北师大八下数学《因式分解》水平测试3

合集下载

北师大版八年级下册 因式分解单元测试题及答案

北师大版八年级下册 因式分解单元测试题及答案
2
b

b

A、 a 2b a b a 2 ab 2b 2 C、 a b a 2 2ab b 2
2
10、三角形的三边 a 、 b 、 c 满足 a 2 b c b 2 c b3 0 ,则这个三角形的形状是 ( ) B、等边三角形 C、直角三角形 D、等腰直角三角
6、已知正方形的面积是 16 8 x x 2 cm 2 ( x >4cm),则正方形的周长是( A、 4 x cm
n
)
B、 x 4 cm
C、 16 4 x cm
2
D、 4 x 16 cm )
7、若多项式 2 x 81 能分解成 4 x 9 A、2
2 2
2 2001
(2)
25
5
511 30
3、已知 x 6.61, y 3.39 ,求 x y x 2 3 xy y 2 5 xy x y 的值。(6 分)
三、解答题(共 44 分)
1、把下列各式分解因式:(12 分) (1) a 3 2a 2b ab 2 (2) a 3 15ab 2 9ac 2 (3) m 2 m 1 4 1 m
2
(4)
x
2
4 16 x 2
2
2、利用分解因式的方法计算:(6 分) (1)
3 D、 m 2 2m 3 m m 2 m
2、下列各式的分解因式:① 100 p 2 25q 2 10 5q 10 5q ②
2
4m 2 n 2 2m n 2m n
2

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》检测(包含答案解析)(3)

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》检测(包含答案解析)(3)

一、选择题1.已知a+b=3,ab=1,则多项式a 2b+ab 2-a-b 的值为( )A .-1B .0C .3D .62.下列因式分解正确的是( )A .a 2﹣ab +a =a (a ﹣b )B .m 2+n 2=(m +n )(m ﹣n )C .111x x x ⎛⎫+=+ ⎪⎝⎭D .x 2+2xy +y 2=(x +y )2 3.下列从左到右的变形属于因式分解的是( )A .(x y)ax ay a +=+B .221(2)1x x x x ++=++C .21(1)(1)x x x -=+-D .2(2)(2)4x x x +-=- 4.下列各多项式从左到右变形是因式分解,并分解正确的是( ) A .2()()()(1)a b b a a b a b ---=--+B .2(2)(3)56x x x x ++=++C .2249(49)(49)a b a b a b -=-+D .222()()2m n m n m n -+=+-+5.下列各式中,能用平方差公式进行分解因式的是( )A .x 2+y 2B .x 2﹣2x ﹣3C .x 2+2x +1D .x 2﹣46.下列四个多项式:①-a 2+b 2;②-x 2-y 2;③1-(a -1)2;④x 2-2xy +y 2,其中能用平方差公式分解因式的有( )A .4个B .3个C .2个D .1个7.如下列试题,嘉淇的得分是( )姓名:嘉淇 得分:将下列各式分解因式(每题20分,共计100分)①242(12)xy xyz xy z -=-;②2363(12)x x x x --=--;③221(2)a +a a a +=+;④2224(2)m n m n -=-;⑤22222()()x y x y x y -+=-+-A .40分B .60分C .80分D .100分 8.下列各项分解因式正确的是( ) A .22(1)1a a -=-B .2242(2)a a a -+=-C .22()()b a a b a b -+=+-D .223(1)(3)x x x x --=-+ 9.下列各式从左到右的变形中,属于分解因式的是( )A .a (m+n )=am+anB .10x 2﹣5x =5x (2x ﹣1)C .x 2﹣16+6x =(x+4)(x ﹣4)+6xD .a 2﹣b 2﹣c 2=(a ﹣b )(a+b )﹣c 210.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ). A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++11.式子233x y y -因式分解的最后结果是( )A .3(1)(1)y x x -+B .()23x y y -C .()231y x -D .()233y x - 12.下列因式分解正确的是( )A .221(21)1x x x x --=--B .2244(2)x x x -+=-C .256(6)(1)x x x x -+=-+D .()321x x x x -=- 二、填空题13.分解因式:224ma mb -=______.14.分解因式:33-=ab a b ____.15.把多项式2218a b b -分解因式的结果是________.16.分解因式:-3x 2+6xy -3y 2=________.17.已知210x x +-=,则代数式3222020x x ++的值为________.18.分解因式:22416m n -=________.19.分解因式:4a 2-4a+1=______.20.若x ﹣y =2,xy =3,则x 2y ﹣xy 2=____.三、解答题21.计算:(1)(ab+1)2﹣(ab ﹣1)2(2)4xy 2z÷(-2x -2yz -1)22.因式分解(1)22()()a x y b x y --- (2)2288x y xy y -+23.已知2227,43,628A a B a a C a a =-=-+=+-,其中2a >,(1)判断A 与B 的大小;(2)阅读下面对B 分解因式的方法:22243441(2)1(21)(21)(1)(3)B a a a a a a a a a =-+=-+-=--=-+--=--.请解决下列两个问题:①仿照上述方法分解因式:2496x x --;②指出A 与C 哪个大,并说明理由.24.若△ABC 的三边为:a b c 、、且满足4222240a b c a c b +--=,请判断这个三角形的形状.25.(1)解方程组:202321x y x y -=⎧⎨+=⎩.(2)解不等式组:202(21)15x x x -<⎧⎨-≤+⎩. (3)分解因式:3x x -.(4)分解因式:221x x -++.26.如图,已知点B 在线段AE 上,分别以AB ,BE 为边长在AE 上方作正方形ABCD ,BEFG ,点P 为AB 中点,连接CF ,CP ,FP ,设AB a ,BE b =.(1)若2a b =,请判断CPF 的形状,并说明理由;(2)请用含a ,b 的式子表示CPF 的面积;(3)若CPF 的面积为6,6AE =,求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据分解因式的分组分解因式后整体代入即可求解.【详解】解:a 2b+ab 2-a-b=(a 2b-a )+(ab 2-b )=a (ab-1)+b (ab-1)=(ab-1)(a+b )将a+b=3,ab=1代入,得原式=0.故选:B .【点睛】本题考查了因式分解的应用,解决本题关键是掌握分组分解因式的方法.2.D解析:D【分析】运用提取公因式法、公式法分解因式以及因式分解的定义逐项排除即可.【详解】解:A 、a 2﹣ab +a =a (a ﹣b +1),故此选项错误;B 、m 2+n 2,无法分解因式,故此选项错误;C 、x +1,无法分解因式,故此选项错误;D 、x 2+2xy +y 2=(x +y )2,正确.故答案为D .【点睛】本题主要考查了提取公因式法和公式法分解因式以及因式分解的定义,掌握运用乘法公式进行因式分解是解答本题的关键.3.C解析:C【分析】根据因式分解的概念:把一个多项式转化成几个整式积的形式,依次判断可得答案.【详解】解:A 、没把一个多项式转化成几个整式积的形式,故A 错误;B 、没一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成几个整式积的形式,故C 正确;D 、是整式的乘法,故D 错误;故选C .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式. 4.A解析:A【分析】直接利用因式分解的定义进而分析得出答案.【详解】解:A 、2()()()(1)a b b a a b a b ---=--+,是因式分解,故此选项正确;B 、(x+2)(x+3)=x 2+5x+6,是整式的乘法运算,故此选项错误;C 、4a 2-9b 2=(2a-3b )(2a+3b ),故此选项错误;D 、m 2-n 2+2=(m+n )(m-n )+2,不符合因式分解的定义,故此选项错误.故选:A .【点睛】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.5.D解析:D【分析】根据平方差公式的构成特点,逐个判断得结论.A .多项式中的两项同号,不能用平方差公式分解因式;B .多项式含有三项,不能用平方差公式分解因式;C .多项式含有三项,不能用平方差公式分解因式;D .能变形为x 2﹣22,符合平方差公式的特点,能用平方差公式分解因式.故选:D .【点睛】本题考查了运用平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键. 6.C解析:C【分析】根据平方差公式特点:①两项,②都可以写成平方的形式,③平方前面是异号,可以得到答案.【详解】解:①-a 2+b 2;③1-(a -1)2;符合平方差特点;④x 2-2xy +y 2,②-x 2-y 2;不符合平方差特点;故选:C .【点睛】此题主要考查了平方差公式特点,把握公式特点是解题的关键.7.A解析:A【分析】根据提公因式法及公式法分解即可.【详解】①242(12)xy xyz xy z -=-,故该项正确;②2363(12)x x x x --=-+,故该项错误;③2221(1)a +a a +=+,故该项错误;④224(2)(2)m n m n m n -=+-,故该项错误;⑤22222()()x y x y x y -+=-+-,故该项正确;正确的有:①与⑤共2道题,得40分,故选:A .【点睛】此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键. 8.C解析:C【分析】利用平方差公式对A 、C 进行判断;根据完全平方公式对B 进行判断;利用十字相乘法对D【详解】解:A 、a 2−1=(a +1)(a−1),所以A 选项错误;B 、a 2−4a +2在实数范围内不能因式分解;C 、−b 2+a 2=a 2−b 2=(a +b )(a−b ),所以C 选项正确;D 、x 2−2x−3=(x−3)(x +1),所以D 选项错误.故选:C .【点睛】本题考查了因式分解−十字相乘法:借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.也考查了公式法因式分解.9.B解析:B【分析】根据分解因式的定义逐个判断即可.【详解】解:A .等式由左到右的变形属于整式乘法,不属于分解因式,故本选项不符合题意; B .等式由左到右的变形属于分解因式,故本选项符合题意;C .等式由左到右的变形不属于分解因式,故本选项不符合题意;D .等式由左到右的变形不属于分解因式,故本选项不符合题意;故选:B .【点睛】此题考查了因式分解的定义.掌握其定义是解答此题的关键.10.B解析:B【分析】根据甲看错了a 的值,将分解的结果展开,能求出正确的b 的值,乙看错了b 的值,可以求出a 的值,再因式分解即可得到答案.【详解】解:∵甲看错了a 的值∴b 是正确的∵()()61x x +-=256x x +-∴b=-6∵乙看错了b 的值∴a 是正确的∵()()21x x -+=22x x --∴a=-1∴26x x --=()()23x x +-故选:B .本题主要考查了因式分解,熟练因式分解以及计算是解决本题的关键.11.A解析:A【分析】先提公因式3y ,再根据平方差公式分解因式即可.【详解】233x y y -=23(1)y x -=3(1)(1)y x x -+,故选:A.【点睛】此题考查因式分解的方法:提公因式法,公式法(平方差公式、完全平方公式),根据多享受到特点选择适合的因式分解的方法是解题的关键.12.B解析:B【分析】根据因式分解的定义进行选择即可.【详解】A. 221(21)1x x x x --=--,不是因式分解,故本选项不符合题意;B. 2244(2)x x x -+=-,故本选项符合题意,C. 256(2)(-3)-+=-x x x x ,故本选项不符合题意;D. ()321=x x+1x-1()()-=-x x x x ,故本选项不符合题意;故选B【点睛】此题考查提公因式法与公式法的综合运用,因式分解-十字相乘法,掌握运算法则是解题关键 二、填空题13.【分析】应先提取公因式m 再对余下的多项式利用平方差公式继续分解;【详解】故答案为:【点睛】本题考查了提公因式法公式法分解因式关键在于提取公因式后继续利用平方差公式进行因式分解解析:()()22m a b a b -+【分析】应先提取公因式m ,再对余下的多项式利用平方差公式继续分解;【详解】()()()22224422ma mb m a b m a b a b -=-=+- ,故答案为:()()22m a b a b +-.本题考查了提公因式法、公式法分解因式,关键在于提取公因式后继续利用平方差公式进行因式分解.14.【分析】先提取公因式再用平方差公式进行分解【详解】解:故答案为:【点睛】本题考查了因式分解解题关键是先提取公因式再利用公式进行分解注意:因式分解要彻底解析:()()ab b a b a -+【分析】先提取公因式,再用平方差公式进行分解.【详解】解:3322()ab a b ab b a -=-, ()()ab b a b a =-+,故答案为:()()ab b a b a -+.【点睛】本题考查了因式分解,解题关键是先提取公因式,再利用公式进行分解.注意:因式分解要彻底.15.【分析】首先提公因式2b 再利用平方差进行二次分解即可【详解】解:2a2b-18b=2b (a2-9)=2b (a+3)(a-3)故答案为:2b (a+3)(a-3)【点睛】本题考查了提公因式法与公式法分解解析:()()233b a a +-【分析】首先提公因式2b ,再利用平方差进行二次分解即可.【详解】解:2a 2b-18b=2b (a 2-9)=2b (a+3)(a-3),故答案为:2b (a+3)(a-3).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解. 16.;【分析】先提公因式-3再用完全平方公式因式分解即可【详解】解:原式=-3(x2-2xy+y2)=;故答案为:;【点睛】本题考查了因式分解掌握因式分解的方法是解题的关键解析:23()x y --;【分析】先提公因式-3,再用完全平方公式因式分解即可.【详解】解:原式=-3(x 2-2xy+y 2)=23()x y --;故答案为:23()x y --;【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.17.【分析】根据条件转换成x2+x=1后一个代数式化简后将条件代入即可【详解】解:由题意得:x2+x=1∴x3+2x2+2020=x(x2+x)+x2+2020=x+x2+2020=1+2020=202解析:【分析】根据条件转换成x 2+x =1,后一个代数式化简后将条件代入即可.【详解】解:由题意得:x 2+x =1,∴x 3+2x 2+2020=[x (x 2+x )+x 2]+2020=x +x 2+2020=1+2020=2021,故答案为:2021.【点睛】本题考查代数式的整体代入求解,关键在于如何将代数式转换成条件中的整体. 18.4(m+2n )(m-2n )【分析】原式提取4后利用平方差公式分解即可【详解】解:原式=4(m²-4n²)=4(m+2n )(m-2n )故答案为:4(m+2n )(m-2n )【点睛】本题考查了提公因式法与解析:4(m+2n )(m-2n )【分析】原式提取4后,利用平方差公式分解即可.【详解】解:原式=4(m²-4n²)=4(m+2n )(m-2n ).故答案为:4(m+2n )(m-2n )【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 19.【分析】根据完全平方公式的特点:两项平方项的符号相同另一项是两底数积的2倍本题可用完全平方公式分解因式【详解】解:故答案为【点睛】本题考查用完全平方公式法进行因式分解能用完全平方公式法进行因式分解的 解析:2(21)a -【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【详解】解:22441(21)a a a -+=-.故答案为2(21)a -.【点睛】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.20.6【分析】原式提取xy 利用提公因式法因式分解将各自的值代入计算即可求出值;【详解】解:∵x-y=2xy=3∴原式=xy (x-y )==6【点睛】此题考查了提公因式法因式分解熟练掌因式分解是解本题的关键解析:6【分析】原式提取xy ,利用提公因式法因式分解,将各自的值代入计算即可求出值;【详解】解:∵x-y=2,xy=3,∴原式=xy (x-y )=32⨯=6.【点睛】此题考查了提公因式法因式分解,熟练掌因式分解是解本题的关键.三、解答题21.(1)4ab ;(2)322x yz - .【分析】(1)利用平方差公式进行计算即可;(2)根据单项式除以单项式的法则计算即可.【详解】(1) 22(1)(1)ab ab +--= (11)(11)ab ab ab ab ++-+-+=2ab×2=4ab ;(2) 2214(2)xy z x yz --÷-= 1(2)211(1)4(2)x y z -----÷-= 322x yz -.【点睛】本题考查了平方差公式,单项式除以单项式,熟练掌握平方差公式和单项式除以单项式的法则是解题的关键.22.(1)()()()x y a b a b -+-;(2)22(2)y x -【分析】(1)根据提取公因式和平方差公式化简即可;(2)先提取公因式,再利用完全平方公式化简即可;【详解】(1)()()()()()2222()()---=--=--+a x y b x y x y a b x y a b a b ; (2)()()22228824422-+=-+=-x y xy y y x x y x ;【点睛】本题主要考查了因式分解的应用,准确计算是解题的关键.23.(1)B A >;(2)①()()812x x +-②当 23a <<,A C >,当3a =时,A C =,当3a >时,A C <,理由见解析.【分析】(1)由()2224327610310B A a a a a a a -=-+-+=-+=-+>可得;(2)①根据()222249644100210x x x x x --=-+-=--,再利用平方差公式分解可得;②由()()226282742173C A a a a a a a a -=+--+=+-=+-,再分类讨论可得. 【详解】(1)∵24327B A a a a -=-+-+2610a a =-+()2310a =-+>,∴B A >.(2)①2496x x -- 244100x x =-+-()22210x =-- ()()210210x x =-+--()()812x x =+-,②262827C A a a a -=+--+2421a a =+-()()73a a =+-,∵2a >,∴70a +>,从而当23a <<时,A C >,当3a =时,A C =,当3a >时,A C <.【点睛】本题考查了用提公因式法和公式法、十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,注意整体思想的运用是解题的关键.24.等腰三角形或直角三角形【分析】将4222240a b c a c b +--=化为()()()222a b a b a b c +-+-,进而求得a b =或222+=a b c ,即可判断三角形形状.【详解】解:∵4222240a b c a c b +--=,∴()()442222=0a b b c a c -+- ,∴()()()222a b a b a b c +-+-=0, ∵0,a b +>∴0a b -=或2220a b c +-=,即a b =或222+=a b c ,∴△ABC 为等腰三角形或直角三角形.【点睛】本题考查了因式分解的应用、勾股定理逆定理、等腰三角形等知识,熟练运用因式分解从而得到a 、b 、c 的关系是解题关键.25.(1)63x y =⎧⎨=⎩;(2)32x -≤<;(3)()()11x x x +-;(4)()21x - 【分析】(1)加减消元法解方程组;(2)先分别解不等式,再找解集的公共部分;(3)先提公因式,再用平方差公式;(4)应用完全平方公式.【详解】(1)解:202321x y x y -=⎧⎨+=⎩①②, ②-①×2,得:721y =,解得:3y =,把3y =代入①得:6x =,∴原方程组的解为:63x y =⎧⎨=⎩; (2)解:202(21)15x x x -<⎧⎨-≤+⎩①②, 由①得:2x <,由②得:4-215x x ≤+,解得:3x ≥-,∴原不等式组的解为:32x -≤<;(3)原式=()()()211-1x x x x x -=+; (4)原式=221x x -++=()21x -.【点睛】本题考查二元一次方程组的解法,一元一次不等式组的解法,因式分解的方法,熟练掌握基础知识是关键.26.(1)等腰三角形,理由见解析;(2)21144a ab +;(3)4 【分析】(1)利用题目所给条件,通过SAS 证明EFP △≌BPC △,可得出结果;(2)根据图像可知,B CPF EFP ABC C D ADCP FE S S S S S =+--正方形梯形△△梯形,分别求出各部分面积可求出最终结果;(3) 若CPF 的面积为6,则211644a ab +=,因式分解后可解出最终结果. 【详解】(1)CPF 为等腰三角形.∵点P 为AB 的中点, ∴1122BP AB a ==, ∵BE EF b ==,2a b =,∴BP EF =,12EP b a a BC =+==, ∵90E CBP ∠=∠=︒, ∴EFP △≌BPC △,∴PF PC =, ∴CPF 为等腰三角形.(2)∵211112242EFP S b b a ab b ⎛⎫=+=+ ⎪⎝⎭△, 113224ADCP S a a a a 2⎛⎫=+= ⎪⎝⎭梯形, ()2111222BCFE S b a b ab b =+=+梯形, ∴B CPF EFP ABC C D ADCP FE S S S S S =+--正方形梯形△△梯形2222211113112242444a ab b ab b a a ab ⎛⎫=++-+-=+ ⎪⎝⎭. (3)∵6CPF S =△, ∴211644a ab +=, ∴()164a ab +=, ∵6a b AE +==, ∴1664a ⨯=,a=,∴4AB=.即4【点睛】本题主要考查三角形综合问题,涉及证明三角形全等,三角形面积的求解,需要熟练掌握全等三角形以及多边形中三角形面积求解的方法,利用数形结合的思想是解题的关键.。

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P 94习题T 2改编】【2021·兴安盟】下列等式从左到右变形,属于因式分解的是( )A .(a +b )(a -b )=a 2-b 2B .x 2-2x +1=(x -1)2C .2a -1=a ⎝ ⎛⎭⎪⎫2-1aD .x 2+6x +8=x (x +6)+82.下列四个多项式中,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-4x +43.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x +1B .x 2+2x -1C .x 2-1D .x 2-10x +254.分解因式-2m (n -p )2+6m 2(p -n )时,应提取的公因式为( )A .-2m 2(n -p )2B .2m (n -p )2C .-2m (n -p )D .-2m5.一次课堂练习,小红同学做了如下4道因式分解题,你认为小红做得不够完整的一题是( )A .a 3-a =a (a 2-1)B .m 2-2mn +n 2=(m -n )2C .x 2y -xy 2=xy (x -y )D .x 2-y 2=(x -y )(x +y )6.下列因式分解正确的是( ) A .3ax 2-6ax =3(ax 2-2ax )B .x 2+y 2=(-x +y )(-x -y )C .a 2+2ab -4b 2=(a +2b )2D .-ax 2+2ax -a =-a (x -1)27.如果x -2是多项式x 2-6x +m 的一个因式,那么m 的值为( )A .8B .6C .4D .28.【2023·绵阳南山双语学校模拟】从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图①所示,然后拼成一个平行四边形,如图②所示,那么通过计算两个图形阴影部分的面积,可以验证成立的为( )A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )9.【教材P 105复习题T 12变式】已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形10.下列各数中,可以写成两个连续偶数的平方差的是( )A .500B .520C .250D .205二、填空题(每题3分,共24分)11.分解因式:3m 3+6m 2=____________.12.把多项式()1+x ()1-x -()x -1提取公因式x -1后,余下的部分是__________.13.【2022·苏州】已知x +y =4,x -y =6,则x 2-y 2=________.14.一个长方体的体积为x 2y -9y ,长和宽是关于x 的一次二项式(一次项系数为1),则长是________,宽是________.15.【教材P 105复习题T 13改编】若关于x 的二次三项式x 2+ax +14是完全平方式,则a 的值是__________.16.已知a ,b 满足|a +2|+b -4=0,分解因式:(x 2+y 2)-(axy +b )=________________.17.在对多项式x 2+ax +b 进行因式分解时,小明看错了b ,分解的结果是(x -10)(x +2);小亮看错了a ,分解的结果是(x -8)(x -2),则多项式x 2+ax +b 进行因式分解的正确结果为____________.18.【规律探索题】观察下列各式:x 2-1=(x -1)(x +1),x 3-1=(x -1)(x 2+x +1),x 4-1=(x -1)(x 3+x 2+x +1),根据前面各式的规律可猜想:x n +1-1=_________________________________________.三、解答题(19题16分,20,24题每题12分,21,22题每题8分,23题10分,共66分)19.【教材P104复习题T2改编】把下列各式因式分解:(1)4x2-64;(2)a3b+2a2b2+ab3;(3)(a-b)2-2(b-a)+1;(4)x2-2xy+y2-16z2.20.【数学运算】利用因式分解计算:(1)57×99+44×99-99;(2)2 0242-4 048×2 023+2 0232;(3)9×1.22-16×1.42.21.【教材P105复习题T6变式】已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.22.【教材P105复习题T5变式】若一个两位正整数m的个位数字为8,求证:m2-64一定为20的倍数.23.【阅读理解题】阅读下列材料:配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,巧妙地运用配方法不仅可以将一个看似不能分解的多项式进行因式分解,还能结合非负数的意义来解决一些问题.如:将x2+2x-3因式分解.解:原式=x2+2x+1-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1).(1)请你仿照以上方法,完成因式分解:a2+4ab-5b2;(2)若m2+2n2+6m-4n+11=0,求m+n的值.24.【直观想象】观察猜想如图,大长方形是由三个小长方形和一个小正方形拼成的,请根据此图填空:x2+(p+q)x +pq=x2+px+qx+pq=(________)(________).说理验证事实上,我们也可以用如下方法进行变形:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=_______________=(________)(________).于是,我们可以利用上面的方法进行多项式的因式分解.尝试运用例题:把x2+3x+2因式分解.解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).请利用上述方法将下列多项式因式分解:。

初中数学北师大版八年级下册第四章 因式分解3.公式法-章节测试习题(3)

初中数学北师大版八年级下册第四章 因式分解3.公式法-章节测试习题(3)

章节测试题1.【答题】把x2y-y分解因式,正确的是()A. y(x2-1)B. y(x+1)C. y(x-1)D. y(x+1)(x-1)【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:原式选D.2.【答题】已知a-b=3,则的值是()A. 4B. 6C. 9D. 12【答案】C【分析】先分解因式,再代入求值即可.【解答】∵a-b=3,∴=(a+b)(a-b)-6b=(a+b)(a-b)-6b=3(a+b) -6b=3a+3b-6b=3(a-b)=3×3=9.选C.3.【答题】下列多项式,能用完全平方公式分解因式的是()A. -x2-2x-1B. x2-2x-1C. x2+xy+y2D. x2+4【答案】A【分析】能用完全平方公式分解因式的式子的特点是:有三项,其中两个平方项的符号必须相同,第三项为两平方项底数乘积的2倍.【解答】解:A、-x2-2x-1=-(x2+2x+1)=-(x+1)2,能用完全平方公式分解因式,故此选项正确;B、x2-2x-1不符合能用完全平方公式分解因式的式子的特点,故此选项错误;C、x2+xy+y2不符合能用完全平方公式分解因式的式子的特点,故此选项错误;D、x2+4不符合能用完全平方公式分解因式的式子的特点,故此选项错误.选A.4.【答题】下列多项式中,在有理数范围内能够分解因式的是()A. ﹣5B. +5x+3C. 0.25﹣16D. +9【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:0.25x2-16y2=(0.5x)2-(4y)2=(0.5x+4y)( 0.5x-4y),所以在有理数范围内能够分解因式的是C,选C.5.【答题】把多项式x3-2x2+x分解因式结果正确的是()A. x(x2-2x)B. x2(x-2)C. x(x+1)(x-1)D. x(x-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:x3-2x2+x=x(x2-2x+1)=x(x-1)2选D.6.【答题】下列分解因式正确的是()A. x3﹣x=x(x2﹣1)B. x2+y2=(x+y)(x﹣y)C. (a+4)(a﹣4)=a2﹣16D. m2+m+=(m+)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:A、x3﹣x=x(x+1)(x-1),故此选项错误;B、x2+y2不能够进行因式分解,故错选项错误;C、是整式的乘法,不是因式分解,故此选项错误;D、正确.选D.7.【答题】把代数式x3﹣4x2+4x分解因式,结果正确的是()A. x(x2﹣4x+4)B. x(x﹣4)2C. x(x+2)(x﹣2)D. x(x﹣2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】原式=x(x2﹣4x+4)=x(x﹣2)2,选D.8.【答题】下列各式中,能用完全平方公式分解因式的是()A. 16x2+1B. x2+2x-1C. a2+2ab+4b2D. x2-x+【答案】D【分析】根据完全平方公式因式分解.【解答】解: A. 16x2+1只有两项,不能用完全平方公式分解;B. x2+2x-1,不能用完全平方公式分解;C. a2+2ab+4b2,不能用完全平方公式分解;D. x2-x+=,能用完全平方公式分解.选D.9.【答题】分解因式结果正确的是()A.B.C.D.【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:选D.10.【答题】把代数式3x3-12x2+12x分解因式,结果正确的是()A. 3x(x2-4x+4)B. 3x(x-4)2C. 3x(x+2)(x-2)D. 3x(x-2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】3x3-12x2+12x=3x(x2-4x+4)=3x(x-2)2选D.11.【答题】2 0152-2 015一定能被()整除A. 2 010B. 2 012C. 2 013D. 2 014【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解析:2 0152-2 015=2 015×(2 015-1)=2 015×2 014,所以一定能被2 014整除.选D.12.【答题】下列因式分解正确的是().A.B.C.D.【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】A选项中,因为,所以本选项分解错误;B选项中,因为,所以本选项错误;C选项中,因为,所以本选项正确;D选项中,因为,所以本选项错误;选C.13.【答题】把2x-4x分解因式,结果正确的是()A. (x+2)(x-2)B. 2x(x-2)C. 2(x-2x)D. x(2x-4)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】2x2-4x=2(x2-2x)=2x(x-2).选B.14.【答题】计算:2-(-2) 的结果是()A. 2B. 3×2C. -2D. ()【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】22014-(-2)2015=22014+22015=22014(1+2)=3×22014.选B.15.【答题】下列多项式① x²+xy-y²② -x²+2xy-y²③ xy+x²+y²④1-x+ x其中能用完全平方公式分解因式的是()A. ①②B. ①③C. ①④D. ②④【答案】D【分析】根据完全平方公式分解因式.【解答】①③均不能用完全平方公式分解;②-x2+2xy-y2=-(x2-2xy+y2)=-(x-y)2,能用完全平方公式分解,正确;④1-x+=(x2-4x+4)=(x-2)2,能用完全平方公式分解.选D.16.【答题】下列各式是完全平方公式的是()A. 16x²-4xy+y²B. m²+mn+n²C. 9a²-24ab+16b²D. c²+2cd+c²【答案】C【分析】根据完全平方式解答即可.【解答】A.16x²-4xy+y²,不能分解成两个因式的乘积,故本选项错误;B.m²+mn+n²不能分解成两个因式的乘积,故本选项错误;C.9a²-24ab+16b²=(3a-4b)2,故本选项正确;D.c²+2cd+c²不能分解成两个因式的乘积,故本选项错误.选C.17.【答题】下列各式中,能用平方差公式分解因式的是()A.B.C.D.【答案】C【分析】根据平方差公式分解因式解答即可.【解答】平方差公式为:a2-b2=(a+b)(a-b),C选项-x2+4y2= -(x2-4y2)= -(x+2y)(x-2y).方法总结:平方差公式:a2-b2=(a+b)(a-b).18.【答题】一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是()A. 4x2-4x+1=(2x-1)2B. x3-x=x(x2-1)C. x2y-xy2=xy(x-y)D. x2-y2=(x+y)(x-y)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】B选项中,(x2-1)仍能继续运用平方差公式,最后结果应为x(x+1)(x-1);选B.19.【答题】把8a3-8a2+2a进行因式分解,结果正确的是()A. 2a(4a2-4a+1)B. 8a2(a-1)C. 2a(2a+1)2D. 2a(2a-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a-1)2.选D.20.【答题】下列各式不能用公式法分解因式的是()A.B.C.D.【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】选项A能用平方差公式分解因式;选项C、D能用完全平方公式因式分解;选项B不能因式分解,选B.。

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》检测题(有答案解析)(3)

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》检测题(有答案解析)(3)

一、选择题1.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)2 2.若22()x y A x y -+⋅=-,则代数式A 等于( ) A .x y --B .-+x yC .x y -D .x y + 3.下列各式中能用完全平方公式分解因式的是( ) A .2444x x ++B .244x x -++C .4244x x -+D .291216x x ++ 4.如果917255+能被n 整除,则n 的值可能是( ) A .20B .30C .35D .40 5.下列各式由左到右的变形中,属于因式分解的是( ) A .()210x 5x 5x 2x 1-=-B .()()2222a b c a b a b c --=-+-C .()a m n am an +=+D .()()2x 166x x 4x 46x -+=+-+ 6.下列多项式中,不能用乘法公式进行因式分解的是( ) A .a 2﹣1 B .a 2+2a +1 C .a 2+4D .9a 2﹣6a +1 7.下列各式从左到右因式分解正确的是( ) A .()26223x y x y -+=-B .()22121x x x x -+=-+C .()2242x x -=-D .()()311x x x x x -=+- 8.下列各式中:①()()22x y x y x y --=-+-,②()()22x y x y x y -+=-++, ③()22 242x x x --=-,④221142x x x ++=+⎛⎫ ⎪⎝⎭中,分解因式正确的个数有( ) A .1个 B .2个 C .3个 D .4个9.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030 10.下列各式从左到右的变形中,属于因式分解的是( )A .()212x a ax x +=+B .2224(4)x x x x -+=-+C .()236966)9(x x x x x -+=+-+D .()()22m n m n m n -=+- 11.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ). A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++12.已知,则a 2-b 2-2b 的值为 A .4 B .3 C .1 D .0 二、填空题13.分解因式:269a a ++=_______________.14.分解因式:-3x 2+6xy -3y 2=________.15.因式分解:24a b b -=______.16.已知2019x y +=,20202019-=x y ,则22x y -的值为___________. 17.若a 2-b 2=8,a-b=2,则a+b 的值为_________.18.分解因式:3m n mn -=_________.19.把多项式2122214x x --进行分解因式,结果为________________.20.若多项式222(3)x mx x x +=-,则m =_______________.三、解答题21.(1)因式分解:32862a a a --;(2)利用因式分解进行计算:32322022220222020202220222023-⨯-+-. 22.因式分解(1)22()()a x y b x y --- (2)2288x y xy y -+23.观察下列分解因式的过程:2223a ab b +-.解:原式=222223a ab b b b ++--222(2)4a ab b b =++-22()(2)a b b =+-()()22a b b a b b =+++-(3)()a b a b =+-像这种通过增减项把多项式转化成完全平方形式的方法称为配方法.(1)请你运用上述配方法分解因式:2245a ab b +-;(2)代数式222612a a b b ++-+是否存在最小值?如果存在,请求出当a 、b 分别是多少时,此代数式存在最小值,最小值是多少?如果不存在,请说明理由.24.(1)分解因式:244am am a ++(2)计算:(-2)(2)(2)x x x y x y ++-25.分解因式:(1)21449x x -+=__________;2718x x +-=__________;(2)()()2294a x y b y x -+-.26.(1)计算题:①(a 2)3•(a 2)4÷(a 2)5②(x ﹣y+9)(x+y ﹣9)(2)因式分解①﹣2a 3+12a 2﹣18a②(x 2+1)2﹣4x 2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A 、等号左右两边不相等,故错误;B 、a 3-a=a(a+1)(a-1),故正确;C 、右边不是整式的积,故错误;D 、等号左右两边不相等,故错误.故选:B .【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.2.A解析:A【分析】利用平方差公式将等号右边写成()()x y x y +-,即可求解.【详解】解:∵()()22()y x y A x y x y x -+=+⋅--=, ∴A x y =--,故选:A .【点睛】本题考查平方差公式,掌握平方差公式是解题的关键.3.C解析:C【分析】利用完全平方公式逐项进行判定即可.【详解】解:A. 2444x x ++,无法因式分解,故不符合题意;B. 244x x -++,无法因式分解,故不符合题意;C. ()2422442x x x -+=-,符合题意;D. 291216x x ++,无法因式分解,故不符合题意.故答案为C.【点睛】本题主要考查了运用完全公式法分解因式,熟练掌握完全平方公式是解答本题关键. 4.B解析:B【分析】两项的底数可以进行转化,25写成5的平方,利用幂的乘方转化后,就可提取公因数进行分解即可解答.【详解】()91718171717162555555156530+=+=⨯+=⨯=⨯,917255∴+能被n 整除,则n 的值可能是30,故选B .【点睛】本题考查了分解因式在计算中的应用,将所给的式子化成积的形式,关键是将两项的底数转化成相同的.5.A解析:A【分析】根据把一个多项式写成几个整式积的形式叫做因式分解对各选项分析判断后利用排除法求解.【详解】解:A 、10x 2-5x=5x(2x-1)是因式分解,故本选项正确;B 、右边不是整式积的形式,故本选项错误;C 、是整式的乘法,不是因式分解,故本选项错误;D 、右边不是整式积的形式,故本选项错误.故选A.【点睛】本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,熟记因式分解的定义是解题的关键.6.C解析:C【分析】直接利用公式法分别分解因式进而得出答案.【详解】A 、a 2﹣1=(a+1)(a ﹣1),可以运用公式法分解因式,不合题意;B 、a 2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C 、a 2+4,无法利用公式法分解因式,符合题意;D 、9a 2﹣6a+1=(3a ﹣1)2,可以运用公式法分解因式,不合题意;故选:C .【点睛】本题考查了公式法,正确运用乘法公式是解题的关键.7.D解析:D【分析】根据提公因式法可判断A 项,根据公式法可判断B 、C 两项,根据提公因式法和平方差公式可判断D 项,进而可得答案.【详解】解:A 、()262231x y x y -+=-+,所以本选项因式分解错误,不符合题意; B 、()22211x x x -+=-,所以本选项因式分解错误,不符合题意;C 、()()2422x x x -=-+,所以本选项因式分解错误,不符合题意;D 、()()()32111x x x x x x x -=-=+-,所以本选项因式分解正确,符合题意. 故选:D .【点睛】本题考查了多项式的因式分解,属于基本题型,熟练掌握分解因式的方法是解题的关键. 8.B解析:B【分析】直接利用平方差公式和完全平方公式分解因式得出答案即可.【详解】解:①()2222+x y x y--=-,无法分解因式,故此选项错误; ②()()22x y x y x y -+=-++,正确;③()222415(11x x x x x --=--=-+--,故此选项错误; ④221142x x x ++=+⎛⎫ ⎪⎝⎭,故此选项正确;所以,正确的答案有2个,故选:B .【点睛】此题主要考查了公式法分解因式,正确应用平方差公式和完全平方公式是解题关键. 9.B解析:B【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ),当x =30,y =20时,x =30,x +y =50,x−y =10,组成密码的数字应包括30,50,10,所以组成的密码不可能是103020.故选:B .【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.10.D解析:D【分析】将多项式写成整式积的形式,即为将多项式分解因式,根据定义解答.【详解】A 、()212x a ax x +=+,不是因式分解,不符合题意;B 、2224(4)x x x x -+=-+,不是因式分解,不符合题意;C 、()236966)9(x x x x x -+=+-+,不是因式分解,不符合题意; D 、()()22m n m n m n -=+-,是因式分解,符合题意; 故选:D .【点睛】此题考查多项式因式分解的定义,熟记定义及因式分解的特点是解题的关键.11.B解析:B【分析】根据甲看错了a 的值,将分解的结果展开,能求出正确的b 的值,乙看错了b 的值,可以求出a 的值,再因式分解即可得到答案.【详解】解:∵甲看错了a 的值∴b 是正确的∵()()61x x +-=256x x +-∴b=-6∵乙看错了b 的值∴a 是正确的∵()()21x x -+=22x x --∴a=-1∴26x x --=()()23x x +-故选:B .【点睛】本题主要考查了因式分解,熟练因式分解以及计算是解决本题的关键.12.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 二、填空题13.(a+3)2【分析】直接利用完全平方公式分解因式得出答案【详解】解:(a+3)2故答案为:(a+3)2【点睛】此题主要考查了公式法分解因式正确运用乘法公式是解题关键解析:(a +3)2【分析】直接利用完全平方公式分解因式得出答案.【详解】解:269a a ++=(a +3)2.故答案为:(a +3)2.【点睛】此题主要考查了公式法分解因式,正确运用乘法公式是解题关键.14.;【分析】先提公因式-3再用完全平方公式因式分解即可【详解】解:原式=-3(x2-2xy+y2)=;故答案为:;【点睛】本题考查了因式分解掌握因式分解的方法是解题的关键解析:23()x y --;【分析】先提公因式-3,再用完全平方公式因式分解即可.【详解】解:原式=-3(x 2-2xy+y 2)=23()x y --; 故答案为:23()x y --;【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键. 15.【分析】直接提取公因式b 进而利用平方差公式分解因式得出即可【详解】解:4a2b-b=b (4a2-1)=b (2a-1)(2a+1)故答案为:b (2a-1)(2a+1)【点睛】本题考查了提取公因式法以及解析:()()2121b a a -+【分析】直接提取公因式b ,进而利用平方差公式分解因式得出即可.【详解】解:4a 2b-b=b (4a 2-1)=b (2a-1)(2a+1).故答案为:b (2a-1)(2a+1).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 16.2020【分析】将写成(x+y)(x-y)然后利用整体代入求值即可【详解】解:∵∴故答案为:2020【点睛】本题考查了平方差公式的应用将写成(x+y)(x-y)形式是代入求值在关键解析:2020【分析】将22x y -写成(x+y)(x-y),然后利用整体代入求值即可.【详解】解:∵2019x y +=,20202019-=x y , ∴()()222020==2019=20202019x y x y y x -+⨯-, 故答案为:2020.【点睛】 本题考查了平方差公式的应用,将22x y -写成(x+y)(x-y)形式是代入求值在关键.17.4【分析】先对a2-b2=8左侧因式分解然后将a-b=2代入求解即可【详解】解:∵a2-b2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4故答案为4【点睛】本题考查了代数式求值和因式分解析:4【分析】先对a 2-b 2=8左侧因式分解,然后将a-b=2代入求解即可.【详解】解:∵a 2-b 2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4.故答案为4.【点睛】本题考查了代数式求值和因式分解,灵活运用因式分解是正确解答本题的关键. 18.【分析】原式提取公因式后利用平方差公式分解即可【详解】解:==故答案为:【点睛】此题主要考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键解析:()()11mn m m +-【分析】原式提取公因式后,利用平方差公式分解即可.【详解】解:3m n mn -=2(1)mn m -=()()11mn m m +-.故答案为:()()11mn m m +-.【点睛】此题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.2(2x+1)(3x-7)【分析】先提取公因式2再利用十字相乘法进行因式分解【详解】12x2-22x-14=2(6x2-11x-7)=2(2x+1)(3x-7)故答案为:2(2x+1)(3x-7)【解析:2(2x+1)(3x-7)【分析】先提取公因式2,再利用十字相乘法进行因式分解.【详解】12x 2-22x-14=2(6x 2-11x-7)=2(2x+1)(3x-7).故答案为:2(2x+1)(3x-7).【点睛】考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行两次因式分解,分解因式一定要彻底. 20.-6【分析】利用多项式乘法去括号根据对应项的系数相等即可求解【详解】∵∴故答案为:-6【点睛】本题主要考查了因式分解与整式的乘法互为逆运算并且考查了代数式相等的条件:对应项的系数相等解析:-6【分析】利用多项式乘法去括号,根据对应项的系数相等即可求解.【详解】∵222(3)262+x x x x x mx --==∴6m =-,故答案为:-6.【点睛】本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.三、解答题21.(1)()()2141a a a -+;(2)20202023. 【分析】(1)提取公因式2a ,后用十字相乘法分解即可;(2)反复使用提取公因式法化简即可.【详解】(1)32862a a a --=22(431)a a a --=()()2141a a a -+;(2)32322022220222020202220222023-⨯-+- =222022(20222)20202022(20221)2023--+- =22202220202020202220232023⨯-⨯- =222020(20221)2023(20221)⨯-⨯- =20202023.【点睛】本题考查了提取公因式法,十字相乘法分解因式,熟练掌握因式分解的基本方法,并灵活选择方法是解题的关键.22.(1)()()()x y a b a b -+-;(2)22(2)y x -【分析】(1)根据提取公因式和平方差公式化简即可;(2)先提取公因式,再利用完全平方公式化简即可;【详解】(1)()()()()()2222()()---=--=--+a x y b x y x y a b x y a b a b ; (2)()()22228824422-+=-+=-x y xy y y x x y x ; 【点睛】本题主要考查了因式分解的应用,准确计算是解题的关键.23.(1)(a-b )(a+5b );(2)存在最小值,当a=-1,b=3时,最小值为2.【分析】(1)理解题意,按题意所给方法分解因式即可;(2)根据题中所给方法,对原式进行变形求解即可.【详解】解:(1) 2245a ab b +-,22224445a ab b b b -=++-,()()2223a b b =+-, ()()2323b a b a b b =+++-,()()5a b a b =+-;(2)代数式222612a a b b ++-+,=a 2+2a+1+b 2-6b+9-1-9+12,=()()22132a b ++-+, ()()2210,30a b +≥-≥, ∴当10a +=,b-3=0即1a =-,b=3时原式有最小值,最小值是2.【点睛】本题主要考查了配方法分解因式,掌握因式分解的方法,正确理解问题情境是解题关键. 24.(1)()22a m + ;(2)22224x x y --【分析】(1)先提公因式a ,再根据完全平方公式分解因式;(2)先根据整式乘法、乘法公式展开括号,然后再合并同类项即可得到答案.【详解】(1)解:244am am a ++()244a m m =++()22a m =+; (2)(2)(2)(2)x x x y x y -++-22224x x x y =-+-22224x x y =--.【点睛】此题考查因式分解及整式的混合运算,掌握多项式的因式分解的方法,整式的乘法计算法则、合并同类项计算法则是解题的关键.25.(1)()27x -;()()29x x -+;(2)()()()3232x y a b a b -+- 【分析】(1)直接运用完全平方公式和十字相乘法因式分解即可;(2)先凑出公因式x-y ,然后提取公因式,最后运用平方差公式分解即可.【详解】解:(1)21449x x -+=22277x x -⨯+=()27x -; 2718x x +-=()()29x x -+:(2)()()2294a x y b y x -+-()()2294a x y b x y =--- ()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题主要考查了因式分解,灵活运用提取公因式法、完全平方公式和十字相乘法成为解答本题的关键.26.(1)①4a ②x 2﹣y 2+18y ﹣81 (2)①﹣2a (a ﹣3)2 ②(x+1)2(x ﹣1)2【分析】(1)①原式利用幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;②原式利用平方差公式变形,再利用完全平方公式展开即可;(2)①原式提取公因式,再利用完全平方公式分解即可;②原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)①原式=a 14÷a 10=a 4;②原式=x 2﹣(y ﹣9)2=x 2﹣y 2+18y ﹣81;(2)①原式=﹣2a (a ﹣3)2;②原式=(x2+1+2x)(x2+1-2x)=(x+1)2(x﹣1)2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.。

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试(包含答案解析)(3)

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试(包含答案解析)(3)

一、选择题1.下列四个多项式,可能是x 2+mx -3 (m 是整数)的因式的是( )A .x -2B .x +3C .x +4D .x 2-12.若2x y -=,3xy =,则22x y xy -的值为( )A .1B .1-C .6D .6- 3.下列各式中,从左到右变形是因式分解的是( ) A .()()22224a b a b a b +--=B .()()2633m m m -=+-C .()22542x x x x ++=++D .()()2933a a a -=+- 4.已知a+b=3,ab=1,则多项式a 2b+ab 2-a-b 的值为( ) A .-1B .0C .3D .6 5.若x -y +3=0,则x (x -4y )+y (2x +y )的值为( ) A .9 B .-9 C .3D .-3 6.下列从左到右的变形,属于因式分解的是( ) A .(a +1)(a -1)=a 2-1 B .2a -2b =2(a -b )C .x (x +1)=x 2+xD .x 2+2x +3=(x +1)2+27.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1) 8.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030 9.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+C .()2484x x x +-D .()241x x - 10.式子233x y y -因式分解的最后结果是( )A .3(1)(1)y x x -+B .()23x y y -C .()231y x -D .()233y x - 11.下列各组中,没有公因式的一组是( )A .ax -bx 与by -ayB .6xy -8x 2y 与-4x+3C .ab -ac 与ab -bcD .(a -b )3与(b -a )2y12.下列变形是分解因式的是( )A .22632x y xy xy =B .22244(2)a ab b a b -+=-C .2(2)(1)32x x x x ++=++D .296(3)(3)6x x x x x --=+--二、填空题13.在实数范围内分解因式:m 2﹣2=_________________.14.多项式39x -,29x -与269x x -+的公因式为______.15.因式分解:236x y y -=__________.16.边长为m 、n 的长方形的周长为14,面积为10,则33m n mn +的值为_________. 17.已知一个长方形的面积是2642a ab a -+,且它的一条边长为2a ,则长方形的周长为___.18.分解因式:2282a b -=______.19.已知2019x y +=,20202019-=x y ,则22x y -的值为___________. 20.把多项式2122214x x --进行分解因式,结果为________________.三、解答题21.已知a+b=-2,a-b=2,把(a 2+b 2-1)2-4a 2b 2先分解因式,再求值.22.分解因式.(1)(1)34x x x --+ (2)2222x xy y a ++-23.所谓完全平方式,就是对一个整式M ,如果存在另一个整式N ,使2M N =,则称M 是完全平方式,如:422()x x =、222)2(x xy y x y =+++,则称4x 、222x xy y++是完全平方式.(1)下列各式中是完全平方式的编号有 .①2244a a b ++;②24x ;③22x xy y -+; ④21025y y --;⑤21236x x ++;⑥2124949a a -+ (2)已知a 、b 、c 是ABC ∆的三边长,满足22222()a b c c a b ++=+,判定ABC ∆的形状.(3)证明:多项式2(4)(8)64x x x +++是一个完全平方式.24.若一个三位或三位以上的整数A 分成左、中、右三个数后满足:①中间数=左边数2-右边数2,则称中间数是A 的“吉祥数”.如231的“吉祥数”是3,4122的“吉样数”是12;②中间数=(左边数-右边数)2,则称中间数是A 的“如意数”.如143的“如意数”是4,5161和1165的“如意数”是16.(1)若一个三位数的“吉祥数”是5,则这个数是_________,若一个四位数的“如意数”是81,则这个数是____,(2)一个“吉祥数”与一个“如意数”的左边数均为m ,右边数均为n ,且这个“吉祥数”比这个“如意数”大12,求满足条件的“吉样数”.25.先阅读下列材料,再解答问题:常用的分解因式的方法有提取公因式法和公式法,但有的多项式只用上述一种方法无法分解,例如多项式244x xy x y -+-和2222a b c bc --+.经过细心观察可以发现,若将多项式进行合理分组后,先将每一组进行分解,分别分解后再用提公因式法或公式法就可以完整分解了.解答过程如下:()()()()()()22(1)444444x xy x yx xy x y x x y x y x y x -+-=-+-=-+-=-+()()()()22222222(2)22a b c bca b c bc a b c a b c a b c --+=-+-=--=+--+这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述思想方法,把下列各式分解因式:(1)32236m m m --+(2)2229x xy y --+26.(1)解方程组:202321x y x y -=⎧⎨+=⎩. (2)解不等式组:202(21)15x x x -<⎧⎨-≤+⎩. (3)分解因式:3x x -.(4)分解因式:221x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将原式利用十字相乘分解因式即可得到答案.【详解】∵k 为整数,且常数项﹣3=(﹣1)×3=(﹣3)×1,∴23(1)(3)x mx x x +-=+-或(1)(3)x x -+,故选B .【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键.解析:C【分析】原式首先提公因式xy ,分解后,再代入求值即可.【详解】∵2x y -=,3xy =,∴22()326xy x x x y y y =-=⨯=-.故选:C .【点睛】本题主要考查了提公因式分解因式,关键是正确确定公因式.3.D解析:D【分析】根据因式分解的定义逐项判断即可得.【详解】A 、()()22224a b a b a b +--=是整式的乘法,此项不符题意; B 、()()2933m m m -=+-,则等式左右两边不相等,此项不符题意; C 、()22542x x x x ++=++没有将一个多项式转化成几个整式的乘积的形式,此项不符题意;D 、()()2933a a a -=+-,此项符合题意; 故选:D .【点睛】本题考查了因式分解的定义,掌握理解定义是解题关键.4.B解析:B【分析】根据分解因式的分组分解因式后整体代入即可求解.【详解】解:a 2b+ab 2-a-b=(a 2b-a )+(ab 2-b )=a (ab-1)+b (ab-1)=(ab-1)(a+b )将a+b=3,ab=1代入,得原式=0.故选:B .【点睛】本题考查了因式分解的应用,解决本题关键是掌握分组分解因式的方法.解析:A【解析】解:∵x -y +3=0,∴x -y =-3.原式=2242x xy xy y -++=2()x y -=2(3)-=9.故选A .6.B解析:B【分析】直接利用因式分解的定义以及整式的乘法运算法则计算得出答案.【详解】解:A 、(a+1)(a-1)=a 2-1,属于整式乘法,故此选项错误;B 、2a-2b=2(a-b ),属于因式分解,故此选项正确;C 、x (x+1)=x 2+x ,属于整式乘法,故此选项错误;D 、x 2+2x+3=(x+1)2+2,不符合因式分解的定义,故此选项错误.故选:B .【点睛】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.7.D解析:D【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.第II 卷(非选择题)请点击修改第II 卷的文字说明8.B解析:B【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ),当x =30,y =20时,x =30,x +y =50,x−y =10,组成密码的数字应包括30,50,10,所以组成的密码不可能是103020.故选:B .【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.9.D解析:D【分析】先提出公因式4x ,再利用完全平方公式因式分解即可解答.【详解】解:32484x x x -+=2421)x x x -+(=()241x x -,故选:D .【点睛】本题考查因式分解、完全平方公式,熟练掌握提公因式法和公式法分解因式的方法步骤是解答的关键. 10.A解析:A【分析】先提公因式3y ,再根据平方差公式分解因式即可.【详解】233x y y -=23(1)y x -=3(1)(1)y x x -+,故选:A.【点睛】此题考查因式分解的方法:提公因式法,公式法(平方差公式、完全平方公式),根据多享受到特点选择适合的因式分解的方法是解题的关键.11.C解析:C【分析】将每一组因式分解,找到公因式即可.【详解】解:A 、ax-bx=(a-b )x ,by-ay=(b-a )y ,有公因式(a-b ),故本选项错误;B 、6xy-8x 2y=2xy (3-4x )与-4x+3=-(4x-3)有公因式(4x-3),故本选项错误;C 、ab-ac=a (b-c )与ab-bc=b (a-c )没有公因式,故本选项正确;D、(a-b)3x与(b-a)2y有公因式(a-b)2,故本选项错误.故选:C.【点睛】本题考查公因式,熟悉因式分解是解题关键.12.B解析:B【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】C和D不是积的形式,应排除;A中,不是对多项式的变形,应排除.故选B.【点睛】考查了因式分解的定义,关键在于能否正确应用分解因式的定义来判断.二、填空题13.(m+)(m﹣)【分析】在实数范围内把2写作()2原式满足平方差公式的特点利用平方差公式即可把原式分解因式【详解】解:m2﹣2=m2﹣()2=(m+)(m﹣)故答案为:(m+)(m﹣)【点睛】考核知解析:(m)(m)【分析】在实数范围内把2)2,原式满足平方差公式的特点,利用平方差公式即可把原式分解因式.【详解】解:m2﹣2=m2)2=(m m故答案为:(m m【点睛】考核知识点:在实数范围内分解因式.运用二次根式性质a=2(a≥0)是解题关键.14.【分析】根据公因式定义对各选项整理然后即可选出有公因式的项【详解】解:因为3x﹣9=3(x﹣3)x2﹣9=(x+3)(x﹣3)x2﹣6x+9=(x﹣3)2所以多项式3x﹣9x2﹣9与x2﹣6x+9的x解析:3【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【详解】解:因为3x﹣9=3(x﹣3),x2﹣9=(x+3)(x﹣3),x2﹣6x+9=(x﹣3)2,所以多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为(x﹣3).x .故答案:3【点睛】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.15.y(x+6)(x-6)【分析】首先提公因式y再利用平方差进行二次分解即可【详解】原式=y(x2-36)=y(x+6)(x-6)故答案为:y(x+6)(x-6)【点睛】本题考查了提公因式法与公式法分解解析:y(x+6)(x-6)【分析】首先提公因式y,再利用平方差进行二次分解即可.【详解】原式=y(x2-36)=y(x+6)(x-6),故答案为:y(x+6)(x-6)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.16.290【分析】根据题意可知m+n=7mn=10再由因式分解法将多项式进行分解后可求出答案【详解】解:由题意可知:m+n=7mn=10原式=mn(m2+n2)=mn(m+n)2-2mn=10×(72-解析:290【分析】根据题意可知m+n=7,mn=10,再由因式分解法将多项式进行分解后,可求出答案.【详解】解:由题意可知:m+n=7,mn=10,原式=mn(m2+n2)=mn[(m+n)2-2mn]=10×(72-2×10)=10×29=290故答案为:290.【点睛】本题考查代数式求值,解题的关键是熟练运用因式分解法以及完全平方公式的变形公式.17.【分析】先将分解因式得到长方形的另一条边长即可求解【详解】解:∵长方形的面积是它的一条边长为∴另一条边长是∴周长为:故答案为:【点睛】本题考查因式分解整式的加减运算掌握提公因式法是解题的关键 解析:1042a b -+【分析】先将2642a ab a -+分解因式,得到长方形的另一条边长,即可求解.【详解】解:∵长方形的面积是()26422321a ab a a a b -+=-+,它的一条边长为2a , ∴另一条边长是()321a b -+,∴周长为:()232121042a b a a b -++=-+,故答案为:1042a b -+.【点睛】本题考查因式分解、整式的加减运算,掌握提公因式法是解题的关键.18.【分析】原式提取公因式2后再运用平方差公式进行因式分解即可【详解】故答案为:【点睛】此题主要考查了仍坚持公因式与公式法的综合运用熟练掌握因式分解的方法是解答此题的关键解析:2(2)(2)a b a b +-【分析】原式提取公因式2后,再运用平方差公式进行因式分解即可.【详解】2222822(4)2(2)(2)a b a b a b a b -=-=+-故答案为:2(2)(2)a b a b +-【点睛】此题主要考查了仍坚持公因式与公式法的综合运用,熟练掌握因式分解的方法是解答此题的关键.19.2020【分析】将写成(x+y)(x-y)然后利用整体代入求值即可【详解】解:∵∴故答案为:2020【点睛】本题考查了平方差公式的应用将写成(x+y)(x-y)形式是代入求值在关键解析:2020【分析】将22x y -写成(x+y)(x-y),然后利用整体代入求值即可.【详解】解:∵2019x y +=,20202019-=x y , ∴()()222020==2019=20202019x y x y y x -+⨯-, 故答案为:2020.【点睛】本题考查了平方差公式的应用,将22x y -写成(x+y)(x-y)形式是代入求值在关键.20.2(2x+1)(3x-7)【分析】先提取公因式2再利用十字相乘法进行因式分解【详解】12x2-22x-14=2(6x2-11x-7)=2(2x+1)(3x-7)故答案为:2(2x+1)(3x-7)【解析:2(2x+1)(3x-7)【分析】先提取公因式2,再利用十字相乘法进行因式分解.【详解】12x 2-22x-14=2(6x 2-11x-7)=2(2x+1)(3x-7).故答案为:2(2x+1)(3x-7).【点睛】考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行两次因式分解,分解因式一定要彻底.三、解答题21.()()()()1111a b a b a b a b +++--+--,9【分析】综合乘法公式进行因式分解,然后再整体代入求值即可.【详解】解:()2222214a b a b +--=()()22221212a b ab a b ab +-++--=()()2211a b a b ⎡⎤⎡⎤+---⎣⎦⎣⎦=()()()()1111a b a b a b a b +++--+--,把2,2a b a b +=--=代入得:原式=()()()()212121219-+⨯--⨯+⨯-=.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.22.(1)2(2)x -;(2)()()x y a x y a +++-.【分析】(1)原式整理后,利用完全平方公式分解即可;(2)原式先利用完全平方公式分解因式,再利用平方差公式分解即可.【详解】解:(1)原式=2x −x−3x +4=2x −4x +4=2(2)x -;(2)原式=()2x y +-2a =()()x y a x y a +++-.【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式、平方差公式是解本题的关键. 23.(1)②⑤⑥;(2)ABC ∆是等边三角形;(3)见详解【分析】(1)根据完全平方公式的结构特征和完全平方式的定义,逐一判断即可;(2)把等式右边的代数式移到左边,再利用完全平方公式写成平方和的形式,从而即可得到a ,b ,c 的关系,进而即可得到结论;(3)利用完全平方公式进行因式分解,把原式写成一个整式的平方的形式,即可得到结论.【详解】(1)②24x =2(2)x ;⑤21236x x ++=2(6)x +;⑥2124949a a -+=21(7)7a -是完全平方式,①2244a a b ++;③22x xy y -+; ④21025y y --不是完全平方式,各式中完全平方式的编号有②⑤⑥,故答案为:②⑤⑥;(2)∵22222()a b c c a b ++=+,∴()()2222220a ac cb bc c -++-+=, ∴()()220a c b c -+-=,∴a-c=0且b-c=0,∴a=b=c ,∴ABC ∆是等边三角形;(3)∵原式=2(8)(4)64x x x +++=22(8)(816)64x x x x ++++=222(8)16(8)64x x x x ++++=22(8)8x x ⎡⎤++⎣⎦ =()2288x x ++,∴多项式2(4)(8)64x x x +++是一个完全平方式.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.24.(1)这个数是352,这个数是9810;(2)满足条件的“吉样数”是7481,5212,5163,7136.【分析】(1)设左边数为m ,右边数为n ,由题意225m n -=,分解为51m n m n +=⎧⎨-=⎩解方程组=32m n ⎧⎨=⎩即可求出,设左边数为m ,右边数为n ,由题意()281m n -=,直接开平方得9m n -=,直接确定m=9,n=0,即可写出这个数;(2)由题意得()22212m n m n -=-+化简得26mn n -=,因式分解()6n m n -=分别讨论n 与m-n 都是6的因式组成方程组,解之即可.【详解】(1)一个三位数的“吉祥数”是5,,设左边数为m ,右边数为n ,m 、n 均为正整数, 225m n -=,51m n m n +=⎧⎨-=⎩, =32m n ⎧⎨=⎩, 则这个数是352,一个四位数的“如意数”是81,设左边数为m ,右边数为n ,()281m n -=,9m n -=,m=9,n=0,则这个数是9810,故答案为:352;9810;(2)由题意得()22212m n m n -=-+, 26mn n -=,()6n m n -=,1=6n m n =⎧⎨-⎩,2=3n m n =⎧⎨-⎩,3=2n m n =⎧⎨-⎩,6=1n m n =⎧⎨-⎩, 17n m =⎧⎨=⎩,2=5n m =⎧⎨⎩,3=5n m =⎧⎨⎩,6=7n m =⎧⎨⎩, 求满足条件的“吉样数”是7481,5212,5163,7136.【点睛】本题考查是三位或三位以上的整数A 的新定义问题,认真学习题中的定义,掌握如意数与吉祥数的约定,会根据题中的要求列出等式,会解不定方程或方程组是解题关键. 25.(1)2(2)(3)m m --;(2)()()33x y x y -+--【分析】(1)将1、2项,3、4项分别结合分别分解因式,再进行组间的公因式提取便可达目的;(2)原式分成222x xy y -+和-9两组,前一组利用完全平方公式分解,然后再利用平方差公式继续分解即可.【详解】解:(1)32236m m m --+2(2)3(2)m m m =---2(2)(3)m m =--;(2)2229x xy y --+2229x xy y =-+-()223x y =-- ()()33x y x y =-+--.【点睛】本题考查了分组分解法,关键要明确分组的目的,是分组分解后仍能继续分解,还是分组后利用各组本身的特点进行解题.26.(1)63x y =⎧⎨=⎩;(2)32x -≤<;(3)()()11x x x +-;(4)()21x - 【分析】(1)加减消元法解方程组;(2)先分别解不等式,再找解集的公共部分;(3)先提公因式,再用平方差公式;(4)应用完全平方公式.【详解】(1)解:202321x y x y -=⎧⎨+=⎩①②, ②-①×2,得:721y =,解得:3y =,把3y =代入①得:6x =,∴原方程组的解为:63x y =⎧⎨=⎩; (2)解:202(21)15x x x -<⎧⎨-≤+⎩①②, 由①得:2x <,由②得:4-215x x ≤+,解得:3x ≥-,∴原不等式组的解为:32x -≤<;(3)原式=()()()211-1x x x x x -=+;(4)原式=221x x -++=()21x -.【点睛】本题考查二元一次方程组的解法,一元一次不等式组的解法,因式分解的方法,熟练掌握基础知识是关键.。

北师大八年级下册第四章《因式分解》单元测试题含答案解析

北师大八年级下册第四章《因式分解》单元测试题含答案解析

第四章《因式分解》检测题一.选择题(共12小题)1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣252.多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)23.把多项式(x+1)(x﹣1)﹣(1﹣x)提取公因式(x﹣1)后,余下的部分是()A.(x+1) B.(x﹣1) C.x D.(x+2)4.下列多项式的分解因式,正确的是()A.12xyz﹣9x2y2=3xyz(4﹣3xyz)B.3a2y﹣3ay+6y=3y(a2﹣a+2)C.﹣x2+xy﹣xz=﹣x(x2+y﹣z) D.a2b+5ab﹣b=b(a2+5a)5.若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是()A.﹣15 B.15 C.2 D.﹣86.计算(﹣2)+2等于()A.2B.﹣2 C.﹣2 D.27.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)8.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b) B.b(a﹣b)2 C.b(a2﹣b2)D.b(a+b)2 9.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2 B.a(x+2)2 C.a(x﹣4)2 D.a(x+2)(x﹣2)10.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣1511.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣412.n是整数,式子 [1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数二.填空题(共6小题)13.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).14.如图中的四边形均为矩形,根据图形,写出一个正确的等式.15.若a=49,b=109,则ab﹣9a的值为.16.在实数范围内分解因式:x5﹣4x=.17.设a=8582﹣1,b=8562+1713,c=14292﹣11422,则数a,b,c 按从小到大的顺序排列,结果是<<.18.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是三角形.三.解答题(共10小题)19.把下列各式分解因式:(1)2m(m﹣n)2﹣8m2(n﹣m)(2)﹣8a2b+12ab2﹣4a3b3.(3)(x﹣1)(x﹣3)+1.(4)(x2+4)2﹣16x2.(5) x2+y2+2xy﹣1.(6)(x2y2+3)(x2y2﹣7)+37(实数范围内).20.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.21.先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值.(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.22.先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得,∴解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)由于上式为恒等式,为方便计算了取,2×=0,故.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.23.老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为1;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.24.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与解析一.选择题1.【分析】利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.【分析】分别将多项式4x2﹣4与多项式x2﹣2x+1进行因式分解,再寻找他们的公因式.解:∵4x2﹣4=4(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式4x2﹣4与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.3.【分析】原式变形后,提取公因式即可得到所求结果.解:原式=(x+1)(x﹣1)+(x﹣1)=(x﹣1)(x+2),则余下的部分是(x+2),故选D4.【分析】A选项中提取公因式3xy;B选项提公因式3y;C选项提公因式﹣x,注意符号的变化;D提公因式b.解:A、12xyz﹣9x2y2=3xy(4z﹣3xy),故此选项错误;B、3a2y﹣3ay+6y=3y(a2﹣a+2),故此选项正确;C、﹣x2+xy﹣xz=﹣x(x﹣y+z),故此选项错误;D、a2b+5ab﹣b=b(a2+5a﹣1),故此选项错误;故选:B.5.【分析】直接将原式提取公因式ab,进而分解因式得出答案.解:∵ab=﹣3,a﹣2b=5,a2b﹣2ab2=ab(a﹣2b)=﹣3×5=﹣15.故选:A.6.【分析】直接提取公因式法分解因式求出答案.解:(﹣2)+2=﹣2+2=2×(﹣2+1)=﹣2.故选:C.7.【分析】A、原式利用平方差公式分解得到结果,即可做出判断;B、原式利用完全平方公式分解得到结果,即可做出判断;C、原式提取公因式得到结果,即可做出判断;D、原式提取公因式得到结果,即可做出判断.解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=3m(x﹣2y),错误;D、原式=2(x+2),正确,故选D8.【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.9.【分析】先提取公因式a,再利用完全平方公式分解即可.解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.10.【分析】根据平方差公式,十字相乘法分解因式,找到两个运算中相同的因式,即为乙,进一步确定甲与丙,再把甲与丙相加即可求解.解:∵x2﹣4=(x+2)(x﹣2),x2+15x﹣34=(x+17)(x﹣2),∴乙为x﹣2,∴甲为x+2,丙为x+17,∴甲与丙相加的结果x+2+x+17=2x+19.故选:A.11.【分析】各项利用平方差公式及完全平方公式判断即可.解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A12.【分析】根据题意,可以利用分类讨论的数学思想探索式子 [1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)= [1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选C.二.填空题13.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.14.【分析】直接利用矩形面积求法结合提取公因式法分解因式即可.解:由题意可得:am+bm+cm=m(a+b+c).故答案为:am+bm+cm=m(a+b+c).15.【分析】原式提取公因式a后,将a与b的值代入计算即可求出值.解:当a=49,b=109时,原式=a(b﹣9)=49×100=4900,故答案为:4900.16.【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(x4﹣4)=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案为:x(x2+2)(x+)(x﹣)17.【分析】运用平方差公式和完全平方公式进行变形,把其中一个因数化为857,再比较另一个因数,另一个因数大的这个数就大.解:∵a=8582﹣1=(858+1)(858﹣1)=857×859,b=8562+1713=8562+856×2+1=(856+1)2=8572,c=14292﹣11422=(1429+1142)(1429﹣1142)=2571×287=857×3×287=857×861,∴b<a<c,故答案为:b、a、c.18.【分析】先把原式化为完全平方的形式再求解.解:∵原式=a2+c2﹣2ab﹣2bc+2b2=0,a2+b2﹣2ab+c2﹣2bc+b2=0,即(a﹣b)2+(b﹣c)2=0,∴a﹣b=0且b﹣c=0,即a=b且b=c,∴a=b=c.故△ABC是等边三角形.故答案为:等边.三.解答题19.(1)【分析】直接提取公因式2m(m﹣n),进而分解因式得出答案;解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n);(2)【分析】直接提取公因式﹣4ab,进而分解因式得出答案.解:﹣8a2b+12ab2﹣4a3b3=﹣4ab(2a﹣3b+a2b2).(3)【分析】首先利用多项式乘法计算出(x﹣1)(x﹣3)=x2﹣4x+3,再加上1后变形成x2﹣4x+4,然后再利用完全平方公式进行分解即可.解:原式=x2﹣4x+3+1,=x2﹣4x+4,=(x﹣2)2.(4)【分析】利用公式法因式分解.解:(x2+4)2﹣16x2,=(x2+4+4x)(x2+4﹣4x)=(x+2)2•(x﹣2)2.(5)【分析】将前三项组合,利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.解:x2+y2+2xy﹣1=(x+y)2﹣1=(x+y﹣1)(x+y+1).(6)【分析】将x2y2看作一个整体,然后进行因式分解.解:(x2y2+3)(x2y2﹣7)+37=(x2y2)2﹣4x2y2+16=(x2y24)2=(xy+2)2(xy﹣2)2.20.【分析】已知等式左边利用完全平方公式变形,利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0,∴x﹣2=0,y+3=0,即x=2,y=﹣3,则原式=(x﹣3y)2=112=121.21.【分析】(1)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案;(2)根据平方差公式,可化简整式,根据代数式求值,可得答案.解:(1)原式=ab(a2+2ab+b2)=ab(a+b)2,当a+b=2,ab=2时,原式=2×22=8;(2)原式=4x2﹣y2﹣(4y2﹣x2)=5x2﹣5y2,当x=2,y=1时,原式=5×22﹣5×12=15.22.【分析】设x4+mx3+nx﹣16=A(x﹣1)(x﹣2),对x进行两次赋值,可得出两个关于m、n的方程,联立求解可得出m、n的值.解:设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式),取x=1,得1+m+n﹣16=0①,取x=2,得16+8m+2n﹣16=0②,由①、②解得m=﹣5,n=20.23.【分析】根据分组法、提公因式法分解因式分解,可得答案.解:x3﹣x2﹣x+1=x2(x﹣1)﹣(x﹣1)=(x﹣1)2(x+1)4x3﹣4x2﹣x+1=4x2(x﹣1)﹣(x﹣1)=(x﹣1)(2x+1)(2x﹣1)24.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.。

第四章 因式分解 综合素质评价(含答案)北师大版数学八年级下册

第四章 因式分解  综合素质评价(含答案)北师大版数学八年级下册

第四章因式分解综合素质评价一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+dB.(x+2)(x-2)=x2-4C.6ab=2a·3bD.x2-8x+16=(x-4)22.课堂上老师在黑板上布置了下框所示的题目,小聪马上发现了其中有一道题目错了,错误的题目是()用平方差公式解下列各式:(1)a2-b2;(2)49x2-y2z2;(3)-x2-y2;(4)16m2n2-25p2.A.(1) B.(2) C.(3) D.(4)3.【2022·金华二模】下列多项式中,在实数范围内不能进行因式分解的是() A.a2-4 B.a2+6a+9 C.a2+16 D.9a2-6a+14.下列各组代数式中,没有公因式的是()A.ax+y和x+yB.2x和4yC.a-b和b-aD.-x2+xy和y-x5.下列因式分解正确的是()A.a(a-b)-b(a-b)=(a-b)(a+b)B.a2-9b2=(a-3b)2C.a2+4ab+4b2=(a+2b)2D.a2-ab+a=a(a-b)6.【教材P105复习题T6变式】已知a+b=2,则a2-b2+4b的值是() A.2 B.3 C.4 D.67.【2022·石家庄二模】计算:1252-50×125+252=()A.100 B.150 C.10 000 D.22 5008.【教材P94习题T4变式】从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图①),然后拼成一个平行四边形(如图②).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2-b2=(a-b)2B.(a+b)2=a2+2ab+b2C.a2-b2=(a+b)(a-b) D.(a-b)2=a2-2ab+b29.不论x,y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7 C.可为任何实数D.可能为负数10.已知a=2b-2,则代数式a2-4ab+5b2的最小值为()A.0 B.2 C.4 D.无法确定二、填空题(每题3分,共24分)11.18x3y2与12x6y的公因式为________.12.【2022·长春】分解因式:m2+3m=________.13.若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是________.(写出一个即可)14.【2022·重庆渝北期末】利用1个a×a的正方形,1个b×b的正方形和2个a×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式:____________.15.【教材P105复习题T13改编】如果x2+kx+64是一个完全平方式,那么k的值是________.16.关于x的二次三项式2x2+bx+c分解因式后为2(x-3)(x+1),则b=________,c=________.17.已知x ,y 是二元一次方程组⎩⎨⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为________.18.一个两邻边长分别为a ,b 的长方形,它的周长为14,面积为10,则a 2b +ab 2的值为________.三、解答题(19题12分,20题6分, 21题8分,其余每题10分,共66分)19.把下列各式因式分解:(1)-5x 2y 2+10xy 3-15x 2y ; (2)2x 2-4x +2;(3)(x 2+1)2-4x 2; (4)a 4-8a 2b 2+16b 4.20.【教材P 97习题T 2(3)变式】已知a +b =72,ab =2,求12a 3b +a 2b 2+12ab 3的值.21.【教材P105复习题T14改编】232-1可以被10和20之间某两个整数整除,求这两个数.22.【教材P105复习题T12改编】已知a,b,c分别是△ABC的三边长.(1)分别将多项式ac-bc,-a2+2ab-b2进行因式分解;(2)若ac-bc=-a2+2ab-b2,试判断△ABC的形状,并说明理由.23.【教材P100随堂练习T3变式】如图,在一个边长为a m的正方形广场的四个角上分别留出一个边长为b m的正方形花坛(a>2b),其余的地方种草坪.(1)求种草坪的面积是多少平方米;(2)当a=84,b=8,且种每平方米草坪的成本为5元时,种这块草坪共需投资多少元?24.【教材P105复习题T10拓展】上数学课时,王老师在讲完乘法公式(a±b)2=a2±2ab +b2的多种运用后,要求同学们运用所学知识解答:求代数式x2+4x+5的最小值.同学们经过交流、讨论,最后总结出如下解答方法:解:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴(x+2)2+1≥1.∴x2+4x+5的最小值是1.请你根据上述方法,解答下列各题:(1)知识再现:当x=________时,代数式x2-6x+12有最小值是________;(2)知识运用:若y=-x2+2x-3,当x=________时,y有最________值(填“大”或“小”),这个值是________.写出求解过程.25.【探究题】在乘法公式的学习中,我们采用了构造几何图形的方法研究问题,通过用不同的方法求同一个平面图形的面积验证了平方差公式和完全平方公式,我们把这种方法称为等面积法.类似地,通过不同的方法求同一个立体图形的体积,我们称为等体积法.根据课堂学习的经验,解决下列问题:在一个棱长为a的正方体中挖出一个棱长为b的正方体(如图①),然后利用切割的方法把剩余的立体图形(如图②)分成三部分(如图③),这三个长方体的体积依次为b2(a-b),ab(a-b),a2(a-b).(1)分解因式:a2(a-b)+ab(a-b)+b2(a-b)=______________.(2)请用两种不同的方法求图①中的立体图形的体积(用含有a,b的代数式表示):①____________;②______________________.思考:类比平方差公式,你能得到的等式为______________________________.(3)应用:利用在(2)中所得到的等式进行因式分解:x3-125=______________.(4)拓展:已知a-2b=6,ab=-2,求代数式a4b-8ab4的值.答案一、1.D 2.C 3.C 4.A 5.C 6.C7.C 8.C 9.A 10.C二、11.6x 3y 12.m (m +3) 13.-1(答案不唯一)14.a 2+2ab +b 2=(a +b )2 15.±1616.-4;-6 17.152 18.70三、19.解:(1)原式=-5xy (xy -2y 2+3x );(2)原式=2(x 2-2x +1)=2(x -1)2;(3)原式=[(x 2+1)+2x ][(x 2+1)-2x ]=(x 2+2x +1)(x 2-2x +1)=(x +1)2(x -1)2;(4)原式=(a 2-4b 2)2=(a -2b )2(a +2b )2.20.解:12a 3b +a 2b 2+12ab 3=12ab (a 2+2ab +b 2)=12ab (a +b )2.∵a +b =72,ab =2,∴原式=12×2×⎝ ⎛⎭⎪⎫722=494. 21.解:232-1=(216)2-1=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)·(28+1)(24+1)(24-1).∵24=16,∴24+1=17,24-1=15.∴232-1能被15和17整除.∴所求的两个数为15和17.22.解:(1)ac -bc =c (a -b );-a 2+2ab -b 2=-(a 2-2ab +b 2)=-(a -b )2.(2)△ABC 是等腰三角形.理由:∵ac -bc =-a 2+2ab -b 2,∴c (a -b )=-(a -b )2,c (a -b )+(a -b )2=0,(a-b)(c+a-b)=0.∵a,b,c分别是△ABC的三边长,∴c+a-b>0.∴a-b=0,即a=b.∴△ABC是等腰三角形.23.解:(1)种草坪的面积是(a2-4b2) m2.(2)当a=84,b=8时,种草坪的面积是a2-4b2=(a+2b)(a-2b)=(84+2×8)×(84-2×8)=100×68=6 800(m2).所以种这块草坪共需投资5×6 800=34 000(元).24.解:(1)3;3(2)1;大;-2y=-x2+2x-3=-(x-1)2-2.∵-(x-1)2≤0,∴-(x-1)2-2≤-2.∴当x=1时,y有最大值,最大值是-2.25.解:(1)(a-b)(a2+ab+b2)(2)①a3-b3②b2(a-b)+ab(a-b)+a2(a-b)思考:a3-b3=(a-b)(a2+ab+b2)(3)(x-5)(x2+5x+25)(4)a4b-8ab4=ab(a3-8b3)=ab(a-2b)(a2+2ab+4b2)=ab(a-2b)[(a-2b)2+6ab].当a-2b=6,ab=-2时,原式=-2×6×(36-12)=-288.。

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试卷(有答案解析)(3)

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试卷(有答案解析)(3)

一、选择题1.下列四个多项式,可能是x 2+mx -3 (m 是整数)的因式的是( )A .x -2B .x +3C .x +4D .x 2-1 2.如图,Rt ABC ∆中,90,2,3ACB BC AC ︒∠===,点D 在Rt ABC ∆的边AC 上,DC m =,以BD 为直角边在AC 同侧作等腰直角三角形BDE ,使BD DE n ==,连接AE ,若52AEBC S n =四边形,则m 与n 的数量关系式是( )A .6nm =B .5m n +=C .1n m -=D .23n m = 3.下列各式中能用完全平方公式分解因式的是( )A .2444x x ++B .244x x -++C .4244x x -+D .291216x x ++ 4.下列从左到右的变形是因式分解的是( )A .221(2)1a a a a -+=-+B .2(3)(3)9a a a +-=-C .222(2)44a b a ab b -=-+D .2(1)a x ax ax a -=-5.若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( )A .-2B .2C .-50D .50 6.下列各式由左边到右边的变形中,属于因式分解的是( ) A .()222x y x y +=+B .()24444x x x x -+=-+C .()()2111x x x +-=-D .()210 5521x x x x -=- 7.下列因式分解错误的是( )A .a 2﹣a +1=a (a ﹣1)+1B .a 2﹣b 2=(a +b )(a ﹣b )C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b )D .a 2﹣4ab +4b 2=(a ﹣2b )28.下列因式分解正确的是( )A .221144y y y ⎛⎫++=+ ⎪⎝⎭B .()322812246a a a a +=+C .()()22444x y x y x y -=+-D .()2214497m m m -+=-9.下列各式中:①()()22x y x y x y --=-+-,②()()22x y x y x y -+=-++, ③()22 242x x x --=-,④221142x x x ++=+⎛⎫ ⎪⎝⎭中,分解因式正确的个数有( ) A .1个 B .2个 C .3个 D .4个 10.如下列试题,嘉淇的得分是( )姓名:嘉淇 得分:将下列各式分解因式(每题20分,共计100分)①242(12)xy xyz xy z -=-;②2363(12)x x x x --=--;③221(2)a +a a a +=+;④2224(2)m n m n -=-;⑤22222()()x y x y x y -+=-+-A .40分B .60分C .80分D .100分 11.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030 12.下列各式从左到右的变形中,属于因式分解的是( )A .()212x a ax x +=+B .2224(4)x x x x -+=-+C .()236966)9(x x x x x -+=+-+D .()()22m n m n m n -=+- 二、填空题13.分解因式:33-=ab a b ____.14.若23y y m -+有一个因式为4y -,则m=__________.15.已知2a b -=,则222a b ab +-的值_____. 16.分解因式:22416m n -=________.17.设2a b -=+2b c -=222222222a b c ab ac bc ++---=_________.18.(1)可燃冰是一种新型能源,它的密度很小,1cm 3可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是_________________.(2) 把多项式226x x --可以分解因式为(2)x -(___________)19.若多项式x 2+ax ﹣2分解因式的结果为(x+1)(x ﹣2),则a 的值为_____.20.因式分解:3221218a a a -+=________.三、解答题21.把下列各式因式分解:(1)()()131x x --+(2)()()2222a b a b +-+22.因式分解:(1)322242a a b ab -+(2)4481x y - 23.仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m -+有一个因式是()3x +,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()243x x m x x n -+=++则22433xx m x n x n ∴343n m n解得:7n =-,21m =-∴另一个因式为7x ,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式223x x k --有一个因式是()25x -,求另一个因式以及k 的值. 24.因式分解:323412x x y x y +--.25.因式分解:(1)228x -;(2)3244x x x ++.26.阅读材料:“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()a b +看成一个整体,4()2()((421)()3())a b a b a b a b a b =+-+++-++=+.尝试应用:(1)把2()a b -看成一个整体,合并2223()5()7()---+-a b a b a b 的结果是_________.(2)已知221x y -=,求2362021--x y 的值.拓广探索:(3)已知22,25,9-=-=--=a b b c c d ,求()(2)(2)a c b d b c -+---的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将原式利用十字相乘分解因式即可得到答案.【详解】∵k 为整数,且常数项﹣3=(﹣1)×3=(﹣3)×1,∴23(1)(3)x mx x x +-=+-或(1)(3)x x -+,故选B .【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键.2.B解析:B【分析】作EF ⊥AC ,垂足为F ,根据全等的条件可得,△DBC ≌△EDF ,可得CD=EF=m ,AEBC S =四边形S △BDE + S △BDC + S △ADE ,可得出m+n=5.【详解】解:作EF ⊥AC ,垂足为F∴∠EFD=90,ACB ︒∠=∴∠BDC+∠DBC=90°∵三角形BDE 是等腰直角三角形,∴∠EDB=90°,∴∠EDF+∠BDC=90°,∴∠EDF=∠DBC在△DBC 和△EDF 中==EFD DCB EDF DBC ED DB ∠∠⎧⎪∠∠⎨⎪=⎩∴△DBC ≌△EDF (AAS )∴CD=EF=m,∵AC=3,∴AD=AC-CD=3-m∵AEBC S =四边形S △BDE + S △BDC + S △ADE∴AEBC S =四边形111222BD DE DC CB AD FE ⋅+⋅+⋅ =11152(3)2222n n m m m n ⋅+⋅+-⋅= 化简得:22235n m m m n ++-=()()5()n m n m n m +-=-,∵n 是Rt DBC ∆的斜边,m 是直角边∴n-m >0∴5n m +=故答案选:B【点睛】本题主要考查了构造三角形全等,割补法求面积,因式分解,解决本题的关键是构造全等三角表示出面积.3.C解析:C【分析】利用完全平方公式逐项进行判定即可.【详解】解:A. 2444x x ++,无法因式分解,故不符合题意;B. 244x x -++,无法因式分解,故不符合题意;C. ()2422442x x x -+=-,符合题意;D. 291216x x ++,无法因式分解,故不符合题意.故答案为C.【点睛】本题主要考查了运用完全公式法分解因式,熟练掌握完全平方公式是解答本题关键. 4.D解析:D【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】A 、221(2)1a a a a -+=-+,结果不是几个整式乘积形式,不是因式分解,故此选项错误;B 、2(3)(3)9a a a +-=-,这属于整式的乘法运算,故此选项错误;C 、222(2)44a b a ab b -=-+,这属于整式的乘法运算,故此选项错误;D 、2(1)a x ax ax a -=-,从左到右的变形是因式分解,故此选项正确;故选:D .【点睛】本题考查了因式分解的意义,解答本题的关键是熟练掌握因式分解的定义与形式. 5.A解析:A【分析】利用提取公因式法对已知等式进行化简,然后代入求值即可得.【详解】2210a b ab +=-,()10ab a b ∴+=-,5a b +=,510ab ∴=-,解得2ab =-,故选:A .【点睛】本题考查了因式分解的应用,对已知等式正确进行因式分解是解题关键.6.D解析:D【分析】直接利用因式分解的定义逐一分析即可得出答案.【详解】A.()222x y x y +=+属于整式乘法运算,不符合因式分解的定义,故此选项不符合题意,B.()24444x x x x -+=-+,右边不是整式的积的形式,不符合因式分解的定义,故此选项不符合题意,C.()()2111x x x +-=-属于整式乘法运算,不符合因式分解的定义,故此选项不符合题意,D.()210 5521x x x x -=-属于因式分解,符合题意. 故选:D .【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.7.A解析:A【分析】直接利用公式法以及提取公因式法分解因式得出答案.【详解】A .a 2﹣a +1=a (a ﹣1)+1,不符合因式分解的定义,故此选项正确;B .a 2﹣b 2=(a +b )(a ﹣b ),正确,不符合题意;C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b ),正确,不合题意;D .a 2﹣4ab +4b 2=(a ﹣2b )2,正确,不合题意.故选:A .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键. 8.D解析:D【分析】直接利用提取公因式法以及公式法分解因式进而判断得出答案.【详解】解:A 、221142y y y ⎛⎫++=+ ⎪⎝⎭,故此选项错误,不符合题意; B 、()322812423a a aa +=+,故此选项错误,不符合题意;C 、()()22422x y x y x y -=+-,故此选项错误,不符合题意;D 、()2214497m m m -+=-,故此选项正确,符合题意;故选:D .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键. 9.B解析:B【分析】直接利用平方差公式和完全平方公式分解因式得出答案即可.【详解】解:①()2222+x y x y--=-,无法分解因式,故此选项错误; ②()()22x y x y x y -+=-++,正确;③()222415(11x x x x x --=--=-+--,故此选项错误;④221142x x x ++=+⎛⎫ ⎪⎝⎭,故此选项正确; 所以,正确的答案有2个,故选:B .【点睛】此题主要考查了公式法分解因式,正确应用平方差公式和完全平方公式是解题关键. 10.A解析:A【分析】根据提公因式法及公式法分解即可.【详解】①242(12)xy xyz xy z -=-,故该项正确;②2363(12)x x x x --=-+,故该项错误;③2221(1)a +a a +=+,故该项错误;④224(2)(2)m n m n m n -=+-,故该项错误;⑤22222()()x y x y x y -+=-+-,故该项正确;正确的有:①与⑤共2道题,得40分,故选:A .【点睛】此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键. 11.B解析:B【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ),当x =30,y =20时,x =30,x +y =50,x−y =10,组成密码的数字应包括30,50,10,所以组成的密码不可能是103020.故选:B .【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.12.D解析:D将多项式写成整式积的形式,即为将多项式分解因式,根据定义解答.【详解】A 、()212x a ax x +=+,不是因式分解,不符合题意;B 、2224(4)x x x x -+=-+,不是因式分解,不符合题意;C 、()236966)9(x x x x x -+=+-+,不是因式分解,不符合题意; D 、()()22m n m n m n -=+-,是因式分解,符合题意; 故选:D .【点睛】此题考查多项式因式分解的定义,熟记定义及因式分解的特点是解题的关键.二、填空题13.【分析】先提取公因式再用平方差公式进行分解【详解】解:故答案为:【点睛】本题考查了因式分解解题关键是先提取公因式再利用公式进行分解注意:因式分解要彻底解析:()()ab b a b a -+【分析】先提取公因式,再用平方差公式进行分解.【详解】解:3322()ab a b ab b a -=-, ()()ab b a b a =-+,故答案为:()()ab b a b a -+.【点睛】本题考查了因式分解,解题关键是先提取公因式,再利用公式进行分解.注意:因式分解要彻底.14.-4【分析】由于多项式分解因式后有一个因式是y-4所以当y=4时多项式的值为0由此得到关于m 的方程解方程即可求出m 的值【详解】解:∵多项式因式分解后有一个因式为()所以当y=4时多项式的值为0即16解析:-4【分析】由于多项式23y y m -+分解因式后有一个因式是y-4,所以当y=4时多项式的值为0,由此得到关于m 的方程,解方程即可求出m 的值.【详解】解:∵多项式23y y m -+因式分解后有一个因式为(4y -), 所以当y=4时多项式的值为0,即16-12+m=0,故答案为:-4.【点睛】本题考查了因式分解的应用,有公因式时,要先考虑提取公因式;注意运用整体代入法求解.15.2【分析】将原式通分然后将分子进行因式分解然后整体代入求值即可【详解】解:当时原式=故答案为:2【点睛】本题考查完全平方公式法进行因式分解及整体代入思想求值掌握完全平方公式的结构正确进行因式分解是本 解析:2【分析】将原式通分,然后将分子进行因式分解,然后整体代入求值即可.【详解】 解:222222()222a b a b ab a b ab ++---== 当2a b -=时,原式=2222= 故答案为:2【点睛】本题考查完全平方公式法进行因式分解及整体代入思想求值,掌握完全平方公式的结构正确进行因式分解是本题的解题关键.16.4(m+2n )(m-2n )【分析】原式提取4后利用平方差公式分解即可【详解】解:原式=4(m²-4n²)=4(m+2n )(m-2n )故答案为:4(m+2n )(m-2n )【点睛】本题考查了提公因式法与解析:4(m+2n )(m-2n )【分析】原式提取4后,利用平方差公式分解即可.【详解】解:原式=4(m²-4n²)=4(m+2n )(m-2n ).故答案为:4(m+2n )(m-2n )【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 17.30【分析】将a ﹣b =2+和b ﹣c =2﹣相加得到a ﹣c =4再将2a2+2b2+2c2﹣2ab ﹣2ac ﹣2bc 转化成关于a ﹣bb ﹣ca ﹣c 的完全平方的形式再将a ﹣b =2+b ﹣c =2﹣和a ﹣c =4整体代解析:30【分析】将a ﹣b =和b ﹣c =2a ﹣c =4,再将2a 2+2b 2+2c 2﹣2ab ﹣2ac ﹣2bc转化成关于a ﹣b ,b ﹣c ,a ﹣c 的完全平方的形式,再将a ﹣b =b ﹣c =2a ﹣c =4整体代入即可.【详解】解:a ﹣b =,b ﹣c =2两式相加得a ﹣c =4,原式=a 2﹣2ab +b 2+a 2﹣2ac +c 2+b 2﹣2bc +c 2=(a ﹣b )2+(a ﹣c )2+(b ﹣c )2=(2+42+(22=﹣=30.故答案为:30.【点睛】此题考查了因式分解的应用,对完全平方公式及整体代入的掌握情况,有一定的综合性,但难度不大.18.2×10-4【分析】(1)绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定;(2解析:2×10-4 23x +【分析】(1)绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定;(2)根据十字相乘法即可求解.【详解】(1)0.00092=9.2×10-4(2)226x x --=(2)x -(23x +)故答案为9.2×10-4;23x +.【点睛】此题主要考查科学记数法的表示及因式分解,解题的关键是熟知十字相乘法因式分解的运用.19.-1【解析】解:根据题意得:x2+ax ﹣2=(x+1)(x ﹣2)=x2﹣x ﹣2则a=﹣1故答案为﹣1解析:-1【解析】解:根据题意得:x 2+ax ﹣2=(x +1)(x ﹣2)=x 2﹣x ﹣2,则a =﹣1,故答案为﹣1. 20.【分析】先提公因式然后利用完全平方公式进行因式分解即可得到答案【详解】解:故答案为:【点睛】本题考查了因式分解的方法解题的关键是熟练掌握提公因式法公式法进行因式分解解析:()223a a -.【分析】先提公因式,然后利用完全平方公式进行因式分解,即可得到答案.【详解】解:()()23222121826923a a a a a a a a -+=-+=-, 故答案为:()223a a -.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法,公式法进行因式分解. 三、解答题21.(1)()22x -;(2)()()3a b a b +-. 【分析】(1)直接利用多项式乘法计算进而利用完全平方公式分解因式即可;(2)利用平方差公式分解因式,再提公因式即可.【详解】解:(1)原式244x x =-+()22x =-;(2)原式()()()()2222a b a b a b a b =++++-+⎡⎤⎡⎤⎣⎦⎣⎦ ()()33a b a b =+-()()3a b a b =+-.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解. 22.(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果;(2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.23.另一个因式为()1x + ,k 的值为5.【分析】设另一个因式是()x a +,则22(25)()2(25)523x x b x a x a x x k ,根据对应项的系数相等即可求得b 和k 的值.【详解】解:设另一个因式为()x a +,得22325xx k x x a 则22232255xx k x a x a ∴2535a a k解得:1a =,5k =.故另一个因式为()1x + ,k 的值为5.【点睛】本题考查了因式分解的意义,正确理解因式分解与整式的乘法互为逆运算是关键. 24.(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.【详解】解:原式=324312x x x y y -+-=22(4)3(4)x x y x -+-=2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点睛】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解.25.(1)()()222x x +-;(2)()22x x +. 【分析】(1)先提取公因式2,再利用平方差公式分解因式即可得;(2)先提取公因式x ,再利用完全平方公式分解因式即可得.【详解】(1)原式()224x =-, ()()222x x =+-;(2)原式()244x x x =++, ()22x x =+.【点睛】本题考查了综合利用提取公因式法和公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟练掌握各方法是解题关键. 26.(1)25()a b -;(2)-2018;(3)6【分析】(1)把2()a b -看做一个整体,合并即可得到结果; (2)原式前两项提取3变形后,将已知等式代入计算即可求出值;(3)原式去括号整理后,将已知等式代入计算即可求出值.【详解】解:(1)25()a b -.(2)∵221x y -=,∴2362021--x y()2322021x y =--32021=-2018=-(3)∵22,25,9-=-=--=a b b c c d ,∴()(2)(2)a c b d b c -+---=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b )+(2b-c )+(c-d )=2-5+9=6.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.。

41《因式分解》习题含解析北师大八年级下初二数学试题试卷.doc

41《因式分解》习题含解析北师大八年级下初二数学试题试卷.doc

《因式分解》习题一、选择题1、 把代数式x/-9x,分解因式,结果正确的是()A 、x(『9)B 、x(y+3)2C 、x(y+3)()>3)D 、x(y+9)©・9)2、 下列各式从左到右的变形中,是分解因式的是()A 、込9+6尤=(兀+3)(尤・3)+6尤B 、(尤+5)(兀・2)=/+3兀・10C 、^-8^+16 = (x-4)2D 、(x-2)(..r+3) = U+3)(x-2)3、 观察下面算962x95+962x5的解题过程,其中最简单的方法是() A 、 962x95+962x5=962x(95+5)=962x 100=96200B 、 962x95+962x5=962x5x(19+1)=962x(5x20) = 96200C 、 962x95+962x5=5x(962x 19+962) = 5x(18278+962)=96200D 、 962x95+962x5=91390+4810=962004、 下列各式从左到右的变形中,是因式分解的为()A 、x(a-b)=ax-bxx 2-1 +y 2=(x-1 )(x+1)+/ C 、x 2-1 =(x+1 )(x-1) D^ ax+bx+c=x(a+b)+c 5、 下列各式从左到右的变形(1) \5^y=3x'5xy ; (2) (/+,)(心)=込于;(3) J C-6X +9=(X -3)2; (4) F+4x+1三心+4+丫),其中是因式分解的个数是( ) a%A 、1个B 、2个C 、3个 D.4个6、下列各式的因式分解中止确的是() A +mn-in=-m(m+n-1)9abc-6a 2b 2=3abc(3-2ab >) 3cTx-6bx+3x=3x(a 2-2b) D 、^ab 2+^a 2h=^ab(a^b)把多项式(加+1)(〃沪1)+(加-1)分解因式,一个因式是(/n-I),则另一个因式是()已知不论x 为何值,?-H-15=(x+5)U-3),贝%值为( )C 、 7、 A 、加+1 B 、2ni C 、28、A、2B、-2 -39、(■2) 2001+ (-2) 2(力等于(A、■22001B、严C、22(K),D、-2二.填空题11、U+3)2=x2+6.r+9从左到右的变形是_______________ •12、4?-9=(2v+3)(2v-3)从左到右的变形是________________ .13、计算①〜③题,并根据计算结果将④〜⑥题进行分解因式.① 52) 51)= ;④ 3<-6x= ;三、解答题②3x (x-2)= : ③ 52) 2=®jr-4x+4=;®AT-3X+2= .14、下列由左到右的变形中,哪些是分解因式?哪些不是?请说出理由. (1) a (x+y) =ax+ay;(2) x1+2xy+y2-l=x (x+2y) + (y+1) (y-1):(3) ar-967=a (x+3) (x-3);(4) P+2+言二(x+?)2(5) 2a i=2a-aa.15、若关于x的多项式3>r+nix+n分解因式的结果为(3x+2)(rl),求加、zi的值.16、已知P・2r-3=0,则代数式6・"+4工的值是多少?参考答案一、选择题1、答案:C;解析:【解答】兀(/-9) =x(y+3)(才3) , x(y+3)2=x〉,2+6xy+9x,双尸3)(),-3)=兀产9儿x(y+9)(y- 9)=x/-8U,故选 C.【分析】利用分解因式与整式乘法互为逆过程可知答案2、答案:C解析:【解答】A选项等式的右边是(x+3)(”3)+6x不是儿个整式的积的形式.B选项等式的右边是/+3厂10不是几个整式的积的形式.C选项等式的左边?-8x+16是多项式,等式的右边是U-4)2是几个整式的积的形式,D选项等式的左右两边边是(x-2)(x+3=(x+3)(x-2)都是整式的积的形式.故选C.【分析】分解因式是把一个多项式化成儿个整式的积的形式.据此进行判断即可知答案3、答案:A解析:【解答】962X95+962X5=962X (95+5) =962x100=96200,故选 A.【分析】观察式子962x95+962x5可知,他们有共同的因数926,可利用因式分解简便运算.4、答案:C;解析:【解答】A选项x(a-b)=ax-bx整式的乘法,B选项等式的右边是(工・1 )(x+1 )+)?不是儿个整式的积的形式.C选项等式的左边2-1是多项式,等式的右边是(x+l)(x-l) (x-4)2是儿个整式的积的形式,D选项等式的右边是x(a+b)+c(rl)(x+l)+y2不是儿个整式的积的形式.故选C.【分析】分解因式是把一个多项式化成儿个整式的积的形式.据此进行判断可知答案.5、答案:A;解析:【解答】(1) 150=3^-5x>'不符合因式分解的定义,(2) (x+y)(x-y)=M_),2是整式的乘法(3) ”-6x+9=(r3)2符合因式分解的定义,(4) ”+亦1二心+4+》不是整式,故选A.【分析】分解因式是把一个多项式化成几个整式的积的形式.据此进行判断,6、答案:D;解析:【解答】A选项-nr +nin-m=-in(ni+n-1 取后没有变符号,B选项9abc-6a2b2=3ahc(3-lab)公因式不正确,C选项3a2x-6bx+3x=3x(a2-2b)提取后丢了项,D选项~ab2+^a2b=^ab(a+b)lE确,故2 S S选D.【分析】分解因式是把一个多项式化成几个整式的积的形式.据此进行判断7、答案:D;解析:【解答】S+l) (ni-1) + (in-1) = (w-1)(〃汁 1 + 1) = (m-1)(加+2),故选 D.【分析】把多项式(〃z+l) (w-1) + (m-1 )提取公因式(zn-1)后,即可知答案.8、答案:B;解析:【解答】Tp-glSu (x+5) (x-3),P-kx-15=^+2^-\ 5,:・-k=2,则k=-2.故选B.【分析】直接利用多项式乘以多项式得出等式右边多项式进而得出k的值.9、答案:C.解析:【解答】(-2) 2001+ (-2) 2002= (-2) 2001X ( 1-2) =22001,故选C.【分析】式子(-2) 2001+ (-2) 2002的各项有共同的因数(-2) 2叫因此可得(・2) 2001 ( 1-2) =22001.二、填空题10、答案:整式,积;解析:【解答】分解因式的定义是把一个多项式化成几个整式的积的形式,所以应填幣式,积;【分析】分解因式是把一个多项式化成几个整式的积的形式,据此可知答案.11、答案:整式乘法;解析:【解答】(x+3) 2=X2+6X+9从左到右的变形是整式乘法,故答案为:整式乘法.【分析】式子(X+3)2*+&+9从左到右的变形是把积的形式变成了加的形式,据此可知答案.12、答案:因式分解;解析:【解答】4x2-9= (2x+3) (2x-3)从左到右的变形是因式分解.故答案为:因式分解.【分析】分解因式是把一个多项式化成几个整式的积的形式,据此可知答案.13、答案:①衣3卅2 ②3/-6x ③?-4x+4 ④3x(x-2) ⑤(xd)? @(x-2)(x-l) 解析:【解答】①②小题用分配律,把括号依次乘开;③是完全平方式,按照公式计算:【分析】分解因式与鉴式乘法是互逆过程,据此可知答案.④用提取公因式法;⑤完全平方公式;⑥十字相乘法,或求根公式法.三、解答题14、答案:见解析解析:【解答】(1)不是;式子的右边都不是整式的积的形式所以它不是分解因式;(2) 不是;式子的右边都不是整式的积的形式.所以它不是分解因式;(3) 是;式子的左边是多项式,右边是整式的积的形式,所以(3)是分解因式.(4) 不是;式子中A,丄都不是整式,所以它不是分解因式;(5) 不是;式子的左边2/不是多项式,所以它也不是分解因式.【分析】根据整式的概念,和因式分解的方法特点解题.15^ 答案:m=l,n=-2.解析:【解答】•・•关于x的二次三项式分解因式的结果为(3x+2) (x-1),(3x+2) (x-1) =3x1-x-2=3x1-mx+n,-m=-1, H=-2,•I m= 1, n=-2【分析1 3x^+nvc+n分解因式的结果是(3x+2)(x-1 )=3x2-x-2,所以-m=-1 > n=-2;即m=l,n=-2.16、答案:0;解析:【解答】V?-lv-3=0,Z. 6-2?+4A=-2(?-2X-3)=-2X0=0.【分析】把多项式6-2?+4龙因式分解即可知答案.赠:我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试题(包含答案解析)(2)

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试题(包含答案解析)(2)

一、选择题1.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)2 2.下列各式从左到右的变形中,属于因式分解的是( ) A .()a m n am an +=+B .2221(1)x x x +-=-C .21055(21)x x x x -=-D .216+6(+4)(4)+6x x x x x -=- 3.下列各式中,从左到右的变形是因式分解的是A .22(2)(2)4x y x y x y +-=-B .221()1x y xy xy x y --=--C .a 2-4ab+4b 2=(a-2b )2D .ax+ay+a =a (x+y ) 4.已知三角形的三边a ,b ,c 满足2223()()b a b c ba a -+=-,则△ABC 是( )A .等腰三角形B .等腰直角三角形C .等边三角形D .等腰三角形或直角三角形5.已知a +1a =3,则a 2+21a 等于( ) A .5 B .7 C .9 D .116.下列多项式分解因式正确的是( )A .a 2﹣2a ﹣3=a (a ﹣2)﹣3B .3ax 2﹣6ax =3(ax 2﹣2ax )C .m 3﹣m =m (m ﹣1)(m +1)D .x 2+2xy ﹣y 2=(x ﹣y )2 7.下列因式分解正确的是( )A .()()()()a a b b a b a b a b ---=-+B .2229(3)a b a b -=-C .22244(2)a ab b a b ++=+D .2()a ab a a a b -+=-8.下列四个多项式:①-a 2+b 2;②-x 2-y 2;③1-(a -1)2;④x 2-2xy +y 2,其中能用平方差公式分解因式的有( )A .4个B .3个C .2个D .1个 9.下列式子从左到右变形是因式分解的是( ) A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1) 10.下列因式分解正确的是( )A .221(21)1x x x x --=--B .2244(2)x x x -+=-C .256(6)(1)x x x x -+=-+D .()321x x x x -=- 11.下列各式从左边到右边的变形属于因式分解的是( )A .6ab =2a •3bB .a (x +y )=ax +ayC .x 2+4x +4=x (x +4)+4D .a 2﹣6a +9=(a ﹣3)2 12.已知d =x 4﹣2x 3+x 2﹣10x ﹣4,则当x 2﹣2x ﹣4=0时,d 的值为( )A .4B .8C .12D .16 二、填空题13.分解因式:3244x x x -+=__________.14.已知22()()24x my x ny x xy y -+=+-,则22m n mn -的值为______.15.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.16.若6x y +=,3xy =-,则2222x y xy +=_____.17.二次三项式2248y xy x -+-在实数范围内分解因式的结果是______.18.分解因式:4232x -=_________.19.分解因式:2282a b -=______.20.分解因式:mn 2﹣4mn+4m =_____.三、解答题21.(1)因式分解:334mn m n -;(2)先化简,再求值:()()222212132x x y xy x y x x y x y ---⎡⎤-++÷⎢⎥⎣⎦,其中x 与y 互为倒数.22.(1)因式分解:328a a -.(2)如图,//AB CD ,40A ∠=︒,45D ∠=︒,求1∠和2∠的度数.23.(1)分解下列因式,将结果直接写在横线上:a 2+2a +1= ,4x 2-4x +1= ,9y 2﹣12y +4= .(2)观察以上三个多项式的系数,有22=4×1×1,(-4)2=4×4×1,(﹣12)2=4×9×4,于是小明猜测:若多项式ax 2+bx +c (a >0)是完全平方式,则实数系数a 、b 、c 一定存在某种关系.①请你用数学式子把a 、b 、c 之间的这种关系表示出来;②根据①的结论解决问题:若多项式x 2﹣2(m ﹣3)x +(10﹣6m )是一个完全平方式,求m 的值,③根据②分解因式:x 2﹣2(m ﹣3)x +(10﹣6m ).24.计算或因式分解(1()20211- (2)计算()()()2322232a ab ab ⋅-÷-(3)因式分解:323108x xy -(4)因式分解:2221a b b -+-(5)先化简,再求值:()()()()225x y x y x y x x y ++-+--.其中1x =,y 是的小数部分.25.因式分解:4224109x x y y -+26.(1)因式分解;()()22a x y b x y ---;(2)解方程:213211x y x y +=⎧⎨-=⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A 、等号左右两边不相等,故错误;B 、a 3-a=a(a+1)(a-1),故正确;C 、右边不是整式的积,故错误;D 、等号左右两边不相等,故错误.故选:B .【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.2.C解析:C【分析】根据因式分解的定义逐项作出判断即可.【详解】解:A. ()a m n am an +=+,是乘法运算,不是因式分解,不合题意;B. 2221(1)x x x +-=-,变形错误,不是因式分解,不合题意;C. 21055(21)x x x x -=-,是因式分解符合题意;D. 216+6(+4)(4)+6x x x x x -=-,没有化为整式的积的形式,不是因式分解,不合题意. 故选:C .【点睛】本题考查了因式分解的定义:把一个多项式化为几个整式的积的形式,叫因式分解. 3.C解析:C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是因式分解,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.4.D解析:D【分析】先将原式分解因式得(b-a )(b 2+c 2-a 2)=0,从而得b ﹣a =0或c 2+b 2﹣a 2=0,根据等腰三角形的判定和勾股定理的逆定理判断即可.【详解】解:∵2223()()b a b c ba a -+=-,∴(b-a )(b 2+c 2-a 2)=0.∴b ﹣a =0或c 2+b 2﹣a 2=0,则a=b 或c 2+b 2=a 2.∴△ABC 是等腰三角形或直角三角形.故选D .【点睛】此题综合运用了因式分解的知识、勾股定理的逆定理.勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.5.B解析:B【分析】 利用完全平方公式把221a a+变形成为21()2a a +-,代入解答即可. 【详解】221a a+=21()2a a +-=232-=7. 故选B .【点睛】 本题考查了完全平方公式.解题的关键是把221a a+变形成为21()2a a +-. 6.C解析:C【分析】直接利用十字相乘法以及公式法分别分解因式得出答案.【详解】A 、a 2﹣2a ﹣3=a (a ﹣2)﹣3,不符合因式分解的定义,故此选项错误;B 、3ax 2﹣6ax =3ax (x ﹣2),故此选项错误;C 、m 3﹣m =m (m ﹣1)(m +1),正确;D 、x 2+2xy ﹣y 2,无法运用完全平方公式分解因式,故此选项错误;故选:C .【点睛】此题主要考查了十字相乘法以及提取公因式法、公式法分解因式,正确应用公式是解题关键.7.C解析:C【分析】利用提公因式法分解因式和平方差公式以及完全平方公式进行分解即可得到答案.【详解】A 、2()()()()()a a b b a b a b a b a b ---=--=-,故此选项错误;B 、229(3)(3)a b a b a b -=+-,故此选项错误;C 、22244(2)a ab b a b ++=+,故此选项正确;D 、2(+1)a ab a a a b -+=-,故此选项错误.故选:C .【点睛】此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.8.C解析:C【分析】根据平方差公式特点:①两项,②都可以写成平方的形式,③平方前面是异号,可以得到答案.【详解】解:①-a 2+b 2;③1-(a -1)2;符合平方差特点;④x 2-2xy +y 2,②-x 2-y 2;不符合平方差特点;故选:C .【点睛】此题主要考查了平方差公式特点,把握公式特点是解题的关键.9.D解析:D【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.第II 卷(非选择题)请点击修改第II 卷的文字说明10.B解析:B【分析】根据因式分解的定义进行选择即可.【详解】A. 221(21)1x x x x --=--,不是因式分解,故本选项不符合题意;B. 2244(2)x x x -+=-,故本选项符合题意,C. 256(2)(-3)-+=-x x x x ,故本选项不符合题意;D. ()321=x x+1x-1()()-=-x x x x ,故本选项不符合题意;故选B【点睛】此题考查提公因式法与公式法的综合运用,因式分解-十字相乘法,掌握运算法则是解题关键 11.D解析:D【分析】根据因式分解的定义逐个判断即可.【详解】解:A 、从左到右的变形,不属于因式分解,故本选项不符合题意;B 、从左到右的变形,是整式的乘法,不属于因式分解,故本选项不符合题意;C 、从左到右的变形,不属于因式分解,故本选项不符合题意;D 、从左到右的变形,属于因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义:将一个多项式写成整式的积的性质,叫做将多项式因式分解也叫做分解因式,掌握多项式的因式分解与整式乘法之间的区别是解题的关键.12.D解析:D【分析】由已知方程求得x 2﹣2x =4,将d =x 4﹣2x 3+x 2﹣10x ﹣4代为x 2(x 2﹣2x )+(x 2﹣2x )﹣8x ﹣4,通过两次代值计算便可.【详解】解:∵x 2﹣2x ﹣4=0,∴x 2﹣2x =4,∴d =x 4﹣2x 3+x 2﹣10x ﹣4=x 2(x 2﹣2x )+(x 2﹣2x )﹣8x ﹣4=4x 2+4﹣8x ﹣4=4(x 2﹣2x )=4×4=16.故选:D .【点睛】本题考查了因式分解的应用,求代数式的值,关键是通过因式分解把所求代数式转化为含x 2-2x 的代数式形式.二、填空题13.【分析】先提取公因式x 然后再运用完全平方公式解答即可【详解】解:===故答案为:【点睛】本题主要考查了因式分解掌握提公因式法和完全平方公式法是解答本题的关键解析:2(21)x x -【分析】先提取公因式x ,然后再运用完全平方公式解答即可.【详解】解:3244x x x -+=()2441x x x -+=()222221x x x ⎡⎤-⨯+⎣⎦=2(21)x x -故答案为:2(21)x x -.本题主要考查了因式分解,掌握提公因式法和完全平方公式法是解答本题的关键. 14.【分析】由可得可得:即再把分解因式再整体代入求值即可【详解】解:故答案为:【点睛】本题考查的是整式的乘法多项式的恒等因式分解的应用掌握以上知识是解题的关键解析:8.-【分析】由22()()24x my x ny x xy y -+=+-可得()222224,x n m xy mny x xy y +--=+-可得:2,4,n m mn -=-=-即2,4,m n mn -=-=再把22m n mn -分解因式,再整体代入求值即可.【详解】 解: 22()()24x my x ny x xy y -+=+-,222224,x nxy mxy mny x xy y ∴+--=+-()222224,x n m xy mny x xy y ∴+--=+-2,4,n m mn ∴-=-=-2,4,m n mn ∴-=-=∴ ()22m n m n mn mn =--()428.=⨯-=-故答案为:8.-【点睛】本题考查的是整式的乘法,多项式的恒等,因式分解的应用,掌握以上知识是解题的关键.15.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.16.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值. 17.【分析】先提出负号把括号内多项式分两组4y2-8xy 两项一组x2单独一组把两项一组配方4y2-8xy+4x2-4x2=4(y-x )2-4x2把-4x2与x2合并得-3x2括号内变为再因式分解即可【详解析:)(22)y x --【分析】先提出负号()224y 8xy x --+,把括号内多项式分两组4y 2-8xy 两项一组,x 2单独一组, 把两项一组配方4y 2-8xy +4x 2-4x 2=4(y-x )2-4x 2,把-4x 2与x 2合并得-3x 2,括号内变为 ()()2222224y 2-443xy x x x y x x ⎡⎤⎡⎤--++=---⎣⎦⎣⎦,再因式分解即可. 【详解】22-4y 8xy x +-,()224y 8xy x =--+,()222242y xy x x x ⎡⎤=--+-+⎣⎦, ()2243y x x ⎡⎤=---⎣⎦, ()()22y x y x ⎡⎤⎡⎤=--+-⎣⎦⎣⎦()()2222y x y x =--+-.故答案为:()()2222y x y x ----本题考查在实数范围内因式分解问题,掌握两数和与差完全平方公式与平方差公式,会灵活运用公式解决问题,特别是三项式因式分解,一般要考虑用两数和与差完全平方公式,而且先配方,在因式分解是解题关键.18.2(x2+4)(x+2)(x -2)【分析】首先提取公因式2然后利用平方差公式继续分解直到不能分解为止即可求得答案【详解】解:2x4﹣32=2(x4﹣16)=2(x2+4)(x2﹣4)=2(x2+4)解析:2(x 2+4)(x +2)(x -2)【分析】首先提取公因式2,然后利用平方差公式继续分解,直到不能分解为止,即可求得答案.【详解】解:2x 4﹣32=2(x 4﹣16)=2(x 2+4)(x 2﹣4)=2(x 2+4)(x +2)(x -2).故答案为:2(x 2+4)(x +2)(x -2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 19.【分析】原式提取公因式2后再运用平方差公式进行因式分解即可【详解】故答案为:【点睛】此题主要考查了仍坚持公因式与公式法的综合运用熟练掌握因式分解的方法是解答此题的关键解析:2(2)(2)a b a b +-【分析】原式提取公因式2后,再运用平方差公式进行因式分解即可.【详解】2222822(4)2(2)(2)a b a b a b a b -=-=+-故答案为:2(2)(2)a b a b +-【点睛】此题主要考查了仍坚持公因式与公式法的综合运用,熟练掌握因式分解的方法是解答此题的关键.20.m (n ﹣2)2【分析】首先提取公因式m 再利用完全平方公式分解因式即可【详解】解:mn2﹣4mn+4m =m (n2﹣4n+4)=m (n ﹣2)2故答案为:m (n ﹣2)2【点睛】此题主要考查了提取公因式法以解析:m (n ﹣2)2【分析】首先提取公因式m ,再利用完全平方公式分解因式即可.解:mn 2﹣4mn+4m=m (n 2﹣4n+4)=m (n ﹣2)2.故答案为:m (n ﹣2)2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.三、解答题21.(1)(2)(2)mn n m n m +-;(2)12xy ,12 【分析】(1)先提公因式,再根据平方差公式分解因式可解答;(2)先计算括号里面的,再算除法,化简原式,然后根据互为倒数两数之积为1得1xy =,代入计算即可.【详解】解:(1)()332244mn m n mn n m -=-(2)(2)mn n m n m =+-.(2)原式()1222222132x y x y x y x x y x y ---⎡⎤=-++÷⎢⎥⎣⎦ 12122132x y x y x y ---⎛⎫=+÷ ⎪⎝⎭ 1221(2)213313223x y x y x y ------=÷=⨯ 12xy =. x 与y 互为倒数,1xy ∴=. ∴原式12=. 【点睛】本题主要考查因式分解、整式的化简求值,解题的关键是掌握整式的混合运算顺序和运算法则.22.(1)2(2)(2)a a a +-;(2)140∠=︒,285∠=︒.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2) 根据平行线的性质,可以得到∠1和∠A 的关系,从而可以得到∠1的度数,再根据∠2=∠1+∠D ,即可求得∠2的度数.解:(1)原式()2242(2)(2)a a a a a =-=+-. (2)//AB CD ,140A ∴∠=∠=︒,45D ∠=︒, 2185D ∴∠=∠+∠=︒.【点睛】此题考查了提公因式法与公式法的综合运用,以及平行线的性质,解答第2小题的关键是明确题意,利用平行线的性质和三角形外角和内角的关系解答.23.(1)2(1)a +,2(21)x -,2(32)y -;(2)①24b ac =;②m=±1;③当1m =时,2(2)x +;当1m =-时, 2(4)x +.【分析】(1)根据完全平方公式分解即可;(2)①根据(1)中3个式子特点总结即可;②根据①的结论列式求解即可;③把②中求得的m 的值代入分解即可;【详解】(1)a 2+2a +1=2(1)a +,4x 2-4x +1=2(21)x -,9y 2﹣12y+4=2(32)y -, 故答案为:2(1)a +,2(21)x -,2(32)y -;(2)①由22=4×1×1,(-4)2=4×4×1,(﹣12)2=4×9×4,可知,24b ac =;②多项式x 2﹣2(m ﹣3)x +(10﹣6m)中,a =1,b=﹣2(m ﹣3),c =10﹣6m ,由①24b ac =得:()22341(106)m m =⨯⋅⎡⎤⎣⎦﹣﹣﹣, 化简得21m =,解得m=±1;③根据②,当1m =时,x 2﹣2(m ﹣3)x +(10﹣6m)=2244(2)x x x ++=+;当1m =-时,x 2﹣2(m ﹣3)x +(10﹣6m)=22816(4)x x x ++=+.【点睛】本题考查了完全平方公式进行因式分解,熟练掌握a 2±2ab +b 2=(a ±b )2是解答本题的关键.两个平方项的符号需相同;另一项是两底数积的2倍,是易错点.24.(1)54;(2)94ab -;(3)3(6)(6)x x y x y +-;(4)(1)(1)a b a b +--+;(5)9xy ,9【分析】(1)先算算术平方根,立方根和乘方,再算加减法,即可求解;(2)先算积的乘方,再根据单项式的乘除法法则,求解即可;(3)先提取公因式,再利用平方差分解因式,即可;、(4)先括号,再利用完全平方公式和平方差公式分解因式,即可;(5)根据完全平方公式,平方差公式,单项式乘多项式法则,合并同类项法则,先化简,再代入求值,即可.【详解】(1)原式=()5(3)214+-+-- =54; (2)原式=()22433(2)(9)8a a b a b⋅÷- =94ab -; (3)原式=223(36)x x y -=3(6)(6)x x y x y +-;(4)原式=22(21)a b b --+=22(1)a b --=[][](1)(1)a b a b +---=(1)(1)a b a b +--+;(5)原式=222224455x xy y x y x xy +++--+=45xy xy +=9xy ,∵y的小数部分,∴1y =,∴当1x =+,1y =时,原式=9xy 11)=9.【点睛】 本题主要考查实数的混合运算,整式的化简求值,分解因式,掌握平方差公式和完全平方公式,是解题的关键.25.()()()()33x y x y x y x y -+-+【解析】试题分析:先利用十字相乘法进行因式分解,然后再利用平方差公式进行分解即可. 试题原式=()()22229x y x y --=()()()()33x y x y x y x y -+-+. 【点睛】本题考查了综合运用十字相乘法与公式法进行因式分解,根据式子的特点灵活选取因式分解的方法进行分解是关键.26.(1)()()()x y a b a b -+-;(2)31x y =⎧⎨=-⎩【分析】(1)先提取公因式,再采用平方差公式继续分解.(2)根据加减法解方程即可求解.【详解】(1)()()22a x y b x y ---22()()x y a b =--()()()x y a b a b =-+-;(2)213211x y x y ①②+=⎧⎨-=⎩ ①+②,得412x =,解得:3x =,将3x =代入①,得321y +=,解得1y =-,所以方程组的解是31x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组,提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.。

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试卷(包含答案解析)(3)

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试卷(包含答案解析)(3)

一、选择题1.下列因式分解中,正确的是( )A .224(4)(4)x y x y x y -=-+B .()ax ay a a x y ++=+C .()()()()a x y b y x x y a b -+-=--D .2224(2)x y x y +=+2.设,,a b c 是三角形的三边长,且满足222a b c ab bc ca ++=++,关于此三角形的形状有以下判断:①是直角三角形; ②是等边三角形; ③是锐角三角形;④是钝角三角形,其中正确的说法的个数有( )A .1个B .2个C .3个D .4个 3.因式分解x ﹣4x 3的最后结果是( ) A .x (1﹣2x )2B .x (2x ﹣1)(2x+1)C .x (1﹣2x )(2x+1)D .x (1﹣4x 2) 4.因式(m+2n)(m-2n)是下列哪个多项式分解因式的结果( ) A .m 2+4n 2B .-m 2+4n 2C .m 2-4n 2D .–m 2-4n 2 5.下列因式分解错误的是( )A .a 2﹣a +1=a (a ﹣1)+1B .a 2﹣b 2=(a +b )(a ﹣b )C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b )D .a 2﹣4ab +4b 2=(a ﹣2b )26.已知1x =,则代数式222x x -+的值为( ) A .23 B .22C .21D .20 7.下列各式中:①()()22x y x y x y --=-+-,②()()22x y x y x y -+=-++,③()22 242x x x --=-,④221142x x x ++=+⎛⎫ ⎪⎝⎭中,分解因式正确的个数有( ) A .1个B .2个C .3个D .4个 8.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+ ⎪⎝⎭9.下列从左到右的变形是因式分解的是( ).A .2422(2)yz y z y z y z -+=-+B .2(3)(3)9x x x -+=-C .2()()()x x y y x y x y ---=-D .()32233x x x x x x -+=- 10.式子233x y y -因式分解的最后结果是( )A .3(1)(1)y x x -+B .()23x y y -C .()231y x -D .()233y x -11.下列各式从左到右的变形中,属于因式分解的是( )A .4a+4b+3=4(a+b )+3B .(a+b )(a ﹣b )=a 2﹣b 2C .10a 2b ﹣2ab =2ab (5a ﹣1)D .a 2+b 2=(a+b )2﹣2ab12.下列因式分解结果正确的是( )A .x 2+3x +2=x (x +3)+2B .4x 2﹣9=(4x +3)(4x ﹣3)C .a 2﹣2a +1=(a +1)2D .x 2﹣5x +6=(x ﹣2)(x ﹣3) 二、填空题13.分解因式x 2y -2xy +y =_________14.因式分解:236x y y -=__________.15.分解因式:am 2﹣9a=_________________.16.因式分解:41x -=______.17.已知210x x +-=,则代数式3222020x x ++的值为________.18.分解因式:4a 2-4a+1=______.19.已知:a+b =3,则代数式a 2+2ab+b 2的值为_____.20.分解因式:mn 2﹣4mn+4m =_____.三、解答题21.我们常利用数形结合思想探索整式乘法的一些法则和公式.类似地,我们可以借助一个棱长为a 的大正方体进行以下探索:(1)在大正方体一角截去一个棱长为()<b b a 的小正方体,如图1所示,则得到的几何体的体积为________;(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,∵BC a =,AB a b =-,CF b =,∴长方体①的体积为()ab a b -.类似地,长方体②的体积为________,长方体③的体积为________;(结果不需要化简)(3)将表示长方体①、②、③的体积相加,并将得到的多项式分解因式的结果为________;(4)用不同的方法表示图1中几何体的体积,可以得到的等式为________.(5)已知4a b -=,2ab =,求33a b -的值.22.分解因式(1)()()()()a b x y b a x y ----+(2)4+12(x -y )+9(x -y )2(3)22369xy x y y -- (4)()228a b ab -+23.(1)整式的乘法:①22(2)(21)a a a --+②(3)(5)x y x y -+(2)因式分解:①2327a -②2221218a ab b -+24.已知a+b=-2,a-b=2,把(a 2+b 2-1)2-4a 2b 2先分解因式,再求值.25.(1)因式分解:328a a -.(2)如图,//AB CD ,40A ∠=︒,45D ∠=︒,求1∠和2∠的度数.26.分解因式:(1)222ax axy ay ++;(2)4161y -【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据因式分解的基本方法,对各多项式进行分解,即可得出结论.【详解】解:A 、224(2)(2)x y x y x y -=-+,故此选项错误;B 、(1)ax ay a a x y ++=++,故此选项错误;C 、()()()()a x y b y x x y a b -+-=--,故此选项正确;D 、224x y +不能在实数范围内分解因式,故此选项错误.【点睛】本题考查了因式分解,掌握因式分解的基本方法是解题的关键.2.B解析:B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a b c ==.进而判断即可.【详解】∵222a b c ab bc ca ++=++,∴222222222a b c ab bc ca ++=++,即()()()2220a b b c a c -+-+-=,∴a b c ==,∴此三角形为等边三角形,同时也是锐角三角形.故选:B .【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键. 3.C解析:C【分析】原式提取公因式,再利用平方差公式分解即可.【详解】原式=x (1﹣4x 2)=x (1+2x )(1﹣2x ).故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.4.C解析:C【分析】因式分解的结果利用平方差公式计算,合并即可得到所求.【详解】()()()22222224m n m n m n m n +-=-=-.故选:C .【点睛】 本题考查了因式分解-公式法,解此题的关键是明确乘法运算和分解因式是互逆运算,可以利用乘法运算得出分解因式前的多项式.5.A【分析】直接利用公式法以及提取公因式法分解因式得出答案.【详解】A .a 2﹣a +1=a (a ﹣1)+1,不符合因式分解的定义,故此选项正确;B .a 2﹣b 2=(a +b )(a ﹣b ),正确,不符合题意;C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b ),正确,不合题意;D .a 2﹣4ab +4b 2=(a ﹣2b )2,正确,不合题意.故选:A .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键. 6.B解析:B【分析】先将多项式因式分解,再将x 的值代入求值.【详解】222x x -+=22(1)111)122x -+=-+=,故选:B.【点睛】此题考查了已知式子的值求多项式的值,多项式的因式分解,正确将多项式因式分解是解题的关键.7.B解析:B【分析】直接利用平方差公式和完全平方公式分解因式得出答案即可.【详解】解:①()2222+x y x y--=-,无法分解因式,故此选项错误; ②()()22x y x y x y -+=-++,正确;③()222415(11x x x x x --=--=-+--,故此选项错误; ④221142x x x ++=+⎛⎫ ⎪⎝⎭,故此选项正确; 所以,正确的答案有2个,故选:B .【点睛】此题主要考查了公式法分解因式,正确应用平方差公式和完全平方公式是解题关键. 8.C解析:C将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断.【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意; B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意; C 、()()22492323a b a b a b -+=-++,故该项符合题意; D 、1212x x x ⎛⎫+=+⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C .【点睛】 此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.9.C解析:C【分析】根据因式分解的定义判断即可.【详解】解:A. 2422(2)yz y z y z y z -+=-+,不是因式分解;B. 2(3)(3)9x x x -+=-,是乘法公式,不是因式分解;C. 2()()()x x y y x y x y ---=-,是因式分解;D. ()32233x x x x x x -+=-,左右两边不相等,不是因式分解;故选:C .【点睛】本题考查了因式分解的定义,解题关键是看是不是把多项式变成了整式的积,等号左右两边应该是恒等变形. 10.A解析:A【分析】先提公因式3y ,再根据平方差公式分解因式即可.【详解】233x y y -=23(1)y x -=3(1)(1)y x x -+,故选:A.【点睛】此题考查因式分解的方法:提公因式法,公式法(平方差公式、完全平方公式),根据多享受到特点选择适合的因式分解的方法是解题的关键.11.C解析:C判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.【详解】解:A.4a+4b+3=4(a+b )+3,没把一个多项式转化成几个整式积的形式,故本选项不合题意;B .(a+b )(a ﹣b )=a 2﹣b 2,为乘法运算,故本选项不合题意;C.10a 2b ﹣2ab =2ab (5a ﹣1),属于因式分解,故本选项符合题意;D .a 2+b 2=(a+b )2﹣2ab ,没把一个多项式转化成几个整式积的形式,故本选项不合题意.故选:C .【点睛】本题考查因式分解的意义,解题关键是熟练掌握把多项式转化成几个整式积的形式. 12.D解析:D【分析】根据因式分解的方法进行计算即可判断.【详解】A .因为x 2+3x +2=(x +1)(x +2),故A 错误;B .因为4x 2﹣9=(2x +3)(2x ﹣3),故B 错误;C .因为a 2﹣2a +1=(a ﹣1)2,故C 错误;D .因为x 2﹣5x +6=(x ﹣2)(x ﹣3),故D 正确.故选:D .【点睛】本题考查了因式分解-十字相乘法、公式法,解决本题的关键是掌握因式分解的方法.二、填空题13.【分析】原式提取公因式y 再运用完全平方公式进行因式分解即可【详解】解:x2y -2xy +y==故答案为:【点睛】此题主要考查了因式分解熟练掌握提公因式法的公式法是解本题的关键解析:2(1)y x -【分析】原式提取公因式y ,再运用完全平方公式进行因式分解即可.【详解】解:x 2y -2xy +y=2(21)y x x -+=2(1)y x -故答案为:2(1)y x -.【点睛】此题主要考查了因式分解,熟练掌握提公因式法的公式法是解本题的关键.14.y(x+6)(x-6)【分析】首先提公因式y 再利用平方差进行二次分解即可【详解】原式=y(x2-36)=y(x+6)(x-6)故答案为:y(x+6)(x-6)【点睛】本题考查了提公因式法与公式法分解解析:y(x+6)(x-6)【分析】首先提公因式y ,再利用平方差进行二次分解即可.【详解】原式=y(x 2-36)=y(x+6)(x-6),故答案为:y(x+6)(x-6)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解. 15.a(m+3)(m ﹣3)【解析】==解析:a(m+3)(m ﹣3).【解析】29am a -=2(9)a m -=(3)(3)a m m +-.16.【分析】两次运用平方差公式进行因式分解即可得到答案【详解】解:=(x2-1)(x2+1)=故答案为:【点睛】本题考查了运用平方差公式分解因式熟练掌握因式分解的方法是解本题的关键解析:()()()2111x x x +-+. 【分析】两次运用平方差公式进行因式分解即可得到答案.【详解】解:41x -=(x 2-1)(x 2+1)=()()()2111x x x +-+. 故答案为:()()()2111x x x +-+. 【点睛】本题考查了运用平方差公式分解因式,熟练掌握因式分解的方法是解本题的关键. 17.【分析】根据条件转换成x2+x=1后一个代数式化简后将条件代入即可【详解】解:由题意得:x2+x=1∴x3+2x2+2020=x(x2+x)+x2+2020=x+x2+2020=1+2020=202解析:【分析】根据条件转换成x 2+x =1,后一个代数式化简后将条件代入即可.【详解】解:由题意得:x 2+x =1,∴x 3+2x 2+2020=[x (x 2+x )+x 2]+2020=x +x 2+2020=1+2020=2021,故答案为:2021.【点睛】本题考查代数式的整体代入求解,关键在于如何将代数式转换成条件中的整体. 18.【分析】根据完全平方公式的特点:两项平方项的符号相同另一项是两底数积的2倍本题可用完全平方公式分解因式【详解】解:故答案为【点睛】本题考查用完全平方公式法进行因式分解能用完全平方公式法进行因式分解的 解析:2(21)a -【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【详解】解:22441(21)a a a -+=-.故答案为2(21)a -.【点睛】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握. 19.9【分析】根据完全平分公式:(a+b )2=a2+2ab+b2即可解答【详解】解:因为a+b =3所以a2+2ab+b2=(a+b )2=32=9故答案为:9【点睛】此题主要考查了因式分解的应用熟练掌握完解析:9【分析】根据完全平分公式:(a+b )2=a 2+2ab+b 2,即可解答.【详解】解:因为a+b =3,所以a 2+2ab+b 2=(a+b )2=32=9.故答案为:9.【点睛】此题主要考查了因式分解的应用,熟练掌握完全平方公式是解答此题的关键.20.m (n ﹣2)2【分析】首先提取公因式m 再利用完全平方公式分解因式即可【详解】解:mn2﹣4mn+4m =m (n2﹣4n+4)=m (n ﹣2)2故答案为:m (n ﹣2)2【点睛】此题主要考查了提取公因式法以解析:m (n ﹣2)2【分析】首先提取公因式m ,再利用完全平方公式分解因式即可.【详解】解:mn 2﹣4mn+4m=m (n 2﹣4n+4)=m (n ﹣2)2.故答案为:m (n ﹣2)2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.三、解答题21.(1)33a b -;(2)()2b a b -,()2a a b -;(3)()+ab a b -()2b a b -()2+a a b -()()22a b a ab b =-++;(4)()()3322a b a b a ab b -=-++;(5)88.【分析】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b 从而可得答案;(2)由,,ED OD b DM a b ===-,,GH HJ a HN a b ===-利用长方体的体积公式直接可得答案;(3)提取公因式-a b ,即可得到答案;(4)由(1)(3)的结论结合等体积的方法可得答案;(5)利用()2222,a b a b ab +=-+先求解22,a b + 再利用()()3322a b a b a ab b -=-++,再整体代入求值即可得到答案.【详解】解:(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b所以截去后得到的几何体的体积为:33,a b -故答案为:33.a b -(2),,ED OD b DM a b ===-由长方体的体积公式可得:长方体②的体积为()2b a b -,,,GH HJ a HN a b ===-所以长方体③的体积为()2,a a b -故答案为:()2b a b -,()2.a a b -(3)由题意得:()+ab a b -()2b a b -()2+a a b - ()()22.a b a ab b =-++故答案为:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++(4)由(1)(3)的结论,可以得到的等式为:()()3322.a b a b a ab b -=-++故答案为:()()3322.a b a b a ab b -=-++ (5) 4a b -=,2ab =,()222216420,a b a b ab ∴+=-+=+=()()3322a b a b a ab b -=-++,()33420288.a b ∴-=⨯+=【点睛】本题考查的是完全平方公式的变形,提公因式分解因式,代数恒等式的几何意义,掌握利用不同的方法表示同一个几何体的体积得到代数恒等式,以及应用得到的恒等式解决问题是解题的关键.22.(1)()2x a b -;(2)2(233)x y +- ;(3)()23y x y --;(4)()22a b + 【分析】(1)先将原式变形,然后提取公因式进行因式分解;(2)利用完全平方公式进行因式分解;(3)先提取公因式,然后利用完全平方公式进行因式分解;(4)先将原式进行整式的混合计算化简,然后利用完全平方公式进行因式分解.【详解】解:(1)()()()()a b x y b a x y ----+=()()+()()a b x y a b x y ---+=()()a b x y x y --++=()2x a b -(2)4+12(x -y )+9(x -y )2=22+2×2×3(x -y )+[3(x -y )]2=[2+3(x -y )]2=2(233)x y +-(3)22369xy x y y -- =()2269y y xy x--+=()23y x y -- (4)()228a b ab -+=22448a ab b ab -++=224+4a ab b +=()22a b +【点睛】本题考查综合提公因式法和公式法进行因式分解,掌握提取公因式的技巧和乘法公式的公式结构正确计算是解题关键.23.(1)①432484a a a -+;②22215x xy y +-;(2)①3(3)(3)a a +-;②22(3)a b -【分析】(1)①整式乘法的混合运算,先算乘方,然后按照单项式乘多项式的法则进行计算; ②根据多项式乘多项式的法则进行计算;(2)①先提取公因式,然后利用平方差公式进行因式分解;②先提取公因式,然后利用完全平方公式进行因式分解【详解】解:(1)①22(2)(21)a a a --+22)4(21a a a =-+432484a a a =-+;②(3)(5)x y x y -+223515x xy xy y =-+-22215x xy y =+-(2)①2327a -23(9)a =-3(3)(3)a a =+-;②2221218a ab b -+222(69)a ab b =-+22(3)a b =-.【点睛】本题考查整式乘方的混合运算及因式分解,掌握运算顺序和计算法则,并且熟练掌握平方差公式和完全平方公式的公式结构,正确计算是解题关键.24.()()()()1111a b a b a b a b +++--+--,9【分析】综合乘法公式进行因式分解,然后再整体代入求值即可.【详解】解:()2222214a b a b +--=()()22221212a b ab a b ab +-++--=()()2211a b a b ⎡⎤⎡⎤+---⎣⎦⎣⎦=()()()()1111a b a b a b a b +++--+--,把2,2a b a b +=--=代入得:原式=()()()()212121219-+⨯--⨯+⨯-=.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.25.(1)2(2)(2)a a a +-;(2)140∠=︒,285∠=︒.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2) 根据平行线的性质,可以得到∠1和∠A 的关系,从而可以得到∠1的度数,再根据∠2=∠1+∠D ,即可求得∠2的度数.【详解】解:(1)原式()2242(2)(2)a a a a a =-=+-. (2)//AB CD ,140A ∴∠=∠=︒,45D ∠=︒,2185D ∴∠=∠+∠=︒.【点睛】 此题考查了提公因式法与公式法的综合运用,以及平行线的性质,解答第2小题的关键是明确题意,利用平行线的性质和三角形外角和内角的关系解答.26.(1)2()a x y +;(2)2(41)(21)(21)y y y ++-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可得出结果;(2)先利用平方差公式分解可得22(41)(41)y y +-,再次利用平方差公式对2(41)y -进行分解,即可完成.【详解】解:(1)原式22(2)a x xy y =++2()a x y =+,(2)原式22(41)(41)y y =+-2(41)(21)(21)y y y =++-.【点睛】本题考查了因式分解,掌握因式分解的基本方法,并能根据多项式的特点准确选择分解方法是解题的关键.。

新北师大版八年级数学下册第四章《因式分解》质量检测试题

新北师大版八年级数学下册第四章《因式分解》质量检测试题

第15题如意湖中学八年级数学下册第四章《分解因式》质量检测题班级 姓名 得分一、选择题(每题3分,共24分)1.下列各式中从左到右的变形,是因式分解的是( )(A)(a +3)(a -3)=a 2-9 (B)x 2+x -5=(x -2)(x +3)+1 (C)a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x1) 2.下列各式的因式分解中正确的是( )(A) -a 2+ab -ac = -a (a +b -c ) (B) 9xyz -6x 2y 2=3xyz (3-2xy )(C)3a 2x -6bx +3x =3x (a 2-2b ) (D) 21xy 2+21x 2y =21xy (x +y )3.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)4-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( ) (A)①② (B)②④ (C)③④ (D)②③4.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +45.下列多项式中,不能用完全平方公式分解因式的是( )(A)412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D)13292+-n n 6.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( ) (A) 4x (B) -4x (C) ±4x (D)不能确定 7.下列分解因式错误的是( )(A)15a 2+5a =5a (3a +1) (B)-x 2-y 2=-(x 2-y 2)=-(x +y )(x -y ) (C)k (x +y )+x +y =(k +1)(x+y ) (D)a 3-2a 2+a =a (a -1)2 8.下列多项式中不能用平方差公式分解的是( )(A)-a 2+b 2 (B)-x 2-y 2 (C)49x 2y 2-z 2 (D)16m 4-25n 2p 2 二、填空题(每题3分,共24分) 9. 计算:=201320143-3 . 10. 792-38×79+ 192= .11.分解因式:m 3-4m = .12.已知x +y =6,xy =4,则x 2y +xy 2的值为 .13.将x n -y n 分解因式的结果为(x 2+y 2)(x +y )(x -y ),则n 的值为 . 14.若ax 2+24x +b =(mx -3)2,则a = ,b = ,m = .15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是 . 16.已知x -y =3,则2x 2-4xy +2y 2= 三、分解因式(每小题3分,共24分)17.(1) 、-4x 3+16x 2-26x (2)、mn(m -n)-m(n -m)18.(1)、23)(10)(5x y y x -+-; (2)、)(6)(4)(2a x c x a b a x a ---+-;19.(1)、2294n m -; (2)、22)(16)(9n m n m --+;20. (1)、4416n m -; (2)、 a 2(x -y )+b 2(y -x ) 21.(1)、21ax 2y 2+2axy +2a (2)、(x 2-6x )2+18(x 2-6x )+8122.(1)、25)(10)(2++++y x y x ; (2)、4224817216b b a a +-;四、解答题(每题8分,共16分)23、已知(4x -2y -1)2+2-xy =0,求4x 2y -4x 2y 2+xy 2的值.24、证明58-1解被20∽30之间的两个整数整除五、综合题(每题10分,共20分)25、如图,在一块边长为a 厘米的正方形纸板四角,各剪去一个边长为 b(b<2a)厘米的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积。

《因式分解》水平测试1(北师大版八年级数学下册)

《因式分解》水平测试1(北师大版八年级数学下册)

《因式分解》水平测试、选择题10. 下列因式分解中,错误的是(A.3a(a b) 3a 2 3abB. (a 2)(a 3) a 2 a 6C. x 2 2x 1 x(x 2) 1D.a 2 b 2 (a b)(a b)2.下列多项式中,能用提公因式法分解因式的是( )A. x 2 yB.x 2 2xC.x 2 y 2D. x 2 xy y 23.把多项式(m 1)(m 1) (m1)提取公因式(m1)后,余下的部分是( )A. m 1B.2mC.2D.m 24.分解因式:x 2 4=( )2A. (x 4)2B.(x 2)2C.(x 2)(x 2)D. (x 4)(x 4)5. (3a y )(3a y )是下列哪一个多项式因式分解的结果().1•下列各式由左边到右边的变形中,是因式分解的为()22A. 9a 2D. — 9a 2 y 2B. — 9a 2 y 2C.9a 26.若 a b4,则a 2 2ab b 2的值是(A.8B.16C.2D.47•因式分解 a ab 2,正确的结果是( A. a(1 b 2)B. a(1 b)(1 b)2C.a( b )D. a(1b)28扌把多项式 x 2 4x4分解因式的结果是A. (x 2)2B. x(x 4)C.(x2)(x 2)D.(x 2)29.若 x 2 mx 15 (x 3)(x n),则m 的值为(A. — 5B.5C. — 2D.2 2A. 1 9x (1 3x)(1 3x)B.a 2C. mx my m(x y)D. ax ay bx by (a b)(x y)二、填空题11多项式2x2 12xy2 8xy3各项的公因式是 _________________ .12. 已知x+ y=6, xy=4,则x2y+ xy2的值为 _____________ .13. —个长方形的面积是(x2 9)平方米,其长为(x 3)米,用含有x的整式表示它的宽为________ 米.14. (1 x)(_______ )x2 1 .15. __________________________________________________ 若多项式4s?+M 能用平方差公式分解因式,则单项式M= ____________________ (写出一个即可).16. 在多项式4x2 1加上一个单项式后,能成为一个整式的完全平方式,那么所添加的单项式还可以是________ .1 117. 已知:x+y=1,则一x2xy — y2的值是2 2 ------------------------2 218. 若x 4x 4 0,则3x 12x 5 的值为________________ .19. 写出一个二项式,再把它因式分解(要求:二项式含有字母a和b,系数、次数不限,并能先提公因式法,再用公式法分解). _________________ .20. 如图所示,边长为a米的正方形广场,_扩建后的正方形边长比原来的长2米, 则扩建后的广场面积增加了_______ 米2.三、解答题21分解因式:(1)2a2 2ab ;C. mx my m(x y)D. ax ay bx by (a b)(x y)(2)衣一18;(3)2x2 4xy 2y2;24)2x2 4x 2.22. 请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.4a2,(x y)2,1,9b2.23. 设n为整数.求证:(2n+1)2—25能被4整除.24. 在直径D i=1 8mm的圆形零件上挖出半径为D2=14mm的圆孔,则所得圆环形零件的底面积是多少?(结果保留整数).25. 给你若干个长方形和正方形卡片,如下图所示,请你用拼图的方法,拼成一个大矩形,使它的面积等于+ 5ab+ 4b2,并根据你拼成的图形分解多项式a2+5ab+4b2.26. 老师在黑板上写了三个算式:52—32=8 2,92—72=8 4,152—32=8 27,小华接着又写了两个具有同样规律的算式:112—52=8 12,152—72=8 22.(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)用文字写出反映上述算式的规律;3) 证明这个规律的正确性.27. 先阅读下列材料,再分解因式:(1)要把多项式am an bm bn 分解因式,可以先把它的前两项分成一组,并提出a ;把它的后两项分成一组,并提出b .从而得到a(m n) b(m n) .这时由于a(m n)与b(m n)又有公因式(m n),于是可提出公因式(m n),从而得到(m n)(a b).因此有am an bm bn (am an) (bm bn)a(m n) b(m n)(m n)(a b).这种分解因式的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了.(2)请用( 1)中提供的方法分解因式:22① a ab ac bc; ® m 5n mn 5m.参考答案一、 选择题I. D ; 2.B ; 3.D ; 4.C ; 5.C ; 6.B ; 7.B ; 8.A ; 9.C ; 10.C 二、 填空题 II. 2x ; 12.24; 13. x 3; 14. x 1;15. 本题是一道开放题,答案不唯一 .M 为某个数或式的平方的相反数即可,如: -b 2,— 1,— 4……16. 4x 、4x 4、一 1, 4x 2 中的一个即可; 117.-;提示:本题无法直接求出字母x 、y 的值,2使求值式中含有已知条件式,再将其整体代入求解18.7;20. 4 (a+1); 三、解答题221. (1) 2a(a b) ; (2) 2(x + 3)(x — 3); (3) 2( x y)2 ; (4) 2(x 1).解:作 差如 :4a2 29b ,(xy)2 12 2;(x y) 4a ; (x1 (x y)2;4a 2 (x y)2; 9b 2 (xy)2 等.分解因式如:1. 4a 2 9b 23. (x y)2 9b 2(2 a 3b)(2a 3b).=(x+y+3b)(x+y — 3b).2. 1 (x y)24. 2 24a (x y) 22.本题是一道开放性试题,答案不唯一.2 2y) 9b ;可首先将求值式进行因式分解,xy 1y 2=- (x+y )2 22,所以将x+y=1代入该式得: 1 2 xy尹219.答案不唯一,如a 3b ab 3ab(a b)(a b) 等;23.提示:判断(2n+1) 2—25能否被4整除,主要看其因式分解后是否能写成4与另一个因式积的形式,因(2n+1) 2—25=4 (n+3) (n —2),由此可知该式能被4整除.24.解:环形面积就是大圆面积减去小圆面积,于是DiX (9+7)(97—=126n2〜396(mm)故所得圆环形零件的底面积约为396mm2.25.用一张图①、5张图②、4张图③拼成下图矩形,由图形的面积可将多项式a2+ 5ab+ 4b2分解为(a+ b) (a+ 4b).(3) 证明:设m、n为整数,两个奇数可表示为2m+1和2n+1,则(2m+1)22—(2n+1) =[(2m+1)+(2 n+1)][(2m+1) —(2n—1)]=4(m —n)(m+n+1).当m、n同是奇数或偶数时,m—n—定为偶数,所以4(m —n)一定是8的倍数;当m、n —奇一偶时,m+n+1 —定为偶数,所以4(m+n+1) —定是8的倍数.所以任意两个奇数的平方差是8的倍数.(1 x y)(1 x y) •=(2a+x+y)(2a —x —y).D12D2D12 2D2226.解:(1) 132—92=8 11, 172—32=8 35.(2)规律:任意两个奇数的平方差是8的倍数.27. ① (a b)(a c):②(m 5)( m n).。

北师大版八年级数学下册《因式分解》练习(含答案)

北师大版八年级数学下册《因式分解》练习(含答案)

《分解因式》练习卷一、选择题1.下列各式由左边到右边的变形中,是因式分解的为( )A.23()33a a b a ab +=+B.2(2)(3)6a a a a +-=--C.221(2)1x x x x -+=-+D.22()()a b a b a b -=+-2.下列多项式中,能用提公因式法分解因式的是( )A.2x y -B.22x x +C.22x y +D.22x xy y -+3.把多项式(1)(1)(1)m m m +-+-提取公因式(1)m -后,余下的部分是() A.1m + B.2m C.2 D.2m +4.分解因式:24x -=( )A.2(4)x -B.2(2)x -C.(2)(2)x x +- D .(4)(4)x x +-5.(3)(3)a y a y -+是下列哪一个多项式因式分解的结果( ).A.229a y +B. -229a y +C.229a y -D.-229a y -6.若 4a b +=,则222a ab b ++的值是( )A.8B.16C.2D.47.因式分解2a ab -,正确的结果是( )A.2(1)a b -B.(1)(1)a b b -+C.2()a b -D.2(1)a b -8.把多项式244x x -+分解因式的结果是( )A.2(2)x -B.(4)4x x -+C.(2)(2)x x +-D.2(2)x +9.若215(3)()x mx x x n +-=++,则m 的值为( )A.-5B.5C.-2D.210.下列因式分解中,错误的是( )A. 219(13)(13)x x x -=+-B.2211()42a a a -+=-C.()mx my m x y -+=-+D.()()ax ay bx by a b x y --+=--二、填空题11.多项式2232128x xy xy ++各项的公因式是______________.12. 已知x +y=6,xy=4,则x 2y +xy 2的值为 .13.一个长方形的面积是2(9)x -平方米,其长为(3)x +米,用含有x 的整式表示它的宽为________米.14. (1)x +( )21x =-.15.若多项式4a 2+M 能用平方差公式分解因式,则单项式M=____(写出一个即可).16. 在多项式241x +加上一个单项式后,能成为一个整式的完全平方式,那么所添加的单项式还可以是 .17. 已知:x +y =1,则222121y xy x ++的值是___________. 18. 若512x 3,04422-+=-+x x x 则的值为_____________.20. 如图所示,边长为a 米的正方形广场,扩建后的正方形边长比原来的长2米,则扩建后的广场面积增加了_______米2.三、解答题21.分解因式:(1)222a ab -; (2)2x 2-18;(3)22242x xy y -+; (4)2242x x ++.22.请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.2224()19a x y b +, , ,.23.设n为整数.求证:(2n+1)2-25能被4整除.24.在直径D1=1 8mm的圆形零件上挖出半径为D2=14mm的圆孔,则所得圆环形零件的底面积是多少?(结果保留整数).27. 先阅读下列材料,再分解因式:(1)要把多项式am an bm bn+++分解因式,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b.从而得到()()a m nb m n+++.这时由于()a m n+与()b m n+又有公因式()m n+,于是可提出公因式()m n+,从而得到()()m n a b++.因此有()()am an bm bn am an bm bn+++=+++()()a m nb m n=+++()()m n a b=++.这种分解因式的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了.(2)请用(1)中提供的方法分解因式:①2a ab ac bc+--.-+-;②255m n mn m参考答案一、选择题1.D ;2.B ;3.D ;4.C ;5.C ;6.B ;7.B ;8.A ;9.C ;10.C二、填空题11.2x ;12.24;13. 3x -;14.1x -;15. 本题是一道开放题,答案不唯一.M 为某个数或式的平方的相反数即可,如:-b 2,-1,-4……16. 4x ±、44x 、-1,24x -中的一个即可; 17.12;提示:本题无法直接求出字母x 、y 的值,可首先将求值式进行因式分解,使求值式中含有已知条件式,再将其整体代入求解.因222121y xy x ++=21(x +y )2,所以将x +y =1代入该式得:222121y xy x ++=21.18.7;19.答案不唯一,如33()()a b ab ab a b a b -=+-等;20. 4(a+1);三、解答题21.(1)2()a a b -;(2)2(x +3)(x -3);(3)22()x y -;(4)22(1)x +.22. 本题是一道开放性试题,答案不唯一.解:作差如:2249a b - , 2()1x y +-;22()4x y a +-;22()9x y b +-;21()x y -+;224()a x y -+;229()b x y -+ 等.分解因式如:1.2249a b - 3. 22()9x y b +-(23)(23)a b a b =+-. =(x+y+3b)(x+y -3b).2. 21()x y -+ 4. 224()a x y -+[][]1()1()x y x y =++-+ =[2a+(x+y)][2a -(x+y)] (1)(1)x y x y =++--. =(2a+x+y)(2a -x -y).23. 提示:判断(2n+1)2-25能否被4整除,主要看其因式分解后是否能写成4与另一个因式积的形式,因(2n+1)2-25=4(n+3)(n -2),由此可知该式能被4整除.24.解:环形面积就是大圆面积减去小圆面积,于是S 环=π21R 一π22R=π212D ⎛⎫ ⎪⎝⎭一π222D ⎛⎫ ⎪⎝⎭=π12122222D D D D ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ =π×(9+7)(9—7)=126π≈396(mm 2)故所得圆环形零件的底面积约为396mm 2.25. 用一张图①、5张图②、4张图③拼成下图矩形,由图形的面积可将多项式a 2+5ab +4b 2分解为(a +b )(a +4b ).26. 解:(1)132-92=8⨯11,172-32=8⨯35.(2)规律:任意两个奇数的平方差是8的倍数.(3)证明:设m、n为整数,两个奇数可表示为2m+1和2n+1,则(2m+1)2-(2n+1)2=[(2m+1)+(2n+1)][(2m+1)-(2n-1)]=4(m-n)(m+n+1).当m、n同是奇数或偶数时,m-n一定为偶数,所以4(m-n)一定是8的倍数;当m、n一奇一偶时,m+n+1一定为偶数,所以4(m+n+1)一定是8的倍数.所以任意两个奇数的平方差是8的倍数.27. ①()()--.m m na b a c-+;②(5)()。

2020—2021年北师大版初中数学八年级下册《因式分解》单元测试题试题(精品试卷).docx

2020—2021年北师大版初中数学八年级下册《因式分解》单元测试题试题(精品试卷).docx

《因式分解》综合检测题一、选择题:1.下列各多项式中,不能用平方差公式分解的是()A.a 2b 2-1B.4-0.25a 2C.-a 2-b 2D.-x 2+12.如果多项式x 2-mx+9是一个完全平方式,那么m 的值为()A.-3B.-6C.±3D.±63.下列变形是分解因式的是()A.6x 2y 2=3xy ·2xyB.a 2-4ab+4b 2=(a -2b)2C.(x+2)(x+1)=x 2+3x+2D.x 2-9-6x=(x+3)(x -3)-6x4.下列多项式的分解因式,正确的是()A.)34(391222xyz xyz y x xyz -=-B.)2(363322+-=+-a a y y ay y aC.)(22z y x x xz xy x -+-=-+-D.)5(522a a b b ab b a +=-+5.若a -b=6,ab=7,则ab 2-a 2b 的值为()A.42B.-42C.13D.-136.把多项式)2()2(2a m a m -+-分解因式等于()A.))(2(2m m a +-B.))(2(2m m a --C.m(a-2)(m-1)D.m(a-2)(m+1)7.已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为()A.1,3-==c bB.2,6=-=c bC.4,6-=-=c bD.6,4-=-=c b 8.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形9.若等式x 2-x+k=(x-12)2成立,则k 的值是()A .12 B.-14 C .14 D .±1410.下列多项式:①16x 3-x ;②(x-1)2-4(x-1)+4;③ x 2-5x+6;④-4x 2-1+4x 。

北师大八年级数学下册因式分解.doc

北师大八年级数学下册因式分解.doc

初中数学试卷桑水出品因式分解同步测试卷一、选择1.下列各式由左到右变形中,是因式分解的是()A.a(x+y)=ax+ayB. x2-4x+4=x(x-4)+4C. 10x2-5x=5x(2x-1)D. x2-16+3x=(x-4)(x+4)+3x2.下列各式中,能用提公因式分解因式的是()A. x2-yB. x2+2xC. x2+y2D. x2-xy+13.多项式6x3y2-3x2y2-18x2y3分解因式时,应提取的公因式是()A. 3x2yB.3xy2C. 3x2y2D.3x3y34.多项式x3+x2提取公因式后剩下的因式是()A. x+1B.x2C. xD. x2+15.下列变形错误的是()A.-x-y=-(x+y)B.(a-b)(b-c)= - (b-a)(b-c)C. –x-y+z=-(x+y+z)D.(a-b)2=(b-a)26.下列各式中能用平方差公式因式分解的是()A. –x2y2B.x2+y2C.-x2+y2D.x-y7.下列分解因式错误的是()A. 1-16a2=(1+4a)(1-4a)B. x3-x=x(x2-1)C.a2-b2c2=(a+bc)(a-bc)D.m2-0.01=(m+0.1)(m-0.1)8.下列多项式中,能用公式法分解因式的是()A.x2-xyB. x2+xyC. x2-y2D. x2+y2二、填空9.a 2b+ab 2-ab=ab( ).10.-7ab+14a 2-49ab 2=-7a( ).11.3(y-x)2+2(x-y)= 12.x(a-1)(a-2)-y(1-a)(2-a)= .13.-a 2+b 2=(a+b)( )14.1-a 4=15.992-1012=16.x 2+x+ =( )217.若a+b=1,x-y=2,则a 2+2ab+b 2-x+y=三、解答18.因式分解:①x x x 2416423-+- ②32)(12)(8a b b a a --- ③2a 2b 2-4ab+2 ④(x 2+y 2)2-4x 2y 219.已知a+b-c=3,求2a+2b-2c 的值。

北师大版八年级数学下册因式分解练习含答案

北师大版八年级数学下册因式分解练习含答案

《分解因式》练习卷一、选择题1.下列各式由左边到右边的变形中,是因式分解的为( )A.23()33a a b a ab +=+B.2(2)(3)6a a a a +-=--C.221(2)1x x x x -+=-+D.22()()a b a b a b -=+-2.下列多项式中,能用提公因式法分解因式的是( )A.2x y -B.22x x +C.22x y +D.22x xy y -+3.把多项式(1)(1)(1)m m m +-+-提取公因式(1)m -后,余下的局部是( )A.1m +B.2mC.2D.2m +4.分解因式:24x -=( )A.2(4)x -B.2(2)x -C.(2)(2)x x +-D.(4)(4)x x +- 5.(3)(3)a y a y -+是下列哪一个多项式因式分解的结果( ).A.229a y +B. -229a y +C.229a y -D.-229a y -6.若 4a b +=,则222a ab b ++的值是( )A.8B.16C.2D.47.因式分解2a ab -,正确的结果是( )A.2(1)a b -B.(1)(1)a b b -+C.2()a b -D.2(1)a b -8.把多项式244x x -+分解因式的结果是( )A.2(2)x -B.(4)4x x -+C.(2)(2)x x +-D.2(2)x +9.若215(3)()x mx x x n +-=++,则m 的值为( )A.-5B.5C.-2D.210.下列因式分解中,错误的是( )A. 219(13)(13)x x x -=+-B.2211()42a a a -+=-C.()mx my m x y -+=-+D.()()ax ay bx by a b x y --+=--二、填空题11.多项式2232128x xy xy ++各项的公因式是______________.12. 已知x +y=6,xy=4,则x 2y +xy 2的值为 .13.一个长方形的面积是2(9)x -平方米,其长为(3)x +米,用含有x 的整式表示它的宽为________米. 14. (1)x +( )21x =-.15.若多项式4a 2+M 能用平方差公式分解因式,则单项式M=____(写出一个即可).16. 在多项式241x +加上一个单项式后,能成为一个整式的完全平方式,则所添加的单项式还可以是 .17. 已知:x +y =1,则222121y xy x ++的值是___________.18. 若512x 3,04422-+=-+x x x 则的值为_____________.20. 如图所示,边长为a 米的正方形广场,扩建后的正方形边长比原来的长2米,则扩建后的广场面积增加了_______米2.三、解答题21.分解因式:(1)222a ab -; (2)2x 2-18;(3)22242x xy y -+; (4)2242x x ++.22.请你从下列各式中,任选两式作差,并将得到的式子进展因式分解.2224()19a x y b +, , , . 23.设n 为整数.求证:(2n+1)2-25能被4整除.24.在直径D 1=1 8mm 的圆形零件上挖出半径为D 2=14mm 的圆孔,则所得圆环形零件的底面积是多少(结果保存整数).27. 先阅读下列材料,再分解因式:(1)要把多项式am an bm bn +++分解因式,可以先把它的前两项分成一组,并提出a ;把它的后两项分成一组,并提出b .从而得到()()a m n b m n +++.这时由于()a m n +与()b m n +又有公因式()m n +,于是可提出公因式()m n +,从而得到()()m n a b ++.因此有这种分解因式的方法叫做分组分解法.假如把一个多项式的项分组并提出公因式后,它们的另一个因式正好一样,则这个多项式就可以利用分组分解法来分解因式了.(2)请用(1)中供应的方法分解因式:参考答案一、选择题1.D ;2.B ;3.D ;4.C ;5.C ;6.B ;7.B ;8.A ;9.C ;10.C二、填空题11.2x ;12.24;13. 3x -;14.1x -;15. 本题是一道开放题,答案不唯一.M 为某个数或式的平方的相反数即可,如:-b 2,-1,-4……16. 4x ±、44x 、-1,24x -中的一个即可; 17.12;提示:本题无法干脆求出字母x 、y 的值,可首先将求值式进展因式分解,使求值式中含有已知条件式,再将其整体代入求解.因222121y xy x ++=21(x +y )2,所以将x +y =1代入该式得:222121y xy x ++=21. 18.7;19.答案不唯一,如33()()a b ab ab a b a b -=+-等;20. 4(a+1);三、解答题21.(1)2()a a b -;(2)2(x +3)(x -3);(3)22()x y -;(4)22(1)x +.22. 本题是一道开放性试题,答案不唯一.解:作差如:2249a b - , 2()1x y +-;22()4x y a +-;22()9x y b +-;21()x y -+;224()a x y -+;229()b x y -+ 等.分解因式如:1.2249a b - 3. 22()9x y b +- (23)(23)a b a b =+-. =(x+y+3b)(x+y -3b).2. 21()x y -+ 4. 224()a x y -+ [][]1()1()x y x y =++-+ =[2a+(x+y)][2a -(x+y)](1)(1)x y x y =++--. =(2a+x+y)(2a -x -y).23. 提示:推断(2n+1)2-25能否被4整除,主要看其因式分解后是否能写成4与另一个因式积的形式,因(2n+1)2-25=4(n+3)(n -2),由此可知该式能被4整除.24.解:环形面积就是大圆面积减去小圆面积,于是S 环=π21R 一π22R=π212D ⎛⎫ ⎪⎝⎭一π222D ⎛⎫ ⎪⎝⎭ =π12122222D D D D ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ =π×(9+7)(9—7)=126π≈396(mm 2)故所得圆环形零件的底面积约为396mm 2.25. 用一张图①、5张图②、4张图③拼成下图矩形,由图形的面积可将多项式a 2+5ab +4b 2分解为(a +b )(a +4b ).26. 解:(1)132-92=8⨯11,172-32=8⨯35.(2)规律:随意两个奇数的平方差是8的倍数.(3)证明:设m 、n 为整数,两个奇数可表示为2m+1与2n+1,则(2m+1)2-(2n+1)2=[(2m+1)+(2n+1)][(2m+1)-(2n -1)]=4(m -n)(m+n+1).当m 、n 同是奇数或偶数时,m -n 肯定为偶数,所以4(m -n)肯定是8的倍数;当m 、n 一奇一偶时,m+n+1肯定为偶数,所以4(m+n+1)肯定是8的倍数.所以随意两个奇数的平方差是8的倍数.27. ①()()--.m m n-+;②(5)()a b a c。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《因式分解 》水平测试
一、选择题
1.下列各式从左到右的变形,属于因式分解的是( ).
A.222(2)2x y x xy y -=-+
B.22()()a b a b a b -=+-
C.23282a b a =·
34b D.22221()1a b ab a b +--=-- 2.将3()9()x a b y b a ---分解因式,应提的公因式是( ).
A.39x y -
B.39x y +
C.a b -
D.3()a b -
3.(3)(3)a y a y -+是下列哪一个多项式因式分解的结果( ).
A.229a y +
B.-229a y +
C.229a y -
D.-229a y -
4.多项式-4a 2b 2+12a 2b 2-8a 3b 2c 的公因式是( )
A.-4a 2b 2c
B.-a 2b 2
C.-4a 2b 2
D.-4a 3b 2c
5.(-8)2004+(-8)2005能被下列数整除的是( ).
A.3
B.5
C.7
D.9
6.若多项式-6mn+18mnx+24mny 的一个因式是-6mn,那么另一个因式是( )
A.-1-3x -4y
B.1-3x -4y
C.-1-3x+4y
D.1+3x -4y
7.利用因式分解符合简便计算:57×99+44×99-99正确的是( )
A.99×(57+44)=99×101=9999
B.99×(57+44-1)=99×100=9900
C.99×(57+44+1)=99×102=10098
D.99×(57+44-99)=99×2=198 8.下列提公因式法分解因式正确的是( )
A.12abc -9a 2b 2=3abc(4-3ab)
B.3x 2y -3xy+6y=3y(x 2-x+2y)
C.-a 2+ab -ac=-a(a -b+c)
D.x 2y+5xy -y=y(x 2+5x)
二、填空题
9.把一个多项式化为_________的形式,叫做因式分解,分解因式是________的逆变形.
10. 单项式8x m y n -1 与–4x m+1y n 的公因式是_________.
11. 在等式V=IR 1+IR 2+IR 3中,当R 1=17.3,R 2=22.8,R 3=31.9,I=2.5时,V=_______.
12.分解因式:=-+---)()()(y x c x y b y x a .
13.若244(2)()x x x x n ++=++,则_______n =.
14.如果多项式mx A +可分解为()m x y -,则A 代表的单项式为____________.
15.写出一个有公因式22xy -的三项式:_____________.
16.已知13a b +=,40ab =,则22a b ab +的值是_____________.
三、解答题
17.(10分)把下列各式因式分解
(1)2269ab a bc -;(2)2212618x y xy xy -+-;(3)325()10()x y y x ---.
18.(10分)利用分解因式方法计算:
(1)39×37-13×34; (2)29×19.99+72×19.99+13×19.99-19.99×14.
19.(10分)先分解因式,再求值.328(3)12(3)x x x x ---,其中32x =
.
20.(12分)阅读下列分解因式的过程,再回答所提出的问题:
1+x +(1)x x ++2(1)x x +
=(1+x )[1+x +(1)x x +]
=(1+x )2(1+x )
=(1+x )3.
(1)上述分解因式的方法是__________,共应用了________次;
(2)若分解1+x +(1)x x ++2(1)x x ++…+2007(1)x x +,则需应用上述方法_______次,结果是_________________________________.
(3)分解因式:1+x +(1)x x ++2(1)x x ++…+(1)n x x +(n 为正整数).
参考答案:
一、选择题
1.B
2.D
3.C
4.C
5.C
6.B
7.B
8.C
二、填空题
9.几个整式的积,整式乘法;
10. 4x m y n -1;
11.180;
12. ))((y x c b a -++;
13.2;
14.my -;
15.略;
16.520;
三、解答题
17.(1)3(23)ab b ac -;(2)6(213)xy x y --+;(3)25()(2)x y x y ---.
18. (1)原式=39×37-39×33=39(37-27)=390
(2)原式=19.99(29+72+13-14)=19.99×100=1999.
19.24(3)(23)x x x --,0.
20.(1)提公因式法,2;(2)2007,2008(1)x +,(3)1(1)n x ++.。

相关文档
最新文档