实验四电容式传感器测量位移实验

合集下载

位移传感器实验报告

位移传感器实验报告

位移传感器实验报告位移传感器实验报告引言:位移传感器是一种能够测量物体位移的装置。

它在工业自动化、机器人技术、医疗设备等领域有着广泛的应用。

本实验旨在通过对位移传感器的实验研究,探索其工作原理和性能特点。

一、实验目的本实验的目的是研究位移传感器的工作原理和性能特点,了解其在实际应用中的优缺点,为后续的工程设计和应用提供参考。

二、实验装置和方法实验所用的位移传感器是一种电容式位移传感器,其工作原理是通过测量电容的变化来实现对位移的测量。

实验装置包括位移传感器、信号调理电路、数据采集系统等。

在实验过程中,首先将位移传感器固定在待测物体上,然后通过调整传感器的位置和角度,使其与被测物体保持良好的接触。

接下来,将信号调理电路与传感器连接,并将其输出与数据采集系统相连。

最后,通过改变被测物体的位移,观察位移传感器的输出信号变化,并记录相应的数据。

三、实验结果与分析在实验过程中,我们通过改变被测物体的位移,观察位移传感器的输出信号变化,并记录了相应的数据。

实验结果显示,位移传感器的输出信号随着被测物体位移的增加而线性增加,且具有较高的精度和稳定性。

进一步分析发现,位移传感器的灵敏度与传感器的工作原理和结构有关。

电容式位移传感器通过测量电容的变化来实现对位移的测量,其灵敏度受到电容变化量的影响。

因此,在实际应用中,我们需要根据具体的需求选择合适的位移传感器,以确保测量结果的准确性和可靠性。

此外,位移传感器还具有一定的温度特性。

在实验过程中,我们发现位移传感器的输出信号受到环境温度的影响。

当环境温度发生变化时,位移传感器的输出信号也会发生相应的变化。

因此,在实际应用中,我们需要对位移传感器进行温度补偿,以提高测量的精度和稳定性。

四、实验总结通过本次实验,我们深入了解了位移传感器的工作原理和性能特点。

位移传感器是一种能够测量物体位移的重要装置,在工业自动化、机器人技术、医疗设备等领域有着广泛的应用。

在实际应用中,我们需要根据具体的需求选择合适的位移传感器,并进行相应的温度补偿,以确保测量结果的准确性和可靠性。

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告前言:位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。

在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。

按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。

模拟式又可分为物性型和结构型两种。

常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。

数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。

这种传感器发展迅速,应用日益广泛。

一、电容式传感器1、传感器照片(luoshida-m30)2、应用场景管件材质:ABS塑料安装方式:齐平/非齐平检测距离:2-20mm/2-30mm可调节工作电压:10-40VDC输出方式:NPN/PNP NO/NC/NO+NC连接方式:2M PVC线缆3、测量原理这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。

这个外壳在测量过程中通常是接地或与设备的机壳相连接。

当有物体移向接近开关时,不论它是否为导体,由於它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。

这种接近开关检测的物件,不限於导体,可以绝缘的液体或粉状物等。

4、比较优点:温度稳定性好,结构简单,适应性强,动态响应好,可以实现非接触测量,具有平均效应:缺点:输出阻抗高,负载能力差,寄生电容影响大,输出特性非线性二、霍尔式位移传感器1、传感器照片(MIRAN-WOA-C-R角度位移)2、应用场景供电电压24V DC,输出信号有4-20MA、0-5V、0-10V等3、测量原理如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。

此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。

电容式传感器测位移.

电容式传感器测位移.
作为一个团队分工就显得尤为重要完成了初步的工作后来到了实验室准备调试但第一次调试的结果就不是很理想于是我们反复的分析和修改还对电路模块进行了修改经过一次次的尝试之后我们把问题慢慢的解决了然后我们就针对这部分模块进行了深入思索和修改才能完成这次的课程设计
传感器与检测技术课程设计
题目:电容式传感器测位移
C=Ɛ /d = /d
式中,
C :电容(微微法);
Ɛ:极板间介质的介电常数,空气的Ɛ= 1;
:两个极板相互覆盖的面积(cm²);
d :两个极板间的距离(cm²);
:相对介电常数;
:真空介电常数; = 0.088542*10 F/cm。
由式可见,在3个参数中,只要改变其中一个参数,即可使电容C发生变化。如果保持其中两个参数不变,就可把另一个参数的单一变化转换成电容量的变化,即可以把3个参数中的任意一个的变化转换成电容C的变化。这就是电容式传感器的基本工作原理。
本实验采用传感器为两组静态级片和一组动级片组成两个平板式变面积差动结构(两个平板是变面积电容变化量只△C=△C1-△C2)的电容位移传感器(具体平板式变面积电容式传感器原理参阅教课书),差动时一般优于单组(单边)式的传感器。它的灵敏度高,线性范围宽,稳定性高。
电容量和两个极板的间隙、表面积之间的关系可用下式表示
2、将模板上的Rw调节到中间位置(逆时针转到底再顺时传3圈)。
3、将主机箱上的电压表量程开关打到2v档,合上主机箱电源开关,旋转测微头改变电容传感器的动极板位置使电压表显示0v,再转动测微头(同一个方向)5圈,记录此时的测微头读数和电压表显示值为实验起点值。以后,反方向每转动测微头1圈即△X=0.5mm位移读取电压表读数(这样转10圈读取相应的电压表读数),将数据填入表1并作出X—V实验曲线(这样单行程位移方向做实验可以消除测微头的回差)。

电容式传感器测位移实验

电容式传感器测位移实验
电容式传感器的位移 特性实验
一、实验目的
理解差动电容式传感器的工作原理,掌握差动电容 式传感器电路的组成并会计算其精度,了解电容传感器 在位移测量中的使用。
二、实验内容
利用电容式传感器测位移
三、实验仪器
• 传感器检测技术综合实验台、电容传感器实验模块、 电容传感器、振动源实验模块、示波器、导线。
六、实验报告要求 • 1. 实验数据真实,准确,填入表格 • 2. 对数据进行处理,进行误差分析,求出 线性度,灵敏度,做出输入-输出特性曲线
七、注意事项
• 1.不要带电操作,请仔细检查电路及仪器连 接后打开电源;
• 2.传感器内外筒上导线较细,请大家轻拿轻 放,并注意在改变位移时小幅度增加,避 免拉断导线; • 3.实验完成后注意整理好仪器再离开。
四、实验原理
S 0 r S C d d
• 差动圆筒式 两个外筒不动 等电势 内筒可动

差动电容式传感器结构图
二极管环形充放电电路
cx1
a
c
cx2
五、实验步骤
1.连接电路
2. 螺旋测微仪安装示意图
2.调节脉冲调制单元的电位器W1,使其输出 方波 3. RW1调节到中间位置,旋动测微头推进电 容传感器移动至极板中间位置,使电压数显 表显示为最小值 4.旋动测微头,每间隔0.5mm记下位移X与输 出电压值,填入表

传感器实验大全(附思考题答案+实验过程+结果)

传感器实验大全(附思考题答案+实验过程+结果)

传感实验总结传感器技术与应用这门课虽只历时八周,但这却是第一次理论与实践结合能同步的专业课。

实验室去了两次,也做了很久,然自己想法甚多,多么渴望能多做些实验让自己所学的理论知识活起来。

这次试验主要做了四个实验:差动变压器的位移特性、电容式传感器的位移特性、电涡流传感器的位移特性、光纤传感器的位移特性。

下面分别说明:一.差动变压器的性能实验1.实验目的:了解差动变压器的工作原理及特性。

2. 基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段和三段式,本实验是三段式结构。

当传感器随着被测体移动时,由于初级线圈(做为差动变压器激励用,相当于变压器原边)和次级线圈(由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器副边)之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。

其输出电势反映出被测体的移动量。

3. 需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频信号源、直流电源(音频振荡器)、电压表。

4.实验步骤:1)根据图1-1,将差动变压器装在差动变压器实验模板上。

图1-1 差动变压器电容传感器安装示意图2)在模块上按图1-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率为4-5KHz(可用主控箱的频率表输入Fin来监测)。

调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X轴为0.2ms/div)。

图中1、2、3、4、5、6为连接线插座的编号。

接线时,航空插头上的号码与之对应。

当然不看插孔号码,也可以判别初次级线圈及次级同名端。

判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图1—2接线。

当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。

电容式传感器的位移特性实验报告资料

电容式传感器的位移特性实验报告资料

电容式传感器的位移特性实验报告资料一、实验内容:1、使用电容式传感器进行位移测量;2、采用锁相放大器,对位移测量进行信号检测,输出交流(AC)信号幅度和相位;3、掌握电容式传感器的阻抗和信号特性。

二、实验原理:1、电容式传感器:是将测量物体与一个接地电极分离,形成一个独立的电容二极管。

当测量物体发生位移时,该二极管电容Cc变化,即Cc=f(d),d是测量位移。

在保持传感器静态工作点C0不变的情况下,当Cc发生变化时,不受测物位移的干扰。

因此,电容式传感器可以实现高精度、无接触、无磨损位移测量。

2、锁相放大器:是一种适用于相位、频率、振幅等参数检测的精密电子测量仪器。

它可以对微弱的交流信号检测并输出信号幅度和相位。

三、实验器材:2、锁相放大器;3、信号调理器;4、多路开关;5、示波器。

四、实验过程:1、在传感器静态工作点时,接触传感器,调整微调电容,使电压稳定在一个固定值;2、调整开关,将传感器所测量的位移信号输入信号调理器内,进行信号调理,可以得到一个幅度为1V、频率为10kHz左右、带有微弱噪声的交流信号;3、将调理后的信号连接至锁相放大器的输入端,将锁相放大器的参考输入端连接至信号调理器输出端,调节锁相放大器的参考信号相位,使锁相放大器输出的交流信号幅度和参考信号相位一致;4、通过示波器连接至锁相放大器输出端,调节示波器测量参数,可以得到锁相放大器输出信号的AC幅度和相位值;5、通过多路开关改变传感器输入的位移值,重复以上步骤,得到传感器的位移特性曲线。

五、实验结果:在不同的测量点进行测量,在锁相放大器中得到具有不同幅度和相位的AC信号,通过信号处理以及调制,最终得到有关电容式传感器位移特性曲线,从中发现电容性传感器在不同测量点上具有不同的灵敏度,以及对于位移值的反应截然不同,这也是电容式传感器的特点,需要在实际应用中进行合理的选择和设计。

六、实验分析:通过实验,我们发现电容式传感器的测量值和测量量并非简单的线性关系,仅仅是对于位移变化而产生的电容变化,同时也受到感应现象、环境噪声的影响。

电容式传感器的位移特性实验

电容式传感器的位移特性实验

电容式传感器的位移特性实验电容式位移传感器实验是一种重要的引导应用考核技术,它要求用户在复杂的实验环境中结合理论知识和实际操作,使用电容式位移传感器来测量和检验其变化。

电容式位移传感器具有灵敏度高、稳定性好、良好的鲁棒性等优点,在工业控制领域中得到广泛应用。

实验 content一、研究内容1、电容式位移传感器介绍:介绍电容式位移传感器的原理工作原理、接线结构以及精度要求等。

2、等效电路仿真:使用电路仿真软件,仿真输入电压的变化对电容式位移传感器的影响。

3、实验素材:利用工业电容式位移传感器,测量传感器的位移特性,探查其非线性特性以及如何改善精度。

4、仪器设备:利用函数发生器、数字万用表、模拟量信号示波器等常用仪器设备,分别检测典型电容器位移传感器的精度。

5、结论性评价:评价:分析电容式位移传感器的特性,对它的优缺点进行总结,指出如何提高其精度,进一步建立相关的计算模型。

二、实验原理1、电容式位移传感器由两个电容构成,其原理是由于特定环境改变时,电容之间的介质改变,会在电容上形成电容电势差而发生变化,从而使电容式位移传感器的内部电路受到影响,最终通过电容变化改变其输出电压。

2、实验中利用函数发生器产生跨越输入电压,观察输出电压的变化,研究电容式位移传感器的补偿特性和灵敏度。

3、设置正反向斜率的步进电压,控制正反向补偿电压间隔,观察其非线性特性,探究其实际特性。

4、模拟量信号示波器给出电容式位移传感器的不同输出电压,观察实际精度,辅助分析结果。

三、实验结果1、经过仿真计算,确定电容式位移传感器补偿特性曲线,补偿范围较大,灵敏度及时响应速度较快,补偿特性良好。

2、观察实验电路中电容式位移传感器的输出电压,发现其在正反向补偿斜率步进电压下,相应的响应有非线性变化,合理,可靠。

3、通过模拟量信号示波器的输出,可分析典型电容式位移传感器的精度,表明电容式位移传感器的精度较高,可以满足应用要求。

四、结论1、电容式位移传感器具有灵敏度高、稳定性优、较好的精度等特点,在工业控制领域具有广泛应用。

电容式传感器测位移特性实验

电容式传感器测位移特性实验

电容式传感器测位移特性实验电容式传感器是一种常用的位移传感器,采用电容式将小的位移量变化,转变成模拟电压来发送,以实现检测和测量的目的,其具有快速响应、高精度和反应稳定的特点,被广泛应用到航空、航天、工业控制仪表等领域。

本实验将通过实验设备进行测量电容式传感器的位移特性,以更加深入的了解电容式传感器的工作特性。

实验装置是一台专业的电容测试仪,此外还配有一个线性位移模拟器、一个电容式传感器、一些实验电缆和接口线等辅助设备。

实验可分为三个步骤:绘制拟合曲线前的实验前准备工作、将电容式传感器的位移信号变为模拟电压的转换过程以及拟合测得的曲线。

1、实验前准备工作:首先,将位移模拟器接线连接到实验装置;随后,将电容式传感器接入实验装置,并将电容传感器安装在位移模拟器上;最后,调节电容测试仪偏置电路,矫正偏置电压,以设定有效位移信号范围。

2、将电容式传感器的位移信号变为模拟电压的转换过程:在实验中,将位移模拟器的调置电位从最小值(0mm)调至最大值(50mm),从而控制位移模拟器产生不同的位移量。

每次顺序调节时,实验装置将其位移量所产生的信号作为输入,经过转换后将电容式传感器的位移信号变成一定失真程度的模拟电压信号,从而可进行数据获取。

3、拟合测得的曲线:由于电容式传感器的反应特性的确定,在本实验中选择了一种标准的二次曲线进行拟合,以便更好地了解其工作原理。

在拟合曲线以及拟合曲线的过程中,采用的是软件的拟合算法,计算出最佳的参数并绘制拟合曲线。

实验结果表明,本次实验证明了电容式传感器位移特性测试实验使用电容式传感器和实验装置进行测量均具有可行性和准确性,为此类传感器的应用提供了足够的参考。

此外,本次实验也体现了软件算法拟合准确性以及实验数据在绘制曲线过程中的重要性等。

实验四--电容式传感器的位移特性实验

实验四--电容式传感器的位移特性实验

实验四 电容式传感器的位移特性实验一、实验目的了解电容传感器的结构及特点,电容传感器的位移测量原理。

二、实验仪器电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源、绝缘护套 三、实验原理电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器,它实质上是具有一个可变参数的电容器。

利用平板电容器原理: dSdSC r ⋅⋅==εεε0 (4-1)式中,S 为极板面积,d 为极板间距离,ε0真空介电常数,εr 介质相对介电常数,由此可以看出当被测物理量使S 、d 或εr 发生变化时,电容量C 随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。

所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。

这里采用变面积式,如图4-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。

图4-1 差动电容传感器原理图四、实验内容与步骤1.按图4-2将电容传感器安装在传感器固定架上,将传感器引线插入电容传感器实验模块插座中。

图4-2 电容传感器安装示意图2.将电容传感器模块的输出U O 接到数显直流电压表。

3.将实验台上±15V 电源接到传感器模块上。

检查接线无误后,开启实验台电源,用电压表2V档测量“电容传感器模块”的输出,将电容传感器调至中间位置,调节Rw,使得数显直流电压表显示为0(2V档)。

(Rw确定后不要改动)4.旋动测微头推进电容传感器的共享极板(下极板),每隔0.2mm记下位移量X与输出电压值V的变化,填入下表4-1。

五、实验报告1.根据表4-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。

传感器测试实验报告

传感器测试实验报告

传感器测试实验报告实验一直流激励时霍尔传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。

具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势UH=KHIB,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为UHk_,式中k—位移传感器的灵敏度。

这样它就可以用来测量位移。

霍尔电动势的极性表示了元件的方向。

磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。

三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、15V直流电源、测微头、数显单元。

四、实验步骤:1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。

1、3为电源5V,2、4为输出。

2、开启电源,调节测微头使霍XX大致在磁铁中间位置,再调节Rw1使数显表指示为零。

图9-1直流激励时霍尔传感器位移实验接线图3、测微头往轴向方向推进,每转动0.2mm记下一个读数,直到读数近似不变,将读数填入表9-1。

表9-1作出V-_曲线,计算不同线性范围时的灵敏度和非线性误差。

五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。

2、不要将霍尔传感器的激励电压错接成15V,否则将可能烧毁霍尔元件。

六、思考题:本实验中霍尔元件位移的线性度实际上反映的时什么量的变化七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。

2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

实验二集成温度传感器的特性一、实验目的:了解常用的集成温度传感器基本原理、性能与应用。

二、基本原理:集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+150℃之间测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极—发射极电压与温度成线性关系。

传感器的位移测量实验

传感器的位移测量实验

位移测量实验报告专业班级姓名实验仪器编号实验日期一、实验目的掌握常用的位移传感器的测量原理、特点及使用,并进行静态标定。

二、实验仪器CSY10B型传感器系统实验仪。

三、实验内容(一)电涡流传感器测位移实验·1、测量原理扁平线圈中通以交变电流,与其平行的金属片中产生电涡流。

电涡流的大小影响线圈的阻抗Z。

Z = f(ρ,μ,ω,x)。

不同的金属材料有不同的ρ、μ,线圈接入相应的电路中,用铁、铝两种不同的金属材料片分别标定出测量电路的输出电压U与距离x的关系曲线。

2、测试系统组建电涡流线圈、电涡流变换器(包括振荡器、测量电路及低通滤波输出电路)、测微头、电压表、金属片。

3、试验步骤4、数据分析与讨论画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。

(二)光纤传感器测位移实验1、测量原理反射式光纤传感器属于结构型, 工作原理如图。

反射式位移传感器原理当发光二极管发射红外光线经光纤照射至反射体,被反射的光经接收光纤至光电元件。

经光电元件转换为电信号。

经相应的测量电路测出照射至光电元件的光强的变化。

2、组建测试系统光纤、光电元件、发光二级管、光电变换测量电路、数字电压表、反射体(片)、测微头。

3、实验步骤4、数据分析与讨论画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。

(三)电容式传感器测位移实验1、测量原理电容式传感器是将被测物理量转换成电容量的变化来实现测量的。

本实验采用的电容式传感器为二组固定极片与一组动极片组成二个差动变化的变面积型平行极板电容式传感器。

电容式位移传感器测量系统方框图:2、组建测试系统需用器件与单元:机头中的振动台、测微头、电容传感器;显示面板中的电压表;调理电路面板传感器输出单元中的电容;调理电路单元中的电容变换器(包括了振荡电路、测量电路和低通滤波电路在内)、差动放大器。

3、实验步骤1)、接线。

调节测微头的微分筒使测微头的测杆端部与振动台吸合,再逆时针调节测微头的微分筒(振动台带动电容传感器的动片阻上升),直到电容传感器的动片组与静片组上沿基本平齐为止(测微头的读数大约为20mm左右)作为位移的起始点。

测控技术与仪器传感器技术实验报告电容式传感器的位移实验

测控技术与仪器传感器技术实验报告电容式传感器的位移实验

测控技术与仪器传感器技术实验报告电容式传感器的位移实验
一、实验内容
本实验旨在检测和分析电容式传感器的位移响应性能,以及在位移为特定值时对应的电容值。

二、实验原理
电容式传感器可以用来检测物体或介质(如气体或液体)的位移,它的原理是根据电容变化而变化,电容的基本原理是容量的大小取决于相应电容片的表面积和充放电电路中的介质介电系数,由于电容器中有物体或介质的变化,使得变化的电容量也随之变化,以实现位移检测的目的。

三、仪器及耗材
本实验所需设备主要为有限元分析仪,辅以相关耗材。

四、实验流程
1.将实验构筑出电容传感器测量定位系统,主要由电容传感器、测量电路以及数据分析软件等组成;
2.安装各种位移规测拨动台;
3.使用有限元分析仪,测量不同位移情况下对应的电容值;
4.绘制电容值随位移变化曲线;
5.结合实验结果推测实验结果并敏感度记录结果。

五、实验结果
(1)在位移为-100mm时,电容值为0.71;
(5)在位移为100mm时,电容值为0.86。

将各不同位移情况下的电容值进行扩展绘图:
六、敏感度分析
根据以上实验结果可以推算得出电容式位移传感器的敏感度为0.05F/mm。

七、讨论
电容式位移传感器的位移变化率符合要求,表明该类传感器可以满足实际应用的需求。

但是因为其固有特性,容易受湿度和粉尘影响,也就是说,它的精度和可靠性需要有效地
控制。

4实验(四)差动变面积式电容传感器

4实验(四)差动变面积式电容传感器

电子信息工程学系实验报告课程名称:传感器与检测技术成绩:实验项目名称:实验(四)差动变面积式电容传感器实验时间:2011.10.07指导教师(签名):班级:测控91 姓名:陈云学号:910707153实验目的:了解差动变面积式电容传感器的原理及其特性。

实验环境:示波器和CSY-910型传感器实验仪:电容传感器、电压放大器、低通滤波器、F/V表实验内容及过程:1、实验原理电容式传感器有多种形式,本仪器中差动变面积式。

传感器由两组定片和一组动片组成。

当安装于振动台上的动片上、下改变位置,与两组静片之间的重叠面积发生变化,极间电容也发生相应变化,成为差动电容。

如将上层定片与动片形成的电容定为Cxl,下层定片与动片形成的电容定为Cx2,当将Cxl和Cx2接入桥路作为相邻两臂时,桥路的输出电压与电容量的变化有关,即与振动台的位移有关。

2、旋钮初始位置差动放大器增益旋钮置于中间,F/V表置于2V档。

3、实验步骤(1)根据图接线。

(2)将F/V表打到20V,调节测微头,使输出为零。

(3)转动测微头,每次0.1mm,记下此时测微头的读数及电压表的读数,直至电容动片与上(或下)静片覆盖面积最大为止。

X(mm)V(mV)(4)退回测微头至初始位置。

并开始以相反方向旋动。

同上法,记下X(mm)及V(mv)值。

X(mm)V(mV)(5)计算系统灵敏度S=△V/△X,并作出Ⅴ-X曲线。

实验结果及分析:每次0.1mm,记下此时测微头的读数及电压表的读数:X(mm) 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3V(mV) 0.02 0.24 0.46 0.69 0.93 1.14 1.43 1.66 1.94 2.13 2.36退回测微头至初始位置。

并开始以相反方向旋动。

同上法,记下X(mm)及V(mv)值:X(mm) 11.3 11.2 11.1 11.0 10.9 10.8 10.7 10.6 10.5 10.4 10.3V(mV) 0.02 -0.21 -0.45 -0.67 -0.91 -1.13 -1.40 -1.62 -1.91 -2.10 -2.18计算系统灵敏度S=△V/△X,并作出Ⅴ-X曲线。

电容式传感器的位移实验总结

电容式传感器的位移实验总结

电容式传感器的位移实验总结1. 引言嘿,大家好!今天咱们聊聊电容式传感器的位移实验。

是不是听起来有点高大上?别担心,咱们用最简单的语言来掰扯一下。

电容式传感器,这玩意儿可真是科技的小精灵,能精确测量位移。

想象一下,你的手机屏幕触摸,背后就有这么个“小能手”在忙活。

2. 实验准备2.1 实验设备在实验开始之前,咱们得先准备好设备。

电容式传感器、万用表,还有一些基本的实验工具,比如电源和连接线。

这些东西就像做饭的调料,没有它们,啥都别想做出来。

别忘了,实验室的环境也很重要,要保持干净整洁,像你家里打扫的一样,才能心情好,实验也顺利。

2.2 实验步骤接下来,咱们就要进入正题,嘿嘿!先把传感器连接到电路上,确保一切都能正常工作。

然后,慢慢调整传感器的位移,注意观察数据的变化。

每次移动一点点,传感器就会像个小孩子,立刻给你反馈。

这时候你会感受到,哇,科技就是这么神奇!感觉自己像是进入了未来世界,嘿,有点小激动。

3. 实验结果分析3.1 数据观察实验结束后,拿到的数据就像一份宝藏。

你会发现,位移和电容之间的关系简直清晰得让人惊讶。

每当你移动传感器,电容的变化就像过山车一样,一上又下一惊一乍。

通过这些数据,咱们可以推导出一些公式,仿佛揭开了一个个小秘密,让人忍不住想深入探索。

3.2 误差分析不过,任何事情都不可能完美无缺,对吧?在实验中,总会遇到一些小麻烦。

比如环境的干扰、设备的灵敏度等等,都是影响结果的“捣蛋鬼”。

这时候,别急着骂它们,先冷静下来,想想怎么克服这些问题。

用心去分析,每个误差都是你进步的机会,别小看它们哦!4. 总结与展望实验的最后,咱们得给这次经历一个总结。

电容式传感器在位移测量中的应用真是让人眼前一亮,它的高精度和实时性让很多传统方法相形见绌。

未来,随着科技的发展,这种传感器会越来越普遍,可能在你生活的方方面面都有它的身影。

想到这里,心里满满的都是期待!谁知道呢,或许下一个伟大的发明就是从这些实验中诞生的。

传感器技术-电容式传感器的位移实验

传感器技术-电容式传感器的位移实验
《传感器技术》课程实验报告
专业名称
年级
班级
学生姓名
指导老师
时间
实验名称
电容式传感器的位移实验







1.了解电容式传感器的结构及其特点




电容传感器、电容传感器实验模板,测微头,移相/相敏检波/滤波模板、数显单元、直流稳压电源




用平板电容C=EAd的关系,在E、A、d中三个参数中,保持二个参数不变,只改变其中一个参数。就可使电容(C)发生变化,通过相应的测量电路,将电容的变化量转换成相应的电电压量,则可以制成多种电容传感器,如:变ε的温度电容传感器。②变d的电容孝式压力传感器。③变A的电容式位移传感器。本实验采用第⑧种电容传感器,是-种圆筒形差动变面积式电容传感器。









1、按图3- 1将电容传感器装于电容传感器实验模板上。
2、将电容传感器连线指入电容传感器实验模板,实验线路见图4-1。
3、将电容传感器实验模板的输出端V。与数显电压表V,相接,电压表量程置2V档.R调节到中同位置:
4、接入士15V电源,将测微头旋至10mm处,活动杆与传感器相吸合,调整测微头的左右位置,使电压表指示最小,并将测量支架顶部的镙钉拧紧,旋动测微头,每问隔0.2mm记下输出电压值(V ),填入表4- 1.测微头回到10mm处,反向旋动测微头,重复实验过程。


过程Biblioteka 及实验结

1.


1.注意电压表选择的量程。
2.实验前将电压表数值调零。



电容式传感器的位移实验报告

电容式传感器的位移实验报告

电容式传感器的位移实验报告电容式传感器的位移实验报告概述:电容式传感器是一种常见的传感器类型,它通过测量电容的变化来检测物体的位移。

在本次实验中,我们将使用电容式传感器来测量一个物体的位移,并分析实验结果。

实验装置:1. 电容式传感器:我们选择了一款高精度的电容式传感器,具有稳定的性能和较小的测量误差。

2. 信号采集器:为了获取传感器的输出信号,我们使用了一台信号采集器,并将其连接到电容式传感器。

3. 物体:我们选择了一个简单的金属块作为实验物体,通过移动该物体来模拟位移。

实验步骤:1. 连接:首先,我们将电容式传感器与信号采集器进行连接。

确保连接稳固可靠,并避免干扰信号的出现。

2. 校准:在进行实际测量之前,我们需要对电容式传感器进行校准。

校准的目的是确定传感器的输出与实际位移之间的关系。

3. 实验测量:将物体放置在传感器的测量范围内,并通过移动物体来模拟位移。

同时,记录传感器输出的变化,并与实际位移进行对比。

实验结果与分析:通过实验测量,我们得到了一系列传感器的输出值,并与实际位移进行了对比。

根据我们的实验数据,我们可以得出以下结论:1. 传感器输出与位移之间存在线性关系:通过绘制传感器输出与实际位移之间的散点图,我们发现它们之间存在明显的线性关系。

这意味着电容式传感器在测量位移方面具有较高的准确性和可靠性。

2. 测量误差存在:尽管电容式传感器具有较高的精度,但在实际测量中仍存在一定的误差。

这些误差可能来自于传感器本身的不确定性,以及实验环境中的干扰因素。

因此,在实际应用中,我们需要对测量结果进行修正和校准。

3. 传感器响应速度:通过观察传感器输出的变化曲线,我们可以了解到电容式传感器的响应速度。

在实验中,我们发现传感器的响应速度相对较快,能够准确地跟踪物体的位移变化。

实验应用:电容式传感器在工业和科学研究领域有着广泛的应用。

以下是一些常见的应用领域:1. 位移测量:正如我们在实验中所展示的,电容式传感器可以用于测量物体的位移。

电容式传感器的位移特性实验报告

电容式传感器的位移特性实验报告
半径。当两圆筒相对移动 Δl 时,电容变化量 ΔC 为:
∆C =
2πεd
2πε( − ∆)
2πε∆


=
= 0
ln(r2 /r1 )
ln(r2 /r1 )
ln(r2 /r1 )

于是,可得其静态灵敏度为:
=

2πε( + ∆) 2πε( − ∆)
4πε
=[

]/∆ =

-418
-403
-388
X/mm
12
12.5
13
13.5
14
14.5
15
15.5
16
16.5
17
17.5
U/mv
-372
-356
-339
-322
-304
-286
-269
-251
-231
-211
-192
-171
X/mm
18
18.5
19
19.5
20
20.5
21
21.5
22
22.5
23
23.5
U/mv
-149
72
74
79
85
89
89
85
77
X/mm
23.5
23
22.5
22
21.5
21
20.5
20
19.5
19
18.5
18
U/mv
66
52
35
17

-1
-21
-40
-61
-82
-104
-125
-147

电容式传感器实验

电容式传感器实验

电容式传感器实验
1 实验目的
了解电容式传感器原理及位移测量的原理;
2 实验仪器
电容传感器实验模块
示波器:DS5062CE
微机电源:WD990型,±12V
万用表:VC9804A型
电源连接电缆
螺旋测微仪
3 实验原理
差动式同轴变面积电容的两组电容片Cx1与Cx2作为双T电桥的两臂,当电容量发生变化时,桥路输出电压发生变化。

原理图如图1所示。

图1 电容式传感器工作原理
4 实验步骤
实验步骤如下:
(1)用电源电缆连接电源和电容传感器实验模块(插孔在后侧板),其中电缆的橙蓝线为+12V,白蓝线为-12V,隔离皮(金色)为地,切记勿接错!
(2)观察电容传感器结构:传感器由一个动极与两个定级组成,按图1接好实验线路,增益适当。

(3)打开微机电源,用测微仪带动传感器动极位移至两组定极中间,调整调零电位器,此时模块电路输出为零。

(4)前后位移动极,每次0.5mm,直至动静极完全重合为止,记录数据,作出电压-位移曲线。

5实验结果
6.实验总结
6.1电容式传感器的工作原理将被测量转化为电容量的变化。

传感器图像如下:
圆筒形电容器的电容为:C=2πεx
ln⁡(D
d
)。

输入输出成线性关系,但灵敏度低。

6.2有实验数据可得,呈线性关系,中心位置为12.35mm,与12.5mm 相差的原因如下:
(1)电路存在延迟效应,测量数据有误差,取平均减小误差。

(2)没有机械调零,导致零位存在电压。

(3)测量外界电磁的干扰。

关于传感器实训总结报告

关于传感器实训总结报告

一、前言随着科技的飞速发展,传感器技术作为信息采集与处理的重要手段,在各行各业中发挥着越来越重要的作用。

为了更好地了解传感器的工作原理、特性及应用,提高我们的实际操作能力,我们参加了本次传感器实训课程。

以下是本次实训的总结报告。

二、实训内容1. 传感器基础知识实训过程中,我们学习了传感器的定义、分类、工作原理、特性及传感器的应用等基础知识。

通过理论学习和实际操作,我们对传感器的原理有了更加深刻的认识。

2. 传感器实验(1)电阻式传感器实验在电阻式传感器实验中,我们学习了电阻式传感器的原理、分类、应用等。

通过实际操作,掌握了电阻式传感器的调试方法,并了解了电阻式传感器在测量温度、压力等领域的应用。

(2)电容式传感器实验电容式传感器实验中,我们学习了电容式传感器的原理、分类、应用等。

通过实际操作,掌握了电容式传感器的调试方法,并了解了电容式传感器在测量位移、液位等领域的应用。

(3)电感式传感器实验电感式传感器实验中,我们学习了电感式传感器的原理、分类、应用等。

通过实际操作,掌握了电感式传感器的调试方法,并了解了电感式传感器在测量速度、位移等领域的应用。

(4)压电式传感器实验压电式传感器实验中,我们学习了压电式传感器的原理、分类、应用等。

通过实际操作,掌握了压电式传感器的调试方法,并了解了压电式传感器在测量加速度、压力等领域的应用。

(5)磁电式传感器实验磁电式传感器实验中,我们学习了磁电式传感器的原理、分类、应用等。

通过实际操作,掌握了磁电式传感器的调试方法,并了解了磁电式传感器在测量速度、角度等领域的应用。

(6)光电式传感器实验光电式传感器实验中,我们学习了光电式传感器的原理、分类、应用等。

通过实际操作,掌握了光电式传感器的调试方法,并了解了光电式传感器在测量位移、距离等领域的应用。

(7)霍尔式传感器实验霍尔式传感器实验中,我们学习了霍尔式传感器的原理、分类、应用等。

通过实际操作,掌握了霍尔式传感器的调试方法,并了解了霍尔式传感器在测量角度、速度等领域的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四电容式传感器测
量位移实验
公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]
电容式传感器测量位移实验
一、实验目的
(1)了解电容式传感器结构及原理。

(2)熟悉数据采集系统的结构与应用。

二、基本原理
(一)电容式传感器及其测量电路
1、电容式传感器
本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图1所示:它是有二个圆筒和一个圆柱组成的。

设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2?x/ln(R/r)。

图中C1、C2是差动连接,当图中的圆柱产生?X位移时,电容量的变化量为?C=C1-C2=ε2?2?X/
ln(R/r),式中ε2?、ln(R/r)为常数,说明?C与位移?X成正比,配上配套测量电路就能测量位移。

图1 实验电容式传感器结构示意图
2、测量电路
测量电路画在实验模板的面板上,其电路的核心部分是二极管充放电电路。

(二)数据采集系统
数据采集系统(数据采集卡)对实验数据(模拟量)进行采集并与计算机
(PC机)通讯,再用计算机对实验数据进行分析处理。

其原理框图如图2所示。

图2数据采集系统实验原理框图
三、需用器件与单元
主机箱、电容传感器、电容传感器实验模板、测微头;数据采集通讯卡 (内置
式,已经装在主机箱内)、RS232连线、计算机。

附:测微头的组成与使用
测微头组成和读数如图3所示。

测微头读数图
图3测位头组成与读数
测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。

测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。

用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。

微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。

测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图3甲读数为3.678mm,不是3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图3乙已过零则读2.514mm;如图3丙未过零,则不应读为2mm,读数应为1.980mm。

测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。

一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。

当转动测微头的微分筒时,被测体就会随测杆而位移。

四、实验步骤:
1、按图4将电容传感器装于电容传感器实验模板上并按图示意接线(实验
模板±15V电源端口接主机箱±15V电源;实验模板的输出VO1接主机箱电压表的Vin)。

图4 电容传感器测量位移实验安装、接线图
2、将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时传3圈)。

3、将主机箱上的电压表量程(显示选择)开关打到2v档,合上主机箱电源开关,旋转测微头改变电容传感器的动极板位置使电压表显示0v,再沿同一方向(如测微头读数减小方向)转动测微头5圈,记录此时的测微头读数和电压表显示值,作为实验起点值。

之后,反方向转动测微头,每转动测微头1圈即△X=0.5mm位移读取电压表读数(这样转10圈读取相应的电压表读数),将数据填入表1并作出X—V实验曲线。

4、根据表1数据计算电容传感器的系统灵敏度S和非线性误差δ。

表1电容传感器位移与输出电压值
X(mm
)
V(mv
)
(1)准备10V电源:在主机箱上按图2接线。

将电压表的量程切换开关切到20V档,检查接线无误后合上主机箱电源开关,调节转速调节0~24V电源使电压表显示(调节好后保持转速调节旋钮位置不变)。

关闭电源。

(2)软件标定(以通道A为例):
分别按图6和图7示意接线,V和I选择按钮选择Vin。

检查接线无误后和上主机箱电源进行软件0V、10V标定(前提:电脑已安装好配套软件并已正常开机)。

按图6接线,合上主机箱电源后按电脑软件界面“0V”键三次;在转换成图4接线时不用关闭主机箱电源,而是带电接线后按电脑软件界面中“10V”键三次,然后再点击电脑软件界面中“保存标定”键。

图5 准备10V电源接线示意图
图6 软件0V标定接线示意图
图7 软件10V标定接线示意图
6、利用利用数据采集卡采集电容式传感器测量位移实验的实验数据。

记录和保存实验结果。

思考题:比较人工记录实验数据与计算机记录实验数据,如有差异,试分析原因。

相关文档
最新文档