂直平分DE,∴∠EAQ=∠QAD=30°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴AE=AB,∴∠BAE=30°+30°+90°=150°,∴∠ABE=(180°﹣150°)=15°;(2)由(1)得:AE=AD,∠EAD=60°,∴△AED是等边三角形,ED=6,∵AQ垂直平分DE,∴EG=3,∠FGE=90°,∵∠EAD=30°,∠AEB=15°,∴∠EFG=∠FEG=45°,∴EG=FG=3.考点:正方形的性质;线段垂直平分线的性质;等边三角形的判定与性质.22、试题分析:根据小球滚动的速度与机器人行走的速度相等,运动时间相等得出BC=CA.设AC为x,则OC=9﹣x,根据勾股定理即可得出结论.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.考点:勾股定理的应用.23、试题分析:先由角平分线性质得出DE=DF,再证明Rt△BFD≌Rt△BED即可.解:如图,∵BD为∠ABC的平分线,DE⊥BC,DF⊥BA,∴DF=DE,Rt△BFD和Rt△BED中,,∴Rt△BFD≌Rt△BED (HL),∴∠DCE=∠FAD,∵∠BAD+∠FAD=180°,∴∠BAD+∠BCD=180°.考点:全等三角形的判定与性质;角平分线的性质.24、试题分析:(1)由∠BAF=∠CAE,等式两边同时减去∠CAF,可得出∠BAC=∠DAE,再由AB=AD,∠B=∠D,理由ASA得出△ABC≌△ADE,利用全等三角形的对应边相等可得证;(2)由∠B=∠D,以及一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形ABF与三角形DGF相似,由相似三角形的对应角相等得到∠DGB=∠BAD,在三角形AFB中,由∠B及∠AFB的度数,利用三角形的内角和定理求出∠BAD的度数,进而得到∠DGB的度数.(1)证明:∵∠BAF=∠CAE,∴∠BAF﹣∠CAF=∠CAE﹣∠CAF,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE;(2)解:∠DGB的度数为67°,理由为:∵∠B=∠D,∠AFB=∠GFD,∴△ABF∽△GDF,∴∠DGB=∠BAD,在△AFB中,∠B=35°,∠AFB=78°,∴∠DGB=∠BAD=180°﹣35°﹣78°=67°.考点:全等三角形的判定与性质.25、试题分析:(1)根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案;(2)过点C作AB的垂线,在AB的垂线上截取A′C=AC,连接A′B,然后作A′B的垂直平分线n角AB与点D,点D就是所求作的点.解:(1)如图1所示:(2)如图2所示:①过点C作直线n⊥AB,②截取CA′=CA,连接A′B;③作A′B的垂直平分线m,交AB于点D,点D就是所求作的点.考点:利用轴对称设计图案;勾股定理.。

2015-2016年江苏省无锡市江阴二中八年级上学期期中数学试卷和答案

2015-2016年江苏省无锡市江阴二中八年级上学期期中数学试卷和答案

2015-2016学年江苏省无锡市江阴二中八年级(上)期中数学试卷一.选择题(2&#215;8=16分)1.(3分)下列四副图案中,不是轴对称图形的是()A.B.C.D.2.(3分)下列各式中,正确的是()A.B.C.D.3.(3分)小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.(3分)在下列说法中是错误的()A.在△ABC中,∠C=∠A﹣∠B,则△ABC为直角三角形B.在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形C.在△ABC中,若a=c,b=c,则△ABC为直角三角形D.在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形5.(3分)如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE6.(3分)△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个 B.2个 C.3个 D.4个7.(3分)如图一直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.1.5cm D.4cm8.(3分)将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二.填空题(2x16=32分)9.(3分)64的平方根为;的立方根是.10.(3分)一个正数的平方根分别为﹣m﹣3和2m+1,则这个正数为.11.(3分)如图,镜子中号码的实际号码是.12.(3分)如图,若△ABC≌△ADE,且∠B=60°,∠C=20°则∠DAE=.13.(3分)已知直角三角形的两边长分别为6和10,则第三边的长为.14.(3分)(1)等腰三角形的周长为18,其中一边为5,则另两边的长分别为.(2)等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是.(3)在等腰Rt△ABC中,斜边上中线为5,则斜边长为,面积是.15.(3分)如图,在△ABC中,PM、QN分别是AB、AC的垂直平分线,∠BAC=100°,则∠PAQ等于,若BC=10,则△PAQ的周长等于.16.(3分)如图,△ABC是边长为2的等边三角形,点D是BC边上的任意点,DE⊥AB于E点,DF⊥AC于F点,则DE+DF=.17.(3分)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)当点M、N运动秒时,M、N两点重合;(2)当点M、N运动秒后,M、N与△ABC中的某个顶点可得到等腰三角形.18.(3分)如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线且AD=12,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.三.解答题19.(6分)作图题(1)如图1,作出△ABC关于直线l对称的△DEF;(2)如图2,八年级(1)、(2)班的学生分别在M、N两处参加植树劳动,现要在道路A0、BO的交叉区域内设一个茶水供应点P,使点P到两条道路的距离相等,且到点M,N的距离也相等,请你找出点P.20.(7分)(1)计算:(﹣2)4﹣+(2)若+(y﹣2)2+|x+z|=0,求的值(3)已知y=+﹣4,求x+y的平方根.21.(6分)如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E作EF丄DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.22.(6分)已知:如图,△AMN的周长为18,∠B,∠C的平分线相交于点O,过O点的直线MN∥BC交AB、AC于点M、N.求AB+AC的值.23.(6分)如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.24.(9分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.25.(12分)如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=12,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C,作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间和G点的移动距离;(3)爱动脑筋的小明把BD=12改为BD=8,其他都不变,发现仍有△DEG与△BFG全等的情况出现,这样的情况会出现次,此时的移动时间分别为.2015-2016学年江苏省无锡市江阴二中八年级(上)期中数学试卷参考答案与试题解析一.选择题(2&#215;8=16分)1.(3分)下列四副图案中,不是轴对称图形的是()A.B.C.D.【解答】解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.2.(3分)下列各式中,正确的是()A.B.C.D.【解答】解:A、正确;B、=3,故本选项错误;C、≠﹣3,故本选项错误;D、=2,故本选项错误.故选:A.3.(3分)小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.4.(3分)在下列说法中是错误的()A.在△ABC中,∠C=∠A﹣∠B,则△ABC为直角三角形B.在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形C.在△ABC中,若a=c,b=c,则△ABC为直角三角形D.在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形【解答】解:A、由三角形内角和定理可求得∠A为90度,故正确;B、利用三角形内角和定理可求得∠A为90度,故正确;C、因为c2=a2+b2,△ABC为直角三角形,故正确;D、没有角为90度,故错误.故选:D.5.(3分)如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.6.(3分)△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:分三种情况找点,①公共边是AC,符合条件的是△ACE;②公共边是BC,符合条件的是△BCF、△CBG、△CBH;③公共边是AB,符合条件的三角形有,但是顶点不在网格上.故选:D.7.(3分)如图一直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.1.5cm D.4cm【解答】解:在Rt△ABC中,由勾股定理得;AB==5.由翻折的性质可知:AE=AC=3,CD=DE,∠C=∠AED=90°.∵BE=AB﹣AE,∴BE=2.设CD=DE=x,则DB=4﹣x.在Rt△EDB中,由勾股定理得:BD2=DE2+BE2,即(4﹣x)2=x2+22.解得:x=1.5.故选:C.8.(3分)将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.二.填空题(2x16=32分)9.(3分)64的平方根为±8;的立方根是2.【解答】解:64的平方根为±8,=8,8的立方根为2,故答案为:±8,2.10.(3分)一个正数的平方根分别为﹣m﹣3和2m+1,则这个正数为25.【解答】解:根据题意得:(﹣m﹣3)+(2m+1)=0,解得:m=2,则这个数是:(﹣2﹣3)2=25.故答案是:25.11.(3分)如图,镜子中号码的实际号码是3265.【解答】解:根据镜面对称的性质,在镜子中的真实数字应该是:3265.故答案为:326512.(3分)如图,若△ABC≌△ADE,且∠B=60°,∠C=20°则∠DAE=100°.【解答】解:∵△ABC≌△ADE,∠B=60°,∠C=20°,∴∠ADE=∠B=60°,∠E=∠C=20°,∴∠DAE=180°﹣∠ADE﹣∠E=180°﹣60°﹣20°=100°,故答案为:100°.13.(3分)已知直角三角形的两边长分别为6和10,则第三边的长为2或8.【解答】解:设第三边长为a,当a为斜边时,a==2;当10为斜边时,10=,解得a=8.综上所述,第三边的长为2或8.故答案为:2或8.14.(3分)(1)等腰三角形的周长为18,其中一边为5,则另两边的长分别为5cm、8cm或6.5cm、6.5cm.(2)等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是62°或118°.(3)在等腰Rt△ABC中,斜边上中线为5,则斜边长为10,面积是25.【解答】解:(1)①5cm是腰长时,底边=18﹣5×2=8cm,所以,另两边长为5cm、8cm;②5cm是底边时,腰长=∵(18﹣5)=6.5cm,所以,另两边长为6.5cm、6.5cm,综上所述,另两边长为5cm、8cm或6.5cm、6.5cm.故答案为:5cm、8cm或6.5cm、6.5cm;(2)分两种情况:①当高在三角形内部时(如图1),∵∠ABD=28°,∴顶角∠A=90°﹣28°=62°;②当高在三角形外部时(如图2),∵∠ABD=28°,∴顶角∠CAB=90°+28°=118°.故答案为:62°或118°;(3)∵在Rt△ABC中,斜边上的中线为5,∴斜边=2×5=10,故答案为:10;∵△ABC是等腰直角三角形,斜边上的中线长为5,∴斜边上的高线长为5,则面积为=25.故答案为:25.15.(3分)如图,在△ABC中,PM、QN分别是AB、AC的垂直平分线,∠BAC=100°,则∠PAQ等于20°,若BC=10,则△PAQ的周长等于10.【解答】解:∵在△ABC中,PM、QN分别是AB、AC的垂直平分线,∴PA=PB,AQ=CQ,∴∠PAB=∠B,∠CAQ=∠C,∵∠BAC=100°,∴∠B+∠C=180°﹣∠BAC=80°,∴∠PAB=∠CAQ=80°,∴∠PAQ=∠BAC﹣(∠PAB+∠CAQ)=100°﹣80°=20°,∵PA=PB,AQ=CQ,∴△PAQ的周长=PA+PQ+AQ=PB+PQ+CQ=BC=10,故答案为:20°,10.16.(3分)如图,△ABC是边长为2的等边三角形,点D是BC边上的任意点,DE⊥AB于E点,DF⊥AC于F点,则DE+DF=.【解答】解:设BD=x,则CD=2﹣x,∵△ABC是等边三角形,∴∠B=∠C=60°.∴ED=sin60°•BD,即ED=x,同理可证:DF=,∴DE+DF=,故答案为:17.(3分)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)当点M、N运动12秒时,M、N两点重合;(2)当点M、N运动4,8,16秒后,M、N与△ABC中的某个顶点可得到等腰三角形.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12,故当点M、N运动12秒时,M、N两点重合;故答案为:12;(2)①当M在AC上,N在AB上时,有AM=AN,△AMN为等边三角形,符合题意,即t=12﹣2t,解得t=4;②当M、N均在AC上时,有BM=BN,△BMN为等腰三角形,符合题意,则CM=AN,即12﹣t=2t﹣12,解得t=8;③当M、N均在BC上时,N点已经追过M点,有AM=AN,△AMN为等腰三角形,符合题意,则CM=BN,即t﹣12=36﹣2t,解得t=16.故答案为4,8,16.18.(3分)如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线且AD=12,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【解答】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,AD=12,=×BC×AD=×AB×CN,∴S△ABC∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,故答案为:.三.解答题19.(6分)作图题(1)如图1,作出△ABC关于直线l对称的△DEF;(2)如图2,八年级(1)、(2)班的学生分别在M、N两处参加植树劳动,现要在道路A0、BO的交叉区域内设一个茶水供应点P,使点P到两条道路的距离相等,且到点M,N的距离也相等,请你找出点P.【解答】解:(1)如图1所示:(2)如图2所示:P点即为所求,20.(7分)(1)计算:(﹣2)4﹣+(2)若+(y﹣2)2+|x+z|=0,求的值(3)已知y=+﹣4,求x+y的平方根.【解答】解:(1)(﹣2)4﹣+=16﹣5+=12;(2)∵+(y﹣2)2+|x+z|=0,∴x=1,y=2,x+z=0,则z=﹣1,∴==3;(3)∵y=+﹣4,∴x=9,则y=﹣4,∴x+y=5,则x+y的平方根为:±.21.(6分)如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E作EF丄DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4,∴EF DE=2.22.(6分)已知:如图,△AMN的周长为18,∠B,∠C的平分线相交于点O,过O点的直线MN∥BC交AB、AC于点M、N.求AB+AC的值.【解答】解:∵MN∥BC,∴∠BOM=∠OBC,∠CON=∠OCB,∵∠B,∠C的平分线相交于点O,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠BOM,∠NCO=∠CON,∴BM=OM,CN=ON,∵△AMN的周长为18,∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=18.23.(6分)如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.【解答】证明:(1)连接BE,(1分)∵DB=BC,点E是CD的中点,∴BE⊥CD.(2分)∵点F是Rt△ABE中斜边上的中点,∴EF=;(3分)(2)[方法一]在△ABG中,AF=BF,AG∥EF,∴EF是△ABG的中位线,∴BE=EG.(3分)在△ABE和△AGE中,AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE;(3分)[方法二]由(1)得,EF=AF,∴∠AEF=∠FAE.(1分)∵EF∥AG,∴∠AEF=∠EAG.(1分)∴∠EAF=∠EAG.(1分)∵AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE.(3分)24.(9分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)25.(12分)如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=12,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C,作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间和G点的移动距离;(3)爱动脑筋的小明把BD=12改为BD=8,其他都不变,发现仍有△DEG与△BFG全等的情况出现,这样的情况会出现4次,此时的移动时间分别为 2.5秒、1秒、5秒,、4.5秒.【解答】(1)证明:∵AD=BC=10,AB=CD,∴四边形ABCD是平行四边形,∴AD∥BC;(2)解:设G点的移动距离为y,当△DEG与△BFG时有:∠EDG=∠FBG,∴DE=BF,DG=BG,或DE=BG,DG=BF,当F由C到B,即0<t≤时,则有,解得:;或,解得:(舍去);当F由B到C,即<t≤时,有,解得:;或,解得:;综上可知共有3次,移动的时间分别为2.5秒、5秒、5.5秒,移动的距离分别为6、6、5.5.(3)解:设G点的移动距离为y,当△DEG与△BFG时有:∠EDG=∠FBG,∴DE=BF,DG=BG,或DE=BG,DG=BF,当F由C到B,即0<t≤时,则有,解得:;或,解得:;当F由B到C,即<t≤时,有,解得:;或,解得:.综上可知共有4次,移动的时间分别为2.5秒、1秒、5秒,、4.5秒;故答案为:4,2.5秒、1秒、5秒,、4.5秒赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;xyBCAO2.如图,在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则14S S+=.ls4s3s2s13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2015-2016年江苏省无锡市江阴市华士片八年级上学期期中数学试卷及参考答案

2015-2016年江苏省无锡市江阴市华士片八年级上学期期中数学试卷及参考答案

2015-2016学年江苏省无锡市江阴市华士片八年级(上)期中数学试卷一、精心选一选:(本大题共10小题,每小题3分,共30分.)1.(3分)9的平方根是()A.±3 B.3 C.﹣3 D.±2.(3分)下列图形中,轴对称图形共有()A.1个 B.2个 C.3个 D.4个3.(3分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD4.(3分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm5.(3分)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是()A.2 B.3 C.4 D.56.(3分)将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.1,,B.,,C.6,8,10 D.5,12,137.(3分)若等腰三角形一个外角等于100°,则它的顶角度数为()A.20°B.80°C.20°或80°D.无法确定8.(3分)下列说法中,错误的有()①周长相等的两个三角形全等;②周长相等的两个等边三角形全等;③有三个角对应相等的两个三角形全等;④有两边及一角对应相等的两个三角形全等A.1个 B.2个 C.3个 D.4个9.(3分)下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称10.(3分)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、细心填一填:(本大题共8小题,每空2分,共18分.)11.(2分)计算:=.12.(2分)若一个正数的两个不同的平方根为2m﹣6与m+3,则这个正数为.13.(2分)若+|b﹣2|=0,则a+b=.14.(2分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD 交CB的延长线于点E.若∠E=35°,则∠BAC的度数为.15.(4分)如图,在△ABC中,PM、QN分别是AB、AC的垂直平分线,∠BAC=110°,BC=18,则∠PAQ=,则△APQ的周长为.16.(2分)在等腰直角△ABC中,其顶角平分线长为6,则△ABC的面积为.17.(2分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P、Q是边AC、BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E.设点P、Q运动的时间是t秒(t >0).若点P从C点出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t=时,△APD和△QBE全等.18.(2分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△C DB′恰为等腰三角形,则DB′的长为.三、解答题:(本大题共8小题,共54分.)19.(8分)①计算:()2﹣()﹣2+20150②求(x+1)3=﹣8中x的值.20.(5分)尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).21.(6分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.22.(5分)如图,已知AB=AC,AD=AE.求证:BD=CE.23.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?24.(6分)点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都是1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由;若不变,则求出它的度数;(2)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由;若不变,请求出它的度数.25.(9分)[定理表述]请你根据图1中的直角三角形叙述勾股定理(分别用文字语言及符号语言叙述);[尝试证明]它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.现以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;[知识拓展]如图3所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图4所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图5所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.①在方案一中,a1=km(用含x 的式子表示)②在方案二中,a2=km(用含x的式子表示)③请你分析:要使铺设的输气管道较短,应选择方案一还是方案二.26.(7分)已知△ABC中,∠C是其最小的内角,如果过顶点B的一条直线把这个三角形分割成了两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,在Rt△ABC中,∠C=20°,过顶点B的一条直线BD交AC于点D,且∠DBC=20°,显然直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,在△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC的关于点B的伴侣分割线,并标注角度;(2)在△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x 之间满足怎样的关系时,△ABC存在关于点B的伴侣分割线.2015-2016学年江苏省无锡市江阴市华士片八年级(上)期中数学试卷参考答案与试题解析一、精心选一选:(本大题共10小题,每小题3分,共30分.)1.(3分)9的平方根是()A.±3 B.3 C.﹣3 D.±【解答】解:±,故选:A.2.(3分)下列图形中,轴对称图形共有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形不是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,所以,轴对称图形有2个.故选:B.3.(3分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.4.(3分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm【解答】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选:C.5.(3分)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是()A.2 B.3 C.4 D.5【解答】解:如图:过E作DE⊥BC于E,∵∠A=90°,BD平分∠ABC,∴AD=DE,∵在Rt△ABC中,∠A=90°,AB=4,BD=5,由勾股定理得:AD=3,∴DE=3,即点D到BC的距离是3,故选:B.6.(3分)将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.1,,B.,,C.6,8,10 D.5,12,13【解答】解:∵12+()2=()2,∴1,,能组成直角三角形;∵()2+()2≠()2,∴,,不能组成直角三角形;∵62+82=102,∴6,8,10能组成直角三角形;∵52+122=132,∴5,12,13能组成直角三角形.故选:B.7.(3分)若等腰三角形一个外角等于100°,则它的顶角度数为()A.20°B.80°C.20°或80°D.无法确定【解答】解:①若100°是顶角的外角,则顶角=180°﹣100°=80°;②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.故选:C.8.(3分)下列说法中,错误的有()①周长相等的两个三角形全等;②周长相等的两个等边三角形全等;③有三个角对应相等的两个三角形全等;④有两边及一角对应相等的两个三角形全等A.1个 B.2个 C.3个 D.4个【解答】解:①全等三角形的周长相等,但周长相等的两个三角形不一定全等,故①错误;②周长相等的等边三角形,边长也相等,根据SSS可判定两三角形全等,故②正确;③判定全等三角形的过程中,必须有边的参与,故③错误;④有两边对应相等,且两边的夹角对应相等的两三角形全等(SAS),故④错误;所以正确的结论只有②,故选C.9.(3分)下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称【解答】解:A、两个关于某直线对称的图形一定全等,本选项正确,故不符合题意;B、对称图形的对称点不一定在对称轴的两侧,如可能在对称轴上,故本选项错误,符合题意;C、两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴,本选项正确,故不符合题意;D、平面上两个全等的图形不一定关于某直线对称,本选项正确,故不符合题意.故选:B.10.(3分)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,=AC•BC=AB•CE,∵S△ABC∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:A.二、细心填一填:(本大题共8小题,每空2分,共18分.)11.(2分)计算:=﹣3.【解答】解:=﹣3.故答案为:﹣3.12.(2分)若一个正数的两个不同的平方根为2m﹣6与m+3,则这个正数为16.【解答】解:∵一个正数的两个不同的平方根为2m﹣6与m+3,∴2m﹣6+m+3=0,m=1,∴2m﹣6=﹣4,∴这个正数为:(﹣4)2=16,故答案为:1613.(2分)若+|b﹣2|=0,则a+b=﹣1.【解答】解:由题意得,a+3=0,b﹣2=0,解得,a=﹣3,b=2,则a+b=﹣1,故答案为:﹣1.14.(2分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD 交CB的延长线于点E.若∠E=35°,则∠BAC的度数为40°.【解答】解:∵AE∥BD,∴∠DBC=∠E=35°,∵BD平分∠ABC,∴∠ABC=2∠DBC=70°,∵AB=AC,∴∠C=∠ABC=70°,∴∠BAC=180°﹣∠ABC﹣∠C=40°.故答案为:40°.15.(4分)如图,在△ABC中,PM、QN分别是AB、AC的垂直平分线,∠BAC=110°,BC=18,则∠PAQ=40°,则△APQ的周长为18.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,∵PM、QN分别是AB、AC的垂直平分线,∴PA=PB,QA=QC,∴∠PAB=∠B,∠QAC=∠C,∴∠PAQ=∠BAC﹣∠PAB﹣∠QAC=40°;△APQ的周长=AP+PQ+AQ=BP+PQ+QC=BC=18,故答案为:40°;18.16.(2分)在等腰直角△ABC中,其顶角平分线长为6,则△ABC的面积为36.【解答】解:∵△ABC是等腰直角三角形,顶角平分线长为6,∴斜边长为12cm,斜边上的高线长为6cm,则面积为×12×6=36.故答案为:36.17.(2分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P、Q是边AC、BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E.设点P、Q运动的时间是t秒(t >0).若点P从C点出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t=2或4时,△APD和△QBE全等.【解答】解:①0≤t<时,点P从C到A运动,则AP=AC﹣CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2,②t时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4,综上所述:当t=2s或4s时,△ADP≌△QBE.故答案为:2或4.18.(2分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【解答】解:(i)如图1所示:当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°.当B′C=B′D时,AG=DH=DC=8.由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)如图2所示:当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.三、解答题:(本大题共8小题,共54分.)19.(8分)①计算:()2﹣()﹣2+20150②求(x+1)3=﹣8中x的值.【解答】解:①原式=3﹣4+1=0;②由题意可得:x+1=﹣2解得:x=﹣3.20.(5分)尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【解答】解:如图所示:点P即为所求.21.(6分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.22.(5分)如图,已知AB=AC,AD=AE.求证:BD=CE.【解答】证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).23.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?【解答】解:当CD为斜边上的高时,CD最短,从而水渠造价最低,∵∠ACB=90°,AC=80米,BC=60米,∴AB===100米,∵CD•AB=AC•BC,即CD•100=80×60,∴CD=48米,∴在Rt△ACD中AC=80,CD=48,∴AD===64米,所以,D点在距A点64米的地方,水渠的造价最低,其最低造价为480元.24.(6分)点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都是1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由;若不变,则求出它的度数;(2)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由;若不变,请求出它的度数.【解答】解:(1)∠CMQ=60°不变.∵△ABC为等边三角形,∴CA=AB,∠CAP=∠ABQ=60°.∵AP=BQ,∴△CAP≌△ABQ.∴∠ACP=∠BAQ.∴∠CMQ=∠ACM+∠MAC=∠BAQ+∠MAC=60°.(2)∠CMQ=120°不变∵△ABC为等边三角形,∴CA=AB=BC,∠ACB=∠ABC=60°.∴∠ACQ=∠CBP=120°.∵AP=BQ,∴CQ=BP.∴△ACQ≌△CBP.∴∠CAQ=∠BCP.∴∠CMQ=∠CAM+∠ACM=∠BCP+∠ACM=180°﹣60°=120°.25.(9分)[定理表述]请你根据图1中的直角三角形叙述勾股定理(分别用文字语言及符号语言叙述);[尝试证明]它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.现以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;[知识拓展]如图3所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图4所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图5所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.①在方案一中,a1=(x+3)km(用含x的式子表示)②在方案二中,a2=km(用含x的式子表示)③请你分析:要使铺设的输气管道较短,应选择方案一还是方案二.【解答】解:[定理表述]直角三角形的两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么c2=a2+b2,[尝试证明]在△ABE和△ECD中,,∴△ABE≌△ECD(SAS),∴∠AEB=∠EDC,又∵∠EDC+∠DEC=90°,∴∠AEB+∠DEC=90°,∴∠AED=90°,S梯形ABCD=S△ABE+S△DEC+S△AED,∴(a+b)(a+b)=ab+ab+c2,整理,得a2+b2=c2,[知识拓展]①∵AB=xkm,AP⊥l于点P,∴AP=AC,∴a1=AB+AP=x+3,故答案为:(x+3);②过B作BM⊥AC于M,则AM=4﹣3=1,在△ABM中,由勾股定理得:BM2=AB2﹣12=x2﹣1,在△A′MB中,由勾股定理得:AP+BP=A′B==.故答案为:.③∵﹣=(x+3)2﹣()2=x2+6x+9﹣x2﹣48=6x﹣39,∴当﹣>0(即a1﹣a2>0,a1>a2)时,6x﹣39>0,解得:x>6.5;当﹣=0(即a1﹣a2=0,a1=a2)时,6x﹣39=0,解得:x=6.5;当﹣<0(即a1﹣a2<0,a1<a2)时,6x﹣39<0,解得:x<6.5;综上所述,当x>6.5时,选择方案二,输气管道较短;当x=6.5时,两种方案一样;当0<x<6.5时,选择方案一,输气管道较短.26.(7分)已知△ABC中,∠C是其最小的内角,如果过顶点B的一条直线把这个三角形分割成了两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,在Rt△ABC中,∠C=20°,过顶点B的一条直线BD交AC于点D,且∠DBC=20°,显然直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,在△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC的关于点B的伴侣分割线,并标注角度;(2)在△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x 之间满足怎样的关系时,△ABC存在关于点B的伴侣分割线.【解答】解:(1)如图所示:(2)设BD为△ABC的伴侣分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=x.当∠A=90°时,△ABC存在伴侣分割线,此时y=90°﹣x,当∠ABD=90°时,△ABC存在伴侣分割线,此时y=90°+x,当∠ADB=90°时,△ABC存在伴侣分割线,此时x=45°且90°≥y>45°;第二种情况:△BDC是直角三角形,△ABD是等腰三角形,当∠DBC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时180°﹣x﹣y=y﹣90°,∴y=135°﹣x,当∠BDC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时∠A=45°,∴y=135°﹣x.综上所述,当y=90°﹣x或y=90°+x或x=45°且y>x且90°≥y>45°或y=135°﹣x 或y=135°﹣x时△ABC存在伴侣分割线.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

2015-2016年江苏省无锡市江阴市南菁中学八年级(上)期中数学试卷(解析版)

2015-2016年江苏省无锡市江阴市南菁中学八年级(上)期中数学试卷(解析版)

2015-2016学年江苏省无锡市江阴市南菁中学八年级(上)期中数学试卷一.选择题:(每题3分,共30分)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)实数﹣1.732,,,0.121121112…,中,无理数的个数有()A.2个 B.3个 C.4个 D.5个3.(3分)下列说法正确的是()A.16的平方根是4 B.8的立方根是±2C.﹣27的立方根是﹣3 D.=±74.(3分)据江阴市政府透露江阴市长居人口约1620000人,这个数用科学记数法表示正确的为()A.1.62×102B.16.2×10 C.1.62×106D.1.62×1055.(3分)下列二次根式中,是最简二次根式的是()A. B.C. D.6.(3分)在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列条件中,能判断△ABC为直角三角形的是()A.a+b=c B.a:b:c=3:4:5 C.a=b=2c D.∠A=∠B=∠C7.(3分)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF8.(3分)已知等腰三角形的一个外角等于100°,则它的顶角等于()A.80°B.50°C.20°或50°D.20°或80°9.(3分)把一张长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=4cm,BC=8cm,则EF=()A.4cm B.5cm C.2cm D.6cm10.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2015=()A.22013B.22014C.22015 D.22016二.填空题:(每空2分,共20分)11.(4分)4的平方根是,﹣27的立方根是.12.(4分)已知|a﹣1|+=0,则a+b=;﹣=.13.(2分)如果代数式有意义,那么x的取值范围是.14.(2分)等腰三角形的一条边长为4cm,周长为16cm,它的底边长为.15.(2分)如图,图中的所有三角形都是直角三角形,所有四边形都是正方形,正方形A的边长为,另外四个正方形中的数字8,x,10,y分别表示该正方形面积,则x与y的数量关系是.16.(2分)如图,四边形ABCD中,∠A=90°,AB=3,BC=13,CD=12,AD=4,则四边形ABCD的面积等于.17.(2分)如图:知:AM⊥MN,BN⊥MN,垂足分别为M,N,点C是MN上使AC+BC的值最小的点.若AM=3,BN=5,MN=15,则AC+BC=.18.(2分)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三.解答题:(共8题,50分)19.(6分)化简或计算:(1)﹣(1+)0+(2)•+÷﹣2m.20.(6分)求下列各式中的x的值:(1)25x2﹣1=0(2)(x+3)3=﹣27.21.(5分)如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.22.(5分)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.杰杰同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).借用网格等知识就能计算出这个三角形的面积.(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形的面积.23.(6分)如图,在△ABC中,AB=AC,AC的垂直平分线分别交BC、AC于点D、E.(1)若AC=12,BC=15,求△ABD的周长;(2)若∠B=20°,求∠BAD的度数.24.(5分)(1)如图1,△ABC中,∠BAC=90°,AB=AC,D、E在BC上,∠DAE=45°,为了探究BD、DE、CE之间的等量关系,现将△AEC绕A顺时针旋转90°后成△AFB,连接DF,经探究,你所得到的BD、DE、CE之间的等量关系式是.(无须证明)(2)如图2,在△ABC中,∠BAC=120°,AB=AC,D、E在BC上,∠DAE=60°、∠ADE=45°,试仿照(1)的方法,利用图形的旋转变换,探究BD、DE、CE之间的等量关系,并证明你的结论.25.(9分)如图,在△ABC中,AB=AC=2,点D在线段BC上运动(点D不与B、C重合),∠B=40°,连结AD,作∠ADE=40°,DE交线段AC于E.(1)当∠ADB=115°时,∠DEC=°.(2)在D运动过程中,有没有可能使得△ABD与△DCE全等?如有可能,求出CD的长度;如没有可能,请说明理由.(3)若△ADE是等腰三角形,求∠BAD的大小.26.(8分)【阅读】如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.2015-2016学年江苏省无锡市江阴市南菁中学八年级(上)期中数学试卷参考答案与试题解析一.选择题:(每题3分,共30分)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、是轴对称图形,故正确;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选:B.2.(3分)实数﹣1.732,,,0.121121112…,中,无理数的个数有()A.2个 B.3个 C.4个 D.5个【解答】解:实数﹣1.732,,,0.121121112…,中,显然﹣1.732是小数,所以是有理数;﹣=﹣0.1,﹣0.1是小数,是有理数;故、、0.121121112…是无理数.故选:B.3.(3分)下列说法正确的是()A.16的平方根是4 B.8的立方根是±2C.﹣27的立方根是﹣3 D.=±7【解答】解:A、16的平方根是±4,故本选项错误;B、8的立方根是2,故本选项错误;C、﹣27的立方根是﹣3,故本选项正确;D、=7,故本选项错误;故选:C.4.(3分)据江阴市政府透露江阴市长居人口约1620000人,这个数用科学记数法表示正确的为()A.1.62×102B.16.2×10 C.1.62×106D.1.62×105【解答】解:将1620000用科学记数法表示为:1.62×106.故选:C.5.(3分)下列二次根式中,是最简二次根式的是()A. B.C. D.【解答】解:A、,无法化简,是最简二次根式,正确;B、=,故不是最简二次根式,此选项错误;C、=3,故不是最简二次根式,此选项错误;D、=x,故不是最简二次根式,此选项错误;故选:A.6.(3分)在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列条件中,能判断△ABC为直角三角形的是()A.a+b=c B.a:b:c=3:4:5 C.a=b=2c D.∠A=∠B=∠C【解答】解:∵a:b:c=3:4:5,∴设a=3x,b=4x,c=5x,(3x)2+(4x)2=(5x)2,∴△ABC为直角三角形,故选:B.7.(3分)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.8.(3分)已知等腰三角形的一个外角等于100°,则它的顶角等于()A.80°B.50°C.20°或50°D.20°或80°【解答】解:①若100°是顶角的外角,则顶角=180°﹣100°=80°;②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.故选:D.9.(3分)把一张长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=4cm,BC=8cm,则EF=()A.4cm B.5cm C.2cm D.6cm【解答】解:过点E作EG⊥BC,垂足为G.∵AD∥BC,∴∠DEF=∠BFE.由翻折的性质可知;∠BFE=∠DFE,BF=DF.∴∠DEF=∠DFE.∴DE=DF.∴BF=DF=ED.设BF=DF=ED=x,则FC=8﹣x.Rt△DFC中,由勾股定理得;DF2=FC2+DC2,即x2=(8﹣x)2+42,解得;x=5.∴DE=5,FC=8﹣5=3.∵DE=GC,∴GC=5.∴GF=2.在Rt△EFG中,由勾股定理得:EF===2.故选:C.10.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2015=()A.22013B.22014C.22015 D.22016【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1,以此类推:a2015=22014.故选:B.二.填空题:(每空2分,共20分)11.(4分)4的平方根是±2,﹣27的立方根是﹣3.【解答】解:∵22=4,(﹣2)2=4,∴4的平方根是±2;∵(﹣3)3=﹣27,∴﹣27的立方根是﹣3.故答案为±2,﹣3.12.(4分)已知|a﹣1|+=0,则a+b=﹣6;﹣=2.【解答】解:∵|a﹣1|+=0,∴a=1,b=﹣7,则a+b=1﹣7=﹣6;原式=4﹣2=2.故答案为:﹣6;2.13.(2分)如果代数式有意义,那么x的取值范围是x≥﹣1.【解答】解:由题意得,x+1≥0,解得,x≥﹣1,故答案为:x≥﹣1.14.(2分)等腰三角形的一条边长为4cm,周长为16cm,它的底边长为4.【解答】解:当4cm是等腰三角形的底边时,则其腰长是(16﹣4)÷2=6(cm),能够组成三角形;当4cm是等腰三角形的腰时,则其底边是16﹣4×2=8(cm),不能够组成三角形.故该等腰三角形的底边长为:4 cm.故答案为:4.15.(2分)如图,图中的所有三角形都是直角三角形,所有四边形都是正方形,正方形A的边长为,另外四个正方形中的数字8,x,10,y分别表示该正方形面积,则x与y的数量关系是x+y=19.【解答】解:∵正方形A 的边长为,∴S A =37, 根据勾股定理的几何意义,得x +10+(8+y )=S A =37,∴x +y=37﹣18=19,即x +y=19.故答案为x +y=19.16.(2分)如图,四边形ABCD 中,∠A=90°,AB=3,BC=13,CD=12,AD=4,则四边形ABCD 的面积等于 36 .【解答】解:连接BD ,则有BD===5,∵52+122=132,即BD 2+CD 2=BC 2,∴△BCD 为直角三角形,∴四边形的面积=S △ADB +S △BCD=AD•AB +BD•CD=×3×4+×5×12=36.故答案为36.17.(2分)如图:知:AM ⊥MN ,BN ⊥MN ,垂足分别为M ,N ,点C 是MN 上使AC+BC的值最小的点.若AM=3,BN=5,MN=15,则AC+BC=17.【解答】解:作A点关于直线MN的对称点A′,连接A′B交MN于C,则AC+BC=A′C+BC=A′B,A′B就是AC+BC的最小值;延长BN使ND=A′M,连接A′D,∵AM⊥MN,BN⊥MN,∴AA′∥BD,∴四边形A′DNM是矩形,∴ND=AM=3,A′D=MN=15,∴BD=BN+ND=5+3=8,∴A′B==17,∴AC+BC=17,故答案为17.18.(2分)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.三.解答题:(共8题,50分)19.(6分)化简或计算:(1)﹣(1+)0+(2)•+÷﹣2m.【解答】解:(1)原式=﹣2﹣1+2=﹣1;(2)原式=9m+6m÷2﹣2m=9m+3m﹣2m=10m.20.(6分)求下列各式中的x的值:(1)25x2﹣1=0(2)(x+3)3=﹣27.【解答】解:(1)25x2﹣1=0(5x+1)(5x﹣1)=0,5x+1=0,5x﹣1=0,x1=﹣,x2=.(2)(x+3)3=﹣27,x+3=﹣3,x=﹣6.21.(5分)如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.【解答】证明:(1)在△ABC和△ADC中,,∴△ABC≌△ADC(ASA);(2)∵△ABC≌△ADC,∴AB=AD.又∵∠1=∠2,AO=AO,即,∴△ABO≌△ADO(SAS).∴BO=DO.22.(5分)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.杰杰同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).借用网格等知识就能计算出这个三角形的面积.(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形的面积.【解答】解:(1)如图所示:;=3×3﹣×1×2﹣×1×3﹣×2×3(2)S△ABC=9﹣1﹣﹣3=.23.(6分)如图,在△ABC中,AB=AC,AC的垂直平分线分别交BC、AC于点D、E.(1)若AC=12,BC=15,求△ABD的周长;(2)若∠B=20°,求∠BAD的度数.【解答】解:(1)∵AC的垂直平分线分别交BC、AC于点D、E,∴AD=DC,∵AB=AC=12,∴△ABD的周长为AB+AD+BD=AB+DC+BD=AB+BC=12+15=27;(2)∵AB=AC,∠B=20°,∴∠C=∠B=20°,∴∠BAC=180°﹣20°﹣20°=140°,∵AD=DC,∴∠DAC=∠C=20°,∴∠BAD=∠BAC﹣∠DAC=140°﹣20°=120°.24.(5分)(1)如图1,△ABC中,∠BAC=90°,AB=AC,D、E在BC上,∠DAE=45°,为了探究BD、DE、CE之间的等量关系,现将△AEC绕A顺时针旋转90°后成△AFB,连接DF,经探究,你所得到的BD、DE、CE之间的等量关系式是BD2+CE2=DE2.(无须证明)(2)如图2,在△ABC中,∠BAC=120°,AB=AC,D、E在BC上,∠DAE=60°、∠ADE=45°,试仿照(1)的方法,利用图形的旋转变换,探究BD、DE、CE之间的等量关系,并证明你的结论.【解答】解:(1)线段BD、DE、CE之间的等量关系式是:BD2+CE2=DE2;理由:∵△ABC中,∠BAC=90°,AB=AC,∴∠ABD=∠ACE=45°,由旋转的性质可知,△AEC≌△AFB,∴∠ABF=∠ACE=45°,FB=CE∴∠FBD=∠ABF+∠ABD=90°旋转角∠FAE=90°,又∠DAE=45°,故∠FAD=∠FAE﹣∠DAE=45°,易证△AFD≌△AED,故FD=DE,在Rt△FBD中,由勾股定理得:BD2+BF2=DF2;即:BD2+CE2=DE2.(2)仿照(1)可证,△AEC≌△AFB,故BF=CE,△AFD≌△AED,故FD=DE,∵∠ADE=45°,∴∠ADF=45°,故∠BDF=90°,在Rt△BDF中,由勾股定理,得BF2=BD2+DF2,∴CE2=BD2+DE2.25.(9分)如图,在△ABC中,AB=AC=2,点D在线段BC上运动(点D不与B、C重合),∠B=40°,连结AD,作∠ADE=40°,DE交线段AC于E.(1)当∠ADB=115°时,∠DEC=115°.(2)在D运动过程中,有没有可能使得△ABD与△DCE全等?如有可能,求出CD的长度;如没有可能,请说明理由.(3)若△ADE是等腰三角形,求∠BAD的大小.【解答】解:(1)∵AB=AC,∠B=40°,∴∠C=∠B=40°.∵∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°.∴∠DEC=180°﹣40°﹣25°=115°.故答案为:115;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)∵AB=AC,∴∠B=∠C=40°,①若AD=AE时,则∠ADE=∠AED=40°,∵∠AED>∠C,∴△ADE不可能是等腰三角形;②若DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;③若EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴当∠BAD=30°或60°时,△ADE是等腰三角形.26.(8分)【阅读】如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.【解答】解:(1)连接CD并延长,交OA延长线于点F.在△BCD与△AFD中,,∴△BCD≌△AFD(ASA).∴CD=FD,即点D为Rt△COF斜边CF的中点,∴OD=CF=CD.又由折叠可知,OD=OC,∴OD=OC=CD,∴△OCD为等边三角形,∠COD=60°,∴θ=∠COD=30°;(2)∵点E四边形OABC的边AB上,∴AB⊥直线l由折叠可知,OD=OC=3,DE=BC=2.∵θ=45°,AB⊥直线l,∴△ADE为等腰直角三角形,∴AD=DE=2,∴OA=OD+AD=3+2=5,∴a=5;由图可知,当0<a<5时,点E落在四边形0ABC的外部.。

2015-2016学年八年级上数学期中考试试卷含答案

2015-2016学年八年级上数学期中考试试卷含答案


29. 已知:在平面直角坐标系中,△ABC的顶点A、C分
别在轴、轴上,且∠ACB=90°,AC=BC.
(1)如图1,当,点B在第四象限时,
则点B的坐标为 ;
图1
(2)如图2,当点C在轴正半轴上运动,点A在轴正半轴上运动,点B在第四象限时,作BD⊥轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.
示为( )
A. B. C. D.
3. 下列各式:其中分式共有( )个。
A.2 B. 3 C. 4 D. 5
4. 多项式 各项的公因式是( )
一.用心选一选:(每小题3分,共30分)
1.下列各式是因式分解且完全正确的是( )
A.++=+)+ B.
C.(+2)(-2)=- D.-1=(+1)(-1)
2.医学研究发现一种新病毒的直径约为0.000043毫米,这个数用科学记数法表
E是BC的中点, DE平分ÐADC, ÐCED = 35°, 则ÐEAB的度数
是 ( )
A.65° B.55° C.45° D.35°
二.细心填一填:(每小题3分,共24分) .
11.计算:= .
16. 如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,
使得△AOB≌△DOC,你补充的条件是 .
17. 如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.
已知PE=3,则点P到AB的距离是_________________.
18. 在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,
附加题
1.选择题: C
2.填空题: 正确的命题是 1,2,3,4 ,5

江苏省无锡市八年级(上)期中数学试卷

江苏省无锡市八年级(上)期中数学试卷

江苏省无锡市八年级(上)期中数学试卷八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下面的图形都是常见的安全标记,其中是轴对称图形的是()A. B. C. D.2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A. 3、4、5B. 6、8、10C. 5、12、13D. 5、5、73.和三角形三条边距离相等的点是()A. 三条角平分线的交点B. 三边中线的交点C. 三边上高所在直线的交点D. 三边的垂直平分线的交点4.若等腰三角形中有两边长分别为2和5,则这个三角形的第三条边长为()A. 2或5B. 3C. 4D. 55.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A. 1组B. 2组C. 3组D. 4组6.如图,长为8cm的橡皮筋放置在x轴上,固定两端A 和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A. 2cmB. 3cmC. 4cmD. 5cm7.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A. ∠EDBB. ∠BEDC. 12∠AFBD. 2∠ABF8.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是()A. 28°B. 118°C. 62°D. 62°或118°9.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A. 9B. 10C. 11D. 1510.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A. 833cm2B. 8cm2C. 1633cm2D. 16cm2二、填空题(本大题共8小题,共24.0分)11.等边三角形是一个轴对称图形,它有______条对称轴.12.若等腰三角形的周长为20,且有一边长为6,则另外两边分别是______.13.等腰△ABC中,若∠A=30°,则∠B=______.14.如图,A,D,F,B在同一直线上,AE=BC,且AF=BD.添加一个条件______,使△AEF≌△BCD.15.△ABC中,∠A:∠B:∠C=1:3:2,且最长边为10cm,则最短边长为______cm.16.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是______.17.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为______.18.如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有______个(不含△ABC).19.已知D、E两点在△ABC内,求作一点P,使PE=PD,且点P到∠B两边的距离相等(尺规作图,保留作图痕迹).20.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=21.EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?21.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于多少?22.如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是______;(2)若∠ABC=70°,求∠BPC的度数.23.在等腰直角三角形ABC左侧作直线AP,点B关于直线AP的对称点为D,连结BD、CD,其中CD交直线AP于点E.(1)依题意补全图形;(2)若∠PAB=28°,求∠ACD的度数;24.如图,小明所在学校的旗杆BD高约为13米,距离旗杆20米处刚好有一棵高约为3米的香樟树AE,活动课上,小明有意在旗杆与香樟树之间的连线上来回踱步,发现有一个位置到旗杆顶部与树顶的距离相等,请你求出该位置与旗杆之间的距离.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.26.如图,在△ABC中,AB=3,BC=4,AC=5.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q 也同时停止.连结PQ,设运动时间为t (t>0)秒.(1)判断△ABC的形状,并说明理由;(2)记△CBQ的面积为S,请用含有t的代数式来表示S;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,求AQ的长;②直接写出这样t的值,使得直线l经过点B.答案和解析1.【答案】A【解析】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:A、42+32=52,能够成直角三角形,故此选项错误;B、62+82=102,能构成直角三角形,故此选项错误;C、122+52=132,能构成直角三角形,故此选项错误;D、52+52≠72,不能构成直角三角形,故此选项正确.故选:D.欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.此题主要考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3.【答案】A【解析】解:中线交点即三角形的重心,三角形重心到一个顶点的距离等于它到对边中点距离的2倍,B错误;高的交点是三角形的垂心,到三边的距离不相等,C错误;线段垂直平分线上的点和这条线段两个端点的距离相等,D错误;∵角平分线上的点到角两边的距离相等,∴要到三角形三条边距离相等的点,只能是三条角平分线的交点,A正确.故选:A.题目要求到三边距离相等,可两两分别思考,根据角平分线上的点到角两边的距离相等可得答案.本题考查了角平分线的性质;熟练掌握三角形中角平分线,重心,垂心,垂直平分线的性质,是解答本题的关键.4.【答案】D【解析】解:当腰为5时,根据三角形三边关系可知此情况成立,这个三角形的第三条边长为5;题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【答案】C【解析】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.6.【答案】A【解析】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD-AB=2AD-AB=10-8=2cm;故橡皮筋被拉长了2cm.故选:A.根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.此题主要考查了等腰三角形的性质以及勾股定理的应用.7.【答案】C【解析】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=28°,∴顶角∠A=90°-28°=62°;②当高在三角形外部时(如图2),∵∠ABD=28°,∴顶角∠CAB=90°+28°=118°.故选:D.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出62°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.9.【答案】B【解析】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选:B.由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.10.【答案】B【解析】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×4×4=8cm2.故选:B.当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.11.【答案】3【解析】解:等边三角形是一个轴对称图形,它有3条对称轴.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12.【答案】6,8或7,7【解析】解:(1)当6是腰长时,底边为20-6×2=8,此时能够组成三角形,∴另外两边分别是6,8;(2)当6是底边,此时腰为:=7,能构成三角形三条边,∴另外两边分别是7,7.故答案为6,8或7,7.题目给出等腰三角形有一条边长为6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.【答案】30°,75°,120°【解析】解:分两种情况讨论:(1)当∠A=30°为顶角时,∠B==75°;(2)当∠A=30°为底角时,∠B为底角时∠B=∠A=30°;∠B为顶角时∠B=180°-∠A-∠B=180°-30°-30°=120°.故填30°或75°或120°.本题要分两种情况讨论:(1)当∠A=30°为顶角;(2)当∠A=30°为底角时,则∠B 为底角时或顶角.然后求出∠B.本题是考查等腰三角形的性质及三角形的内角和定理,在解答时一定要讨论已知角为顶角或底角两种情况不要漏解.14.【答案】EF=CD(或∠A=∠B或AE∥CB或∠E=∠C=90°)【解析】解:当EF=CD时,依据AE=BC,AF=BD,EF=CD,可得△AEF≌△BCD(SSS).当∠A=∠B或AE∥CB时,依据AE=BC,∠A=∠B,AF=BD,可得△AEF≌△BCD (SAS).当∠E=∠C=90°时,依据AE=BC,AF=BD,可得△AEF≌△BCD (HL).故答案为:EF=CD(或∠A=∠B或AE∥CB或∠E=∠C=90° ).根据AE=BC,且AF=BD,利用全等三角形的判定方法,得出所需的条件即可,答案不唯一.本题考查了平行线的性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.15.【答案】5【解析】解:∵∠A:∠B:∠C=1:3:2,∴设∠A、∠B、∠C分别为k、3k、2k,k+2k+3k=180°,解得k=30°,∴∠A=30°,∠B=90°,∠C=60°,∴最短边长=×10=5cm.故答案为:5根据比例设∠A、∠B、∠C分别为k、3k、2k,然后根据三角形的内角和等于180°列式求出各角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半解答.本题考查了含30°角的直角三角形,主要利用了30°角所对的直角边等于斜边的一半的性质,根据比例求出各角的度数是解题的关键.16.【答案】4:3【解析】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.17.【答案】12013【解析】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C 作CN⊥AB 于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,∴S△ABC=×BC×AD=×AB×CN,∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+E F=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF的最小值是,故答案为:.作E关于AD的对称点M,连接CM交AD于F,连接EF,过C 作CN⊥AB 于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.本题考查了平面展开-最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.18.【答案】7【解析】解:如图所示每个大正方形上都可作两个全等的三角形,所以共有八个全等三角形,除去△ABC外有七个与△ABC全等的三角形.故答案为:7.本题考查的是用SSS判定两三角形全等.认真观察图形可得答案.本题考查的是SSS判定三角形全等,注意观察图形,数形结合是解决本题的又一关键.19.【答案】解:如图所示:①作∠B的角平分线;②作DE中垂线;③两直线的交点就是所求作的点P.【解析】根据线段垂直平分线的性质和角平分线的性质可知点P为线段DE 的垂直平分线与∠B的角平分线的交点.本题主要考查的是线段垂直平分线的性质和角平分线的性质,掌握线段垂直平分线的性质和角平分线的性质是解题的关键.20.【答案】解:∵BF=EC,∴BF+FC=CE+FC,即BC=EF,∵在△ABC和△DEF中AB=DE∠B=∠EBC=EF,∴△ABC≌△DEF(SAS),∴AC=DF,∵△ABC的周长为24cm,CF=3cm,首先证明△ABC≌△DEF(SAS)可得AC=DF,然后再根据△ABC的周长为24cm,CF=3cm可得制成整个金属框架所需这种材料的长度.此题主要考查了全等三角形的应用,关键是掌握证明三角形全等的方法,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.21.【答案】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.【解析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.22.【答案】解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;(2)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=180°-2×70°=40°,∵AM平分∠BAC,∴∠BAD=∠CAD=20°,∵PA=PB=PC,∴∠ABP=∠BAP=∠ACP=20°,∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.【解析】(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.23.【答案】解:(1)如图,(2)连接AD,由对称知,∠PAD=∠PAB=28°,AD=AB,∵AB=AC,∴AD=AC,∵∠BAC=90°,∴∠CAD=∠PAD+∠PAB+∠BAC=28°+28°+90°=146°,∴∠ACD=12(180°-∠CAD)=17°;【解析】(1)根据对称性即可画出图形;(2)由对称性得出AB=AD,进而求出∠CAD,即可得出结论;主要考查了轴对称的性质,等腰三角形的判定和性质,直角三角形的判定和性质,解本题的关键是判断出AD=AC.24.【答案】解:根据题意可得:AE=3m,AB=20m,BD=13m.如图,设该位置为点C,且AC=xm.由AC=xm得:BC=(20-x)m(1分)由题意得:CE=CD,则CE2=CD2,∴32+x2=(20-x)2+132,解得:x=14,∴CB=20-x=6,由0<14<20可知,该位置是存在的.答:该位置与旗杆之间的距离为6米.【解析】根据题意可得:AE=3m,AB=20m,BD=13m,由于CE2=CD2,根据勾股定理得到方程求解即可.考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.25.【答案】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.【解析】(1)根据AAS证明:△APM≌△BPN;(2)由(1)中的全等得:MN=2PN,所以PN=BN,由等边对等角可得结论;(3)三角形的外心是外接圆的圆心,三边垂直平分线的交点,直角三角形的外心在直角顶点上,钝角三角形的外心在三角形的外部,只有锐角三角形的外心在三角形的内部,所以根据题中的要求可知:△BPN是锐角三角形,由三角形的内角和可得结论.本题是三角形和圆的综合题,主要考查了三角形全等的判定,利用其性质求角的度数,结合三角形外接圆的知识确定三角形的形状,进而求出角度,此题难度适中,但是第三问学生可能考虑不到三角形的形状问题,而出错.26.【答案】解:(1)△ABC是直角三角形,理由:∵AB2+BC2=32+42=25,AC2=25,∴AB2+BC2=AC2,∴∠ABC=90°,即△ABC是直角三角形.(2)如图1,当0<t≤3时,BQ=t,BC=4,∴S=12×4×t=2t;如图2,当3<t≤5时,,AQ=t-3,则BQ=3-(t-3)=6-t,(3)①如图3,∵QP的垂直平分线过A,∴AP=AQ,∴3-t=t,解得t=1.5;或t-3=t,显然不成立;∴AP=AQ=1.5;②(Ⅰ)如图4,当点Q从B向A运动时l经过点B,当点P运动到AC中点时,PA=BQ=BP,可得t=2.5.(Ⅱ)如图5,当点Q从A向B运动时l经过点B;BP=BQ=3-(t-3)=6-t,AP=t,PC=5-t,过点P作PG⊥CB于点G,则PG∥AB,∴△PGC∽△ABC,∴PCAC=PGAB=GCBC,∴PG=PCAC?AB=35(5-t),CG=PCAC?BC=45(5-t),∴BG=4-45(5-t)=45t,由勾股定理得:BP2=BG2+PG2,即(6-t)2=(45t)2+[35(5-t)]2,解得:t=4514;综上所述:存在t的值,使得直线l经过点B,t的值是2.5或4514.【解析】(1)由勾股定理逆定理可得;(2)分0<t≤3和3<t≤5两种情况,表示出BQ的长度,根据三角形的面积公式②分点Q从B向A运动时l经过点B和点Q从A向B运动时l经过点B两种情况分别求解可得.本题是三角形的综合问题,考查了等腰三角形性质,线段垂直平分线性质,勾股定理,相似三角形的性质和判定的应用,主要考查学生分析问题和解决问题的能力,题目比较典型,但是有一定的难度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省无锡市江阴市华士片八年级(上)期中数学试卷一、精心选一选:(本大题共10小题,每小题3分,共30分.)1.(3分)9的平方根是()A.±3 B.3 C.﹣3 D.±2.(3分)下列图形中,轴对称图形共有()A.1个 B.2个 C.3个 D.4个3.(3分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD4.(3分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm5.(3分)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是()A.2 B.3 C.4 D.56.(3分)将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.1,,B.,,C.6,8,10 D.5,12,137.(3分)若等腰三角形一个外角等于100°,则它的顶角度数为()A.20°B.80°C.20°或80°D.无法确定8.(3分)下列说法中,错误的有()①周长相等的两个三角形全等;②周长相等的两个等边三角形全等;③有三个角对应相等的两个三角形全等;④有两边及一角对应相等的两个三角形全等A.1个 B.2个 C.3个 D.4个9.(3分)下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称10.(3分)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、细心填一填:(本大题共8小题,每空2分,共18分.)11.(2分)计算:=.12.(2分)若一个正数的两个不同的平方根为2m﹣6与m+3,则这个正数为.13.(2分)若+|b﹣2|=0,则a+b=.14.(2分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD 交CB的延长线于点E.若∠E=35°,则∠BAC的度数为.15.(4分)如图,在△ABC中,PM、QN分别是AB、AC的垂直平分线,∠BAC=110°,BC=18,则∠PAQ=,则△APQ的周长为.16.(2分)在等腰直角△ABC中,其顶角平分线长为6,则△ABC的面积为.17.(2分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P、Q是边AC、BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E.设点P、Q运动的时间是t秒(t >0).若点P从C点出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t=时,△APD和△QBE全等.18.(2分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三、解答题:(本大题共8小题,共54分.)19.(8分)①计算:()2﹣()﹣2+20150②求(x+1)3=﹣8中x的值.20.(5分)尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).21.(6分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.22.(5分)如图,已知AB=AC,AD=AE.求证:BD=CE.23.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?24.(6分)点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都是1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由;若不变,则求出它的度数;(2)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由;若不变,请求出它的度数.25.(9分)[定理表述]请你根据图1中的直角三角形叙述勾股定理(分别用文字语言及符号语言叙述);[尝试证明]它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.现以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;[知识拓展]如图3所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图4所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图5所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.①在方案一中,a1=km(用含x 的式子表示)②在方案二中,a2=km(用含x的式子表示)③请你分析:要使铺设的输气管道较短,应选择方案一还是方案二.26.(7分)已知△ABC中,∠C是其最小的内角,如果过顶点B的一条直线把这个三角形分割成了两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,在Rt△ABC中,∠C=20°,过顶点B的一条直线BD交AC于点D,且∠DBC=20°,显然直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,在△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC的关于点B的伴侣分割线,并标注角度;(2)在△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x 之间满足怎样的关系时,△ABC存在关于点B的伴侣分割线.2015-2016学年江苏省无锡市江阴市华士片八年级(上)期中数学试卷参考答案与试题解析一、精心选一选:(本大题共10小题,每小题3分,共30分.)1.(3分)9的平方根是()A.±3 B.3 C.﹣3 D.±【解答】解:±,故选:A.2.(3分)下列图形中,轴对称图形共有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形不是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,所以,轴对称图形有2个.故选:B.3.(3分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.4.(3分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm【解答】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选:C.5.(3分)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是()A.2 B.3 C.4 D.5【解答】解:如图:过E作DE⊥BC于E,∵∠A=90°,BD平分∠ABC,∴AD=DE,∵在Rt△ABC中,∠A=90°,AB=4,BD=5,由勾股定理得:AD=3,即点D到BC的距离是3,故选:B.6.(3分)将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.1,,B.,,C.6,8,10 D.5,12,13【解答】解:∵12+()2=()2,∴1,,能组成直角三角形;∵()2+()2≠()2,∴,,不能组成直角三角形;∵62+82=102,∴6,8,10能组成直角三角形;∵52+122=132,∴5,12,13能组成直角三角形.故选:B.7.(3分)若等腰三角形一个外角等于100°,则它的顶角度数为()A.20°B.80°C.20°或80°D.无法确定【解答】解:①若100°是顶角的外角,则顶角=180°﹣100°=80°;②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.故选:C.8.(3分)下列说法中,错误的有()①周长相等的两个三角形全等;②周长相等的两个等边三角形全等;③有三个角对应相等的两个三角形全等;④有两边及一角对应相等的两个三角形全等A.1个 B.2个 C.3个 D.4个【解答】解:①全等三角形的周长相等,但周长相等的两个三角形不一定全等,②周长相等的等边三角形,边长也相等,根据SSS可判定两三角形全等,故②正确;③判定全等三角形的过程中,必须有边的参与,故③错误;④有两边对应相等,且两边的夹角对应相等的两三角形全等(SAS),故④错误;所以正确的结论只有②,故选C.9.(3分)下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称【解答】解:A、两个关于某直线对称的图形一定全等,本选项正确,故不符合题意;B、对称图形的对称点不一定在对称轴的两侧,如可能在对称轴上,故本选项错误,符合题意;C、两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴,本选项正确,故不符合题意;D、平面上两个全等的图形不一定关于某直线对称,本选项正确,故不符合题意.故选:B.10.(3分)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,=AC•BC=AB•CE,∵S△ABC∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:A.二、细心填一填:(本大题共8小题,每空2分,共18分.)11.(2分)计算:=﹣3.【解答】解:=﹣3.故答案为:﹣3.12.(2分)若一个正数的两个不同的平方根为2m﹣6与m+3,则这个正数为16.【解答】解:∵一个正数的两个不同的平方根为2m﹣6与m+3,∴2m﹣6+m+3=0,m=1,∴2m﹣6=﹣4,∴这个正数为:(﹣4)2=16,故答案为:1613.(2分)若+|b﹣2|=0,则a+b=﹣1.【解答】解:由题意得,a+3=0,b﹣2=0,解得,a=﹣3,b=2,则a+b=﹣1,故答案为:﹣1.14.(2分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD 交CB的延长线于点E.若∠E=35°,则∠BAC的度数为40°.【解答】解:∵AE∥BD,∴∠DBC=∠E=35°,∵BD平分∠ABC,∴∠ABC=2∠DBC=70°,∵AB=AC,∴∠C=∠ABC=70°,∴∠BAC=180°﹣∠ABC﹣∠C=40°.故答案为:40°.15.(4分)如图,在△ABC中,PM、QN分别是AB、AC的垂直平分线,∠BAC=110°,BC=18,则∠PAQ=40°,则△APQ的周长为18.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,∵PM、QN分别是AB、AC的垂直平分线,∴PA=PB,QA=QC,∴∠PAB=∠B,∠QAC=∠C,∴∠PAQ=∠BAC﹣∠PAB﹣∠QAC=40°;△APQ的周长=AP+PQ+AQ=BP+PQ+QC=BC=18,故答案为:40°;18.16.(2分)在等腰直角△ABC中,其顶角平分线长为6,则△ABC的面积为36.【解答】解:∵△ABC是等腰直角三角形,顶角平分线长为6,∴斜边长为12cm,斜边上的高线长为6cm,则面积为×12×6=36.故答案为:36.17.(2分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P、Q是边AC、BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E.设点P、Q运动的时间是t秒(t >0).若点P从C点出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t=2或4时,△APD和△QBE全等.【解答】解:①0≤t<时,点P从C到A运动,则AP=AC﹣CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2,②t时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4,综上所述:当t=2s或4s时,△ADP≌△QBE.故答案为:2或4.18.(2分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【解答】解:(i)如图1所示:当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°.当B′C=B′D时,AG=DH=DC=8.由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)如图2所示:当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.三、解答题:(本大题共8小题,共54分.)19.(8分)①计算:()2﹣()﹣2+20150②求(x+1)3=﹣8中x的值.【解答】解:①原式=3﹣4+1=0;②由题意可得:x+1=﹣2解得:x=﹣3.20.(5分)尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【解答】解:如图所示:点P即为所求.21.(6分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.22.(5分)如图,已知AB=AC,AD=AE.求证:BD=CE.【解答】证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).23.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?【解答】解:当CD为斜边上的高时,CD最短,从而水渠造价最低,∵∠ACB=90°,AC=80米,BC=60米,∴AB===100米,∵CD•AB=AC•BC,即CD•100=80×60,∴CD=48米,∴在Rt△ACD中AC=80,CD=48,∴AD===64米,所以,D点在距A点64米的地方,水渠的造价最低,其最低造价为480元.24.(6分)点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都是1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由;若不变,则求出它的度数;(2)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由;若不变,请求出它的度数.【解答】解:(1)∠CMQ=60°不变.∵△ABC为等边三角形,∴CA=AB,∠CAP=∠ABQ=60°.∵AP=BQ,∴△CAP≌△ABQ.∴∠ACP=∠BAQ.∴∠CMQ=∠ACM+∠MAC=∠BAQ+∠MAC=60°.(2)∠CMQ=120°不变∵△ABC为等边三角形,∴CA=AB=BC,∠ACB=∠ABC=60°.∴∠ACQ=∠CBP=120°.∵AP=BQ,∴CQ=BP.∴△ACQ≌△CBP.∴∠CAQ=∠BCP.∴∠CMQ=∠CAM+∠ACM=∠BCP+∠ACM=180°﹣60°=120°.25.(9分)[定理表述]请你根据图1中的直角三角形叙述勾股定理(分别用文字语言及符号语言叙述);[尝试证明]它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.现以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;[知识拓展]如图3所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图4所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图5所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.①在方案一中,a1=(x+3)km(用含x的式子表示)②在方案二中,a2=km(用含x的式子表示)③请你分析:要使铺设的输气管道较短,应选择方案一还是方案二.【解答】解:[定理表述]直角三角形的两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么c2=a2+b2,[尝试证明]在△ABE和△ECD中,,∴△ABE≌△ECD(SAS),∴∠AEB=∠EDC,又∵∠EDC+∠DEC=90°,∴∠AEB+∠DEC=90°,∴∠AED=90°,S梯形ABCD=S△ABE+S△DEC+S△AED,∴(a+b)(a+b)=ab+ab+c2,整理,得a2+b2=c2,[知识拓展]①∵AB=xkm,AP⊥l于点P,∴AP=AC,∴a1=AB+AP=x+3,故答案为:(x+3);②过B作BM⊥AC于M,则AM=4﹣3=1,在△ABM中,由勾股定理得:BM2=AB2﹣12=x2﹣1,在△A′MB中,由勾股定理得:AP+BP=A′B==.故答案为:.③∵﹣=(x+3)2﹣()2=x2+6x+9﹣x2﹣48=6x﹣39,∴当﹣>0(即a1﹣a2>0,a1>a2)时,6x﹣39>0,解得:x>6.5;当﹣=0(即a1﹣a2=0,a1=a2)时,6x﹣39=0,解得:x=6.5;当﹣<0(即a1﹣a2<0,a1<a2)时,6x﹣39<0,解得:x<6.5;综上所述,当x>6.5时,选择方案二,输气管道较短;当x=6.5时,两种方案一样;当0<x<6.5时,选择方案一,输气管道较短.26.(7分)已知△ABC中,∠C是其最小的内角,如果过顶点B的一条直线把这个三角形分割成了两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,在Rt△ABC中,∠C=20°,过顶点B的一条直线BD交AC于点D,且∠DBC=20°,显然直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,在△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC的关于点B的伴侣分割线,并标注角度;(2)在△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x 之间满足怎样的关系时,△ABC存在关于点B的伴侣分割线.【解答】解:(1)如图所示:(2)设BD为△ABC的伴侣分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=x.当∠A=90°时,△ABC存在伴侣分割线,此时y=90°﹣x,当∠ABD=90°时,△ABC存在伴侣分割线,此时y=90°+x,当∠ADB=90°时,△ABC存在伴侣分割线,此时x=45°且90°≥y>45°;第二种情况:△BDC是直角三角形,△ABD是等腰三角形,当∠DBC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时180°﹣x﹣y=y﹣90°,∴y=135°﹣x,当∠BDC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时∠A=45°,∴y=135°﹣x.综上所述,当y=90°﹣x或y=90°+x或x=45°且y>x且90°≥y>45°或y=135°﹣x 或y=135°﹣x时△ABC存在伴侣分割线.。

相关文档
最新文档