正交试验设计中的方差分析 例题分析
实验设计的方差分析与正交试验
实验设计的方差分析与正交试验一、实验设计中的方差分析方差分析(analysis of variance,ANOVA)是一种统计方法,用于比较不同组之间的均值差异是否具有统计学上的显著性。
在实验设计中,方差分析主要被用来分析因变量(dependent variable)在不同水平的自变量(independent variable)中的变化情况。
通过比较不同组之间的方差,判断是否存在显著差异,并进一步分析差异的原因。
1. 单因素方差分析单因素方差分析是最简单的方差分析方法,适用于只有一个自变量的实验设计。
该方法通过比较不同组之间的方差来判断各组均值是否有差异。
步骤如下:(1)确定研究目的,选择合适的因变量和自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差和组间方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
2. 多因素方差分析多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量的情况下进行的。
这种方法可以用来分析多个因素对因变量的影响,并判断各因素的主效应和交互效应。
步骤如下:(1)确定研究目的,选择合适的因变量和多个自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差、组间方差和交互方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
二、正交试验设计正交试验设计是一种设计高效实验的方法,可以同时考虑多个因素和各个因素之间的交互作用,并通过较少的试验次数得到较准确的结果。
1. 正交表的基本原理正交表的设计是基于正交原理,即每个因素和其他所有因素的交互效应都是独立的。
通过正交表设计实验,可以确保各因素和交互作用在样本中能够均匀地出现,从而减少误差来源,提高实验结果的可靠性。
2. 正交试验设计的步骤(1)确定要研究的因素和水平。
第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析
试验优化设计
主讲:刘建永
材 料 工 程 系 Department of Materials Engineering
第三章 正交试验设计
正交试验数据 方差分析与贡献率分析
正交试验结果的方差分析
1.离差平方和的计算
总离差平方和:
项目 因素A 因素B 因素C 误差 总和
平方和SS SSA SSB SSC SSE SST
自由度DF a- 1 a- 1 a- 1 a- 1 n-1
纯平方和 SSA- fA×MSE SSB- fB×MSE SSC- fC×MSE fT×MSE SST
贡献率 ρA ρB ρC ρE
其中: 纯平方和= SS因- f因×MSE 贡献率ρ因等于纯平方和与SST的比值 贡献率最大的几个因素是重要因素,与误差贡献率差不多的认为不 重要。
μ 3.2 的 1 − α 置信区间为: μ 3.2± t1−α / 2 ( f e′)σ / ne ˆ ˆ
′ ˆ 这里 σ = S e / f e′ , ′ S e = S e + 不显著因子的平方和, f e′ = f e + 不显著因子的自由度,
ne = 试验次数 1 + 显著因子自由度之和
n e = 9 /( 1 + f A + f C ) = 9 / 5 = 1 . 8 , ′ S e = S e + S B=132 , f ′ = f + f =4 ,
y 31 54 38 53 49 42 57 62 64 T=450 yi2 =23484 ST=984
∑
方差分析表 把上述计算表中得到的平方和与自由度移至一张方差分 析表中继续进行计算。 例 3.3 的方差分析表 来源 平方和 S 自由度 f 均方和 MS 因子 A 因子 B 因子 C 误差 e T 618 114 234 18 984 2 2 2 2 8 309 57 117 9 F比 34.33 6.33 13.00
正交试验设计及其方差分析
例 9. 8 提高某化工产品转化率的试验 . 某种化工产品的转化率可能与反应温度A,反应时间B,某两 种原料之配比C和真空度D有关.为了寻找最优的生产条件,因此 考虑对 A , B ,C , D 这4个因素进行试验.根据以往的经验,确 定各个因素的3个不同水平,如表9-19所示 .分析各因素对产品的 转化率是否产生显著影响,并指出最好生产条件.
3
显然 T Tij ,j =1,2,3,4.此处 i 1
T11 大致反映了A1 对试验结果的影响, T21 大致反映了A2 对试验结果的影响, T31 大致反映了A3 对试验结果的影响, T12 , T22 和 T32 分别反映了B1 , B2 , B3 对试验结果的影响,
T13 , T23 和T33 分别反映了C1, C2 , C3 对试验结果的影响, T14 , T24 和 T34 分别反映了D1, D2 , D3 对试验结果的影响.
Rj 反映了第j列因素的水平改变对试验结果的影响大小, Rj 越大反映第j列因素影响越大.上述结果列表 of range) 由极差大小顺序排出因素的主次顺序:
这里, Rj值相近的两因素间用“、”号隔开,而Rj 值相差较 大的两因素间用“;”号隔开.由此看出,特别要求在生产过程中 控制好因素B,即反应时间.其次是要考虑因素A和D,即要控制 好反应温度和真空度.至于原料配比就不那么重要了.
(2 ) 表中任两列,其横向形成的有序数对出现的次数相同 . 如 表 L4 (23) 中任意两列,数字1 , 2 间的搭配是均衡的 .
凡满足上述两性质的表都称为正交表(Orthogonal table).
常用的正交表有L9(34), L8(27),L16(45)等,见附表7. 用正 交表来安排试验的方法,就叫正交试验设计. 一般正交表)
第4讲5(1) 正交试验设计(方差分析)
处理号 1 2
第1列(A) 1 1
表 L9(34)正交表
第2列 1 2
第3列 1 2
第4列 1 2
因素A第1 试验结果y水i 平3次
重复测定 y1 值 y2
3
1
3
3
3
y3
单4 因素 2
1
2
3
y4
试5 验数 2
2
3
1
y5
因素A第2
SS据A6=资13(料y1 y22
格式 78=13(K12
3 K322
y3)2 (y43y5
K32)-
T2 9
1 2
y6)2 ( 1 y7 3 1
y 82y 9)2 2 3
(y1yy62 ...
9
y7 y8
y水9)平2(修 3次正重项) 复测定值
9
3
3
2
1
y9
分析第1列因素时,其它列暂不考虑,将其看做条件因因素素A。第3
因素 重复1 重复2 重复3
显著影响
(6)列方差分析表
(1)偏差平方和分解:
总偏差平方和=各列因素偏差平方和+误差偏差平方和
SST SS因素 SS空列(误差)
(2)自由度分解:
dfT df因素 df空列( 误列(
(3)方差:MS因素=
SS因素 df因素
,MS误差=
SS误差 df误差
(4)构造F统计量:
F因素=
MS因素 MS误差
(5)列方差分析表,作F检验
若计算出的F值F0>Fa,则拒绝原假设,认为 该因素或交互作用对试验结果有显著影响;若 F0≼Fa,则认为该因素或交互作用对试验结果 无显著影响。
高级篇 第二章 正交试验设计及统计分析-方差分析
0.415
(2)显著性检验
根据以上计算,进行显著性检验,列出方差分析表,结果见表10-24
变异来源
A B C△ 误差e 误差e△ 总和
平方和 45.40 6.49 0.31 0.83 1.14 53.03
自由度 2 2 2 2 4
表10-24 方差分析表
均方 F值
Fa
22.70 79.6 F0.05(2,4) =6.94
油温℃A 1 1 2 2 3 3 4 4
1.8 4.5 9.8 6.8 3.24 20.25 96.04 46.24
表10-27 试验方案及结果分析
含水量%B 油炸时间s C
1
1
空列 1
2Hale Waihona Puke 2211
2
2
2
1
1
2
1
2
1
2
1
2
2
2 11.4
1 10.2
1 12.1
11.5
12.7
10.8
空列 1 2 2 1 2 1 1 2
3.24 11.4 F0.01(2,4)=18.0
0.16
0.41
0.285
显著水平 ** *
因素A高度显著,因素B显著,因素C不显著。 因素主次顺序A-B-C。
(3)优化工艺条件的确定
本试验指标越大越好。对因素A、B分析,确定优 水平为A3、B1;因素C的水平改变对试验结果几乎无影
响,从经济角度考虑,选C1。优水平组合为A3B1C1。 即温度为58℃,pH值为6.5,加酶量为2.0%。
K2k2 SST=QT CT
…
Kmk2 SSk
Q
=
j
1 r
第4讲5(2) 正交试验设计(方差分析)
2
1 1 2 2 1 10.12 10.09 0.03
2
1 2 1 1 2 10.19 10.02 0.17
2.66
2.58 2.36 2.4 2.79 2.76
0.0055 0.0078 0.0091 0.0001 0.0036
返回15
链接
(2)显著性检验
变异来源 A 平方和 自由度 0.0210 1
0.575
1.845 0.11 12.745
1
1 2 7
0.575
1.845 0.055
10.455
33.545 *
根据F值的大小排出因子的主次: 主 次
A×B、A、B×C、B、(A×C、 C)
A×B的重要性排在A、B的前面,挑选A、B的最优水平时 要从A×B的最优搭配来考虑,同理C的最优水平也应以B×C为 主. A×B的最优搭配的选取是通过A、B搭配效果表决定的。 A、B搭配效果表
B与C的最优搭配:B1C2 从A×B和B×C的最优搭配中,B因素的最优水平矛盾, 但是A×B的重要性排在B×C的前面,所以,从A×B来考选B2, 当B因素选B2时,由B×C的搭配表C选C1,综合考虑其最优工 艺为:A2B2C1. 因为,本例三个因素的所有搭配就是正交表中的8次试 验,从表中试验数据也可以看到,A2B2C1是第7号试验,不匀率 为3.17是8次试验中最小的,即为最优组合(最优工艺)。
它用多水平正交表安排水平数较少的因素的一种方法
例:在高效液相色谱法测定食品中胡萝卜素 的研究中,欲通过正交试验选择柱层析法净 化条件,试验指标为胡萝卜素回收率,不考 虑交互作用,试验因素水平表见表4-35。
表4-35 因素水平表
1
活化温度 ℃ A 100
第三章正交试验设计中的方差分析2例题分析
第三章_正交试验设计中的方差分析2-例题分析第三章中的例题分析是关于正交试验设计中的方差分析的。
本例题分析主要涉及到两个因素和一个响应变量,通过正交试验设计的方法,对这两个因素的影响进行分析。
首先,我们需要了解正交试验设计的基本原理。
正交试验设计是一种实验设计方法,通过选择合适的试验因素和水平,使得每个试验条件都能够得到充分的信息,从而降低试验误差,提高试验效率。
在正交试验设计中,试验因素之间是相互独立的,这样可以更好地分析每个因素对响应变量的影响。
在本例题中,我们有两个因素,分别记作因素A和因素B,每个因素有两个水平。
我们还有一个响应变量Y,需要确定因素A、因素B和Y之间的关系。
接下来,我们需要进行方差分析。
方差分析是一种用于比较不同因素对响应变量的影响的统计方法。
在本例题中,我们可以使用两因素方差分析来分析因素A和因素B对响应变量Y的影响。
首先,我们需要计算总平方和(SST),表示响应变量的总变异。
然后,我们需要计算因素A的平方和(SSA),表示因素A对响应变量的影响,以及因素B的平方和(SSB),表示因素B对响应变量的影响。
同时,我们还需要计算交互作用的平方和(SSAB),表示因素A和因素B之间的交互作用对响应变量的影响。
接下来,我们可以计算各个平方和的自由度和均方差,从而得到F值。
F值可以用来判断因素对响应变量的影响是否显著。
如果F值大于临界值,则说明该因素对响应变量的影响是显著的。
最后,我们可以进行多重比较,比较每个因素水平之间的差异。
多重比较可以帮助我们确定哪些因素水平之间的差异是显著的。
通过以上的分析,我们可以得出因素A、因素B和响应变量Y之间的关系。
同时,我们还可以根据多重比较的结果,确定哪些因素水平之间的差异是显著的。
总结起来,本例题分析主要涉及到正交试验设计中的方差分析。
通过对两个因素和一个响应变量进行分析,我们可以确定因素对响应变量的影响是否显著,并确定哪些因素水平之间的差异是显著的。
正交试验设计中的方差分析
目的
通过方差分析,可以确定不同组之间 的平均值差异是否由随机误差引起, 还是由处理因素或自变量引起。
方差分析的数学模型
数学模型
方差分析使用数学模型来描述数据之间的关系,特别是不同组之间的平均值差异。模型通常包括组间差异和组内 差异两部分。
医学研究
通过正交试验设计中的方差分析,研究不同治疗方案、药物剂量等因素对疾病治疗效果的影响,为临床 治疗提供科学依据。
方差分析的局限性
04
方差分析对数据的要求
独立性
数据必须是相互独立的,不存 在相互关联或依赖关系。
正态性
数据应符合正态分布,才能保 证统计推断的准确性。
同方差性
各组数据的方差应相等,否则 可能导致误判。
制定试验方案
根据正交表设计试验方案,确定每个因素的每个 水平。
实施试验
按照试验方案进行试验,记录每个试验的结果。
方差分析
利用方差分析法对试验结果进行分析,确定各因 素对试验结果的影响程度和显著性。
优化方案
根据方差分析结果,优化试验方案,进行下一步试验。
方差分析的基本原理
02
方差分析的定义与目的
定义
拉丁方设计方差分
析
适用于需要控制试验条件的试验, 通过拉丁方设计平衡试验条件和 试验误差。
正交试验设计中的方差分析步骤
确定试验因素和水平
根据研究目的和实际情况确定试验因 素和水平。
制定正交表
根据试验因素和水平选择合适的正交 表。
安排试验
按照正交表进行试验,记录试验数据。
方差分析
对试验数据进行方差分析,包括自由 度、离均平方和、均方、F值等计算。
正交试验设计(方差分析)
而第4列是空列,极差为0.34,这是由随机误差产生的,又 因为因素A的极差0.36与空列的极差0.34接近,所以可粗略 地认为因素A对指标影响不显著
由此可以根据极差的大小顺序排出因素的主次:
主
次
B、C、A
由因素的主次可以看出后区牵伸(因素B)对指标影响 最主要,其次是后区隔距(因素C),罗拉加压影响最小.
C
1.6 3.9 4.0 0.53 1.30 1.33 0.80
误差列
各数据说明
2.9
其中:
3.8 2.8 0.97 1.27 0.93 0.34
K ( j) i
为第j列的第i水 平数据之和
k( j) i 为其平均值
R( j)
为第j列的极差
9
T xi i 1
=9.5
返回
2. 分据知,第2列和第3列的极差较大, 这反映了当因素B、C的水平波动时,指标波动较大,说明因 素B、C对指标影响较大;
上一张 下一张 主 页 退 出
6.5.1 正交试验结果的方差分析
方差分析基本思想是将数据的总变异分解成因 素引起的变异和误差引起的变异两部分,构造F统 计量,作F检验,即可判断因素作用是否显著。
正交试验结果的方差分 析思想、步骤同前!!
方差分析的基本步骤与格式
设: 用正交表Ln(rm)来安排试验 试验结果为yi(i=1,2,…n)
方差分析时,在进行表头设计时一般要求留有空列,即误差 列
误差的离差平方和为所有空列所对应离差平方和之和 :
SSe SS空列
(2)计算自由度
第6讲(5)
正交试验设计 (方差分析)
(完整word版)正交试验的方差分析实例1
正交试验设计实例分析正交试验设计是使用正交表来安排多因素、多水平试表验,并采用统计学方法分析实验结果的一种实验设计方法[1]。
对于多因素、多水平的问题,人们一般希望通过若干次的实验找出各因素的主次关系和最优搭配条件,用正交表合理地安排实验,可以省时、省力、省钱,同时又能得到基本满意的实验效果。
因此,这种方法在改进产品质量、优化工艺条件及研发新产品等诸多方面广泛应用。
但是,很多研究人员在使用该方法时,有些细节往往容易被忽视。
作者以姜黄素的提取为例具体阐述这一方法的使用和注意事项。
1.实例:姜黄素是姜黄中的主要活性成分,在优化其提取工艺时,首先应确定正交试验需要考察的因素和水平。
尤本明等[2]考察了三个因素,因素A(作为溶媒的乙醇浓度)、因素 B(溶媒的量)、因素C(渗漉速度),每个因素取三个水平。
试验设计时,一般还应考虑各因素间的交互作用,也就是因素之间的联合作用,这点不可忽视。
根据以往经验可知,本例中因素之间的交互作用可以忽略,故采用 L9(34)正交表来安排试验(见表1)。
该表共有4列,将因素 A 、B 、C 分别安排在正交表的第2、3、4列上,第1列为空白列。
在试验前,各因素及水平在正交表中的位置必须交待清楚,以确定各次试验的条件,避免不必要的错误。
1 正交试验设计与结果2 .直观分析法:表1中的 K1、K2、K3分别表示在各因素各水平下姜黄素提取量的总和,K分别表示在各因素各水平下姜黄素提取量的平均值。
由于有时会遇到各因素水平数不等的情况,因此,一般用提取量的平均值大小来反映同一个因素的各个不同水平对试验结果(提取量)影响的大小,并以此确定该因素应取的最佳水平。
用同一因素各水平下平均提取量的极差R(极差=平均提取量的最大值-平均提取量的最小值)来反映各因素的水平变动对试验结果(提取量)影响的大小。
极差大就表示该因素的水平变动对试验结果的影响大,极差小就表示该因素的水平变动对试验结果的影响小。
正交检验的极差分析和方差分析(教学课堂)
(Yij i )2
(Yij i )2
i1 j1
令下列各偏导数为零
S 0,
S 0
i
(i=1,2,…,k)
特选课堂
2
第四章 方差分析
4.1 方差分析的基本概念和原理
表 4-1 对6种型号生产线维修时数的调查结果
序号 型号
A型 B型 C型 D型 E型 F型
1
9.5 4.3 6.5 6.1 10.0 9.3
2
8.8 7.8 8.3 7.3 4.8 8.7
特选课堂
3
11.4 3.2 8.6 4.2 5.4 7.2
第四章 方差分析
4.2.1 数学模型和数据结构
其中:
i 纯属Ai作用的结果,称为在Ai条件下Yi的真值(也称为
在Ai条件下Yi的理论平均). i是实验误差(也称为随机误差)。
i ~ N (0, 2 ) (4-2)
Yi ~ N (i , 2 )
其中, 和 都是未知参数(i=1,2,…,k).
i 2
i 1
Mean),它是比
较作用大小的一个基点;
特选课堂
14
第四章 方差分析
4.2.1 数学模型和数据结构
并且称
i i
为第i个水平Ai的效应.它表示水平的真值比一般
水平差多少。满足约束条件
1 2 k 0
(4-6)
可得
Yij i ij ;
i 0
i=1,2,…,k ;j=1,2,…,m
…
Ykj
…
Ykm
特选课堂
合计
T1 T2
…
Ti
…
Tk
平均
Y1 Y2
…
Yi
正交设计试验资料的方差分析
数据整理
将收集到的数据整理成 表格形式,便于后续分 析。
数据筛选
对异常值进行筛选和处 理,确保数据质量。
正交设计试验资料的方差分析过程
确定试验因素和水平
明确试验因素和各因素的水平, 为后续分析提供基础。
计算各因素的效应值
根据试验结果,计算各因素的效 应值。
计算误差平方和
根据效应值和水平,计算误差平 方和。
跨学科融合
标准化与规范化
结合其他学科的理论和方法,拓展正交设 计试验的应用领域,推动多学科交叉融合 发展。
制定和完善正交设计试验的标准和规范, 提高试验的可靠性和可比性。
正交设计试验资料方差分析的实际应用价值
科学研究
在科学研究领域,正交设计 试验资料方差分析可用于探 索和验证科学假设,揭示现 象背后的机制和规律。
正交试验设计的基本原理
1 2
正交性原理
正交试验设计基于正交性原理,即每个因素在试 验中出现的次数相同,且各次出现的概率相等。
均匀分散原理
正交试验设计通过均匀分散原理,确保每个水平 在试验中都有均衡的分布,从而减少结果的偏差。
3
代表性原理
正交试验设计通过代表性原理,选取具有代表性 的样本点进行试验,以反映整体情况。
正交设计试验资料的方差 分析
• 正交设计试验概述 • 方差分析基础 • 正交设计试验资料的方差分析方法 • 实例分析 • 总结与展望
01
正交设计试验概述
正交试验设计的基本概念
正交试验设计是一种统计技术,用于 在多因素、多水平条件下进行试验, 以最小化试验次数,同时最大化信息 收集。
它利用正交表来安排试验,确保每个 因素的每个水平都被等可能地选取, 从而得到全面而均衡的试验结果。
正交试验设计中的方差分析例题分析优秀
可见: F0.05(2,4)≥FA>F0.10(2,4), F0.05(2,4)≥FC>F0.10(2,4), 因此 A 和C属于影响显著的因素,要重点考察。 而B 的F值小于 F0.25(2,4) ,因此 B 因素对指标没什么 影响,可以忽略。 因此其加入体积可以在给定范围内 任意变化。 这是用方差分析和前面直观分析以及极差分析得出的 一个比较重要的不同结论。 当然,在实际分析中,因素 B还要用其他试验指标进 一步确定,以保证得到准确的结果。
9
那么试验误差的差方和就可如下计算: Qe=QT-(QA+QB+QC)
=168.2-(66.9+10.9+76.2) =14.2 其次,计算自由度: f T=n -1=9-1=8; fA=fB=fC=m-1=3-1=2 ;
fe=fT-fA-fB-fC=2 。
10
再次,计算平均差方和: 因素的平均差方和= 因素差方和 = Q因
2
7
12
1:1HCl(ml)
21.5
21
20.5
Abs
20
19.5
19
18.5
2
4
6
8
10
0.5% 8-OH喹啉 (ml)
24
23
22
21
Abs
20 19
18
17
16
15
0
5
10
15
20
20mg/ml Sr2+ (ml)
从趋势图看试验指标与因素 C,即释放剂锶盐的浓度 呈单调增长,因此增加锶盐浓度可能会使吸光度更 高,即灵敏度得到更大的提高。
和QT,(3)试验误差的差方和 Qe。 2.计算自由度 :
包括:试验的总自由度;各因素自由度;试验误差的
(整理)正交试验结果的方差分析方法
正交试验结果的方差分析方法计算公式和项目试验指标的加和值=,试验指标的平均值与表4-13一样,第j列的(1) I j”水平所对应的试验指标的数值之和(2) II j——“ 2”水平所对应的试验指标的数值之和(3)……(4) k j——同一水平出现的次数。
等于试验的次数除以第j列的水平数.(5)I j/k j——“水平所对应的试验指标的平均”(6)II j/k j——“2”水平所对应的试验指标的平均值(7)……以上各项的计算方法,与“极差法”同,见4.1.7节(8)偏差平方和(4-1)(9) fj ——自由度.fj第j列的水平数-1.(10)Vj——方差.Vj =Sj/fj(4-2)(11)Ve——误差列的方差。
(4-3)(12)Fj——方差之比(4-4)(13)查F分布数值表(见附录6),做显著性检验。
显著性检验结果的具体表示方法与第3章相同。
(14)总的偏差平方和(4-5) (15)总的偏差平方和等于各列的偏差平方和之和。
即(4-6) 式中,m为正交表的列数。
若误差列由5个单列组成,则误差列的偏差平方和S e等于5个单列的偏差平方和之和,即:S e=S e1+S e2+S e3+S e4+S e5;也可用S e= S总-S’来计算,其中:S’为安排有因素或交互作用的各列的偏差平方和之和应引出的结论。
与极差法相比,方差分析方法可以多引出一个结论:各列对试验指标的影响是否显著,在什么水平上显著。
在数理统计上,这是一个很重要的问题。
显著性检验强调试验误差在分析每列对指标影响中所起的作用。
如果某列对指标的影响不显著,那么,讨论试验指标随它的变化趋势是毫无意义的。
因为在某列对指标的影响不显著时,即使从表中的数据可以看出该列水平变化时,对应的试验指标的数值也在以某种“规律”发生变化,但那很可能是由于实验误差所致,将它作为客观规律是不可靠的。
有了各列的显著性检验之后,最后应将影响不显著的交互作用列与原来的“误差列”合并起来,组成新的“误差列”,重新检验各列的显著性。
4.2正交试验方差分析
做8次试验,最多考虑7个 因素(含交互作用)的正 交表。
表2 L8(27)正交表
2水平正交表还有L4(23)、L16(215)等; 3水平正交表有L9(34)、L27(313) 、…、 等。 (二) 正交表的特性
1、任一列中,不同数字出现的次数相同
例如L8(27)中不同数字只有1和2,它们各出现4次; L9(34)中不同数字有1、2和3,它们各出现3次 。
若各号试验处理都有两个或两个以上观测值,则 称之为有重复观测值正交试验。
一、 单个观测值正交试验资料的方差分析
对【例1】用L9(34)安排试验方案后,各号试验只 进行一次,试验结果列于表6。试对其进行方差分析。
表6 正交试验结果计算表 x 183596724
试验号
1 2 3 4 5 6 7 8 9
(三) 表头设计
表头设计就是把挑选出的因素和要考察 的交互作用分别排入正交表的表头适当的列 上。
在不考察交互作用时,各因素可随机安 排在各列上;若考察交互作用,就应按该正 交表的交互作用列表安排 各 因 素与交互作 用。
表2 L8(27)正交表
L8(27) 表头设计
因素数 3 4
4
5
1 A A
正交试验是用部分试验来代替全面试验,它不可 能像全面试验那样对各因素效应、交互作用一一分析; 当交互作用存在时,有可能出现交互作用的混杂。
表1 33试验的全面试验方案
B1
A1
B2
B3
B1
A2
B2
B3
B1
A3
B2
B3
C1 A1B1C1 A1B2C1 A1B3C1 A2B1C1 A2B2C1 A2B3C1 A3B1C1 A3B2C1 A3B3C1
正交试验方差分析(通俗易懂)
第十一章正接安排考查资料的圆好领会之阳早格格创做正在本质处事中,时常需要共时观察 3个或者3个以上的考查果素,若举止周到考查,则考查的规模将很大,往往果考查条件的节造而易于真施.正接安排是安插多果素考查、觅供最劣火仄拉拢的一种下效用考查安排要领.第一节、正接安排本理战要领(一) 正接安排的基础观念正接安排是利用正接表去安插多果素考查、领会考查截止的一种安排要领.它从多果素考查的局部火仄拉拢中选择部分有代表性的火仄拉拢举止考查,通过对付那部分考查截止的领会相识周到考查的情况,找出最劣火仄拉拢.比圆,钻研氮、磷、钾肥施用量对付某小麦品种产量的效用:A果素是氮肥施用量,设A1、A2、A3 3个火仄;B果素是磷肥施用量,设B1、B2、B3 3个火仄;C果素是钾肥施用量,设C1、C2、C3 3个火仄.那是一个3果素每个果素3火仄的考查,各果素的火仄之间局部大概的拉拢有27种.如果举止周到考查,不妨领会各果素的效力,接互效用,也可选出最劣火仄拉拢.但是周到考查包罗的火仄拉拢数较多,处事量大,由于受考查场合、经费等节造而易于真施 .如果考查的主要手段是觅供最劣火仄拉拢,则可利用正接安排去安插考查.正接安排的基础个性是:用部分考查去代替周到考查,通过对付部分考查截止的领会,相识周到考查的情况.正接考查是用部分考查去代替周到考查,它没有成能像周到考查那样对付各果素效力、接互效用一一领会;当接互效用存留时,有大概出现接互效用的混纯.如对付于上述3果素每个果素3火仄考查,若没有思量接互效用,可利用正接表L9(34)安插,考查规划仅包罗9个火仄拉拢,便能反映考查规划包罗27个火仄拉拢的周到考查的情况,找出最佳的死产条件.一、正接安排的基根源基本理表11-1 33考查的周到考查规划正接安排便是从周到考查面(火仄拉拢)中选择出有代表性的部分考查面(火仄拉拢)去举止考查.图1中标有‘9 ’个考查面,便是利用正接表L9(34)从27个考查面中选择出去的9个考查面.即:(1)A1B1C1 (2)A1B2C2 (3)A1B3C3(4)A2B1C2 (5)A2B2C3 (6)A2B3C1(7)A3B1C3 (8)A3B2C1 (9)A3B3C2上述采用,包管了A果素的每个火仄与B果素、C 果素的各个火仄正在考查中各拆配一次.从图1中不妨瞅到,9个考查面分集是均衡的,正在坐圆体的每个仄里上有且仅有3个考查面;每二个仄里的接线上有且仅有1个考查面.9个考查面均衡天分集于所有坐圆体内,有很强的代表性,不妨比较周到天反映周到考查的基础情况.二、正接表及其个性(一) 正接表表11-2 是L8(27)正接表,其中“L”代表正接表;L 左下角的数字“8”表示有8止,用那弛正接表安插考查包罗8个处理 (火仄拉拢) ;括号内的底数“2” 表示果素的火仄数,括号内2的指数“7”表示有7列,用那弛正接表最多不妨安插7个2火仄果素.表11-2 L8(27)正接表2火仄正接表另有L4(23)、L16(215)等;3火仄正接表有L9(34)、L27(313) 、…、等.(二) 正接表的个性1、任一列中,分歧数字出现的次数相共比圆L8(27)中分歧数字惟有1战2,它们各出现4次;L9(34)中分歧数字有1、2战3,它们各出现3次 .2、任二列中,共一横止所组成的数字对付出现的次数相共比圆 L8(27)的任二列中(1, 1), (1, 2), (2, 1), (2, 2)各出现二次;L9(34)任二列中 (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)各出现1次.即每个果素的一个火仄与另一果素的各个火仄互碰次数相等,标明任性二列各个数字之间的拆配是匀称的.用正接表安插的考查,具备均衡分别战整齐可比的个性.均衡分别,是指用正接表选择出去的各果素火仄拉拢正在局部火仄拉拢中的分集是均衡的.由图11-1不妨瞅出,正在坐圆体中,任一仄里内皆包罗3 个考查面,任二仄里的接线上皆包罗1个考查面.整齐可比是指每一个果素的各火仄间具备可比性.果为正接表中每一果素的任一火仄下皆均衡天包罗着其余果素的各个火仄,当比较某果素分歧火通常,其余果素的效力皆相互对消.如正在A、B、C 3个果素中,A果素的3 个火仄A1、A2、A3条件下各有B、C 的3 个分歧火仄,即:正在那9个火仄拉拢中,A果素各火仄下包罗了B、C 果素的3个火仄,虽然拆配办法分歧,但是B、C皆处于共等职位,当比较A果素分歧火通常,B果素分歧火仄的效力相互对消,C果素分歧火仄的效力也相互对消.所以A果素3个火仄间具备可比性.共样,B、C果素3个火仄间亦具备可比性.(三) 正接表的类型1、相共火仄正接表各列中出现的最大数字相共的正接表称为相共火仄正接表.L4(23)、L8(27)、L12(211)等各列中最大数字为2,称为二火仄正接表;L9(34)、L27(313)等各列中最大数字为3,称为3火仄正接表.2、混同火仄正接表各列中出现的最大数字没有真足相共的正接表称为混同火仄正接表.L8(41×24)表中有一列最大数字为4,有4列最大数字为2. 也便是道该表不妨安插1个4火仄果素战4个2火仄果素.L16(44×23),L16(4×212)等皆混同火仄正接表.三、正接安排要领【例11·1】某火稻栽培考查采用了3个火稻劣良品种(A):二九矮、下二矮、窄叶青, 3种稀度(B): 15、20、25(万苗/666.7m2);3种施氮量(C):3、5、8(kg/666.7m2),试采与正接安排安插一个考查规划.(一) 决定考查果素及其火仄, 列出果素火仄表表11-3 果素火仄表(二) 采用符合的正接表根据果素、火仄及需要观察的接互效用的几去采用符合的正接表.采用正接表的准则是:既要能安插下考查的局部果素(包罗需要考查的接互效用),又要使部分火仄拉拢数(处理数)尽大概天少.普遍情况下,考查果素的火仄数应恰好等于正接表暗号中括号内的底数;果素的个数(包罗需要考查接互效用)应没有大于正接表暗号中括号内的指数;各果素及接互效用的自由度之战要小于所选正接表的总自由度,以便预计考查缺面.若各果素及接互效用的自由度之战等于所选正接表总自由度,则可采与有沉复正接考查去预计考查缺面.此例有3个3火仄果素,若没有观察接互效用,则各果素自由度之战为果素个数× (火仄数-1) = 3 × (3-1) =6,小于L9(34)总自由度 9-1=8,故不妨采用L9(34);若要观察接互效用,则应采用L27(313),此时所安插的考查规划本质上是周到考查规划.(三) 表头安排表头安排便是把选择出的果素战要观察的接互效用分别排进正接表的表头适合的列上.正在没有观察接互效用时,各果素可随机安插正在各列上;若观察接互效用,便应按该正接表的接互效用列表安插各果素与接互效用.此例没有观察接互效用,可将品种(A)、稀度(B)战施氮量(C)依次安插正在L9(34)的第1、2、3列上,第4 列为空列,睹表2-4.表11-4 表头安排L9(34)表头安排L8(27) 表头安排(四) 列出考查规划把正接表中安插果素的各列(没有包罗欲观察的接互效用列)中的每个数字依次换成该果素的本质火仄,便得到一个正接考查规划.表11-5 正接考查规划第二节正接考查资料的圆好领会若各号考查处理皆惟有一个瞅测值,则称之为单个瞅测值正接考查;若各号考查处理皆有二个或者二个以上瞅测值,则称之为有沉复瞅测值正接考查.一、单个瞅测值正接考查资料的圆好领会对付【例11-1】用L9(34)安插考查规划后,各号考查只举止一次,考查截止列于表2-6.试对付其举止圆好领会.表11-6 正接考查截止预计表T i为各果素共一火仄考查指标之战,T为9个考查号的考查指标之战;x为各果素共一火仄考查指目标仄衡数.该考查的9个瞅测值总变同由A果素、B果素、C果素及缺面变同4部分组成,果而举止圆好领会时仄圆战与自由度的领会式为:SS T = SS A + SS B + SS C+SSedf T = df A + df B + df C + dfe用n表示考查(处理)数;a、b、c表示A、B、C果素的火仄数;k a、k b、k c表示A、B、C果素的各火仄沉复数.本例,n=9、a=b=c=3、k a=k b=k c=3.1、预计各项仄圆战与自由度矫正数C = T2/n = 37112/9 = 1530169.00总仄圆战SST =Σx2-C=22+ (2)=21238.00A果素仄圆战SS A=Σ2T/k a-CA=222B果素仄圆战SS B= Σ2T/k b-CB222C果素仄圆战SS C=Σ2T/k c-CC222=5492.17缺面仄圆战SS e=SS T-SS A-SS B-SS C==3062.16总自由度df T=n-1=9-1=8A果素自由度df A=a-1=3-1=2B果素自由度df B=b-1=3-1=2C果素自由度df C=c-1=3-1=2缺面自由度df e= df T-df A-df B-df C= 8-2-2-2 = 22、列出圆好领会表,举止F考验表11-7圆好领会表F 考验截止标明,三个果素对付产量的效用皆没有隐著.究其本果大概是本例考查缺面大且缺面自由度小(仅为2),使考验的敏捷度矮,进而掩盖了观察果素的隐著性.由于各果素对付删沉效用皆没有隐著,没有必再举止各果素火仄间的多沉比较.此时,可从表11-6中采用仄衡数大的火仄A2、B3、C3拉拢成最劣火仄拉拢 A2B3C3.若F考验截止3个果素对付考查指目标效用隐著或者极隐著,举止各果素火仄间多沉比较常采与SSR法.本例是采用相共火仄正接表L9(34)安插的考查,A、B、C 果素各火仄沉复数相共,即k a=k b=k c=3,它们的尺度误相共,即单个瞅测值正接考查资料的圆好领会,其缺面是由“空列”去预计的.然而“空列”本去没有空,本质上是被已观察的接互效用所吞噬.那种缺面既包罗考查缺面,也包罗接互效用,称为模型缺面.若接互效用没有存留,用模型缺面预计考查缺面是可止的;若果素间存留接互效用,则模型缺面会夸大考查缺面,有大概掩盖观察果素的隐著性.考查缺面应通过沉复考查值去预计.所以,举止正接考查最佳能有二次以上的沉复.正接考查的沉复,可采与真足随机或者随机区组安排.二、有沉复瞅测值正接考查资料的圆好领会【例11·4】为了探讨花死锈病药剂防治效验的是非,举止了药剂种类(A)、浓度(B)、剂量(C)3果素考查,各有3个火仄,采用正接表L9(342)睹表11—10,对付考查截止举止圆好领会.用r表示考查处理的沉复数(区组数);n,a、b、c,k a、k b、k c的意思共上.此例 r=2; n=9, a=b=c=3, k a=k b=k c=3.表11-10 防治花死锈病药剂种类、浓度、剂量正接考查规划及截止预计表T i为各果素共一火仄考查指标之战,T为9个考查号的考查指标之战;x为各果素共一火仄考查指目标仄衡数.对付于有沉复、且沉复采与随机区组安排的正接考查,总变同不妨区分为处理间、区组间战缺面变同三部分,而处理间变同可进一步区分为A果素、B果素、C果素与模型缺面变同四部分.此时,仄圆战与自由度领会式为:SS T=SS t+SSr+SS e2df T = df t + df r + df e2而SS t=SS A+SSB+SS C+SS e1df t = df A + df B + df C + df e1于是SS T= SS A+SS B+SS C+SS r+SS e1+ SS e2df T = df A + df B + df C + df r + df e1 + df e2其中:SS r为区组间仄圆战;SS e1为模型缺面仄圆战;SS e2为考查缺面仄圆战;SS t为处理间仄圆战;df r、df e1、df e2、df t 为相映自由度.注意,对付于沉复采与真足随机安排的正接考查,正在仄圆战与自由度区分式中无 SS r、df r项.1、预计各项仄圆战与自由度矫正数C =T2/ r n =2/(2×总仄圆战SS T=Σx2-C=22+ (2)区组间仄圆战SS r=ΣT2r /n-C=22处理间仄圆战SS t = ΣT2t / r - C22+ (2)A果素仄圆战SS A = ΣT2A / k a r - C= 222)/(3×=B果素仄圆战SS B=ΣT2B / k b r - C222)/(3×=45.24C果素仄圆战SS C= ΣT2C / k c r - C=222)/(3×2) -16744.50=78.77模型缺面仄圆战SS e1= SS t– SS A– SS B - SS C=245.96- 25.72- 45.24.- 78.77= 96.23考查缺面仄圆战SS e2=SS T– SS r - SS t=246.62- 0.22- 245.96= 0.44总自由度 df T=rn-1=2×9-1=17区组自由度df r=r-1=2-1=1处理自由度df t=n-1=9-1=8A果素自由度df A=a-1=3-1=2B果素自由度df B=b-1=3-1=2C果素自由度df C=c-1=3-1=2模型缺面自由度 df e1 = df t-df A-df B-df C= 8-2-2-2= 2考查缺面自由度df e2=df T-df r-df t=17-1-8 = 82、列出圆好领会表,举止F考验表11-10 有沉复瞅测值正接考查资料的圆好领会表最先考验MS e1与MS e2好别的隐著性,若经F考验没有隐著,则可将其仄圆战与自由度分别合并,预计出合并的缺面均圆,举止F考验与多沉比较,以普及领会的粗度;若F考验隐著,证明存留接互效用,二者没有克没有及合并,此时只可以MS e2举止F考验与多沉比较.本例MS e1 / MS e2=802.00** ,模型缺面均圆MS e1与考查缺面均圆MS e2 好别极隐著,证明考查果素间接互效用极隐著,只可以考查缺面均圆MS e2举止F考验与多沉比较.F考验截止标明,药剂种类(A)、浓度(B)、剂量(C)3 果素对付花死产量皆有极隐著效用;区组间好别没有隐著.3、多沉比较(1) 若模型缺面隐著,证明考查果素间存留接互效用,各果素天圆列有大概出现接互效用的混纯,此时各考查果素火仄间的好别已没有克没有及真真反映果素的主效,果而举止各果素火仄间的多沉比较无多大本质意思,但是应举止考查处理间的多沉比较,以觅供最处理,即最劣火仄拉拢.举止各考查处理间多沉比较时采用考查缺面均圆MS e2.模型缺面隐著,还应进一步考查,以领会果素间的接互效用.(2) 若模型缺面没有隐著,证明考查果素间接互效用没有隐著,各果素天圆列有大概已出现接互效用的混纯,此时各果素火仄间的好别能真真反映果素的主效,果而举止各果素火仄间的多沉比较有本质意思,并从各果素火仄间的多沉比较中选出各果素的最劣火仄相拉拢,得到最劣火仄拉拢.举止各果素火仄间的多沉比较时,用合并的缺面均圆MSe=(SS e1+ SS e2)/(df e1+ df e2)此时可没有举止考查处理间的多沉比较.本例模型缺面极隐著,证明果素间存留接互效用,没有必举止各果素火仄间的多沉比较,应举止考查处理间的多沉比较,以觅供最处理,即最劣火仄拉拢.为了让读者相识多沉比较的要领,底下仍对付各果素火仄间、各考查处理间举止多沉比较.(1)A、B、C果素各火仄仄衡数的多沉比较表11-12 A果素各火仄仄衡数的多沉比较表(SSR法)表11-13 B果素各火仄仄衡数的多沉比较表(SSR法)表11-14 C果素各火仄仄衡数的多沉比较表(SSR法)果为由df e=8战k=2, 3, 查得SSR值并预计出LSR值列于表11-15.表11-15 SSR值与LSR值表多沉比较截止标明:A果素各火仄仄衡产量间、B果素各火仄仄衡产量间、C果素各火仄仄衡产量间好别隐著或者极隐著.各果素的最劣火仄为A1、B1、C2.注意,本例模型缺面隐著,考查果素间存留接互效用,没有宜从各果素火仄间的多沉比较中选出各果素的最劣火仄相拉拢去得到最劣火仄拉拢.(2)各考查处理仄衡数间的多沉比较表11-16 各考查处理仄衡数多沉比较表(LSD法)果为由df e=8, 查得t0.05(8)=2.306,t0.01(8)=3.355,预计出LSD值为:LSD0.05=0.245=0.565LSD0.01=0.245=0.822各考查处理间仄衡数多沉比较截止,除第2号考查处理与第7号考查处理、第3号考查处理与第6 号考查处理仄衡产量好别没有隐著中,其余各考查处理仄衡产量间好别极隐著或者隐著,最劣火仄拉拢为第2 号考查处理A1B2C2(或者第7号考查处理A3B1C3)本例模型缺面隐著,考查果素间存留接互效用,应以考查处理间的多沉比较觅供的最劣火仄拉拢,即第2号考查处理A1B2C2(或者第7号考查处理A3B1C3)为该考查的最劣火仄拉拢.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可见: F0.05(2,4)≥FA>F0.10(2,4), F0.05(2,4)≥FC>F0.10(2,4), 因此A和C属于影响显著的因素,要重点考察。 而B的F值小于F0.25(2,4),因此B因素对指标没什么 影响,可以忽略。因此其加入体积可以在给定范围内 任意变化。 这是用方差分析和前面直观分析以及极差分析得出的 一个比较重要的不同结论。 当然,在实际分析中,因素B还要用其他试验指标进 一步确定,以保证得到准确的结果。
QA 33.4, QB 5.4 , QC 38.1, Qe 7.1,
fA
fB
fC
fe
可以看出,B的平均方差和小于误差效应,因此可 以将其合并到误差效应中,用合并后的误差效应做 F检验,自由度变大,灵敏度更高 :
QB Qe 6.3, fB fe
然后计算各因素的F值:
QA
FA
QB
Qe
fA
fB
数据的方差分析:
首先计算各因素的方差和、总方差和以及试验误差 的方差和:
因素A的方差和如下计算:
同样:QB=10.9;QC=76.2;
总的方差和QT如下计算:
那么试验误差的差方和就可如下计算:
Qe=QT-(QA+QB+QC) =168.2-(66.9+10.9+76.2) =14.2
其次,计算自由度:
fT=n-1=9-1=8; fA=fB=fC=m-1=3-1=2 ;
fe=fT-fA-fB-fC=2 。
再次,计算平均差方和: 因素的平均差 因方 素和 差= = 方Q因 和
因素的自f由 因 度
试 验 误 差 的= 平试 均验 差误方差 和 = 差 Qe方 试验误差的 fe 自
这样,计算得出的各因素及误差的差方和分别是:
20
4
2(7 ml)
1
2
3
22
5
2
2
6
2
3
7
3(10 ml)
1
3
1
29
1
2
17
3
2
21
8
3
2
1
3
19
9
3
3
2
1
19
这里看出A2B2C3的结果最好。 第四步,计算各因素平均试验指标以及极差:
A
B
C
D
K1
48
56
49
61
K2
68
63
56
53
K3
59
56
70
61
k1
16
18.7
16.3
20.3
k2
22.7
根据正交设计法的步骤:
第一步,明确试验目的和试验指标: 目的:用正交设计找出测定痕量铁的最佳试 验条件。 指标:吸光度,越大越好。
第二步,挑选必须考察的因素和合适的水平,
制定因素水平表;
因素-水平表
因素 A
B
C
水平 1
酸度(1:1 0.5%8-羟基 20 mg/ml 锶
HCl)
喹啉
盐
4 ml
3 ml
fe
33.4 5.30 6.3
QC
FC
QB
Qe
fC
fB
fe
38.1 6.05 6.3
最后是显著性检验:
对不同置信度的临界F值可以从F表中查找。 F表在一般的数理统计书里都有。 对本例,在置信度分别为99%、95%、90% 以及75%(即a=0.01,0.05,0.10,0.25) 时的临界值分别是: F0.01(2,4)=18.00,F0.05(2,4)=6.94, F0.10(2,4)=4.32,F0.25(2,4)=2.00。
1 ml
2
7 ml
6 ml
9 ml
3
10 ml
9 ml
17 ml
第三步,根据因素水平表,选择L9(34)正交表,试 验安排如下表:
L9(34)试验方案及结果表
A
B
C
D
1
1(4 ml) 1(3 ml)
1(1 ml) 1
Abs (×100) 13
2
1
2(6 ml)
2(9 ml) 2
15
3
1
3(9 ml) 3(17 ml) 3
三.实际应用举例
例8:用原子吸收光谱测定铝合金中痕量铁时, 需要选择以下三个因素的最适宜条件:1)酸度 (用1:1盐酸的体积代表);2)络合剂(5%的8羟基喹啉)加入量;3)释放剂(20mg/ml的锶 盐)加入量。每个因素考虑三个水平,分别是: 4ml、7ml、10ml;3ml、6ml、9ml;1ml、 9ml、17ml。如何安排这个试验,并对结果进 行分析。
正交试验设计的方差分析小结
一。几个数据处理中常用的数理统计名词 平均值 ;总体平均值m;总体;样本; 极差 R ; 差方和Q ;
自由度f ;
方差s2 ;
样本方差s2 ;
标准偏差s ;
二.正交试验设计的方差分析的步骤和格式 1.计算差方和(离差平方和): 包括以下几部分:(1)各因素差方和,(2)总差方 和QT,(3)试验误差的差方和Qe。 2.计算自由度 : 包括:试验的总自由度;各因素自由度;试验误差的 自由度。 3.计算平均差方和 包括各因素平均差方和与误差的平均差方和。 4.求F比 5.对因素进行显著性检验: 对照F表检验。F检验的规律。
19
18.5
2
4
6
8
10
0.5% 8-OH喹啉 (ml)
24 23 22
21 20 19 18
17 16 15
0
5
10
15
20
20mg/ml Sr2+ (ml)
从趋势图看试验指标与因素C,即释放剂锶盐的浓度 呈单调增长,因此增加锶盐浓度可能会使吸光度更 高,即灵敏度得到更大的提高。
以上就是一个完整的正交试验及直观分析的过程。 如果采用方差分析,其正交试验过程和前面的一致, 只是数据处理采用了方差分析法。
21
18.7
17.7
k3
19.7
18.7
23.3
20.3
R
6.7
2.3
7
优水平 A2
B2
C3
由极差看B的影响最小,即络合剂是测定的次要因素。 第五步,进一步画出指标-因素趋势图观察。
Abs Abs Abs
24
23
22
21
20
19
18
17
16
15
2
7
12
1:1HCl(ml)
21.5
21
20.5
20
19.5