AT86RF211SAHW-R中文资料
施耐德空调安装手册 中文
LEONARDO INSTALLATION MANUAL
雷纳多安装手册
版本 VERSION: 1.0文
UNIFLAIR 公司奉行技术创新的政策,并保留修改的权利,恕不另行通知。
2
目录
一般说明 ............................................................................ 5 手册包含的信息 ........................................................ 5 提示 ............................................................................ 5 储存 ............................................................................ 5 回收处理 .................................................................... 5
介 绍 ................................................................................ 7 演示系统 .................................................................... 7 雷纳多精密空调有四种机型 .................................... 7 气流方向 .................................................................... 7 上吹机型 ............................................................ 7 下吹机型 ............................................................ 7 机组型号命名方式 .................................................... 8 铭牌 ............................................................................ 8 机器上的警告标志 .................................................... 9 包装上的运输标示 .................................................... 9
施耐德的开关上的字母、符号、参数分别代表的意思及脱扣器区分电磁、热磁、电子
施耐德的开关上的字母、符号、参数分别代表的意思及脱扣器区分 (电磁、热磁、电子)一、施耐德的开关上的字母、符号、参数分别代表的意思NSX100F TM25DNSX100F TM50DNSX100F MA12.5NSX100F MA25NSX,表示塑壳断路器的系列100,表示塑壳断路器的框架电流为100AF,表示塑壳断路器的分断能力为36kA(分断能力共分为F:36kA,N:50kA,H:70kA,S:100kA,L:150kA)12.5,表示脱扣器额定电流为12.5A;25,表示脱扣器额定电流为25A;50,表示脱扣器额定电流为50A;二、脱扣器区分 (电磁、热磁、电子)TM..D,表示塑壳断路器的脱扣器类型为热磁保护;MA,表示塑壳断路器的脱扣器类型为磁保护,一般用于保护电动机负载;TM-D 是指对于专用于配电的塑壳而言,是热磁式脱扣器。
MA 是单磁式脱扣器,就是只有磁脱扣。
MA 适用于电动机保护的脱扣单元TMD为热磁脱扣单元电气上MA代表什么?电气上MA代表断路器的脱扣方式,此为磁脱扣,只带瞬时保护(脱口方式分为磁脱扣MA,热磁脱扣TM,电子脱扣MIC)。
断路器脱扣是指:断路器中,合闸后,都有一个保持的机构,通常保持机构是一个带勾状的零件卡在某个零件上。
想分闸,就必须脱开这个保持机构,也就是说这个被卡住的勾状零件要脱离保持机构,所以叫脱扣机构。
电磁脱扣器与被保护电路串联。
线路中通过正常电流时,电磁铁产生的电磁力小于反作用力弹簧的拉力,衔铁不能被电磁铁吸动,断路器正常运行。
当线路中出现短路故障时,电流超过正常电流的若干倍,电磁铁产生的电磁力大于反作用力弹簧的作用力,衔铁被电磁铁吸动通过传动机构推动自由脱扣机构释放主触头。
主触头在分闸弹簧的作用下分开切断电路起到短路保护作用。
热脱扣器与被保护电路串联。
线路中通过正常电流时,发热元件发热使双金属片弯曲至一定程度(刚好接触到传动机构)并达到动态平衡状态,双金属片不再继续弯曲。
常用无线射频芯片
常用无线射频芯片集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#常用无线射频芯片目录CC1000PWR 超低功率射频收发器CC1010PAGR 射频收发器和微控制器CC1020RSSR 射频收发器CC1021RSSR 射频收发器CC1050PWR 超低功率射频发送器CC1070RSQR 射频发送器CC1100RTKR 多通道射频收发器CC1101RTKR 低于1GHz射频收发器CC1110F16RSPR 射频收发片上系统CC1110F32RSPR 射频收发片上系统CC1110F8RSPR 射频收发片上系统CC1111F16RSPR 射频收发片上系统CC1111F32RSPR 射频收发片上系统CC1111F8RSPR 射频收发片上系统CC1150RSTR 多通道射频发送器CC2400RSUR 多通道射频发送器CC2420RTCR 射频收发器CC2420ZRTCR 射频收发器CC2430F128RTCR ZigBee芯片CC2430ZF128RTCR ZigBee芯片CC2431RTCR 无线传感器网络芯片CC2431ZRTCR 无线传感器网络芯片CC2480A1RTCR 处理器CC2500RTKR 射频收发器CC2510F16RSPR 无线电收发器CC2510F32RSPR 无线电收发器CC2510F8RSPR 无线电收发器CC2511F16RSPR 无线电收发器CC2511F32RSPR 无线电收发器CC2511F8RSPR 无线电收发器CC2520RHDR 射频收发器CC2530F128RHAR 射频收发器CC2530F256RHAR 射频收发器CC2530F64RHAR 射频收发器CC2550RSTR 发送器CC2590RGVR 射频前端芯片CC2591RGVR 射频前端芯片CCZACC06A1RTCR ZigBee芯片TRF7900APWR 27MHz双路接收器TRF6900APT 射频收发器TRF6901PTG4 射频收发器TRF6901PTRG4 射频收发器TRF6903PTG4 射频收发器TRF6903PTRG4 射频收发器ADF7020-1BCPZ-RL7 射频收发ICADF7020BCPZ-RL7 射频收发ICADF7021BCPZ-RL7 ISM无线收发IC ADF7021-NBCPZ-RL7 ISM无线收发IC ADF7025BCPZ-RL7 射频收发ICADF7010BRUZ-REEL7 ISM无线发射IC ADF7011BRUZ-RL7 ISM无线发射IC ADF7012BRUZ-RL7 UHF无线发射IC ADF7901BRUZ-RL7 ISM无线发射ICA7121(A71C21AQF) 射频收发器A7122(A71C22AQF) 射频收发器A7102(A71C02AQF) 射频收发ICA7103(A71C03AUF) 射频收发ICA7201(A72C01AUF) 射频接收ICA7202(A72C02AUF) 射频接收ICA7302(A73C02AMF) 射频发射ICA7105(A71X05AQF) 射频收发ICA7125(A71X25AQF) 射频收发ICA7325(A73X25AQF) 射频发射ICA7303A(A73C03AQF) FM发射芯片A7303A(A73C03AUF) FM发射芯片A7303B(A73C03BUF) FM发射芯片A7303B(A73C03BQF) FM发射芯片A7282(A72N82AQF) GPS接收芯片A7531B(A75C31BQF) GPS开关芯片A7532(A75C32AQF) GPS开关芯片A7533(A75X33AQF) GPS开关芯片A7533(A75X33BQF) GPS开关芯片AS3931 低功耗无线接收芯片AS3932BTSW 低功耗无线接收芯片AS3932BQFW 低功耗无线接收芯片AS3977BQFT FSK发射芯片AT86RF211DAI-R 射频收发ICAT86RF211SAHW-R 射频收发IC AT86RF212-ZU 射频收发ICAT86RF230-ZU 射频收发ICAT86RF231-ZU 射频收发ICATA2745M-TCQY 射频发送IC ATA5428-PLQW 宽带收发ICATR2406-PNQG 射频收发ICT5750-6AQ 无线发射ICT5753-6AQ 无线发射ICT5754-6AQ 无线发射ICT7024-PGPM 前端收发器U2741B-NFB 无线发射ICAX5051 射频收发器ICAX5042 射频收发器ICAX5031 射频收发器ICAX50424 射频收发器ICAX6042 射频收发器ICCYRF6936-40LFXC 无线USB芯片CYRF7936-40LFXC 无线收发器芯片CYWUSB6932-28SEC 无线USB芯片CYWUSB6934-28SEC 无线USB芯片CYWUSB6934-48LFXC 无线USB芯片CYWUSB6935-28SEI 无线USB芯片CYWUSB6935-48LFI 无线USB芯片CYWUSB6935-48LFXC 无线USB芯片CYWUSB6935-48LFXI 无线USB芯片CYRF69103-40LFXC 无线射频芯片CYRF69213-40LFXC 无线射频芯片CYWUSB6953-48LFXC 无线USB芯片EM2420-RTR ZigBee芯片EM260-RTR ZigBee芯片EM250-RTR ZigBee芯片EM351-RTR ZigBee芯片EM357-RTR ZigBee芯片PA5305 射频功率放大器PA2420 射频功率放大器PA2421 射频功率放大器PA2432 射频功率放大器FM2422 射频前端模块FM2422U 射频前端模块FM2427 射频前端模块FM2429 射频前端模块FM2429U 射频前端模块FM2446 射频前端模块FM7705 射频前端模块FM7707 射频前端模块MC13190FCR2 射频收发IC MC13191FCR2 射频收发IC MC13192FCR2 射频收发IC MC13193FCR2 射频收发IC MC13201FCR2 射频收发IC MC13202FCR2 射频收发IC MC13203FCR2 射频收发IC MC13211R2 射频收发ICMC13212R2 射频收发IC MC13213R2 射频收发IC MC13214R2 射频收发IC TDA5200 ASK接收器TDA5201 ASK接收器TDA5210 ASK/FSK接收器TDA5211 ASK/FSK接收器TDA5212 ASK/FSK接收器TDA5220 ASK/FSK接收器TDA5221 ASK/FSK接收器TDA7200 ASK/FSK接收器TDA7210 ASK/FSK接收器TDA5230 ASK/FSK接收器TDA5231 ASK/FSK接收器TDK5100 ASK/FSK发射器TDK5100F ASK/FSK发射器TDK5101 ASK/FSK发射器TDK5101F ASK/FSK发射器TDK5102 ASK/FSK发射器TDK5103A ASK发射器TDK5110 ASK/FSK发射器TDK5110F ASK/FSK发射器TDK5111 ASK/FSK发射器TDK5111F ASK/FSK发射器TDA7116F ASK/FSK发射器PMA7105 ASK/FSK发射器PMA7106 ASK/FSK发射器PMA7107 ASK/FSK发射器PMA7110 ASK/FSK发射器TDA5250 ASK/FSK收发器TDA5251 ASK/FSK收发器TDA5252 ASK/FSK收发器TDA5255 ASK/FSK收发器MAX1470EUI+T 无线接收IC MAX1471ATJ+T 无线接收IC MAX1472AKA+T 无线发射IC MAX1473EUI+T 无线接收IC MAX1479ATE+T 无线发射IC MAX7030HATJ+T 无线收发IC MAX7030LATJ+T 无线收发IC MAX7031LATJ+T 无线收发IC MAX7031MATJ50+T 无线收发IC MAX7032ATJ+T 无线收发IC MAX7033ETJ+T 无线接收ICMAX7044AKA+T 无线发射IC MAX7058ATG+T 无线发射IC MLX71121ELQ 射频接收IC MLX71122ELQ 射频接收IC TH71071EDC 射频接收ICTH71072EDC 射频接收ICTH7107EFC 射频接收ICTH71081EDC 射频接收ICTH71082EDC 射频接收ICTH7108EFC 射频接收ICTH71101ENE 射频接收ICTH71102ENE 射频接收ICTH71111ENE 射频接收ICTH71112ENE 射频接收ICTH71221ELQ 射频接收ICTH7122ENE 射频收发ICTH72001KDC 射频发射ICTH72002KDC 射频发射ICTH72005KLD 射频发射ICTH72006KLD 射频发射ICTH72011KDC 射频发射ICTH72012KDC 射频发射ICTH72015KLD 射频发射IC TH72016KLD 射频发射IC TH72031KDC 射频发射IC TH72032KDC 射频发射IC TH72035KLD 射频发射IC TH72036KLD 射频发射IC MICRF102BM 无线发射IC MICRF112YMM 无线发射IC MICRF113YM6 无线发射IC MICRF302YML 射频编码器MICRF405YML 射频发射IC MICRF505BML 射频收发IC MICRF506BML 射频收发IC MICRF002YM 射频接收器MICRF005YM 无线接收IC MICRF007BM UHF接收器MICRF008BM 无线接收IC MICRF009BM UHF接收IC MICRF010BM UHF接收IC MICRF011BM 射频IC MICRF211AYQS 射频接收器MRF24J40-I/ML ZigBee芯片MRF24J40T-I/ML ZigBee芯片MCP2030-I/P 免钥登录芯片MCP2030-I/SL 免钥登录芯片MCP2030-I/ST 免钥登录芯片MCP2030T-I/SL 免钥登录芯片MCP2030T-I/ST 免钥登录芯片nRF2401AG 收发器ICnRF24AP1 收发器ICnRF24E1G 收发器ICnRF24E2G 发射器ICnRF24L01+ 收发器ICnRF24LE1 收发器ICnRF24LU1 收发器ICnRF24Z1 收发器ICNRF905 430 928MHz收发器NRF9E5 430-928MHz收发器MFRC50001T/0FE,112 阅读器IC MFRC53001T/0FE,112 阅读器IC MFRC53101T/0FE,112 阅读器IC MFRC52301HN1 阅读器ICPN5110A0HN1/C2 收发器IC PN5120A0HN1/C1 收发器ICPN5310A3HN/C203 NFC控制器IC PN1000 GPS RF接收ICRX3400 射频接收ICRX3930 射频接收ICRX3140 射频接收ICRX3310A 射频接收ICRX3361 射频接收ICRX3408 射频接收ICPT4301 射频接收ICPT4316 射频接收ICPT4450 射频发射ICTX4915 射频发射ICTX4930 射频发射ICPA2460 功率放大器ICPA2464 功率放大器ICFS8107E 锁相环ICFS8108 锁相环ICFS8160 锁相环ICFS8170 锁相环ICFS8308 锁相环ICMG2400-F48 ZigBee单芯片MG2450-B72 ZigBee单芯片MG2455-F48 ZigBee单芯片AP1092 功率放大器ICAP1098 功率放大器ICAP1110 功率放大器ICAP1091 功率放大器ICAP1093 功率放大器ICAP1280 PA/LNA功率放大器AP1213 射频前端模块AP1290 功率放大器ICAP1291 功率放大器ICAP1294 功率放大器ICAP1045 功率放大器ICAP1046 功率放大器ICAP2085 功率放大器ICAP2010C 功率放大器ICAP3011 功率放大器ICAP3013 功率放大器ICAP3014 功率放大器ICAP3015 功率放大器ICAP3211 功率放大器ICSX1211I084TRT 单芯片收发器SX1441I077TRLF 系统蓝牙芯片XE1203FI063TRLF 射频收发芯片XE1205I074TRLF 射频收发芯片XE1283I076TRLF 射频收发芯片XM1203FC433XE1 射频收发芯片XM1203FC868XE1 射频收发芯片XM1203FC915XE1 射频收发芯片SX1223I073TRT 射频发射芯片SI3400-E1-GM 以太网电源ICSI3401-E1-GM 以太网电源ICSI3460-D01-GM 以太网电源ICSI4020-I1-FT 射频发射ICSI4021-A1-FT 射频发射ICSI4022-A1-FT 射频发射ICSI4030-A0-FM 射频发射ICSI4031-A0-FM 射频发射ICSI4032-V2-FM 射频发射ICSi4230-A0-FM(IA4230) 无线发射IC Si4231-A0-FM(IA4231) 无线发射IC Si4232-A0-FM(IA4232) 无线发射IC Si4320-J1-FT 无线接收ICSi4322-A1-FT 无线接收ICSi4330-V2-FM(IA4330) 无线接收ICSI4420-D1-FT 射频收发ICSI4421-A1-FT(IA4421) 无线收发IC SI4430-A0-FM(IA4430) 无线收发IC SI4431-A0-FM(IA4431) 无线收发IC SI4432-V2-FM(IA4432) 无线收发IC TM1001 功率放大器ICTM1006 功率放大器ICTM1008 射频晶体管TM3001 射频开关ICTM3002 射频开关ICTM4001 FM发射ICUW2453 无线网络ICUZ2400 ZigBee芯片UP2206 功率放大器UP2268 功率放大器UA2707 射频信号放大器UA2709 射频信号放大器UA2711 射频信号放大器UA2712 射频信号放大器UA2715 射频信号放大器UA2716 射频信号放大器UA2725 射频信号放大器UA2731 射频信号放大器UA2732 射频信号放大器W2805 无线视频ICW2801 无线音频IC。
施耐德断路器产品参数样本
1408
6
2*1000
1408
6
3*1000
1408
6
1*1250
1760
6
2*1250
1760
6
3*1250
1760
6
1*1600
2253
6
2*1600
2253
6
3*1600
2253
6
1*2000
2816
6
2*2000
2816
6
3*2000
2816
6
1*2500
3521
6
2*2500
3521
6
1*3150
1.分励/失压线圈 2.多功能辅助开关 3.电动操作机构 4.漏电保护模块 5.电流表模块 6.电流互感器模块 7.延伸旋转手柄
施耐德电气公司宣传培训部-施耐德介绍- 06/2000
9
C 801 H
Compact C 塑壳断路器选型表
STR25DE
3P
F FC
附件
框架电流: 801:Ln=800A 1001:Ln=1000A 1251:Ln=1250A
分断能力 N1:40-55KA H1:65-100KA H2:100-150KA L1:130KA
控制单元 STR08,STR181 无保护 STR18M马达型保护 STR28D配电型保护 STR38S选择型保护 STR58U通用型保护 STR68U通用型保护 另有I,ALR,F,PIL,FV,T,W, R,Z,C,P,M等模块可供选择
瞬动保护(I) 可调 固定值
Ο:选件
:标准
STR68U
Ο Ο
Ο Ο Ο Ο Ο
施耐德电气公司宣传培训部-施耐德介绍- 06/2000
MICRF211无线接收模块
特性
■ 200k Hz 接收带宽,抗干扰能力强,镜频抑制达到-40db。 ■ 灵敏度高达-110dbm,接收距离远。 ■ 良好的杂散辐射抑制能力,易通过各种检测标准。 ■ 良好的本振辐射抑制能力,可多个模块一起工作(单发
多收),不会互相干扰,一起使用不影响接收距离。 ■ 传输数据速率高,可达 10kbps。 ■ 模块内部稳压,电压输入范围:3V~5.5V。 ■ 低功耗,工作电流约 5.6mA,SHUT 端口可控制进入待
描述 天线接入端口。 电源地端口。 电源正端口。
典型应用一
图3 :
模块与单片机应用
引脚名称 SHUT DATA
描述 休眠控制端口,内部上拉,低电平有效。 预留接收数据输出端口。
说明:MANR4*接收模块功能内聚,应用操作简单,只需要连接电源 VDD、地 GND,模块数据端口 DATA 直接与单片机端口通讯,模块已对接收信号调制,数据端口输出方波,单片机只需要进行简单 的采样,如果需要用到 SHUT 功能,只需要直接与单片机通讯,不需要外加电路。
■ 低数据速率可以提高模块的接收灵敏度,模块的推荐数 据速率为 1.2Kbps
■ 建议接收数据前导码时间不小于 7ms,数据编码格式采 用曼彻斯特编码方式。
■ 与 PT2272 配合使用,参考典型应用二,调整板上元件, 设置低通滤波带宽。
电气参数
参数
符号
测试条件
设定工作频率
Fc
调制方式
接收灵敏度
50 欧姆天线直接输入
米。
应用注意事项
■ 模块数据输出脚的驱动电流有限,若直接驱动单片机, 建议单片机 I/O 口不接上拉或者下拉电阻,单片机内部 的上拉或者下拉电阻设在禁用状态。
■ 433.92MHz 应用可配 16.7cm 长度细导线作为简易天 线。50 欧姆、驻波比小于 1.5、增益大于 2 的单极天线 能最大程度发挥模块的接收灵敏度。
常用无线射频芯片
常用无线射频芯片目录CC1000PWR 超低功率射频收发器CC1010PAGR 射频收发器和微控制器CC1020RSSR 射频收发器CC1021RSSR 射频收发器CC1050PWR 超低功率射频发送器CC1070RSQR 射频发送器CC1100RTKR 多通道射频收发器CC1101RTKR 低于1GHz射频收发器CC1110F16RSPR 射频收发片上系统CC1110F32RSPR 射频收发片上系统CC1110F8RSPR 射频收发片上系统CC1111F16RSPR 射频收发片上系统CC1111F32RSPR 射频收发片上系统CC1111F8RSPR 射频收发片上系统CC1150RSTR 多通道射频发送器CC2400RSUR 多通道射频发送器CC2420RTCR 2.4GHz射频收发器CC2420ZRTCR 2.4GHz射频收发器CC2430F128RTCR ZigBee 芯片CC2430ZF128RTCR ZigBee 芯片CC2431RTCR 无线传感器网络芯片CC2431ZRTCR 无线传感器网络芯片CC2480A1RTCR 2.4GHzZigBee处理器CC2500RTKR 2.4GHz射频收发器CC2510F16RSPR 2.4GHz无线电收发器CC2510F32RSPR 2.4GHz无线电收发器CC2510F8RSPR 2.4GHz无线电收发器CC2511F16RSPR 2.4GHz无线电收发器CC2511F32RSPR 2.4GHz无线电收发器CC2511F8RSPR 2.4GHz无线电收发器CC2520RHDR 射频收发器CC2530F128RHAR 射频收发器CC2530F256RHAR 射频收发器CC2530F64RHAR 射频收发器CC2550RSTR 2.4GHz发送器CC2590RGVR 2.4GHz射频前端芯片CC2591RGVR 2.4GHz射频前端芯片CCZACC06A1RTCR 2.4GHZ ZigBee芯片TRF7900APWR 27MHz双路接收器TRF6900APT 射频收发器TRF6901PTG4 射频收发器TRF6901PTRG4 射频收发器TRF6903PTG4 射频收发器TRF6903PTRG4 射频收发器ADF7020-1BCPZ-RL7 射频收发IC ADF7020BCPZ-RL7 射频收发ICADF7021BCPZ-RL7 ISM无线收发IC ADF7021-NBCPZ-RL7 ISM无线收发IC ADF7025BCPZ-RL7 射频收发ICADF7010BRUZ-REEL7 ISM无线发射IC ADF7011BRUZ-RL7 ISM无线发射IC ADF7012BRUZ-RL7 UHF无线发射IC ADF7901BRUZ-RL7 ISM无线发射IC A7121A71C21AQF 2.4GHz射频收发器A7122A71C22AQF 2.4GHz射频收发器A7102A71C02AQF 射频收发ICA7103A71C03AUF 射频收发ICA7201A72C01AUF 射频接收ICA7202A72C02AUF 射频接收ICA7302A73C02AMF 射频发射ICA7105A71X05AQF 2.4GHz射频收发IC A7125A71X25AQF 2.4GHz射频收发IC A7325A73X25AQF 2.4GHz射频发射IC A7303AA73C03AQF FM发射芯片A7303AA73C03AUF FM发射芯片A7303BA73C03BUF FM发射芯片A7303BA73C03BQF FM发射芯片A7282A72N82AQF GPS接收芯片A7531BA75C31BQF GPS开关芯片A7532A75C32AQF GPS开关芯片A7533A75X33AQF GPS开关芯片A7533A75X33BQF GPS开关芯片AS3931 低功耗无线接收芯片AS3932BTSW 低功耗无线接收芯片AS3932BQFW 低功耗无线接收芯片AS3977BQFT FSK发射芯片AT86RF211DAI-R 射频收发ICAT86RF211SAHW-R 射频收发ICAT86RF212-ZU 射频收发ICAT86RF230-ZU 射频收发ICAT86RF231-ZU 射频收发ICATA2745M-TCQY 射频发送ICATA5428-PLQW 宽带收发ICATR2406-PNQG 2.4GHz射频收发IC T5750-6AQ 无线发射ICT5753-6AQ 无线发射ICT5754-6AQ 无线发射ICT7024-PGPM 前端收发器U2741B-NFB 无线发射ICAX5051 射频收发器ICAX5042 射频收发器ICAX5031 射频收发器ICAX50424 射频收发器ICAX6042 射频收发器ICCYRF6936-40LFXC 无线USB芯片CYRF7936-40LFXC 无线收发器芯片CYWUSB6932-28SEC 无线USB芯片CYWUSB6934-28SEC 无线USB芯片CYWUSB6934-48LFXC 无线USB芯片CYWUSB6935-28SEI 无线USB芯片CYWUSB6935-48LFI 无线USB芯片CYWUSB6935-48LFXC 无线USB芯片CYWUSB6935-48LFXI 无线USB芯片CYRF69103-40LFXC 无线射频芯片CYRF69213-40LFXC 无线射频芯片CYWUSB6953-48LFXC 无线USB芯片EM2420-RTR ZigBee 芯片EM260-RTR ZigBee 芯片EM250-RTR ZigBee 芯片EM351-RTR ZigBee 芯片EM357-RTR ZigBee 芯片PA5305 射频功率放大器PA2420 射频功率放大器PA2421 射频功率放大器PA2432 射频功率放大器FM2422 射频前端模块FM2422U 射频前端模块FM2427 射频前端模块FM2429 射频前端模块FM2429U 射频前端模块FM2446 射频前端模块FM7705 射频前端模块FM7707 射频前端模块MC13190FCR2 射频收发ICMC13191FCR2 射频收发ICMC13192FCR2 射频收发ICMC13193FCR2 射频收发ICMC13201FCR2 射频收发ICMC13202FCR2 射频收发ICMC13203FCR2 射频收发ICMC13211R2 射频收发ICMC13212R2 射频收发ICMC13213R2 射频收发ICMC13214R2 射频收发ICMC13224V 802.15.4/ZigBee芯片TDA5200 ASK接收器TDA5201 ASK接收器TDA5210 ASK/FSK接收器TDA5211 ASK/FSK接收器TDA5212 ASK/FSK接收器TDA5220 ASK/FSK接收器TDA5221 ASK/FSK接收器TDA7200 ASK/FSK接收器TDA7210 ASK/FSK接收器TDA5230 ASK/FSK接收器TDA5231 ASK/FSK接收器TDK5100 ASK/FSK发射器TDK5100F ASK/FSK发射器TDK5101 ASK/FSK发射器TDK5101F ASK/FSK发射器TDK5102 ASK/FSK发射器TDK5103A ASK发射器TDK5110 ASK/FSK发射器TDK5110F ASK/FSK发射器TDK5111 ASK/FSK发射器TDK5111F ASK/FSK发射器TDA7116F ASK/FSK发射器PMA7105 ASK/FSK发射器PMA7106 ASK/FSK发射器PMA7107 ASK/FSK发射器PMA7110 ASK/FSK发射器TDA5250 ASK/FSK收发器TDA5251 ASK/FSK收发器TDA5252 ASK/FSK收发器TDA5255 ASK/FSK收发器MAX1470EUI+T 无线接收IC MAX1471ATJ+T 无线接收IC MAX1472AKA+T 无线发射IC MAX1473EUI+T 无线接收IC MAX1479ATE+T 无线发射IC MAX7030HATJ+T 无线收发IC MAX7030LATJ+T 无线收发IC MAX7031LATJ+T 无线收发IC MAX7031MATJ50+T 无线收发ICMAX7032ATJ+T 无线收发IC MAX7033ETJ+T 无线接收IC MAX7044AKA+T 无线发射IC MAX7058ATG+T 无线发射IC MLX71121ELQ 射频接收IC MLX71122ELQ 射频接收IC TH71071EDC 射频接收IC TH71072EDC 射频接收IC TH7107EFC 射频接收IC TH71081EDC 射频接收IC TH71082EDC 射频接收IC TH7108EFC 射频接收IC TH71101ENE 射频接收IC TH71102ENE 射频接收IC TH71111ENE 射频接收IC TH71112ENE 射频接收IC TH71221ELQ 射频接收IC TH7122ENE 射频收发IC TH72001KDC 射频发射IC TH72002KDC 射频发射IC TH72005KLD 射频发射IC TH72006KLD 射频发射IC TH72011KDC 射频发射IC TH72012KDC 射频发射IC TH72015KLD 射频发射IC TH72016KLD 射频发射IC TH72031KDC 射频发射IC TH72032KDC 射频发射IC TH72035KLD 射频发射IC TH72036KLD 射频发射IC MICRF102BM 无线发射IC MICRF112YMM 无线发射IC MICRF113YM6 无线发射IC MICRF302YML 射频编码器MICRF405YML 射频发射IC MICRF505BML 射频收发IC MICRF506BML 射频收发IC MICRF002YM 射频接收器MICRF005YM 无线接收IC MICRF007BM UHF接收器MICRF008BM 无线接收IC MICRF009BM UHF接收IC MICRF010BM UHF接收IC MICRF011BM 射频ICMICRF211AYQS 射频接收器MRF24J40-I/ML ZigBee芯片MRF24J40T-I/ML ZigBee芯片MCP2030-I/P 免钥登录芯片MCP2030-I/SL 免钥登录芯片MCP2030-I/ST 免钥登录芯片MCP2030T-I/SL 免钥登录芯片MCP2030T-I/ST 免钥登录芯片nRF2401AG 2.4GHz收发器IC nRF24AP1 2.4GHz收发器IC nRF24E1G 2.4GHz收发器IC nRF24E2G 2.4GHz发射器IC nRF24L01+ 2.4GHz收发器IC nRF24LE1 2.4GHz收发器IC nRF24LU1 2.4GHz收发器IC nRF24Z1 2.4GHz收发器ICNRF905 430 928MHz收发器NRF9E5 430-928MHz收发器MFRC50001T/0FE,112 阅读器IC MFRC53001T/0FE,112 阅读器IC MFRC53101T/0FE,112 阅读器IC MFRC52301HN1 阅读器ICPN5110A0HN1/C2 收发器ICPN5120A0HN1/C1 收发器ICPN5310A3HN/C203 NFC控制器IC PN1000 GPS RF接收ICRX3400 射频接收ICRX3930 射频接收ICRX3140 射频接收ICRX3310A 射频接收ICRX3361 射频接收ICRX3408 射频接收ICPT4301 射频接收ICPT4316 射频接收ICPT4450 射频发射ICTX4915 射频发射ICTX4930 射频发射ICPA2460 功率放大器ICPA2464 功率放大器ICFS8107E 锁相环ICFS8108 锁相环ICFS8160 锁相环ICFS8170 锁相环ICFS8308 锁相环ICMG2400-F48 ZigBee单芯片MG2450-B72 ZigBee单芯片MG2455-F48 ZigBee单芯片AP1092 功率放大器ICAP1098 功率放大器ICAP1110 功率放大器ICAP1091 功率放大器ICAP1093 功率放大器ICAP1280 PA/LNA功率放大器AP1213 射频前端模块AP1290 功率放大器ICAP1291 功率放大器ICAP1294 功率放大器ICAP1045 功率放大器ICAP1046 功率放大器ICAP2085 功率放大器ICAP2010C 功率放大器ICAP3011 功率放大器ICAP3013 功率放大器ICAP3014 功率放大器ICAP3015 功率放大器ICAP3211 功率放大器ICSX1211I084TRT 单芯片收发器SX1441I077TRLF 系统蓝牙芯片XE1203FI063TRLF 射频收发芯片XE1205I074TRLF 射频收发芯片XE1283I076TRLF 射频收发芯片XM1203FC433XE1 射频收发芯片XM1203FC868XE1 射频收发芯片XM1203FC915XE1 射频收发芯片SX1223I073TRT 射频发射芯片SI3400-E1-GM 以太网电源ICSI3401-E1-GM 以太网电源ICSI3460-D01-GM 以太网电源ICSI4020-I1-FT 射频发射ICSI4021-A1-FT 射频发射ICSI4022-A1-FT 射频发射ICSI4030-A0-FM 射频发射ICSI4031-A0-FM 射频发射ICSI4032-V2-FM 射频发射ICSi4230-A0-FMIA4230 无线发射IC Si4231-A0-FMIA4231 无线发射IC Si4232-A0-FMIA4232 无线发射IC Si4320-J1-FT 无线接收ICSi4322-A1-FT 无线接收ICSi4330-V2-FMIA4330 无线接收IC SI4420-D1-FT 射频收发ICSI4421-A1-FTIA4421 无线收发IC SI4430-A0-FMIA4430 无线收发IC SI4431-A0-FMIA4431 无线收发IC SI4432-V2-FMIA4432 无线收发IC TM1001 功率放大器ICTM1006 功率放大器ICTM1008 射频晶体管TM3001 射频开关ICTM3002 射频开关ICTM4001 FM发射ICUW2453 无线网络ICUZ2400 ZigBee 芯片UP2206 2.4GHz功率放大器UP2268 2.4GHz功率放大器UA2707 射频信号放大器UA2709 射频信号放大器UA2711 射频信号放大器UA2712 射频信号放大器UA2715 射频信号放大器UA2716 射频信号放大器UA2725 射频信号放大器UA2731 射频信号放大器UA2732 射频信号放大器W2805 无线视频ICW2801 无线音频IC。
施耐德电气产品型号含义
目录目录 (1)PCP产品选型 (3)第一章国产D2系列接触器型号说明 (4)第二章进口Tesys D系列接触器型号说明 (5)第三章进口Tesys F系列接触器型号说明 (6)第四章国产电容接触器系列接触器型号说明 (7)第五章国产LR2系列热继电器型号说明 (8)第六章进口LR9系列热继电器型号说明 (8)第七章进口LRD系列热继电器型号说明 (9)第八章热继电器和电子过流继电器的区别: (9)第九章 GV型号说明 (10)第十章 CA2系列继电器型号说明 (10)第十一章 CA*-KN 系列继电器型号说明 (11)第十二章 CAD系列继电器型号说明 (12)第十三章 XB6-E系列按钮/指示灯的选型 (13)第十四章 XVM系列组合信号指示灯(45mm型)的选型 (14)第十五章 XVB系列组合信号指示灯(70mm型)的选型 (15)第十六章标准K1/K2凸轮开关选型 (16)第十七章定制K1/K2凸轮开关选型 (17)第十八章继电器本体 (17)第十九章 XB2系列普通弹簧复位按钮 (18)第二十章 XB2系列带灯按钮 (18)第二十一章 XB2系列锁扣式急停按钮 (19)第二十二章 XB2系列指示灯 (20)第二十三章 XB2系列选择开关 (21)第二十四章 XB4系列普通弹簧复位按钮-螺钉夹紧接线 (21)第二十五章 XB4系列选择开关 (22)第二十六章 XB4系列钥匙开关 (22)第二十七章 XB4系列指示灯 (23)第二十八章 XB4系列带灯按钮 (23)第二十九章 XB4系列带LED灯的旋钮开关 (24)PCP产品选型第一章国产D2系列接触器型号说明第四章国产电容接触器系列接触器型号说明第六章进口LR9系列热继电器型号说明第八章热继电器和电子过流继电器的区别:第九章GV型号说明第十章CA2系列继电器型号说明第十一章CA*-KN 系列继电器型号说明第十二章CAD系列继电器型号说明第十三章XB6-E系列按钮/指示灯的选型1、XB6系列按钮及指示灯选型(经济型)选型提示型号说明型号组成XB6- E * * * * * C 开孔尺寸 16mm材料工程塑料A:圆形按钮外形C:方形D:长方形A:弹簧复位按钮D:选择开关G:钥匙开关产品类别F:自锁带灯按钮W:自复位带灯按钮V:指示灯1白色2黑色3绿色颜色4红色5黄色6蓝色8橙色LED灯电压J:带LED、12VB:带LED、24V触点形式1:1C/O2:2C/O产地C中国制造XVM系列组合信号指示灯(45mm型)选型提示型号说明型号组成XVM * * **** *外形尺寸mmB:24Vac/dc电压G:120VacM:230Vac光源类别1:白炽灯2:LEDR:红色注:颜色编码后缀发光类别颜色&发光A:橙色无后缀:恒定光源类别G:绿色后缀'5':闪烁光源B:蓝色后缀'6':闪光放电管蜂鸣器S:带蜂鸣器无标注则不带蜂鸣器XVM系列组合信号指示灯选型说明:XVM系列组合信号指示灯是完整供货指示灯组。
常用无线射频芯片
常用无线射频芯片目录CC1000PWR 超低功率射频收发器CC1010PAGR 射频收发器和微控制器CC1020RSSR 射频收发器CC1021RSSR 射频收发器CC1050PWR 超低功率射频发送器CC1070RSQR 射频发送器CC1100RTKR 多通道射频收发器CC1101RTKR 低于1GHz射频收发器CC1110F16RSPR 射频收发片上系统CC1110F32RSPR 射频收发片上系统CC1110F8RSPR 射频收发片上系统CC1111F16RSPR 射频收发片上系统CC1111F32RSPR 射频收发片上系统CC1111F8RSPR 射频收发片上系统CC1150RSTR 多通道射频发送器CC2400RSUR 多通道射频发送器CC2420RTCR 射频收发器CC2420ZRTCR 射频收发器CC2430F128RTCR ZigBee芯片CC2430ZF128RTCR ZigBee芯片CC2431RTCR 无线传感器网络芯片CC2431ZRTCR 无线传感器网络芯片CC2480A1RTCR 处理器CC2500RTKR 射频收发器CC2510F16RSPR 无线电收发器CC2510F32RSPR 无线电收发器CC2510F8RSPR 无线电收发器CC2511F16RSPR 无线电收发器CC2511F32RSPR 无线电收发器CC2511F8RSPR 无线电收发器CC2520RHDR 射频收发器CC2530F128RHAR 射频收发器CC2530F256RHAR 射频收发器CC2530F64RHAR 射频收发器CC2550RSTR 发送器CC2590RGVR 射频前端芯片CC2591RGVR 射频前端芯片CCZACC06A1RTCR ZigBee芯片TRF7900APWR 27MHz双路接收器TRF6900APT 射频收发器TRF6901PTG4 射频收发器TRF6901PTRG4 射频收发器TRF6903PTG4 射频收发器TRF6903PTRG4 射频收发器ADF7020-1BCPZ-RL7 射频收发IC ADF7020BCPZ-RL7 射频收发ICADF7021BCPZ-RL7 ISM无线收发IC ADF7021-NBCPZ-RL7 ISM无线收发IC ADF7025BCPZ-RL7 射频收发ICADF7010BRUZ-REEL7 ISM无线发射IC ADF7011BRUZ-RL7 ISM无线发射IC ADF7012BRUZ-RL7 UHF无线发射IC ADF7901BRUZ-RL7 ISM无线发射ICA7121(A71C21AQF) 射频收发器A7122(A71C22AQF) 射频收发器A7102(A71C02AQF) 射频收发ICA7103(A71C03AUF) 射频收发ICA7201(A72C01AUF) 射频接收ICA7202(A72C02AUF) 射频接收ICA7302(A73C02AMF) 射频发射ICA7105(A71X05AQF) 射频收发ICA7125(A71X25AQF) 射频收发ICA7325(A73X25AQF) 射频发射ICA7303A(A73C03AQF) FM发射芯片A7303A(A73C03AUF) FM发射芯片A7303B(A73C03BUF) FM发射芯片A7303B(A73C03BQF) FM发射芯片A7282(A72N82AQF) GPS接收芯片A7531B(A75C31BQF) GPS开关芯片A7532(A75C32AQF) GPS开关芯片A7533(A75X33AQF) GPS开关芯片A7533(A75X33BQF) GPS开关芯片AS3931 低功耗无线接收芯片AS3932BTSW 低功耗无线接收芯片AS3932BQFW 低功耗无线接收芯片AS3977BQFT FSK发射芯片AT86RF211DAI-R 射频收发IC AT86RF211SAHW-R 射频收发IC AT86RF212-ZU 射频收发ICAT86RF230-ZU 射频收发ICAT86RF231-ZU 射频收发ICATA2745M-TCQY 射频发送IC ATA5428-PLQW 宽带收发ICATR2406-PNQG 射频收发ICT5750-6AQ 无线发射ICT5753-6AQ 无线发射ICT5754-6AQ 无线发射ICT7024-PGPM 前端收发器U2741B-NFB 无线发射ICAX5051 射频收发器ICAX5042 射频收发器ICAX5031 射频收发器ICAX50424 射频收发器ICAX6042 射频收发器ICCYRF6936-40LFXC 无线USB芯片CYRF7936-40LFXC 无线收发器芯片CYWUSB6932-28SEC 无线USB芯片CYWUSB6934-28SEC 无线USB芯片CYWUSB6934-48LFXC 无线USB芯片CYWUSB6935-28SEI 无线USB芯片CYWUSB6935-48LFI 无线USB芯片CYWUSB6935-48LFXC 无线USB芯片CYWUSB6935-48LFXI 无线USB芯片CYRF69103-40LFXC 无线射频芯片CYRF69213-40LFXC 无线射频芯片CYWUSB6953-48LFXC 无线USB芯片EM2420-RTR ZigBee芯片EM260-RTR ZigBee芯片EM250-RTR ZigBee芯片EM351-RTR ZigBee芯片EM357-RTR ZigBee芯片PA5305 射频功率放大器PA2420 射频功率放大器PA2421 射频功率放大器PA2432 射频功率放大器FM2422 射频前端模块FM2422U 射频前端模块FM2427 射频前端模块FM2429 射频前端模块FM2429U 射频前端模块FM2446 射频前端模块FM7705 射频前端模块FM7707 射频前端模块MC13190FCR2 射频收发IC MC13191FCR2 射频收发IC MC13192FCR2 射频收发IC MC13193FCR2 射频收发IC MC13201FCR2 射频收发IC MC13202FCR2 射频收发IC MC13203FCR2 射频收发IC MC13211R2 射频收发ICMC13212R2 射频收发IC MC13213R2 射频收发IC MC13214R2 射频收发IC TDA5200 ASK接收器TDA5201 ASK接收器TDA5210 ASK/FSK接收器TDA5211 ASK/FSK接收器TDA5212 ASK/FSK接收器TDA5220 ASK/FSK接收器TDA5221 ASK/FSK接收器TDA7200 ASK/FSK接收器TDA7210 ASK/FSK接收器TDA5230 ASK/FSK接收器TDA5231 ASK/FSK接收器TDK5100 ASK/FSK发射器TDK5100F ASK/FSK发射器TDK5101 ASK/FSK发射器TDK5101F ASK/FSK发射器TDK5102 ASK/FSK发射器TDK5103A ASK发射器TDK5110 ASK/FSK发射器TDK5110F ASK/FSK发射器TDK5111 ASK/FSK发射器TDK5111F ASK/FSK发射器TDA7116F ASK/FSK发射器PMA7105 ASK/FSK发射器PMA7106 ASK/FSK发射器PMA7107 ASK/FSK发射器PMA7110 ASK/FSK发射器TDA5250 ASK/FSK收发器TDA5251 ASK/FSK收发器TDA5252 ASK/FSK收发器TDA5255 ASK/FSK收发器MAX1470EUI+T 无线接收IC MAX1471ATJ+T 无线接收IC MAX1472AKA+T 无线发射IC MAX1473EUI+T 无线接收IC MAX1479ATE+T 无线发射IC MAX7030HATJ+T 无线收发IC MAX7030LATJ+T 无线收发IC MAX7031LATJ+T 无线收发IC MAX7031MATJ50+T 无线收发IC MAX7032ATJ+T 无线收发IC MAX7033ETJ+T 无线接收ICMAX7044AKA+T 无线发射IC MAX7058ATG+T 无线发射IC MLX71121ELQ 射频接收IC MLX71122ELQ 射频接收IC TH71071EDC 射频接收IC TH71072EDC 射频接收IC TH7107EFC 射频接收IC TH71081EDC 射频接收IC TH71082EDC 射频接收IC TH7108EFC 射频接收IC TH71101ENE 射频接收IC TH71102ENE 射频接收IC TH71111ENE 射频接收IC TH71112ENE 射频接收IC TH71221ELQ 射频接收IC TH7122ENE 射频收发IC TH72001KDC 射频发射IC TH72002KDC 射频发射IC TH72005KLD 射频发射IC TH72006KLD 射频发射IC TH72011KDC 射频发射IC TH72012KDC 射频发射ICTH72015KLD 射频发射IC TH72016KLD 射频发射IC TH72031KDC 射频发射IC TH72032KDC 射频发射IC TH72035KLD 射频发射IC TH72036KLD 射频发射IC MICRF102BM 无线发射IC MICRF112YMM 无线发射IC MICRF113YM6 无线发射IC MICRF302YML 射频编码器MICRF405YML 射频发射IC MICRF505BML 射频收发IC MICRF506BML 射频收发IC MICRF002YM 射频接收器MICRF005YM 无线接收IC MICRF007BM UHF接收器MICRF008BM 无线接收IC MICRF009BM UHF接收IC MICRF010BM UHF接收IC MICRF011BM 射频IC MICRF211AYQS 射频接收器MRF24J40-I/ML ZigBee芯片MRF24J40T-I/ML ZigBee芯片MCP2030-I/P 免钥登录芯片MCP2030-I/SL 免钥登录芯片MCP2030-I/ST 免钥登录芯片MCP2030T-I/SL 免钥登录芯片MCP2030T-I/ST 免钥登录芯片nRF2401AG 收发器ICnRF24AP1 收发器ICnRF24E1G 收发器ICnRF24E2G 发射器ICnRF24L01+ 收发器ICnRF24LE1 收发器ICnRF24LU1 收发器ICnRF24Z1 收发器ICNRF905 430 928MHz收发器NRF9E5 430-928MHz收发器MFRC50001T/0FE,112 阅读器IC MFRC53001T/0FE,112 阅读器IC MFRC53101T/0FE,112 阅读器IC MFRC52301HN1 阅读器ICPN5110A0HN1/C2 收发器ICPN5120A0HN1/C1 收发器ICPN5310A3HN/C203 NFC控制器IC PN1000 GPS RF接收ICRX3400 射频接收ICRX3930 射频接收ICRX3140 射频接收ICRX3310A 射频接收ICRX3361 射频接收ICRX3408 射频接收ICPT4301 射频接收ICPT4316 射频接收ICPT4450 射频发射ICTX4915 射频发射ICTX4930 射频发射ICPA2460 功率放大器ICPA2464 功率放大器ICFS8107E 锁相环ICFS8108 锁相环ICFS8160 锁相环ICFS8170 锁相环ICFS8308 锁相环ICMG2400-F48 ZigBee单芯片MG2450-B72 ZigBee单芯片MG2455-F48 ZigBee单芯片AP1092 功率放大器ICAP1098 功率放大器ICAP1110 功率放大器ICAP1091 功率放大器ICAP1093 功率放大器ICAP1280 PA/LNA功率放大器AP1213 射频前端模块AP1290 功率放大器ICAP1291 功率放大器ICAP1294 功率放大器ICAP1045 功率放大器ICAP1046 功率放大器ICAP2085 功率放大器ICAP2010C 功率放大器ICAP3011 功率放大器ICAP3013 功率放大器ICAP3014 功率放大器ICAP3015 功率放大器ICAP3211 功率放大器ICSX1211I084TRT 单芯片收发器SX1441I077TRLF 系统蓝牙芯片XE1203FI063TRLF 射频收发芯片XE1205I074TRLF 射频收发芯片XE1283I076TRLF 射频收发芯片XM1203FC433XE1 射频收发芯片XM1203FC868XE1 射频收发芯片XM1203FC915XE1 射频收发芯片SX1223I073TRT 射频发射芯片SI3400-E1-GM 以太网电源ICSI3401-E1-GM 以太网电源ICSI3460-D01-GM 以太网电源ICSI4020-I1-FT 射频发射ICSI4021-A1-FT 射频发射ICSI4022-A1-FT 射频发射ICSI4030-A0-FM 射频发射ICSI4031-A0-FM 射频发射ICSI4032-V2-FM 射频发射ICSi4230-A0-FM(IA4230) 无线发射IC Si4231-A0-FM(IA4231) 无线发射IC Si4232-A0-FM(IA4232) 无线发射IC Si4320-J1-FT 无线接收ICSi4322-A1-FT 无线接收ICSi4330-V2-FM(IA4330) 无线接收ICSI4420-D1-FT 射频收发ICSI4421-A1-FT(IA4421) 无线收发IC SI4430-A0-FM(IA4430) 无线收发IC SI4431-A0-FM(IA4431) 无线收发IC SI4432-V2-FM(IA4432) 无线收发IC TM1001 功率放大器ICTM1006 功率放大器ICTM1008 射频晶体管TM3001 射频开关ICTM3002 射频开关ICTM4001 FM发射ICUW2453 无线网络ICUZ2400 ZigBee芯片UP2206 功率放大器UP2268 功率放大器UA2707 射频信号放大器UA2709 射频信号放大器UA2711 射频信号放大器UA2712 射频信号放大器UA2715 射频信号放大器UA2716 射频信号放大器UA2725 射频信号放大器UA2731 射频信号放大器UA2732 射频信号放大器W2805 无线视频ICW2801 无线音频IC。
施耐德断路器型号说明大全
3
125
!"
!
! (AC380V)
!
!
60 : 60A
E: 7.5kA
3: 3P
015: 15A 075: 75A
100 : 100A 160 : 160A 250 : 250A
B: 10kA S: 18kA
020: 20A 025: 25A 030: 30A 040: 40A 050: 50A 060: 60A
b
!
!
!"#
b
!"
50°C
!"#$%&'(
b
!"#$%!&'()*+,-./
b
! "#!$%&'()*
!"#$%&'( )*+,
b
!"
!"#$%&'()*%+,
b
!"#
!
!
!"#
!"#$
:
! "#$%&' 60/100A
! "#$%&' 160/250A
!
EasyPact NSC
160
S
15A~250A
ీݴ૰ (AC380V) E: 7.5kA B: 10kA S: 18kA K: 35kA
ጀǖNSC 400~630 4टׂሡփ༵ࠃă
टຕ 3: 3P 4: 4P
ୁۉۨܮ 015: 15A 020: 20A 025: 25A 030: 30A 040: 40A 050: 50A 060: 60A 075: 75A 080: 80A 100: 100A
阿斯帕拉压缩机型号参数对照表
On-Line Store:See website for the most current catalogs Email: custcare@ Phone: 866-275-6392 Fax: 866-329-6392COMPRESSORSCOMPRESSORS, INDIVIDUAL BOXESIndividually boxed compressors can be ordered in any quantity. Skid lots are 48 individually boxed compressors. Compressor Warranty: 2 years from date of manufacture of the compressor.Aspera R-12 RefrigerantBEVCORe Part Number 1011343 1011344 1001426 1011345 1005988 1011346 1011347 Manufacture Part Number E5170B E6170B E5187B E6187B T6215A J6220A115V J6226A Description 1/4 HP w/Relay & Overload, R12 1/4 HP w/Relay, Capacitor & Overload, R12 1/3 HP w/Relay & Overload, R12 1/3 HP w/Relay, Capacitor & Overload, R12 1/2 HP w/Relay, Capacitor & Overload, R12 3/4 HP w/Relay, Capacitor & Overload, R12 115V 1 HP w/Relay, Capacitor & Overload, R12, 208-230V Ship Wt. Each 24 lbs 24 lbs 25 lbs 26 lbs 32 lbs 48 lbs 51 lbsAspera R-134a RefrigerantBEVCORe Part Number 1011348 1011349 1007963 1011350 1011351 1001270 Manufacture Part Number B5170Z B6170Z E5187Z E6187Z E6210Z T6215Z Description 1/4 HP w/Relay & Overload, R134a 1/4 HP w/Relay, Capacitor & Overload, R134a 1/3 HP w/Relay & Overload, R134a 1/3 HP w/Relay, Capacitor & Overload, R134a Super 1/3 HP w/Relay, Capacitor & Overload, R134a 1/2 HP w/Relay, Capacitor & Overload, R134a Ship Wt. Each 24 lbs 24 lbs 25 lbs 26 lbs 26 lbs 32 lbsEmbraco R-12 RefrigerantBEVCORe Part Number 1011352 1000936 1005529 1008326 Manufacture Part Number FF10BK FF10BX FFI12BK FFI12BX Description 1/4 HP w/Relay & Overload, R12 1/4 HP w/Relay, Capacitor & Overload, R12 1/3 HP w/Relay & Overload, R12 1/3 HP w/Relay, Capacitor & Overload, R12 Ship Wt. Each 24 lbs 24 lbs 26 lbs 27 lbsEmbraco R-134a RefrigerantBEVCORe Part Number 1008529 Manufacture Part Number FFI12HBX Description 1/3 HP w/Relay, Capacitor & Overload, R134a Ship Wt. Each 27 lbs8-1Catalog List Price: $35.00Effective January 1, 2006 Prices subject to change without notice All returns must have prior approval See website for the most current catalogs Refer to Price List for Fulfillment Class informationOn-Line Store:See website for the most current catalogs Email: custcare@ Phone: 866-275-6392 Fax: 866-329-6392COMPRESSORSTecumseh R-134a RefrigerantBEVCORe Part Number 1005851 1006309 1030698 1006446 1010667 1001259 1001829 1014566 1031361 1033145 1033146 1033149 1033151 1033188 1033202 1033231 Manufacture Part Number AE530AR-718-B6 AE635AR-943-B6 AKA4460YXA AJ250AT-432-B4 AJ250GT-432-B4 638036374 60309001 729011105 AE630AT-932-A4 AK169AT-038-A4 AZ440CR-236-C6 AE510AT-280-A4 AE810AT-166-A4 AE530AR-718-A4 AE530AR-718AEA4440YXA Description Kit-Comp 1/5hp 120/60 Tecumseh Kit-Comp 1/3hp 120/60 Tecumseh Kit-Comp 1/2hp 120/60 Tecumseh Kit-Comp 3/4hp 120/60 Tecumseh Kit-Comp 3/4hp 230/60 Tecumseh Comp Xxxx 120/60 Tecumseh Xxxx Comp 3/4hp 230/50 Tcmseh 134a Kit Compressor 120/60 Service Comp 1/3 120/60 Tec134aHi-torq Kit-Comp. (AK169AT-038-A4) Tecumseh Kit-Comp. (AZ440CR-236-C6) Tecumseh Kit-Comp. (AE510AT-280-A4) Tecumseh Kit-Comp. (AE810AT-166-A4) Tecumseh Comp. (AE530AR-718-A4) Tecumseh Kit Comp Tecumseh AE530AR-718Kit Comp TcmsehAEA4440YXA 134a Ship Wt. Each 24 lbs 26 lbs 52 lbs 58 lbs 57 lbs 39 lbs 25 lbs 25 lbs 41 lbs 17 lbs 23 lbs 21 lbs 21 lbs 21lbs 21lbsTecumseh R-404a RefrigerantBEVCORe Part Number 1006416 1033203 Manufacture Part Number 162964004 AK170AT-030 Description Comp 1 Hp 120/60 Tecumseh Kit Comp Tecumseh AK170AT-030 Ship Wt. Each 39 lbs 41 lbsTecumseh R-12 RefrigerantBEVCORe Part Number 1005426 1006268 1014505 1033144 1033148 1033150 1033232 Manufacture Part Number 21249 22620 71832468 AH334RF-505-J7 AJ201AT-188-B4 AJ201AT-426-B4 AEA4440AXA Description Kit-Comp 1/4hp 120/60 Xxxx Kit-Comp 3/4hp 120/60 Tecumseh Comp 1/3hp 120/60 Tecumseh R-12 Kit-Comp. (AH334RF-505-J7) Tecumseh Kit-Comp. (AJ201AT-188-B4) Tecumseh Kit-Comp. (AJ201AT-426-B4) Tecumseh Kit Comp Tecumseh AEA4440AXA R12 Ship Wt. Each 23 lbs 52 lbs 71 lbs 53 lbs 51 lbs 23lbs8-2Catalog List Price: $35.00Effective January 1, 2006 Prices subject to change without notice All returns must have prior approval See website for the most current catalogs Refer to Price List for Fulfillment Class informationOn-Line Store:See website for the most current catalogs Email: custcare@ Phone: 866-275-6392 Fax: 866-329-6392COMPRESSORSCopeland R-404a RefrigerantBEVCORe Part Number 1005797 1006155 1012406 1012432 1029916 1014306 1010689 1016738 1006373 1007647 1006479 1012774 1008388 1012461 1005827 1001651 1002078 1001905 1004015 1012777 1014178 1001902 1014173 Manufacture Part Number RS80C1E-CAV-252 JS25C1E-IAA-250 RS43C1E-CAA-210 RS64C1E-CAA-210 RS64C1E-CAV-210 RS97C1E-CAV-210 RS43C1E-IAA-214 RS43C1E-IAV-214 RS64C1E-PAA-214 RS64C1E-IAV-214 CS14K6E-PFV-235 CS14K6E-PFV-235 CS14K6E-PFV-275 CS18K6E-PFV-235 CS18K6E-PFV-275 CS20K6E-PFV-275 CS20K6E-PFV-235 CS27K3E-PFV-276 CS27K3E-PFV-236 CS33K6E-PFV-276 CS12K6E-PFV-275 CS12K6E-PFV-235 CS33K3E-TFC-276 Description Kit-Comp 1 1/4 240/60 Copeland Kit-Comp 1/3hp 120/60 Copeland Kit-Comp 1/2hp 120/60 Copeland Kit-Comp 3/4hp 120/60 Copeland Kit-Comp 3/4hp 240/60 Copeland Kit-Comp 1 Hp 240/60 Copeland Kit-Comp 1/2hp 120/60 Copeland Kit-Comp 1/2hp 240/60 Copeland Kit-Comp 3/4hp 120/60 Copeland Kit-Comp 3/4hp 240/60 Copeland Kit-Comp 2 Hp 240/60 Copeland Kit-Comp 2 Hp 240/60 Copeland Kit-Comp 2 Hp 240/60 Copeland Kit-Comp 2 1/4 240/60 Copeland Kit-Comp 2 1/4 240/60 Copeland Kit-Comp 2-1/2 240/60 Copeland Kit-Comp 3 Hp 230/5/6 Copeland Kit-Comp 3 Hp 240/60 Copeland Kit-Comp 3 Hp 240/60 Copeland Kit-Comp 3-1/4 240/60 Copeland Kit-Comp 1-3/4 240/60 Copeland Kit-Comp 1-3/4 240/60 Copeland Kit-Comp 3-1/4 230/5/6 Copeland Ship Wt. Each 56 lbs 50 lbs 52 lbs 54 lbs 54 lbs 52 lbs 50 lbs 52 lbs 53 lbs 55 lbs 77 lbs 75 lbs 76 lbs 80 lbs 81 lbs 81 lbs 82 lbs 81 lbs 80 lbs 85 lbs 77 lbs 86 lbs 81 lbsCopeland R-22 RefrigerantBEVCORe Part Number 1008406 Manufacture Part Number JSL5-0075-CAA-202 Description Kit-Comp 3/4hp 120/60 Copeland Ship Wt. Each 40 lbsDryersBEVCORe Part Number 1005060 1009393 1005199 1035313 Manufacture Part Number 05819801 03209201 03214201 Description Dryer 1/4" in/out 1/3HP-R12 & 134a 1/2HP-R22 Dryer 1/4 in 1/4 out/cap tube 1/3HP-R12 & 134a 1/2HP-R22 Dryer 1/4 in 1/4 out/cap tube w/access valve 1/3HP-R12 & 134a 1/2HP-R22 DryerAccess ValvesBEVCORe Part Number 1005252 1000538 Manufacture Part Number CD8404 CD8406 Description Access valve 1/4 copper tubing cap & core (6/pkg.) Access valve 3/8 copper tubing cap & core (6/pkg.)8-3Catalog List Price: $35.00Effective January 1, 2006 Prices subject to change without notice All returns must have prior approval See website for the most current catalogs Refer to Price List for Fulfillment Class information。
瑞萨电子ISL2110、ISL2111 100V、3A 4A Peak高频半桥驱动器说明书
FN6295Rev.8.00April 18, 2022ISL2110, ISL2111100V, 3A/4A Peak, High Frequency Half-Bridge DriversDATASHEETThe ISL2110, ISL2111 are 100V, high frequency, half-bridge N-Channel power MOSFET driver ICs. They are based on the popular HIP2100, HIP2101 half-bridge drivers, but offer several performance improvements. Peak outputpull-up/pull-down current has been increased to 3A/4A, which significantly reduces switching power losses and eliminates the need for external totem-pole buffers in many applications. Also, the low end of the V DD operational supply range has been extended to 8VDC. The ISL2110 has additional input hysteresis for superior operation in noisy environments and the inputs of the ISL2111, like those of the ISL2110, can now safely swing to the V DD supply rail.Applications•Telecom half-bridge DC/DC converters •Telecom full-bridge DC/DC converters •Two-switch forward converters •Active-clamp forward converters •Class-D audio amplifiersFeatures•Drives N-Channel MOSFET half-bridge •SOIC, DFN, and TDFN package options•SOIC, DFN, and TDFN packages compliant with 100V conductor spacing guidelines per IPC-2221•Pb-free (RoHS compliant)•Bootstrap supply max voltage to 114VDC •On-chip 1W bootstrap diode•Fast propagation times for multi-MHz circuits•Drives 1nF load with typical rise/fall times of 9ns/7.5ns •CMOS compatible input thresholds (ISL2110)•3.3V/TTL compatible input thresholds (ISL2111)•Independent inputs provide flexibility •No start-up problems•Outputs unaffected by supply glitches, HS ringing below ground or HS slewing at high dv/dt •Low power consumption•Wide supply voltage range (8V to 14V)•Supply undervoltage protection•1.6W/1W typical output pull-up/pull-down resistanceFIGURE 1.APPLICATION BLOCK DIAGRAMSECONDARY CIRCUIT+100VC O N T R O LCONTROLLERPWMLIHIHO LOV DDHSHB+12V V SSREFERENCEAND ISOLATIONDRIVE LODRIVE HIISL2110ISL2111Functional Block DiagramFIGURE 2.FUNCTIONAL BLOCK DIAGRAMUNDER VOLTAGEV DDHILI V SSDRIVERDRIVERHBHOHSLOLEVEL SHIFTUNDER VOLTAGEEPAD (DFN Package Only)ISL2111ISL2111*EPAD = Exposed Pad. The EPAD is electrically isolated from all other pins. For best thermal performance, connect the EPAD to the PCB power ground plane.Application DiagramsSECONDARY ISOLATIONPWM+48V+12VCIRCUITFIGURE 3.TWO-SWITCH FORWARD CONVERTERISL2110ISL2111SECONDARY CIRCUITISOLATIONPWM+48V+12VFIGURE 4.FORWARD CONVERTER WITH AN ACTIVE-CLAMPISL2110ISL2111Ordering InformationPART NUMBER (Notes2, 3)PARTMARKINGPACKAGE DESCRIPTION(RoHS COMPLIANT)PKG.DWG. #CARRIER TYPE(Notes1)TEMP RANGEISL2110ABZ 2110ABZ 8 Ld SOIC M8.15Tube-40 to +125°CISL2110ABZ -T Reel, 2.5kISL2110AR4Z2110AR4Z 12 Ld 4x4 DFN L12.4x4A TubeISL2110AR4Z-T Reel, 6kISL2111ABZ2111ABZ 8 Ld SOIC M8.15TubeISL2111ABZ-T Reel, 2.5kISL2111AR4Z2111AR4Z 12 Ld 4x4 DFN L12.4x4A TubeISL2111AR4Z-T Reel, 6kISL2111ARTZ2111ARTZ 10 Ld 4x4 TDFN L10.4x4TubeISL2111ARTZ-T Reel, 6kISL2111BR4Z2111BR4Z 8 Ld 4x4 DFN L8.4x4TubeISL2111BR4Z-T Reel, 6kNOTES:1.See TB347 for details about reel specifications.2.These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plateplus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.3.For Moisture Sensitivity Level (MSL), please see device information page for ISL2110, ISL2111. For more information on MSL, see TB363.Pin ConfigurationsISL2111ARTZ (10 LD 4x4 TDFN)TOP VIEW ISL2110AR4Z, ISL2111AR4Z(12 LD 4x4 DFN)TOP VIEW2 3 4 1 59 8 7 10 6VDD HB HO HS NC LOVSSLIHINCVDDNCNCHBHOLOVSSNCNCLIHS HI234151110912867EPAD**EPAD = EXPOSED PADISL2110ABZ, ISL2111ABZ(8 LD SOIC)TOP VIEWISL2111BR4Z (8 LD 4x4 DFN)TOP VIEWPin Configurations56874321VDD HB HO HSLO LI HIVSS 23417658VDD HB HO HSLO VSS LI HIEPAD**EPAD = EXPOSED PADPin DescriptionsSYMBOL DESCRIPTIONVDD Positive supply to lower gate driver. Bypass this pin to VSS.HB High-side bootstrap supply. External bootstrap capacitor is required. Connect positive side of bootstrap capacitor to this pin. Bootstrap diode is on-chip.HO High-side output. Connect to gate of high-side power MOSFET.HS High-side source connection. Connect to source of high-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. HI High-side input LI Low-side inputVSS Chip negative supply, which will generally be ground.LO Low-side output. Connect to gate of low-side power MOSFET.NC No connectEPADExposed pad. Connect to ground or float. The EPAD is electrically isolated from all other pins.Absolute Maximum Ratings Thermal InformationSupply Voltage, V DD, V HB - V HS (Notes4, 5) . . . . . . . . . . . . . . . 0.3V to 18V LI and HI Voltages (Note5) . . . . . . . . . . . . . . . . . . . . . . .-0.3V to V DD + 0.3V Voltage on LO (Note5). . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to V DD + 0.3V Voltage on HO relative to HS (Repetitive Transient < 100ns). . . . . . . . .-2V Voltage on LO relative to GND (Repetitive Transient < 100ns). . . . . . . .-2V Voltage on HO (Note5) . . . . . . . . . . . . . . . . . . . . . .V HS - 0.3V to V HB + 0.3V Voltage on HS (Continuous) (Note5). . . . . . . . . . . . . . . . . . . . . -1V to 110V Voltage on HB (Note5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118V Average Current in V DD to HB Diode . . . . . . . . . . . . . . . . . . . . . . . . . 100mA Maximum Recommended Operating ConditionsSupply Voltage, V DD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8V to 14V Voltage on HS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to 100V Voltage on HS . . . . . . . . . . . . . (Repetitive Transient < 100ns) -5V to 105V Voltage on HB . . . . . . . . . . .V HS+7V to V HS+14V and V DD - 1V to V DD+100V HS Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<50V/ns Thermal Resistance (Typical)θJA (°C/W)θJC (°C/W) 8 Ld SOIC (Notes6, 9) . . . . . . . . . . . . . . . . . 954610 Ld TDFN (Notes7, 8) . . . . . . . . . . . . . . . 40 2.512 Ld DFN (Notes7, 8) . . . . . . . . . . . . . . . . 39 2.58 Ld DFN (Notes7, 8). . . . . . . . . . . . . . . . . . 40 4.0 Max Power Dissipation at +25°C in Free Air8 Ld SOIC (Notes6, 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3W 10 Ld TDFN (Notes7, 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.0W 12 Ld DFN (Notes7, 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1W 8 Ld DFN (Notes7, 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1W Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +150°C Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.NOTES:4.The ISL2110 and ISL2111 are capable of derated operation at supply voltages exceeding 14V. Figure 24 shows the high-side voltage derating curvefor this mode of operation.5.All voltages referenced to V SS unless otherwise specified.6.θJA is measured with the component mounted on a high-effective thermal conductivity test board in free air. See Tech Brief TB379 for details.7.θJA is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See TechBrief TB379.8.For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.9.For θJC, the “case temp” location is taken at the package top center.Electrical Specifications V DD = V HB = 12V, V SS = V HS = 0V, no load on LO or HO, unless otherwise specified.PARAMETERS SYMBOL TEST CONDITIONST J = +25°C T J = -40°C to +125°CUNIT MIN(Note10)TYPMAX(Note10)MIN(Note10)MAX(Note10)SUPPLY CURRENTSV DD Quiescent Current I DD ISL2110; LI = HI = 0V- 0.100.25-0.30mA V DD Quiescent Current I DD ISL2111; LI = HI = 0V- 0.300.45-0.55mA V DD Operating Current I DDO ISL2110; f = 500kHz- 3.4 5.0- 5.5mA V DD Operating Current I DDO ISL2111; f = 500kHz- 3.5 5.0- 5.5mA Total HB Quiescent Current I HB LI = HI = 0V-0.100.15-0.20mA Total HB Operating Current I HBO f = 500kHz- 3.4 5.0- 5.5mA HB to V SS Current, Quiescent I HBS LI = HI = 0V; V HB = V HS = 114V-0.05 1.50-10µA HB to V SS Current, Operating I HBSO f = 500kHz; V HB = V HS = 114V- 1.2---mA INPUT PINSLow Level Input Voltage Threshold V IL ISL2110 3.7 4.4- 3.5-V Low Level Input Voltage Threshold V IL ISL2111 1.4 1.8- 1.2-V High Level Input Voltage Threshold V IH ISL2110- 6.67.4-7.6V High Level Input Voltage Threshold V IH ISL2111- 1.8 2.2- 2.4V Input Voltage Hysteresis V IHYS ISL2110- 2.2---VInput Pull-Down Resistance R I-210-100500k ΩUNDERVOLTAGE PROTECTION V DD Rising Threshold V DDR 6.1 6.67.1 5.87.4V V DD Threshold Hysteresis V DDH -0.6---V HB Rising Threshold V HBR 5.5 6.1 6.8 5.07.1V HB Threshold Hysteresis V HBH-0.6---VBOOTSTRAP DIODELow Current Forward Voltage V DL I VDD-HB = 100µA -0.50.6-0.7V High Current Forward Voltage V DH I VDD-HB = 100mA -0.70.9-1V Dynamic Resistance R DI VDD-HB = 100mA-0.71-1.5ΩLO GATE DRIVER Low Level Output Voltage V OLL I LO = 100mA-0.10.18-0.25V High Level Output Voltage V OHL I LO = -100mA, V OHL = V DD - V LO -0.160.23-0.3V Peak Pull-Up Current I OHL V LO = 0V -3---A Peak Pull-Down Current I OLLV LO = 12V-4---AHO GATE DRIVER Low Level Output Voltage V OLH I HO = 100mA-0.10.18-0.25V High Level Output Voltage V OHH I HO = -100mA, V OHH = V HB - V HO -0.160.23-0.3V Peak Pull-Up Current I OHH V HO = 0V -3---A Peak Pull-Down CurrentI OLHV HO = 12V-4---AElectrical SpecificationsV DD = V HB = 12V, V SS = V HS = 0V, no load on LO or HO, unless otherwise specified. (Continued)PARAMETERSSYMBOL TEST CONDITIONST J = +25°CT J = -40°C to +125°CUNIT MIN (Note 10)TYP MAX (Note 10)MIN (Note 10)MAX (Note 10)Switching SpecificationsV DD = V HB = 12V, V SS = V HS = 0V, No Load on LO or HO, unless otherwise specified.PARAMETERSSYMBOL TESTCONDITIONS T J = +25°CT J = -40°C to +125°C UNIT MIN (Note 10)TYP MAX (Note 10)MIN (Note 10)MAX (Note 10)Lower Turn-Off Propagation Delay (LI Falling to LO Falling)t LPHL -3250-60ns Upper Turn-Off Propagation Delay (HI Falling to HO Falling)t HPHL -3250-60ns Lower Turn-On Propagation Delay (LI Rising to LO Rising)t LPLH -3950-60ns Upper Turn-On Propagation Delay (HI Rising to HO Rising)t HPLH -3850-60ns Delay Matching: Upper Turn-Off to Lower Turn-On t MON 18--16ns Delay Matching: Lower Turn-Off to Upper Turn-On t MOFF 16--16ns Either Output Rise Time (10% to 90%)t RC C L = 1nF -9---ns Either Output Fall Time (90% to 10%)t FC C L = 1nF -7.5---ns Either Output Rise Time (3V to 9V)t R C L = 0.1µF -0.30.4-0.5µs Either Output Fall Time (9V to 3V)t F C L = 0.1µF-0.190.3-0.4µs Minimum Input Pulse Width that Changes the Output t PW ----50ns Bootstrap Diode Turn-On or Turn-Off Timet BS-10---nsNOTE:10.Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterizationand are not production tested.Timing DiagramsFIGURE 5.PROPAGATION DELAYSFIGURE 6.DELAY MATCHINGt HPLH ,t LPLHt HPHL ,t LPHLHI , LIHO , LOt MONt MOFFLIHILOHOTypical Performance CurvesFIGURE 7.ISL2110 I DD OPERATING CURRENT vs FREQUENCY FIGURE 8.ISL2111 I DD OPERATING CURRENT vs FREQUENCYFIGURE 9.I HB OPERATING CURRENT vs FREQUENCYFIGURE 10.I HBS OPERATING CURRENT vs FREQUENCYFIGURE 11.HIGH LEVEL OUTPUT VOLTAGE vs TEMPERATURE FIGURE 12.LOW LEVEL OUTPUT VOLTAGE vs TEMPERATURE0.11.010.0FREQUENCY (Hz)I D D O (m A )T = +25°CT = -40°CT = +125°CT = +150°C10k100k1.103k10k100k1.103k0.11.010.0FREQUENCY (Hz)I D D O (m A )T = +25°CT = -40°CT = +150°CT = +125°CFREQUENCY (Hz)I H B O (m A )0.011.010.0T = +25°CT = -40°CT = +125°CT = +150°C10k100k1.103k0.1FREQUENCY (Hz)I H B S O (m A )0.011.010.0T = -40°CT = +125°CT = +150°C10k100k1.103k0.1T = +25°C-505010015050100150200250300TEMPERATURE (°C)V O H L , V O H H (m V )V DD = V HB = 12VV DD = V HB = 14VV DD = V HB = 8V-505010015050100150200V O L L , V O L H (m V )TEMPERATURE (°C)V DD = V HB = 12VV DD = V HB = 14VV DD = V HB = 8VFIGURE 13.UNDERVOLTAGE LOCKOUT THRESHOLD vsTEMPERATUREFIGURE 14.UNDERVOLTAGE LOCKOUT HYSTERESIS vsTEMPERATUREFIGURE 15.ISL2110 PROPAGATION DELAYS vs TEMPERATURE FIGURE 16.ISL2111 PROPAGATION DELAYS vs TEMPERATUREFIGURE 17.ISL2110 DELAY MATCHING vs TEMPERATURE FIGURE 18.ISL2111 DELAY MATCHING vs TEMPERATURETypical Performance Curves (Continued)V D D R , V H B R (V )-50501001506.7TEMPERATURE (°C)V HBRV DDR6.56.36.15.95.75.55.3V D D H , V H B H (V )-50501001500.70TEMPERATURE (°C)V HBHV DDH0.650.600.550.500.450.4025303540455055t L P L H , t L P H L , t H P L H , t H P H L (n s )-5050100150TEMPERATURE (°C)t LPHLt HPHLt LPLHt HPLH25303540455055t L P L H , t L P H L , t H P L H , t H P H L (n s )-5050100150TEMPERATURE (°C)t LPHLt HPHLt LPLHt HPLH4.04.55.05.56.06.57.07.58.0t M O N , t M O F F (n s )-5050100150TEMPERATURE (°C)t MOFFt MON4.04.55.05.56.06.57.07.58.08.59.09.510.0t M O N , t M O F F (n s )-50050100150TEMPERATURE (°C)t MOFFt MONFIGURE 19.PEAK PULL-UP CURRENT vs OUTPUT VOLTAGE FIGURE 20.PEAK PULL-DOWN CURRENT vs OUTPUT VOLTAGEFIGURE 21.ISL2110 QUIESCENT CURRENT vs VOLTAGE FIGURE 22.ISL2111 QUIESCENT CURRENT vs VOLTAGEFIGURE 23.BOOTSTRAP DIODE I-V CHARACTERISTICSFIGURE 24.V HS VOLTAGE vs V DD VOLTAGETypical Performance Curves (Continued)48101200.51.01.52.02.53.03.5V LO , V HO (V)I O H L , I O H H (A )2648101201.52.02.53.03.54.04.5V LO , V HO (V)I O H L , I O H H (A )261.00.505101520102030405060708090100110120V DD , V HB (V)I D D , I H B (µA )I HBI DD05101520V DD , V HB (V)I D D , I H B (µA )20406080100120140160180200220240260280300320I HBI DD0.30.40.50.60.70.81.10-30.010.101.00FORWARD VOLTAGE (V)F O R W A R D C U R R E N T (A )1.10-41.10-51.10-61213141516020406080100120V H S T O V S S V O L T A G E (V )V DD TO V SS VOLTA GE (V)Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please visit our website to make sure you have the latest revision.DATE REVISION CHANGEApril 18, 2022FN6295.8Updated the Ordering information table to comply with the new standard, updated notes.In Absolute Maximum Ratings, added Voltage on HO relative to HS and Voltage on LO relative to GND.Updated POD M8.15 to the latest version: “Added the coplanarity spec into the drawing.”Removed Related Literature and About Intersil sections.Mar 16, 2017FN6295.7Corrected the branding of FG ISL2111BR4Z in the order information table from "211 1BR4A" to "2111BR4Z".Added Revision History table and About Intersil information.Updated L10.4x4 Package Outline Drawing from Rev 1 to Rev 2. Change since Rev 1 is:“Tiebar note update from ‘Tiebar shown (if present) is a non-functional feature’ to ‘Tiebar shown (ifpresent) is a non-functional feature and may be located on any of the 4 sides (or ends)’”.Updated L12.4x4A Package Outline Drawing from Rev 1 to Rev 3. Changes since Rev 1 are:“Tiebar note update from ‘Tiebar shown (if present) is a non-functional feature’ to ‘Tiebar shown (ifpresent) is a non-functional feature and may be located on any of the 4 sides (or ends)’”;“Bottom View changed from ‘3.2 REF’ TO ‘2.5 REF’";“Typical Recommended Land Pattern changed from ‘3.80’ to ‘3.75’";“Updated to new POD format by removing table listing dimensions and moving dimensions onto drawing”,and “Added typical recommended land pattern”.Updated M8.15 Package Outline Drawing from Rev 3 to Rev 4. Change since Rev 3 is:“Changed Note 1 from 1982 to 1994“.Updated L8.4x4 Package Outline Drawing from Rev 0 to Rev 1. Change since Rev 0 is:“Tiebar note update from ‘Tiebar shown (if present) is a non-functional feature’ to ‘Tiebar shown (ifpresent) is a non-functional feature and may be located on any of the 4 sides (or ends)’”.10 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE Rev 2, 4/15TYPICAL RECOMMENDED LAND PATTERNDETAIL "X"SIDE VIEWTOP VIEWBOTTOM VIEWlocated within the zone indicated. The pin #1 identifier may be Unless otherwise specified, tolerance : Decimal ± 0.05The configuration of the pin #1 identifier is optional, but must be between 0.15mm and 0.30mm from the terminal tip.Dimension b applies to the metallized terminal and is measured Dimensions in ( ) for Reference Only.Dimensioning and tolerancing conform to AMSE Y14.5m-1994.6.either a mold or mark feature.3.5.4.2.Dimensions are in millimeters.1.NOTES:4.00 2.600.15(3.80)(4X)(10X 0.30)(8X 0.8)0 .75BASE PLANE CSEATING PLANE0.08C0.10C10 X 0.30SEE DETAIL "X"0.104C A M B INDEX AREA6PIN 14.00ABPIN #1 INDEX AREABSC3.2REF8X 0.806(10 X 0.60)0 . 00 MIN.0 . 05 MAX.C0 . 2 REF10X 0 . 403.00(2.60)( 3.00 )0.05M C 65101Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).12 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE Rev 3, 3/15TYPICAL RECOMMENDED LAND PATTERNDETAIL "X"SIDE VIEWTOP VIEWBOTTOM VIEWlocated within the zone indicated. The pin #1 identifier may be Unless otherwise specified, tolerance : Decimal ± 0.05The configuration of the pin #1 identifier is optional, but must be between 0.15mm and 0.30mm from the terminal tip.Lead width applies to the metallized terminal and is measured Dimensions in ( ) for Reference Only.Dimensioning and tolerancing conform to AMSE Y14.5m-1994.6.either a mold or mark feature.3.5.4.2.Dimensions are in millimeters.1.NOTES:4.00 1.580.15( 3.75)(4X)( 12X 0 . 25)( 10X 0 . 5 )1.00 MAXBASE PLANE CSEATING PLANE0.08C0.10C12 X 0.25SEE DETAIL "X"0.104C A M B INDEX AREA6PIN 14.00ABPIN #1 INDEX AREA2.5REF10X 0.50 BSC6( 12 X 0.65 )0 . 00 MIN.0 . 05 MAX.C0 . 2 REF12X 0 . 452.80( 1.58)( 2.80 )0.05M C 76121Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE Rev 1, 03/15TYPICAL RECOMMENDED LAND PATTERNDETAIL "X"SIDE VIEWTOP VIEWBOTTOM VIEWlocated within the zone indicated. The pin #1 identifier may be Unless otherwise specified, tolerance : Decimal ± 0.05The configuration of the pin #1 identifier is optional, but must be between 0.15mm and 0.30mm from the terminal tip.Dimension applies to the metallized terminal and is measured Dimensions in ( ) for Reference Only.Dimensioning and tolerancing conform to ASME Y14.5m-1994.6.either a mold or mark feature.3.5.4.2.Dimensions are in millimeters.1.NOTES:4.00 2.50 ± 0.100.15( 3.80)(4X)( 8X 0 . 30 )( 6X 0 . 8 )0 .9 ± 0.10BASE PLANE CSEATING PLANE0.08C0.10C8 X 0.30SEE DETAIL "X"0.104C A M B INDEX AREA6PIN 14.00ABPIN #1 INDEX AREABSC2.4REF6X 0.806( 8 X 0.60 )8X 0 . 40 ± 0.103.45 ± 0.10( 2.50)( 3.45 )0.05M C 54810 . 00 MIN.0 . 05 MAX.C0 . 2 REFTiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).Corporate HeadquartersTOYOSU FORESIA, 3-2-24 Toyosu,Koto-ku, Tokyo 135-0061, Japan Contact InformationFor further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:/contact/TrademarksRenesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.IMPORTANT NOTICE AND DISCLAIMERRENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDINGREFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.(Rev.1.0 Mar 2020)。
atc中文手册
AT24C256中文资料2009-11-1509:43特性与1MHzI2C总线兼容1.8到6.0伏工作电压范围低功耗CMOS技术写保护功能当WP为高电平时进入写保护状态64字节页写缓冲器自定时擦写周期100,000编程/擦写周期可保存数据100年8脚DIPSOIC封装温度范围商业级工业级和汽车级概述CAT24WC256是一个256K位串行CMOSE2PROM内部含有32768个字节每字节为8位CATALYST公司的先进CMOS技术实质上减少了器件的功耗CAT24WC256有一个64字节页写缓冲器该器件通过I2C总线接口进行操作极限参数工作温度工业级-55+125商业级0+75贮存温度-65+150各管脚承受电压-2.0VVcc+2.0VVcc管脚承受电压-2.0V+7.0V封装功率损耗Ta=251.0W焊接温度(10秒)300口输出短路电流100mA功能描述CAT24WC256支持I2C总线数据传送协议I2C总线协议规定任何将数据传送到总线的器件作为发送器任何从总线接收数据的器件为接收器数据传送是由产生串行时钟和所有起始停止信号的主器件控制的CAT24WC256是作为从器件被操作的主器件和从器件都可以作为发送器或接收器但由主器件控制传送数据发送或接收的模式管脚描述SCL串行时钟CAT24WC256串行时钟输入管脚用于产生器件所有数据发送或接收的时钟这是一个输入管脚SDA串行数据/地址双向串行数据/地址管脚用于器件所有数据的发送或接收SDA是一个开漏输出管脚可与其它开漏输出或集电极开路输出进行线或wire-ORWP写保护当WP脚连接到Vcc所有内存变成写保护只能读当WP引脚连接到Vss或悬空允许器件进行读/写操作A0A1器件地址输入这些管脚为硬连线或者不连接对于单总线系统最多可寻址4个CAT24WC256器件参阅器件寻址当这些引脚没有连接时其默认值为0I2C总线协议I2C总线协议定义如下1只有在总线空闲时才允许启动数据传送2在数据传送过程中当时钟线为高电平时数据线必须保持稳定状态不允许有跳变时钟线为高电平时数据线的任何电平变化将被看作总线的起始或停止信号起始信号时钟线保持高电平期间数据线电平从高到低的跳变作为I2C总线的起始信号停止信号时钟线保持高电平期间数据线电平从低到高的跳变作为I2C总线的停止信号器件寻址主器件通过发送一个起始信号启动发送过程然后发送它所要寻址的从器件的地址8位从器件地址的高5位固定为10100见图5接下来的2位A1A0为器件的地址位最多可以连接4个器件到同一总线上这些位必须与硬连线输入脚A1A0相对应从器件地址的最低位作为读写控制位1表示对从器件进行读操作0表示对从器件进行写操作在主器件发送起始信号和从器件地址字节后CAT24WC256监视总线并当其地址与发送的从地址相符时响应一个应答信号通过SDA线CAT24WC256再根据读写控制位R/W的状态进行读或写操作应答信号I2C总线数据传送时每成功地传送一个字节数据后接收器都必须产生一个应答信号应答的器件在第9个时钟周期时将SDA线拉低表示其已收到一个8位数据CAT24WC256在接收到起始信号和从器件地址之后响应一个应答信号如果器件已选择了写操作则在每接收一个8位字节之后响应一个应答信号当CAT24WC256工作于读模式时在发送一个8位数据后释放SDA线并监视一个应答信号一旦接收到应答信号CAT24WC256继续发送数据如主器件没有发送应答信号器件停止传送数据并等待一个停止信号写操作字节写在字节写模式下主器件发送起始信号和从器件地址信息R/W位置0给从器件在从器件送回应答信号后主器件发送两个8位地址字写入CAT24WC256的地址指针主器件在收到从器件的应答信号后再发送数据到被寻址的存储单元CAT24WC256再次应答并在主器件产生停止信号后开始内部数据的擦写在内部擦写过程中CAT24WC256不再应答主器件的任何请求页写在页写模式下单个写周期内CAT24WC256最多可以写入64个字节数据页写操作的启动和字节写一样不同在于传送了一字节数据后主器件允许继续发送63个字节每发送一个字节后CAT24WC256将响应一个应答位且内部低6位地址加1高位地址保持不变如果主器件在发送停止信号之前发送大于64个字节地址计数器将自动翻转先前写入的数据被覆盖当所有64字节接收完毕主器件发送停止信号内部编程周期开始此时所有接收到的数据在单个写周期内写入CAT24WC256应答查询可以利用内部写周期时禁止数据输入这一特性一旦主器件发送停止位指示主器件操作结束时CAT24WC256启动内部写周期应答查询立即启动包括发送一个起始信号和进行写操作的从器件地址如果CAT24WC256正在进行内部写操作将不会发送应答信号如果CAT24WC256已经完成了内部写操作将发送一个应答信号主器件可以继续对CAT24WC256进行下一次读写操作写保护写保护操作特性可使用户避免由于不当操作而造成对存储区域内部数据的改写当WP管脚接高时整个寄存器区全部被保护起来而变为只可读取CAT24WC256可以接收从器件地址和字节地址但是装置在接收到第一个数据字节后不发送应答信号从而避免寄存器区域被编程改写读操作CAT24WC256读操作的初始化方式和写操作时一样仅把R/W位置为1有三种不同的读操作方式立即/当前地址读选择/随机读和连续读立即/当前地址读的地址计数器内容为最后操作字节的地址加1也就是说如果上次读/写的操作地址为N则立即读的地址从地址N+1开始如果N=E此处E=32767则计数器将翻转到0且继续输出数据CAT24WC256接收到从器件地址信号后R/W位置1它首先发送一个应答信号然后发送一个8位字节数据主器件不需发送一个应答信号但要产生一个停止信号选择/随机读选择/随机读操作允许主器件对寄存器的任意字节进行读操作主器件首先通过发送起始信号从器件地址和它想读取的字节数据的地址执行一个伪写操作在CAT24WC256应答之后主器件重新发送起始信号和从器件地址此时R/W位置1CAT24WC256响应并发送应答信号然后输出所要求的一个8位字节数据主器件不发送应答信号但产生一个停止信号连续读连续读操作可通过立即读或选择性读操作启动在CAT24WC256发送完一个8位字节数据后主器件产生一个应答信号来响应告知CAT24WC256主器件要求更多的数据对应每个主机产生的应答信号CAT24WC256将发送一个8位数据字节当主器件不发送应答信号而发送停止位时结束此操作从CAT24WC256输出的数据按顺序由N到N+1输出读操作时地址计数器在CAT24WC256整个地址内增加这样整个寄存器区域在可在一个读操作内全部读出当读取的字节超过E此处E=32767计数器将翻转到零并继续输出数据字节。
上海富士断路器断路器技术参数表
序号
参数名称
单位
参数
1
储能电动机额定功率
W
50/60
2
储能时间
s
≤5
3
储能电动机额定电压
V
AC220
AC110
DC220
DC110
4
储能电动机额定电流
A
3.0
5.9
5
储能电动机正常工作
电压范围
85%~110%额定电压
6
合闸线圈额定电压
V
AC220
AC110
DC220
DC110
7
hs5010m12mfchs5010m20mfchs5010m31mfchs5010m40mfc额定电压kv121250200031504000额定短路开断电流ka50额定峰值耐受电流动稳定电流ka125额定短时耐受电流热稳定电流ka50额定短路关合电流峰值ka125额定短路开断电流开断次数额定操作顺序分180s合分180s合分额定频率hz5010雷电冲击耐受电压峰值kv75断口8511短时1min工频耐受电压有效值kv42断口4812合闸时间ms307013分闸时间ms226014开断时间ms10015额定短路持续时间16燃弧时间ms2017机械寿命1000018额定单个电容器组开断电流63019额定电流开断次数1000020辅助开关额定电流ac110220v
ms
22~60
14
开断时间
ms
≤100
15
额定短路持续时间
s
4
16
燃弧时间
ms
<20
17
机械寿命
次
10000
18
额定单个电容器组
开断电流
MICRF211AYQS中文资料
Ordering Information
Part Number
Temperature Range
Package
MICRF211AYQS
–40° to +105°C
16-Pin QSOP
_______________________________________________________________________________________________
Not Connected (Connect to Ground)
Reference resonator input connection to Colpitts oscillator stage, 7pF, in parallel with low resistance MOS switch-to-GND, during normal operation. Driven by startup excitation circuit during the internal startup control sequence.
元器件交易网
CRF211
3V, QwikRadio® 433.92 MHz Receiver
General Description
Features
RF211(1)
MICRF506410MHz and 450MHz ISM BandTransceiverGeneral DescriptionThe MICRF506 is a true single-chip, frequency shift keying(FSK) transceiver intended for use in half-duplex,bidirectional RF links. The multi-channeled FSK transceiveris intended for UHF radio equipment in compliance with theEuropean Telecommunication Standard Institute (ETSI)specification, EN300 220.The transmitter consists of a PLL frequency synthesizerand power amplifier. The frequency synthesizer consists ofa voltage-controlled oscillator (VCO), a crystal oscillator,dual modulus prescaler, programmable frequency dividers,and a phase-detector. The loop-filter is external for flexibilityand can be a simple passive circuit. The output power ofthe power amplifier can be programmed to seven levels. Alock-detect circuit detects when the PLL is in lock. Inreceive mode, the PLL synthesizer generates the localoscillator (LO) signal. The N, M, and A values that give theLO frequency are stored in the N0, M0, and A0 registers.The receiver is a zero intermediate frequency (IF) typewhich makes channel filtering possible with low-power,integrated low-pass filters. The receiver consists of a lownoise amplifier (LNA) that drives a quadrature mix pair. Themixer outputs feed two identical signal channels in phasequadrature. Each channel includes a pre-amplifier, a thirdorder Sallen-Key RC low-pass filter that protects thefollowing switched-capacitor filter from strong adjacentchannel signals, and a limiter. The main channel filter is aswitched-capacitor implementation of a six-pole elliptic lowpass filter. The cut-off frequency of the Sallen-Key RC filtercan be programmed to four different frequencies: 100kHz,150kHz, 230kHz, and 340kHz. The I and Q channeloutputs are demodulated and produce a digital data output.The demodulator detects the relative phase of the I and theQ channel signal. If the I channel signal lags behind the Qchannel, the FSK tone frequency is above the LOfrequency (data '1'). If the I channel leads the Q channel,the FSK tone is below the LO frequency (data '0'). Theoutput of the receiver is available on the DataIXO pin. Areceive signal strength indicator (RSSI) circuit indicates thereceived signal level. All support documentation can befound on Micrel’s web site at .RadioWire®Features•True single chip transceiver•Digital bit synchronizer•Received signal strength indicator (RSSI)•RX and TX power management•Power down function•Reference crystal tuning capabilities•Basedband shaping•Three-wire programmable serial interface•Register read back functionApplications•Telemetry•Remote metering•Wireless controller•Remote data repeater•Remote control systems•Wireless modem•Wireless security systemRadioWire® RF Transceiver Selection GuideDevice Frequency Range MaximumData Rate ReceiveSupplyCurrent TransmitModulationType PackageMICRF500700MHz – 1.1GHz128k Baud12mA 2.5 to 3.4V50mA FSK LQFP-44 MICRF501300MHz – 440MHz128k Baud8mA 2.5 to 3.4V45mA FSK LQFP-44 MICRF505850MHz – 950MHz200k Baud13mA 2.0 to 2.5V28mA FSK MLF™-32 MICRF506410MHz – 450MHz200k Baud12mA 2.0 to 2.5V21.5mA FSK MLF™-32Ordering InformationPart Number Junction Temp. Range(1)PackageMICRF506BML–40° to +85°C32-Pin MLF TM____________________________________________________________________________________________________ Typical ApplicationANT222MICRF506 – MLF32Pin ConfigurationRFGND PTATBIAS RFVDD RFGNDANT RFGND GND NC XTALOUT XTALIN CS SCLK IODATAIXO DATACLK NCG N D V A R I N V C O G N D V C O V D D N C C P O U T D I G G N D D I G V D DQ C H O U T I C H O U T I F G N D I F V D D C I B I A S R S S I L D N C32-Pin MLF TMPin DescriptionPin NumberPin Name TypePin Function 1RFGND LNA and PA ground.2PTATBIAS O Connection for bias resistor.3RFVDD LNA and PA power supply.4RFGND LNA and PA ground.5ANT I/O Antenna In/Output.6RFGND LNA and PA ground.7RFGND LNA and PA ground.8NC No connect.9CIBIAS O Connection for bias resistor.10IFVDD IF/mixer power supply.11IFGND IF/mixer ground.12ICHOUT O Test pin.13QCHOUT O Test pin.14RSSI O Received signal strength indicator.15LD O PLL lock detect.16NC No connect.17NCNo connectPin Number Pin Name Type Pin Function 18DATACLK O RX/TX data clock output.19DATAIXOI/O RX/TX data input/output.20IOI/O3-wire interface data in/output.21SCLK I/O 3-wire interface serial clock.22CSI3-wire interface chip select.23XTALIN I Crystal oscillator input.24XTALOUT OCrystal oscillator output.25DIGVDD Digital power supply.26DIGGND Digital ground.27CPOUTO PLL charge pump output.28GND Substrate ground.29VARIN IVCO varactor.30VCOGND VCO ground.31VCOVDD VCO power supply.32NCNo connect.Absolute Maximum Ratings (1)Supply Voltage (V DD )............................................+3.3VVoltage on any pin (GND = 0V)........-0.3V to 2.7V Lead Temperature (soldering, 4sec.)................TBD°C Storage Temperature (T s ).................-55°C to +150°C EDS Rating (3)...........................................................2kVOperating Ratings (2)Supply voltage (V IN )..............................+2.0V to +2.5V RF Frequencies............................410MHz to 450MHz Data Rate (NRZ).........................................<200kBaud Ambient Temperature (T A )..................–40°C to +85°C Package Thermal ResistanceMLF TM ( JA )..............................................41.7°C/WElectrical Characteristics (4)f RF = 433MHz. Data-rate = 125kbps, Modulation type = closed-loop VCO modulation, V DD = 2.5V; T A = 25°C, bold values indicate –40°C< T A < +85°C, unless noted.SymbolParameterConditionMin TypMax Units RF Frequency Operating Range 410450MHz Power Supply 2.02.5V Power Down Current 0.33µA Standby Current280370µAVCO and PLL SectionReference Frequency 440MHz 433.75MHz to 434.25MHz 0.7 1.3ms PLL Lock Time 3kHz bandwidth 430MHz to 440MHz 1.32ms PLL Lock Time (5)20kHz bandwidth 433.75MHz to 434.25MHz 0.3ms Rx – Tx 1.0 1.4ms Tx – Rx 1.0 2.5ms Standby Rx 1.03ms Switch Time3kHz loop bandwidthStandby Tx1.0ms Crystal Oscillator Start-Up Time 16MHz, 9pF load, 5.6pF loading capacitors1.0ms VCP OUT = 1.1V, CP_HI = 010*******µA Charge Pump CurrentVCP OUT = 1.1V, CP_HI = 1420500680µATransmit SectionR LOAD = 500 , Pa2-0-11111dBm Output PowerR LOAD = 500 , Pa2-0-001-7dBm Over temperature range 1dB Output Power Tolerance Over power supply range 3dB R LOAD = 500 , Pa2-0-11121.5mA R LOAD = 500 , Pa2-0-00110.5mA Tx Current ConsumptionR LOAD = 500 , Pa2-0-0008.0mA Binary FSK Frequency Separation (5)Birate = 200kbps 20500kHz VCO modulation 20200kbps Data Rate (5)Divider modulation20kbpsSymbol Parameter Condition Min Typ Max Units Occupied bandwidth(5)38.4kbps, = 2, 20dBc140kHz125kbps, = 2, 20dBc550kHz200kbps, = 2, 20dBc800kHz 2nd Harmonic-16dBm 3rd Harmonic-8dBm Spurious Emission<1GHz(5)<-54dBm Spurious Emission<1GHz(5)<-30dBm Receive SectionRx Current Consumption12mALNA bypass9.5mASwitch cap filter bypass with LNA9.5mA Rx Current Consumption Variation Over temperature3mA Receiver Sensitivity 2.4kbps, = 16-113dBm4.8kbps, = 16-111dBm19.2kbps, = 4-106dBm38.4kbps, = 4-104dBm76.8kbps, = 2-101dBm125kbps, = 2-100dBm200kbps, = 2-97dBm Receiver Maximum Input Power125kbps, 125kHz deviation+12dBm20kbps, 40kHz deviation+2dBm Receiver Sensitivity ToleranceOver temperature4dBOver power supply range1dB Receiver Bandwidth50350kHz Co-Channel Rejection T.B.D.dB Adjacent Channel Rejection500kHz spacing T.B.D.dB1MHz spacing T.B.D.dB Blocking±1MHz47dB±2MHz48dB±5MHz39dB±10MHz48dB Noise Figure, Cascade T.B.D.dB 1dB Compression-34dB Input IP3 2 tones with 1MHz separation-25dBm Input IP2T.B.D.dBm LO Leakage-90dBm Spurious Emission(5)<1GHz<-57dBm>1GHz<-57dBm Input Impedance(5)50Symbol Parameter Condition Min Typ Max Units RSSI Dynamic Range50dBPin = -110dBm0.9V RSSI Output RangePin = -60dBm2V Digital Inputs/OutputsVIH Logic Input High0.7VDDVDDVVILLogic Input Low00.3VDDV Clock/Data Frequency(5)10MHz Clock/Data Duty Cycle(5)4555% Notes:1. Exceeding the absolute maximum rating may damage the device.2. The device is not guaranteed to function outside its operating rating.3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.4. Specification for packaged product only.5. Guaranteed by design.Programming GeneralThe MICRF506 functions are enab led through a number of programming bits. The programming bits are organized as a set of addressab le control registers, each register holding 8 bits.There are 23 control registers in total in the MICRF506, and they have addresses ranging from 0 to 22. The user can read all the control registers. The user can write to the first 22 registers (0 to 21); the register 22 is a read-only register.All control registers hold 8 bits and all 8 bits must be written to when accessing a control register, or they will be read. Some of the registers do not utilize all 8 bits. The value of an unused bit is “don’t care.”The control register with address 0 is referred to as ControlRegister0, the control register with address 1 is ControlRegister1 and so on. A summary of the control registers is given in the tab le b elow. In addition to the unused bits (marked with”-“) there are a numb er of fixed b its (marked with “0” or “1”). Always maintain these as shown in the table.The control registers in MICRF506 are accessed through a 3-wire interface; clock, data and chip select. These lines are referred to as SCLK, IO, and CS, respectively. This 3-wire interface is dedicated to control register access and is referred to as the control interface. Received data (via RF) and data to transmit (via RF) are handled b y the DataIXO and DatalClk (if enabled) lines; this is referred to as the data interface.The SCLK line is applied externally; access to the control registers are carried out at a rate determined by the user. The MICRF506 will ignore transitions on the SCLK line if the CS line is inactive. The MICRF506 can b e put on a b us, sharing clock and data lines with other devices.All control registers should b e initiated (written to) following a power-on. During operation, however, writing to one register is sufficient to change the way the transceiver works.Adr DataA6…A0D7D6D5D4D3D2D1D0 0000000LNA_by PA2PA1PA0Sync_en Mode1Mode0Load_en 0000001Modulation1Modulation2ol_opamp_en‘0’RSSI_en LD_en PF_FC1PF_FC0 0000010CP_HI‘0’‘0’PA_By OUTS3OUTS2OUTS1OUTS0 0000011‘1’‘1’‘0’VCO_IB2VCO_IB1VCO_IB0VCO_freq1VCO_freq0 0000100Mod_F2Mod_F1Mod_F0Mod_I4Mod_I3Mod_I2Mod_I1Mod_I0 0000101--‘0’‘1’Mod_A3Mod_A2Mod_A1Mod_A0 0000110-Mod_clkS2Mod_clkS1Mod_clkS0BitSync_clkS2BitSync_clkS1BitSync_clkS0BitRate_clkS2 0000111BitRate_clkS1BitRate_clkS0RefClk_K5RefClk_K4RefClk_K3RefClk_K2RefClk_K1RefClk_K0 0001000‘1’ScClk_X2ScClk5ScClk4ScClk3ScClk2ScClk1ScClk0 0001001‘0’‘1’‘1’XCOtune4XCOtune3XCOtune2XCOtune1XCOtune0 0001010--A0_5A0_4A0_3A0_2A0_1A0_0 0001011----N0_11N0_10N0_9N0_8 0001100N0_7N0_6N0_5N0_4N0_3N0_2N0_1N0_0 0001101----M0_11M0_10M0_9M0_8 0001110M0_7M0_6M0_5M0_4M0_3M0_2M0_1M0_0 0001111--A1_5A1_4A1_3A1_2A1_1A1_0 0010000----N1_11N1_10N1_9N1_8 0010001N1_7N1_6N1_5N1_4N1_3N1_2N1_1N1_0 0010010----M1_11M1_10M1_9M1_8 0010011M1_7M1_6M1_5M1_4M1_3M1_2M1_1M1_0 0010100‘1’‘0’‘1’‘1’‘0’‘1’‘0’‘1’0010101----FEEC_3FEEC_2FEEC_1FEEC_0 0010110FEE_7FEE_6FEE_5FEE_4FEE_3FEE_2FEE_1FEE_0Table 1. Control Registers in MICRF506Names of programming bits, unused bits (“-“) and fixed bits (“1” or “0”) are shown. The control register with address 0 is referred to asControlRegister0 etc.Writing to the control registers in MICRF506Writing: A number of octets are entered into MICRF506 followed by a load-signal to activate the new setting. Making these events is referred to as a “write sequence.” It is possible to update all, 1, or n control registers in a write sequence. The address to write to (or the first address to write to) can be any valid address (0-21). The IO line is always an input to the MICRF506 (output from user) when writing. What to write:•The address of the control register to write to (or if more than 1 control register shouldbe written to, the address of the 1st controlregister to write to).• A bit to enable reading or writing of the control registers. This bit is called the R/Wbit.•The values to write into the control register(s).What to write:Field CommentsAddress: A 7-bit field, ranging from 0 to 21. MS B is written first.R/W bit: A 1-bit field, = “0” for writingValues: A number of octets (1-22 octets). MS B in every octet is written first. The first octet iswritten to the control register with thespecified address (=”Address”). The nextoctet (if there is one) is written to the controlregister with address = “Address + 1” and soon.Table 2.How to write:Bring CS active to active to start a write sequence. The active state of the CS line is “high.” Use the S CLK/IO serial interface to clock “Address” and “R/W” bit and “Values” into the MICRF506. MICRF506 will sample the IO line at negative edges of S CLK. Make sure to change the state of the IO line before the negative edge. Refer to figures below.Bring CS inactive to make an internal load-signal and complete the write-sequence. Note: there is an exception to this point. If the programming bit called “load_en” (bit0 in ControlRegister0) is “0”, then no load pulse is generated.The two different ways to “program the chip” are:•Write to a number of control registers (0-22) when the registers have incrementaladdresses (write to 1, all or n registers)•Write to a number of control registers when the registers have non-incrementaladdresses.Writing to a Single RegisterWriting to a control register with address “A6. A5,…A0” is described here. During operation, writing to 1 register is sufficient to change the way the transceiver works. Typical example: Change from receive mode to power-down.What to write:Field CommentsAddress:7 bit = A6, A5, …A0 (A6 = msb. A0 = lsb)R/W bit:“0” for writingValues:8 bits = D7, D6, …D0 (D7 = msb, D0 = lsb)Table 3.“Address” and “R/W bit” together make 1 octet.In addition, 1 octet with programming bits is entered. In total, 2 octets are clocked into the MICRF506.How to write:•Bring CS high•Use SCLK and IO to clock in the 2 octets•Bring CS lowCSIOFigure 1.In Figure 1, IO is changed at positive edges of SCLK. The MICRF506 samples the IO line at negative edges. The value of the R/W bits is always “0” for writing.Writing to All RegistersAfter a power-on, all writable registers should be written. This is described here.Writing to all register can be done at any time. To get the simplest firmware, always write to all registers. The price to pay for the simplicity is increased write-time, which leads to increased time to change the way the MICRF506 works.What to writeField CommentsAddress:‘000000’ (address of the first register to write to, which is 0)R/W bit:“0” for writingValues:1st O c t e t:w a n t e d v a l u e s f o r ControlR egister0. 2nd Octet: wanted valuesfor ControlRegister1 and so on for all of theoctets. So the 22nd octet wants values forControlR egister21. R efer to the specificsections of this document for actual values.Table 4.“Address” and “R/W bit” together make 1 octet.In addition, 22 octets with programming bits are entered. In total, 23 octets are clocked into the MICRF506.How to write:•Bring CS high•Use SCLK and IO to clock in the 23 octets•Bring CS lowRefer to the figure in the next section, “Writing to n registers having incremental addresses”.Writing to n Registers having Incremental AddressesIn addition to entering all bytes, it is also possible to enter a set of n bytes, starting from address i = “A6, A5, … A0”. Typical example: Clock in a new set of frequency dividers (i.e. change the R F frequency).“Incremental addresses”. Registers to be written are located in i, i+1, i+2.What to writeField CommentsAddress:7 bit = A6, A5, …A0 (A6 = msb. A0 = lsb) (address of first byte to write to)R/W bit:“0” for writingValues:n* 8 bits =D7, D6, …D0 (D7 = msb, D0 = lsb) (writtento control reg. with address ”i”)D7, D6, …D0 (D7 = msb, D0 = lsb) (writtento control reg. with address ”i+1”)D7, D6, …D0 (D7 = msb, D0 = lsb) (writtento control reg. with address ”i+n-1”)Table 5.“Address” and “R/W bit” together make 1 octet.In addition, n octets with programming bits are entered. Totally, 1 +n octets are clocked into the MICRF506.How to write:•Bring CS high•Use SCLK and IO to clock in the 1 + n octets•Bring CS lowIn Figure 1, IO is changed at positive edges of SCLK. The MICR F506 samples the IO line at negative edges. The value of the R/W bits is always “0” for writing.CSIOFigure 2.Writing to n Registers having Non-Incremental AddressesR egisters with non-incremental addresses can be written to in one write-sequence as well. Example of non-incremental addresses: “0,1,3”. However, this requires more overhead, and the user should consider the possibility to make a “continuous”update, for example, by writing to “0,1,2,3” (writing the present value of “2” into “2”). The simplest firmware is achieved by always writing to all registers. Refer to previous sections.This write-sequence is divided into several sub-parts:•Disable the generation of load-signals by clearing bit “load_en” (bit0 inControlRegister0)•R epeat for each group of register having incremental addresses:o Bring CS activeo Enter first address for this group,R/W bit and valueso Bring CS inactiveo Finally, enable and make a load-signal by setting “load_en”Refer to the previous sections for how to write to 1 or n (with incremental addresses) registers in the MICRF506.Reading from the control registers in MICRF506 The “read-sequence” is:1.Enter address and R/W bit2.Change direction of IO line3.Read out a number of octets and change IOdirection back again.It is possible to read all, 1 or n registers. The address to read from (or the first address to read from) can be any valid address (0-22). R eading is not destructive, i.e. values are not changed. The IO line is output from the MICRF506 (input to user) for a part of the read-sequence. R efer to procedure description below.A read-sequence is described for reading n registers, where n is number 1-23.Reading n registers from MICRF506CSIOIO InputIO OutputFigure 3.In the figure, 1 register is read. The address is A6,A5, … A0. A6 = msb. The data read out is D7, D6,…D0. The value of the R/W bit is always “1” for reading.SCLK and IO together form a serial interface. SCLKis applied externally for reading as well as for writing.•Bring CS active•Enter address to read from (or the first address to read from) (7 bits) and•The R/W bit = 1 to enable reading•Make the IO line an input to the user (set pin in tristate)•Read n octets. The first rising edge of SCLK will set the IO as an output from theMICRF506. MICRF will change the IO line atpositive edges. The user should read the IOline at the negative edges.•Make the IO line an output from the user again.Programming interface timingFigure 4 and Table 6 shows the timing specification for the3-wire serial programming interface.CSSCLKIO A6A5A0RW D7D6D2D1D0Address Register Data RegisterLOADTsclTwriteTreadThighTlowTperTcsr traisetfallFigure 4.ValuesSymbol Parameter Min.Typ.Max.Units Tper Min. period ofSCLK50nsThigh Min. high time ofSCLK20nsTlow Min. low time ofSCLK20nstfall Max. time offalling edge ofSCLK1nstrise Max. time of risingedge of SCLK1nsTcsr Max. time of risingedge of CS tofalling edge ofSCLK0nsTcsf Min. delay fromrising edge of CSto rising edge ofSCLK5nsTwrite Min. delay fromvalid IO to fallingedge of SCLKduring a writeoperation0nsTread Min. delay fromrising edge ofSCLK to valid IOduring a readoperation(assuming loadcapacitance of IOis 25pF)75nsTable 6. Timing Specification for the 3-wireProgramming Interface Programming summary•Use CS, SCLK, and IO to get access to the control registers in MICRF506.•SCLK is user-controlled.•Write to the MICRF506 at positive edges (MICRF506 reads at negative edges).•Read from the MICRF506 at negative edges (MICRF506 writes at positive edges)•After power-on: Write to the complete set of control registers.•Address field is 7 bits long. Enter msb first.•R/W bit is 1 bit long (“1” for read, “0” forwrite)•Address and R/W bit together make 1 octet•All control registers are 8 bits long.Enter/read msb in every octet first.•Always write 8 bits to/read 8 bits from acontrol register. This is the case for registerswith less than 8 used programming bits aswell.•Writing: Bring CS high, write address and R/W bit followed by the new values to fill intothe addressed control register(s) and bringCS low for loading, i.e. activation of the newcontrol register values (“load_en” = 1).•Reading: Bring CS high, write address and R/W bit, set IO as an input, read presentcontents of the addressed controlregister(s), bring CS low and set IO anoutput.Frequency SynthesizerA6…A0D7D6D5D4D3D2D1D00001010--A0_5A0_4A0_3A0_2A0_1A0_00001011----N0_11N0_10N0_9N0_80001100N0_7N0_6N0_5N0_4N0_3N0_2N0_1N0_00001101----M0_11M0_10M0_9M0_80001110M0_7M0_6M0_5M0_4M0_3M0_2M0_1M0_00001111--A1_5A1_4A1_3A1_2A1_1A1_00010000----N1_11N1_10N1_9N1_80010001N1_7N1_6N1_5N1_4N1_3N1_2N1_1N1_00010010----M1_11M1_10M1_9M1_80010011M1_7M1_6M1_5M1_4M1_3M1_2M1_1M1_0The frequency synthesizer consists of a voltage-controlled oscillator (VCO), a crystal oscillator, dual modulus prescaler, programmable frequency dividers and a phase-detector. The loop-filter is external for flexibility and can be a simple passive circuit. The lengths of the N, M, and A registers are12, 12 and 6 respectively. The M, N, and A values can be calculated from the formula:fPDH =f XCO M =f VCO 31 N +A =f RF 431 N +Awhere fPhD is the phase detector comparison frequency.PhD: Phase detector comparison frequency fxco: Crystal oscillator frequencyfvco: Voltage controlled oscillator frequencyThere are two sets of each of the divide factors (i.e.A0 and A1). If modulation by using the dividers is selected (that is Modulation1=1, Modulation0=0), the two sets should be programmed to give two RF frequencies, separated by two times the specified frequency deviation. For all other modulation methods, and also in receive mode, the 0-set will be used.Crystal Oscillator (XCO)Adr D7D6D5D4D3D2D1D00001001‘0’‘1’‘1’XCOtune4XCOtune3XCOtune2XCOtune1XCOtune0The crystal oscillator is a very critical block. As the crystal oscillator is a reference for the RF output frequency and also for the LO frequency in the receiver, very good phase and frequency stability is required. The schematic of the crystal oscillator’sexternal components for 16MHz are shown in Figure 5.XT Figure 5. Crystal Oscillator CircuitThe crystal should be connected between pins XosIn and XoscOut (pin 23 and 23). In addition,loading capacitors for the crystal are required. The loading capacitor values depend on the total load capacitance, C L , specified for the crystal. The load capacitance seen between the crystal terminals should be equal to C L for the crystal to oscillate at the specified frequency.C L =11C 10+1C 11+C parasiticThe parasitic capacitance is the pin input capacitance and PCB stray capacitance. Typically,the total parasitic capacitance is around 6pF. For instance, for a 9pF load crystal the recommended values of the external load capacitors are 5.6pF.It is also possible to tune the crystal oscillator internally by switching in internal capacitance using 5 tune bits XCOtune4 – XCOtun0. When XCOtune4– XCOtune0 = 0 no internal capacitors are connected to the crystal pins. When XCOtune4 –XCOtune0 = 1 all of the internal capacitors are connected to the crystal pins. Figure 3 shows the tuning range for two different capacitor values, there are 1.5pF and no capacitors.The crystal used is a TN4-26011 from Toyocom.S pecification: Package TSX-10A, Nominal frequency16.000000 MHz, frequency tolerance ±10ppm,frequency stability ±9ppm, load capacitance 9pF,pulling sensitivity 15ppm/pF.-60,0-40,0-20,00,020,040,060,080,0100,008162432XCO bitvalue[p p m ]Figure 6. XCO TuningT he start up time is given in T able 7. As can be seen, more capacitance will slow down the start up time.T he start-up time of a crystal oscillator is typically around a millisecond. T herefore, to save current consumption, the XCO is turned on before any other circuit block. During start-up the XCO amplitude will eventually reach a sufficient level to trigger the M-counter. After counting 2 M-counter output pulses the rest of the circuit will be turned on. The current consumption during the prestart period is approximately 280µA.XCO BitvalueStart-up Time (ms)05901590270047008810161140312050Table 7. Typical values with C EXT = 1.5pFIf an external reference is used instead of a crystal,the signal shall be applied to pin 24, XtalOut. Due to internal DC setting in the XCO, an AC coupling is recommended to be used between the external reference and the XtalOut-pin.VCOA6..A0D7D6D5D4D3D2D1D00000011‘1’‘1’‘0’VCO_IB2VCO_IB1VCO_IB0VCO_freq1VCO_freq0The VCO has no external components. If has three bit to set the bias current and two bit to set the VCO frequency. T hese five bit are set by the RF frequency, as follows:RF freq.VCO_IB2VCO_IB1VCO_IB0VCO_freq1VCO_freq0410MHz 11100410-423MHz 01101423-436MHz 00110436-450MHz11Table 8. VCO Bit SettingT he bias bit will optimize the phase noise, and the frequency bit will control a capacitor bank in the VCO. T he tuning range, the RF frequency versus varactor voltage, is dependent on the VCO frequency setting, and can be shown in Figure 7.When the tuning voltage is in the range from 0.9V to 1.4V, the VCO gain is at its maximum, approximately 32 to 35MHz/V. It is recommended that the varactor voltage stays in this range.T he input capacitance at the varactor pin must be taken into consideration when designing the PLL loop filter. This is most critical when designing a loop filter with high bandwidth, which gives relatively small component values. T he input capacitance isapproximately 6pF.Figure 7. RF Frequency vs. Varactor Voltageand VCO Frequency bit (V DD = 2.25V)。
常用无线射频芯片
常用无线射频芯片 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】常用无线射频芯片目录CC1000PWR 超低功率射频收发器CC1010PAGR 射频收发器和微控制器CC1020RSSR 射频收发器CC1021RSSR 射频收发器CC1050PWR 超低功率射频发送器CC1070RSQR 射频发送器CC1100RTKR 多通道射频收发器CC1101RTKR 低于1GHz射频收发器CC1110F16RSPR 射频收发片上系统CC1110F32RSPR 射频收发片上系统CC1110F8RSPR 射频收发片上系统CC1111F16RSPR 射频收发片上系统CC1111F32RSPR 射频收发片上系统CC1111F8RSPR 射频收发片上系统CC1150RSTR 多通道射频发送器CC2400RSUR 多通道射频发送器CC2420RTCR 射频收发器CC2420ZRTCR 射频收发器CC2430F128RTCR ZigBee芯片CC2430ZF128RTCR ZigBee芯片CC2431RTCR 无线传感器网络芯片CC2431ZRTCR 无线传感器网络芯片CC2480A1RTCR 处理器CC2500RTKR 射频收发器CC2510F16RSPR 无线电收发器CC2510F32RSPR 无线电收发器CC2510F8RSPR 无线电收发器CC2511F16RSPR 无线电收发器CC2511F32RSPR 无线电收发器CC2511F8RSPR 无线电收发器CC2520RHDR 射频收发器CC2530F128RHAR 射频收发器CC2530F256RHAR 射频收发器CC2530F64RHAR 射频收发器CC2550RSTR 发送器CC2590RGVR 射频前端芯片CC2591RGVR 射频前端芯片CCZACC06A1RTCR ZigBee芯片TRF7900APWR 27MHz双路接收器TRF6900APT 射频收发器TRF6901PTG4 射频收发器TRF6901PTRG4 射频收发器TRF6903PTG4 射频收发器TRF6903PTRG4 射频收发器ADF7020-1BCPZ-RL7 射频收发IC ADF7020BCPZ-RL7 射频收发ICADF7021BCPZ-RL7 ISM无线收发IC ADF7021-NBCPZ-RL7 ISM无线收发IC ADF7025BCPZ-RL7 射频收发ICADF7010BRUZ-REEL7 ISM无线发射IC ADF7011BRUZ-RL7 ISM无线发射IC ADF7012BRUZ-RL7 UHF无线发射IC ADF7901BRUZ-RL7 ISM无线发射IC A7121(A71C21AQF) 射频收发器A7122(A71C22AQF) 射频收发器A7102(A71C02AQF) 射频收发ICA7103(A71C03AUF) 射频收发ICA7201(A72C01AUF) 射频接收ICA7202(A72C02AUF) 射频接收ICA7302(A73C02AMF) 射频发射ICA7105(A71X05AQF) 射频收发ICA7125(A71X25AQF) 射频收发ICA7325(A73X25AQF) 射频发射ICA7303A(A73C03AQF) FM发射芯片A7303A(A73C03AUF) FM发射芯片A7303B(A73C03BUF) FM发射芯片A7303B(A73C03BQF) FM发射芯片A7282(A72N82AQF) GPS接收芯片A7531B(A75C31BQF) GPS开关芯片A7532(A75C32AQF) GPS开关芯片A7533(A75X33AQF) GPS开关芯片A7533(A75X33BQF) GPS开关芯片AS3931 低功耗无线接收芯片AS3932BTSW 低功耗无线接收芯片AS3932BQFW 低功耗无线接收芯片AS3977BQFT FSK发射芯片AT86RF211DAI-R 射频收发ICAT86RF211SAHW-R 射频收发ICAT86RF212-ZU 射频收发ICAT86RF230-ZU 射频收发ICAT86RF231-ZU 射频收发ICATA2745M-TCQY 射频发送ICATA5428-PLQW 宽带收发ICATR2406-PNQG 射频收发ICT5750-6AQ 无线发射ICT5753-6AQ 无线发射ICT5754-6AQ 无线发射ICT7024-PGPM 前端收发器U2741B-NFB 无线发射ICAX5051 射频收发器ICAX5042 射频收发器ICAX5031 射频收发器ICAX50424 射频收发器ICAX6042 射频收发器ICCYRF6936-40LFXC 无线USB芯片CYRF7936-40LFXC 无线收发器芯片CYWUSB6932-28SEC 无线USB芯片CYWUSB6934-28SEC 无线USB芯片CYWUSB6934-48LFXC 无线USB芯片CYWUSB6935-28SEI 无线USB芯片CYWUSB6935-48LFI 无线USB芯片CYWUSB6935-48LFXC 无线USB芯片CYWUSB6935-48LFXI 无线USB芯片CYRF69103-40LFXC 无线射频芯片CYRF69213-40LFXC 无线射频芯片CYWUSB6953-48LFXC 无线USB芯片EM2420-RTR ZigBee芯片EM260-RTR ZigBee芯片EM250-RTR ZigBee芯片EM351-RTR ZigBee芯片EM357-RTR ZigBee芯片PA5305 射频功率放大器PA2420 射频功率放大器PA2421 射频功率放大器PA2432 射频功率放大器FM2422 射频前端模块FM2422U 射频前端模块FM2427 射频前端模块FM2429 射频前端模块FM2429U 射频前端模块FM2446 射频前端模块FM7705 射频前端模块FM7707 射频前端模块MC13190FCR2 射频收发ICMC13191FCR2 射频收发ICMC13192FCR2 射频收发ICMC13193FCR2 射频收发ICMC13201FCR2 射频收发ICMC13202FCR2 射频收发ICMC13203FCR2 射频收发ICMC13211R2 射频收发ICMC13212R2 射频收发ICMC13213R2 射频收发ICTDA5200 ASK接收器TDA5201 ASK接收器TDA5210 ASK/FSK接收器TDA5211 ASK/FSK接收器TDA5212 ASK/FSK接收器TDA5220 ASK/FSK接收器TDA5221 ASK/FSK接收器TDA7200 ASK/FSK接收器TDA7210 ASK/FSK接收器TDA5230 ASK/FSK接收器TDA5231 ASK/FSK接收器TDK5100 ASK/FSK发射器TDK5100F ASK/FSK发射器TDK5101 ASK/FSK发射器TDK5101F ASK/FSK发射器TDK5102 ASK/FSK发射器TDK5103A ASK发射器TDK5110 ASK/FSK发射器TDK5110F ASK/FSK发射器TDK5111 ASK/FSK发射器TDK5111F ASK/FSK发射器TDA7116F ASK/FSK发射器PMA7105 ASK/FSK发射器PMA7106 ASK/FSK发射器PMA7107 ASK/FSK发射器PMA7110 ASK/FSK发射器TDA5250 ASK/FSK收发器TDA5251 ASK/FSK收发器TDA5252 ASK/FSK收发器TDA5255 ASK/FSK收发器MAX1470EUI+T 无线接收IC MAX1471ATJ+T 无线接收IC MAX1472AKA+T 无线发射IC MAX1473EUI+T 无线接收IC MAX1479ATE+T 无线发射IC MAX7030HATJ+T 无线收发IC MAX7030LATJ+T 无线收发IC MAX7031LATJ+T 无线收发IC MAX7031MATJ50+T 无线收发IC MAX7032ATJ+T 无线收发IC MAX7033ETJ+T 无线接收IC MAX7044AKA+T 无线发射IC MAX7058ATG+T 无线发射IC MLX71121ELQ 射频接收ICTH71071EDC 射频接收ICTH71072EDC 射频接收ICTH7107EFC 射频接收ICTH71081EDC 射频接收ICTH71082EDC 射频接收ICTH7108EFC 射频接收ICTH71101ENE 射频接收ICTH71102ENE 射频接收ICTH71111ENE 射频接收ICTH71112ENE 射频接收ICTH71221ELQ 射频接收ICTH7122ENE 射频收发ICTH72001KDC 射频发射ICTH72002KDC 射频发射ICTH72005KLD 射频发射ICTH72006KLD 射频发射ICTH72011KDC 射频发射ICTH72012KDC 射频发射ICTH72015KLD 射频发射ICTH72016KLD 射频发射ICTH72031KDC 射频发射ICTH72032KDC 射频发射ICTH72035KLD 射频发射ICTH72036KLD 射频发射IC MICRF102BM 无线发射IC MICRF112YMM 无线发射IC MICRF113YM6 无线发射IC MICRF302YML 射频编码器MICRF405YML 射频发射IC MICRF505BML 射频收发IC MICRF506BML 射频收发IC MICRF002YM 射频接收器MICRF005YM 无线接收IC MICRF007BM UHF接收器MICRF008BM 无线接收IC MICRF009BM UHF接收IC MICRF010BM UHF接收IC MICRF011BM 射频ICMICRF211AYQS 射频接收器MRF24J40-I/ML ZigBee芯片MRF24J40T-I/ML ZigBee芯片MCP2030-I/P 免钥登录芯片MCP2030-I/SL 免钥登录芯片MCP2030-I/ST 免钥登录芯片MCP2030T-I/SL 免钥登录芯片MCP2030T-I/ST 免钥登录芯片nRF2401AG 收发器ICnRF24AP1 收发器ICnRF24E1G 收发器ICnRF24E2G 发射器ICnRF24L01+ 收发器ICnRF24LE1 收发器ICnRF24LU1 收发器ICnRF24Z1 收发器ICNRF905 430 928MHz收发器NRF9E5 430-928MHz收发器MFRC50001T/0FE,112 阅读器IC MFRC53001T/0FE,112 阅读器IC MFRC53101T/0FE,112 阅读器IC MFRC52301HN1 阅读器ICPN5110A0HN1/C2 收发器ICPN5120A0HN1/C1 收发器ICPN5310A3HN/C203 NFC控制器IC PN1000 GPS RF接收ICRX3400 射频接收ICRX3930 射频接收ICRX3140 射频接收ICRX3310A 射频接收ICRX3361 射频接收ICRX3408 射频接收ICPT4301 射频接收ICPT4316 射频接收ICPT4450 射频发射ICTX4915 射频发射ICTX4930 射频发射ICPA2460 功率放大器ICPA2464 功率放大器ICFS8107E 锁相环ICFS8108 锁相环ICFS8160 锁相环ICFS8170 锁相环ICFS8308 锁相环ICMG2400-F48 ZigBee单芯片MG2450-B72 ZigBee单芯片MG2455-F48 ZigBee单芯片AP1092 功率放大器ICAP1098 功率放大器ICAP1110 功率放大器ICAP1091 功率放大器ICAP1280 PA/LNA功率放大器AP1213 射频前端模块AP1290 功率放大器ICAP1291 功率放大器ICAP1294 功率放大器ICAP1045 功率放大器ICAP1046 功率放大器ICAP2085 功率放大器ICAP2010C 功率放大器ICAP3011 功率放大器ICAP3013 功率放大器ICAP3014 功率放大器ICAP3015 功率放大器ICAP3211 功率放大器ICSX1211I084TRT 单芯片收发器SX1441I077TRLF 系统蓝牙芯片XE1203FI063TRLF 射频收发芯片XE1205I074TRLF 射频收发芯片XE1283I076TRLF 射频收发芯片XM1203FC433XE1 射频收发芯片XM1203FC868XE1 射频收发芯片XM1203FC915XE1 射频收发芯片SX1223I073TRT 射频发射芯片SI3400-E1-GM 以太网电源ICSI3401-E1-GM 以太网电源ICSI3460-D01-GM 以太网电源ICSI4020-I1-FT 射频发射ICSI4021-A1-FT 射频发射ICSI4022-A1-FT 射频发射ICSI4030-A0-FM 射频发射ICSI4031-A0-FM 射频发射ICSI4032-V2-FM 射频发射ICSi4230-A0-FM(IA4230) 无线发射IC Si4231-A0-FM(IA4231) 无线发射IC Si4232-A0-FM(IA4232) 无线发射IC Si4320-J1-FT 无线接收ICSi4322-A1-FT 无线接收ICSi4330-V2-FM(IA4330) 无线接收IC SI4420-D1-FT 射频收发ICSI4421-A1-FT(IA4421) 无线收发IC SI4430-A0-FM(IA4430) 无线收发IC SI4431-A0-FM(IA4431) 无线收发IC SI4432-V2-FM(IA4432) 无线收发IC TM1001 功率放大器ICTM1008 射频晶体管TM3001 射频开关ICTM3002 射频开关ICTM4001 FM发射ICUW2453 无线网络ICUZ2400 ZigBee芯片UP2206 功率放大器UP2268 功率放大器UA2707 射频信号放大器UA2709 射频信号放大器UA2711 射频信号放大器UA2712 射频信号放大器UA2715 射频信号放大器UA2716 射频信号放大器UA2725 射频信号放大器UA2731 射频信号放大器UA2732 射频信号放大器W2805 无线视频ICW2801 无线音频IC。
atar862r 标准电路
atar862r 标准电路英文回答:The ATAR862R is a standard circuit that is commonly used in electronic devices. It has several requirements and specifications that need to be considered when designing and implementing it.Firstly, the ATAR862R circuit requires a power supply voltage of 5V. This means that when designing the circuit, I need to ensure that the power supply provides a stable 5V voltage to the circuit. This can be achieved by using a voltage regulator or a dedicated power supply module.Secondly, the ATAR862R circuit has multiple input and output pins. These pins are used to connect the circuit to other components or devices. For example, the circuit may have input pins for receiving signals from sensors or switches, and output pins for driving LEDs or relays. When designing the circuit, I need to carefully consider the pinassignments and ensure that they are compatible with the other components or devices that the circuit will be connected to.In addition, the ATAR862R circuit may require external components such as resistors, capacitors, and inductors to function properly. These components are used to control the voltage and current levels in the circuit, filter out noise, and provide stability. For example, a resistor may be usedto limit the current flowing through an LED, while a capacitor may be used to smooth out voltage fluctuations. When designing the circuit, I need to select theappropriate values for these components based on thecircuit's requirements and specifications.Furthermore, the ATAR862R circuit may have specific timing requirements. For example, it may require certain signals to be synchronized or certain operations to be performed within a specific time frame. When designing the circuit, I need to ensure that the timing requirements are met by using appropriate timing components such as timersor clocks.Finally, it is important to consider the size and layout of the ATAR862R circuit. The circuit may need to fit within a specific enclosure or PCB layout. When designing the circuit, I need to consider the physical dimensions and layout constraints to ensure that the circuit can be properly integrated into the overall system.中文回答:ATAR862R是一种常用的标准电路,用于电子设备中。
采用AVR RISC微控制器的RF无线数据发射器的特点与应用领域介绍
采用AVR RISC微控制器的RF无线数据发射器的特
点与应用领域介绍
微控制器是将微型计算机的主要部分集成在一个芯片上的单芯片微型计算机。
微控制器诞生于20世纪70年代中期,经过20多年的发展,其成本越来越低,而性能越来越强大,这使其应用已经无处不在,遍及各个领域。
例如电机控制、条码阅读器/扫描器、消费类电子、游戏设备、电话、HVAC、楼宇安全与门禁控制、工业控制与自动化和白色家电(洗衣机、微波炉)等。
AT86RF401是单片机集成内嵌AVR RISC微控制器的RF无线数据发射器,输出频率范围为250~450MHz,最大输出功率+6dBm,发射率
10Kband。
可用于遥控无键入口发射器、无线电遥控等应用领域。
一、引脚排列及功能
AT86RF401采用20脚TSSOP封装,各引脚功能如表1所列。
表1 AT86RF401引脚功能。
ISM波段单片FSK无线收发器AT86RF211
ISM波段单片FSK无线收发器AT86RF211
闫胜利
【期刊名称】《电子设计应用》
【年(卷),期】2003(000)001
【摘要】本文介绍了ISM波段单片FSK无线收发器AT86RF211的工作原理及其实际应用.
【总页数】3页(P86-88)
【作者】闫胜利
【作者单位】长春工程学院信息工程系
【正文语种】中文
【中图分类】TP3
【相关文献】
1.基于单片机的无线收发器设计 [J], 朱贵宪
2.ISM波段单片FSK无线收发器AT86RF211 [J], 闫胜利
3.433/868/915MHz FSK/ASK/OOK无线收发器RF2945 [J], 黄智伟;廖金盛
4.基于单片机的无线收发器设计 [J], 朱贵宪
5.nRF401单片无线收发器及其应用 [J], 王宏
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Features Array•Up-compatibility with the AT86RF211–Same Features as AT86RF211 after Power-on Reset–New Features Activated by a Bit (ADDFEAT)•Shrink Version with a Current Consumption Reduction of 20%•Direct Replacement in Production•Migration Documentation/Kit Available for AT86RF211 Users•Multiband Transceiver: 400 to 950 MHz•Monochip RF Solution: Transmitter-Receiver-Synthesizer•Integrated PLL and VCO: no External Coil•Design Highly Resistant to Interference•Digital Channel Selection (200 Hz Steps)•Data Rates up to 100 kbps•Transparent Asynchronous or Synchronous Modes thanks to Built-in Clock Recovery •Three Data Slicer Modes Available: "External", "Internal", "Charge and Hold"•High Output Power Enabling Use of Low-Cost Printed Antennas:–+14 dBm in 915 MHz Frequency Band–+15 dBm in 868 MHz Frequency Band–+16 dBm in 433 MHz Frequency Band•FSK Modulation: Integrated Modulator and Demodulator•Meets Wideband Application Requirements in the USA (250 kHz)•Power Saving:–Stand-alone "Sleep" Mode and "Wake-up" Procedures–8 Selectable Digital Levels for Output Power–High Data Rate and Fast Settling Time of the PLL–Low Power Oscillator Running Mode•100% Digital Interface through R/W Registers Including:–Fast Digital RSSI for Quick Channel Scanning–V CC Readout–Digital Clock Output to Drive the Companion Microcontroller•Pb-Free and RoHS CompliantDescriptionThe AT86RF211S is a shrink version of the AT86RF211. In addition to cost reduction, the use of the latest RF Atmel process provides it with a high level of robustness and performance (high output power) and significantly improves certain technical features such as power consumption. This is a 100% AT86RF211-compatible product that can be directly replaced in production, without redesigning the hardware or software. New features are also available through the software (activated by the ADDFEAT bit).Like the AT86RF211, this is a single-chip transceiver dedicated to low-power wireless applications, optimized for licence-free ISM band operations from 400 to 950 MHz. Its flexibility and unique level of integration make it a natural choice for any system related to telemetry, remote controls, alarms, radio modems, Automatic Meter Read-ing, hand-held terminals or high-tech games and appliances. The AT86RF211S makes bi-directional communications affordable for applications such as secured transmissions with hand-shake procedures, new features and services. The AT86RF211S can easily be configured to provide the optimal solution for your applica-tion: choice of external filters versus technical requirements (bandwidth, selectivity,2AT86RF211S5348B–WIRE–03/06immunity, range, etc), and software protocol (single channel, frequency agility, listen before transit, FHSS). The AT86RF211S is also well adapted to battery-operated systems, as it can be powered with as little as 2.4V. It also offers a "wake-up" receiver feature to save power by alerting the associated microcontroller only when a valid inquiry is detected.1.General OverviewThe AT86RF211S is a microcontroller RF peripheral. The chip’s setup is done by writing or reading the registers (for example, frequency selection) or by obtaining information on the parameters such as RSSI level, Vbattery or PLL lock state. These operations are all carried out via a three-wire serial interface.1.1List of New FeaturesThe AT86RF211S now replaces the AT86RF211, and offers numerous new features.The AT86RF211S can operate in two different modes, described in the following table:1.1.1Data RateThe AT86RF211S has a data rate of up to 100 kbps. The modulator and demodulator have been optimized to increase the speed of the RF links while maintaining a high per-formance level.The receiver’s bandwidth has been increased to 250 kHz for very wide band applica-tions in the US.1.1.2Low-current XTAL Running ModeIt is now possible to run the XTO alone; this is useful for real-time demanding applica-tions. The sinked current is 150 µA, increasing according to the load capacitance when the XTO signal is buffered, to be fed to a companion microcontroller (thus saving on the cost of the crystal for the MCU).1.1.3Faster RSSIThe ADC clock period can now be decreased from 12 to 1.5 µs. Faster channel scan-ning in multi-channel applications or LBT (Listen Before Transmit) is then possible, as well as ASK demodulation for low data rates.1.1.420.5 MHz Crystal with 10.7 MHz IF1 FilterIt is now easy to use a 20.5 MHz crystal and feed a very fast clock to the companion MCU, and yet keep the IF1 at 10.7 MHz. Commercially-available filters at this frequency are inexpensive and multisource.Mode Name Choice Made By Compatibility Additional Features RecommendedRF211ADDFEA T = CTRL1[0] = 0Y esNo For existing applications: direct replacement RF211SADDFEA T = CTRL1[0] = 1At reset state of DTR registerY esFor new applications or upgrades: new functions3AT86RF211S5348B–WIRE–03/061.1.5Digital Signal Output DIGOUTPin 17 was previously reserved and not connected, but can now deliver several signals:•Divided XTAL reference clock•Carrier detection when RSSI is above predefined TRSSI •XTO running flag•455 kHz signal from the discriminator PLL •Receive mode flag•1 kHz reference clock of the wake-up timer •Lock detect flag PLLL of the main PLL1.1.6Charge and Hold Data Slicer ModeAfter a charge phase, the comparison threshold of the data slicer is stored in the exter-nal SKFILT capacitor. This is an additional and very easy way to implement a transparent NRZ UART mode, for instance.1.2Low-power Standby Modes1.2.1PDN ModeThis is a very low power mode. Only the control interface is powered and I CC is as low as 500 nA typical.1.2.2XTAL RunningThe XTO remains active for short start-up-time applications at 150 µA, rising to 950 µA typical if the 10.245 MHz signal is buffered on the DIGOUT pin, assuming that the load is 10 pF.1.3Asynchronous Transparent Transmit ModeThe chip is set-up by the MCU to act as transmitter. It then acts like a pipe in which any data entering DATAMSG is immediately radiated on the antenna. No data is stored or processed on the chip. The transmission is asynchronous.4AT86RF211S5348B–WIRE–03/06Figure 1-1.Asynchronous Transparent Transmit Mode1.4Asynchronous Transparent Receive ModeSet up by the MCU in receive mode, the AT86RF211S demodulates any data available on the antenna. The data is given on the DATAMSG pin in real-time with no processing and no synchronization clock.5AT86RF211S5348B–WIRE–03/06Figure 1-2.Asynchronous Transparent Receive ModeUsing a UART controller is a good solution in this case. NRZ or Manchester coding is possible, but is to be held by the MCU itself.1.5Synchronous Receive ModesIn addition to the modes described above, the AT86RF211S provides a clock signal that facilitates recovery of data by any low-cost MCU (no UART controller, for instance).The data can also be synchronized on this clock signal—the benefits of this are:•Bit decision is done on-chip •Jitter is removed•Processing time constraints on the MCU are eliminated6AT86RF211S5348B–WIRE–03/06Figure 1-3.Synchronous Receive Mode1.6Wake-up ModeThe chip is set-up in a special Rx mode called sleep mode. The chip wakes up periodi-cally thanks to its internal timer (in a stand-alone procedure, the microcontroller is in power-down mode), and waits for an expected message defined previously. If no correct sequence is received, the periodic scan continues.If a correct message is detected, its data field is stored into the AT86RF211S (up to 32 bits) and an interrupt is generated on the WAKEUP pin.Please refer to Figure 1-3 on page 6.7AT86RF211S5348B–WIRE–03/06Figure 1-4.Wake-up OverviewFigure 1-5.Periodical Scan8AT86RF211S5348B–WIRE–03/061.7Selecting the Operating ModeFigure 1-6.Flowchart9AT86RF211S5348B–WIRE–03/061.8Block DiagramFigure 1-7.AT86RF211S Block Diagram10AT86RF211S5348B–WIRE–03/061.9Pin DescriptionNote:1.All V CC pins must be connected in each of the functional modes (Tx, Rx, wake-up, PDN).2.To be connected:Rx mode only, all but 1, 3, 20 and 48Tx mode only, all but 15, 20, 25 to 27, 30 to 36, 45 and 483.Pin 20 must remain disconnected or connected to ground.4.To monitor pin 17, refer to “Control Logic” on page 34.Table 1-1.PinoutPin Name CommentsPin Name Comments1RPOWER Full-scale output power resistor 25SKFILT Threshold for data slicer 2TXGND1GND26DSIN Data slicer input 3RF RF input/output 27DISCOUTDiscriminator output4TXGND2GND 28IF2VCC VCC 5TXGND3GND 29IF2GND GND6TXGND4GND 30IF2IN IF2 amplifier input 7TXVCC VCC 31IF2DEC 2.2 nF to ground 8TXGND5GND 32DISCFILT Discriminator bypass 9DIGND GND 33IF2OUT IF2 mixer output 10DIVCC VCC34IF1DEC 4.7 nF to ground 11DA T AMSG Input/output digital message 35IF1IN IF1 amplifier input 12SLE Serial interface enable 36IF1OUT IF1 mixer output 13SCK Serial interface clock 37AGND GND 14SDA T A Serial interface data 38AVCC VCC 15WAKEUP Wake-up output 39CVCC2VCC 16DA T ACLK Data clock recovery40CGND2GND17TEST2In RF211 Mode, do not connect 41FILT1Synthesizer output DIGOUT Additional digital features (RF211S mode)42VCOIN Synthesizer input (VCO)18EVCC1VCC 43EVCC2VCC 19EGND1GND44EGND2GND20–Test pin: do not connect 45RXIN LNA input from SAW filter 21CGND1GND 46RXVCC VCC 22CVCC1VCC 47RXGND GND 23XT AL1Crystal input 48SWOUTSwitch output24XT AL2Crystal outputAT86RF211S 2.Detailed Description2.1Frequency Synthesis2.1.1Crystal Reference OscillatorThe reference clock is based on a classic Colpitts architecture with three externalcapacitors.The bias circuitry of the oscillator is optimized to produce a low drive level for the XTAL.This reduces XTAL aging.Note:The PLL is only activated when the oscillator is stabilized.Figure 2-1.Crystal Oscillator InputsFigure 2-2.Typical NetworksNotes: 1.Various load capacitance (C L) crystals can be used. If C L differs from 16 or 20 pF, thesurrounding network (C1, C2) must be re-calculated.2.Thanks to the synthesizer’s fine steps (200 Hz), the trimmer capacitor can bereplaced by adjusting the software.Any parallel-mode 10.245, 20.5 or 20.945 MHz crystal can be used. Its load capacitancemust be between 10 and 20 pF.It is preferable to add a resistor (3.3 k Ω) between XTAL2 and GND. This decreases the settling time of the XTO to typically 8 ms with an extra power consumption of only a few hundred µA. For applications in which XTO is always active , we suggest that you remove this resistor to save battery life.If an external frequency reference is used together with the AT86RF211S, it must be applied to pin 23 XTAL1. A coupling capacitor is recommended if the source is not DC-free qualified. Pin 24 XTAL2 should remain Not Connected .2.1.2Microcontroller Clocking CapabilityThe microcontroller can be provided with a calibrated clock, derived from the clock of the AT86RF211S, with either 10.245, 20.5 or 20.945 MHz. Therefore, as detailed in “Control Logic” on page 34, this feature is only activated once and CTRL1[0] is set to "1" to access the additional features.Through internal buffers and multiplexers, the AT86RF211S can clock its companion controller. The frequency fed to the microcontroller can be adjusted by programming the DTR[20:14] bits, thus activating a set of dividers. This clock’s reference signal is avail-able on the DIGOUT pin.Table 2-1.XTO FrequenciesReference Clock FrequencyIF1 Frequency Possible IF1 Bandwidth Comments10.245 MHz10.7 MHz Up to 380 kHz Cheap ceramic filters available at 10.7 MHz20.500 MHz (RF211S mode only)10.7 MHzUp to 380 kHz20.945 MHz 21.4 MHz Up to 50 kHzCrystal filter at 21.4 MHzrequired. The cost is higher but better image rejection and selectivity can be achievedAT86RF211S Figure 2-3.MCU Clocking CapabilityRefer to “Control Logic” on page 34 for more information.2.1.3SynthesizerA high-speed, high-resolution multi-loop synthesizer is integrated. The synthesizer canoperate within two frequency bands: 400 to 480 MHz and 800 to 950 MHz. All channelswithin these two bands can be selected by programming registers F0 to F3. All circuitryis on-chip with the exception of the PLL loop filter. The phase comparison is madethanks to a charge pump topology. The typical charge pump current is 225 µA.Figure 2-4.Synthesizer Loop Filter SchematicThe PLL loop filter can be designed to optimize the phase noise around the carrier. Afew configurations for the application and channel spacing can be suggested.Figure 2-5.Choosing the Loop Filter Values2.2Receiver Description2.2.1Overview and Choice of Intermediate FrequenciesFor selectivity and flexibility purposes, a classic and robust 2 IF super-heterodyne archi-tecture has been selected for the AT86RF211S. To minimize the cost of the external components, the most popular IF values have been chosen. The impedances of the input/output of the mixing stages have been internally matched to the most common ceramic filter impedances.Two typical IF values are suggested:•10.7 MHz is the most popular option (used with a 10.245 or 20.5 MHz crystal).•21.4 MHz (used with a 20.945 MHz crystal): the image frequency is far enough from the carrier frequency to enable use of a front-end ceramic filter instead of a SAW filter. Furthermore, 21.4 MHz quartz filters usually have more abrupt slopes than 10.7 MHz ceramic filters.Note:IF1 can be any frequency but must match available ceramic filters.2.2.2Rx/Tx SwitchAn SPST switch is integrated. In transmission mode, it protects the LNA input from the large voltage swings of the Power Amplifier (PA) output (up to several volts peak-to-peak), which is switched to a high impedance state. The SPST switch is automatically turned on or off by the Rx/Tx control bit. The insertion loss is approximately 4 dB and the reverse isolation about 30 dB in a 300Ω environment.Data Rate C1C2R1Comment Low 220 pF 2.2 nF 14.7 k ΩFor improvement ofphase noiseMedium 560 pF 5.6 nF 3.3 k ΩT ypicalHigh100 pF1 nF10 kΩFor high modulation rateAT86RF211S2.2.3Image Rejection and RF FilterThe immunity of the AT86RF211S can be improved with an external band-pass filter.For example, when using a SAW filter, it must be matched with the LNA input and theoutput of the switch. The following diagram gives the typical implementation for an868 MHz application with a 50Ω/50Ω SAW filter.Figure 2-6.Typical 50Ω SAW Filter Implementation in the 868 MHz BandwidthSee Table 2-2 on page 15 for precise matching information and the Application Note“AT86RF211S FSK Transceiver for ISM Radio Applications - RF BOM vs. ApplicationRequirements” reference 5305, for suggested matching filters.2.2.4First LNA/MixerThe LNA mixer exhibits a gain of approximately 17 dB (13 dB if the reduced gain isselected) over a 1.2 GHz bandwidth. Its noise figure is typically 9 dB at 900 MHz (10 dBwith a minimum gain) when optimum matching is realized on pin 45:Table 2-2.Matching InformationFrequency Band RXIN(1)SWOUT(2)433 MHz35 + j 170Ω24 - j 43 Ω868 MHz37 + j 85 Ω50 - j 42 Ω915 MHz30 + j 85 Ω50 - j 42 ΩNotes: 1.RXIN: impedance to be seen by LNA input for NF optimization purposes2.SWOUT: output impedance of the RF switchThe gain is programmable through the CTRL1[25] register (6 dB attenuation when theminimum gain is selected). The matching choice of the switch and LNA depends mainlyon the choice of SAW filter. Usually the in/out impedance of the SAW filter is 50Ω, butother SAW filters can be implemented and the matching network recalculated by usingthe impedance information in Table 2-2.The LNA is directly coupled to the first mixer. The inputs and outputs of the LNA andmixer respectively must be connected through a capacitive link because of their internalDC coupling. A SAW or ceramic filter provides such a link.Figure 2-7.Schematic Input of the LNAFigure 2-8.Schematic Output of the MixerThe first mixer translates the input RF signal down to 10.7 or 21.4 MHz, depending onwhich of these two IF1 frequencies has been selected.The local oscillator is provided by the same synthesizer that generates a local frequency10.7 or 21.4 MHz away from the Tx carrier frequency.The output impedance of the mixer is 330Ω with a 20% accuracy, so that low-cost, stan-dard 10.7 MHz ceramic filters can be directly driven. Other IFs may be chosen thanks tothe mixer’s high bandwidth (50 MHz).2.2.5IF1 filteringA popular ceramic filter is used to reject the second image frequency and provide a firstlevel of filtering.The IF1 filter can be removed however; it leads to a sensitivity reduction of about 3 dB(the substitution coupling capacitor should be greater than 100 pF).2.2.6IF1 Gain and Second MixerThe input impedance of the IF1 amplifier is naturally 330Ω to match the input filter. Thevoltage gain, that is the gain at 10.7 or 21.4 MHz added to the conversion gain at 455kHz, is typically 14 dB when loaded with 1700Ω. The second mixer operates at a fixedLO frequency of 10.245, 10.25 or 20.945 MHz. Its output impedance is 1700Ω in parallelto 20 pF.AT86RF211SFigure 2-9.IF1 FilteringFigure 2-10.Schematic Input of the IF1 AmplifierFigure 2-11.Schematic Output of the Second Mixer2.2.7IF1 Narrow Bandwidth FiltersIF1 and IF2 filters can be replaced by a single narrowband 10.7 or 21.4 MHz crystal fil-ter. This solution has the following advantages:•Only one cheap IF1 filter is used, reducing costs•Size is optimized•Selectivity remains good, even if a very narrow 455 kHz filter is not used2.2.8IF2 Filtering and GainIF2 filtering provides a narrow channel selection. If an IF2 filter is not used, it should bereplaced by a coupling capacitor superior to 1 nF, the IF1 filter therefore being the onlypart achieving the channel selection. Available commercial filters with a 35 kHz band-width provide data rates up to 19.6 kbps if crystal temperature drifts are very low.For faster communication and/or wider channelization, this ceramic filter can bereplaced by an LC band-pass filter as suggested in Figure 2-12 on page 18.Figure 2-12.LC Band-pass FilterThe 10 nF capacitors cut the DC response. The first network has the low cut-off fre-quency and the second network the high cut-off frequency.2.2.9IF2 Amplifier ChainThe input impedance of the IF2 amplifier is 1700Ω. This value permits use of popular fil-ters with an impedance between 1500Ω and 2000Ω. The IF2 amplifier is directlyconnected to the FSK demodulator. The bandwidth is internally limited to 1 MHz to min-imize noise entering the discriminator.The IF2 amplifier acts like a band pass filter centered at 455 kHz with capacitive cou-pling between the different stages of the amplifier and mixer. The total voltage gain istypically 86 dB. Thanks to the capacitive coupling, no slow DC feedback loop is needed,thus enabling the IF2 amplifier to be activated rapidly. IF2DEC must be decoupled withat least 2.2 nF.AT86RF211SFigure 2-13.Input of the IF2 Amplifier2.2.10RSSI OutputThe RSSI value can be read as a 6-bit word in the Status register. Its value is given indB and is linear as shown in Figure 2-14:Figure 2-14.Typical RSSI Output (Board Implementation, T = 25°C, V CC = 3V)Note:Should the RSSI be required for accurate measurement purposes (for precision above5 dB), then one value should be measured with a calibrated RF source and stored intothe microcontroller during production testing.The RSSI’s dynamic range is 50 dB from a -95 dBm to -45 dBm RF input signal power, over temperature and power supply ranges. The value of the RSSI’s LSB weighs approximately 1.3 dB in the linear area. The RSSI value is measured from the IF2 chain.As the successive approximation ADC is shared by the RSSI, V CC voltage and discrimi-nator offset measurements, some bits of the CTRL1 register must be selected for a correct measurement, as illustrated in Figure 2-15:Figure 2-15.ADC Converter Input SelectionNote:For voltage measurement, the LSB weighs 85 mV and the reference voltage is 1.25V . In Reception mode, please remember that both RSSI and V CC measurements use the same ADC.The clocking period on the AT86RF211S is as short as 1.5 µs. This gives a data readout at least every 100 µs. The clock speed can, however, be reduced (for compatibility rea-sons for instance).Note: 1.From 0 to 63.Refer to “Control Logic” on page 34 for additional programming details.2.2.11FSK DemodulatorThe structure of the FSK demodulator is based on an oscillator.Table 2-3.RSSI Clocking OptionsMode Bits RSSICLK Clock Frequency Worst Case Settling Time (1)Comment RF211S only 11640 kHz 100 µs RecommendedRF211S only 10320 kHz 200 µs RF211S only01160 kHz 400 µs RF211 or RF211S0080 kHz800 µsCompatible with A T86RF211This is the only clock speed available with the A T86RF211AT86RF211SFigure 2-16.FSK Demodulator SchematicThe oscillator’s natural frequency is F D and it actually oscillates at the Fin frequency. The signal at the oscillator’s output (point A in Figure 2-16) is proportional to the fre-quency difference between Fin and F D . The XOR function translates the difference into a pulse duty cycle (point B). Thereafter, by low-pass filtering of the signal, a mean volt-age of the signal is obtained (point C).This demodulation’s architecture is thereby analog and as the output voltage is propor-tional to the input frequency, enables transmission of a continuous stream of data of the same value. It is not therefore mandatory to use Manchester encoding; the first bit is correctly demodulated.The oscillator’s feedback resistor controls the center frequency F D . It is adjusted accord-ing to the output of a dummy FSK demodulator driven by a 455 kHz internal reference frequency, which is a division of the reference crystal. The discrete components con-nected to pin 32 DISCFILT constitute the loop filter of the PLL stabilizing the 455 kHz signal.The input RBW resistor controls the discriminator bandwidth. Table 5 outlines some possible choices:Note:Please refer to the Application Note "“Data Demodulation and Crystal Selection for the AT86RF211S” , reference 5418A.Table 2-4.Discriminator Bandwidth SelectionName Applicable Mode Maximum FSK Deviation (kHz)Conversion Gain at 2.4V (mV/kHz)Conversion Gain at 3V (mV/kHz)Bit Configuration CommentNDBRF211±25 kHz2834FSKBW = 0Compatible with A T86RF211RF211S DISCRANGE = 11SDB RF211±50 kHz 1417FSKBW = 1RF211S DISCRANGE = 10MDB RF211S ±75 kHz 911DISCRANGE = 01A T86RF211S onlyWDB RF211S±125 kHz56.5DISCRANGE = 00Hereafter is an example of a possible configuration in the 600 kHz-wide 868 to 868.6MHz European sub-band, in which the European standard EN 300 220 is applicable:•SDB: 4 channels at 19.200 bps•MDB: 2 channels at 5.000 bps•WDB: 1 channel at 100.000 bpsFor further details, please refer to the Application Note "“Data Demodulation and CrystalSelection for the AT86RF211S” , reference 5418A2.2.12Data SlicerThe analog signals at the discriminator’s output (DISCOUT, pin 27) are converted intoCMOS level data by a high resolution comparator called a data slicer.The data slicer has a reference for its comparator that can be chosen using CTRL1[4].The reference sets the comparator’s comparison level. One option is to extract the aver-age value of the demodulated signal on the SKFILT pin (pin 25), described below as theexternal mode. The other option is to set an absolute value for this reference, describedbelow as the internal mode.2.2.12.1External ModeThe external mode takes the average value of the demodulated signal as the compari-son level for the comparator. There must be sufficient transitions in the message toensure that the average value remains between the 0 and 1 levels. Manchester encod-ing can be used in this mode as well as DC-free encoding schemes. The choice ofSKFILT capacitor value is a trade-off between the maximum duration of a constant bit(whether 0 or 1) and the maximum allowed settling time to charge this capacitor afterpower-up.Note:The SKFILT pin is in a high impedance state during the "sleep" period of the wake-upmode, so that the level is kept constant and there is no need to charge this tank again.2.2.12.2Internal ModeThe internal mode uses the output of a DAC as the comparison level. Once this thresh-old has been correctly set, an "absolute" data slicing of the demodulated signal ispossible—there is no need for a DC-free modulation scheme (it is possible to send a 0or a 1 infinitely).AT86RF211SFigure 2-17.Data Slicer SchematicsTo operate this way, one must make sure that the 0 and 1 levels at the output of the dis-criminator appear "on both sides" of the comparison level in order for the decision to bemade properly.Figure 2-18.Data Slicing Parameters Setup ExampleTo set the discriminator and data slicer accordingly:•The output DC level of the discriminator DISCOUT can be measured (using the A/Dembedded converter)•The DC level can be shifted up or down at the output of the discriminator through theDTR[1:0] bit:–DTR[1] = 1: +180 mV + 77 × (V CC - 2.4V)–DTR[0] = 1: -180 mV - 77 × (V CC - 2.4V)•The comparison threshold can be tuned around V CC/2 through the DTR[5:2] bit. 16levels are possible, with an LSB equal to 15 mV per volt of supply voltage. V CC/2corresponds to DTR[5:2] = 0111, and the RESET value is 1000.These procedures are made automatically by the software. Refer to the ApplicationNote "“Data Demodulation and Crystal Selection for the AT86RF211S” reference 5418.2.2.12.3Charge and Hold ModeAfter a single charge phase (for example, during a preamble), the comparison thresholdof the data slicer is stored in the external SKFILT capacitor. Once the threshold isstored, the bits that follow can be directly demodulated. Please refer to the ApplicationNote for more information.Figure 2-19.Charge and Hold Mode SchematicsNote:This mode is very similar to the external mode and differs only in that the SKFILT voltagevalue can be held.As a subdivision of the external mode (previously described) the Charge and Holdallows the following settings:•Charge: switches A and B are closed. The SKFILT capacitor charges through a100 kΩ resistor. An efficient charge or pre-charge can be done on white noise or on apreamble.•Pre-charge: to obtain a faster charging time, it is possible to keep the SKFILTcapacitor charged to V CC/2. To do so, the user shall use the charge mode whileselecting the internal reference for the data slicer.•Hold: A and B are opened so as to keep SKFILT charged. The leakage current isvery low, enabling receipt of a long set of 0 or 1, while maintaining an appropriatedata slicer threshold.Please refer to the Application Note "“Data Demodulation and Crystal Selection for theAT86RF211S” reference 5418, for details.。