高中数学竞赛试题

合集下载

高中数学比赛试题及答案

高中数学比赛试题及答案

高中数学比赛试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)=x^2-2x+1,则f(-1)的值为:A. 0B. 1C. 2D. 32. 已知等差数列{an},其中a1=3,公差d=2,求a5的值:A. 9B. 11C. 13D. 153. 计算下列极限:lim (x→0) [sin(x)/x] 的值为:A. 0B. 1C. 2D. 34. 圆的方程为x^2+y^2-4x-6y+9=0,圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)二、填空题(每题5分,共20分)5. 计算复数z=1+2i的模长:________。

6. 一个三角形的三个内角分别为α、β、γ,若α=30°,β=60°,则γ=________°。

7. 已知函数f(x)=x^3-3x^2+2x,求f'(x)=________。

8. 一个等比数列的前三项依次为2,4,8,求此数列的第5项:________。

三、解答题(每题15分,共30分)9. 已知函数f(x)=x^3-3x^2+2x,求f(x)的单调区间。

10. 证明:对于任意实数x,不等式x^2-2x+2>0恒成立。

四、综合题(每题20分,共40分)11. 已知函数f(x)=x^2-2x+1,求f(x)在区间[0,3]上的最大值和最小值。

12. 解方程:x^3-3x^2+4x-4=0,并说明其根的性质。

答案:一、选择题1. B2. D3. B4. A二、填空题5. √56. 907. 3x^2-6x+28. 32三、解答题9. 函数f(x)的导数为f'(x)=3x^2-6x+2。

令f'(x)>0,解得x<1或x>2,因此f(x)在区间(-∞,1)和(2,+∞)上单调递增。

令f'(x)<0,解得1<x<2,因此f(x)在区间(1,2)上单调递减。

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选(带答案)高中数学竞赛是中学生竞赛中最重要的一部分,它不仅需要智力,还需要充分发挥数学能力和思维能力。

以下是一些高中数学竞赛赛题的精选和解答。

1. 设$a_n=x^n$+5的前n项和为S(n),求S(n+1)-S(n)的值。

解:S(n+1)-S(n)=(x^n+1+5)-(x^n+5)=(x^n+1)-(x^n)=x^n(x-1)。

由于$a_n=x^n+5$,所以S(n)=a_0+a_1+...+a_n=(x^0+5)+(x^1+5)+...+(x^n+5)=(x^0+x^1+...+x^n)+5(n+1),因此S(n+1)-S(n)=x^n(x-1)=(S(n+1)-S(n)-5(n+2))/(x^0+x^1+...+x^n)。

2. 已知函数f(x)=sin(x)+cos(x),0≤x≤π/2,求f(x)在[0,π/4]上的最小值。

解:f(x)=sin(x)+cos(x)=√2sin(x+π/4),当0≤x≤π/4时,x+π/4≤π/2,sin(x+π/4)不小于0,因此f(x)的最小值由sin(x+π/4)的最小值决定。

sin(x+π/4)的最小值为-√2/2,因此f(x)的最小值为-1。

3. 已知正整数n,设P(n)是n的质因数分解中所有质因数加起来的和,Q(n)是n的数字分解中所有数位加起来的和。

给定P(n)+Q(n)=n,求最小的n。

解:P(n)的范围是2到9×log_10n之间,因此可以枚举P(n)和Q(n),判断它们之和是否等于n。

当P(n)取到最小值2时,Q(n)的最大值为9log_10n,因此n的最小值为11。

4. 已知函数f(x)=2cos^2x-3cosx+1,x∈[0,2π],求f(x)的最小值。

解:由于f(x)=2cos^2x-3cosx+1=2(cosx-1/2)^2-1/2,因此f(x)的最小值为-1/2,且取到最小值的x为0或2π。

5. 已知正整数n,求使得3^n的末2位是9的最小正整数n。

2023高中数学竞赛决赛试题

2023高中数学竞赛决赛试题

2023高中数学竞赛决赛试题2023高中数学竞赛决赛试题一、选择题设集合A = {x | x = 3k + 1, k Z}∈,B = {x | x = 3k + 2, k Z}∈,则集合A 和B 的关系是:A. A B ⊆B. B A ⊆C. A = B D. A ∩ B = ∅已知 x > 1,则函数 y = x + (1/x) 的最小值为:A. 2√2B. √2C. 4D. 不存在若函数 f(x) = (x - a)/(x^2 + 1) 在区间 (-2,2) 上是奇函数,则 a 的取值范围是:A. a = ±√2B. a = -√2C. a = ±1D. a = -1下列各组中的两个函数是同一函数的是:A. f(x) = x^2 和 g(x) = (√x)^2B. f(x) = x 和 g(x) = √x^2C. f(x) = |x| 和 g(x) = (√(x^2))D. f(x) = x 和 g(x) = (√(x))^2在等差数列 {an} 中,a3 + a8 > 0,则有:A. a1 + a10 > 0B. a2 + a9 > 0C. a4 + a7 > 0D. a5 + a6 > 0若实数 x, y 满足 x^2 + y^2 = 1,则 (x + 2)^2 + (y + 2)^2 的最小值为:A. 4√5/5B. √5 - 1C. √5 + 1D. 5/4下列各式中正确的是:A. lim(x→∞) (sin x/x) = 0B .lim(x→∞) (x·sin x/x) = 1C .lim(x→∞) (sin x/x^2) = 0D .lim(x→∞) ((sin x)/x)^x = e^(-1)下列说法中正确的是:A. “直线 l 在平面 α 内”等价于“直线 l 与平面 α 有公共点”B. “直线 l 与直线 l' 在平面 α 内相交”等价于“直线 l 与直线 l' 有公共点”C. “直线 l 与平面 α 的平行”等价于“直线 l 与平面 α 没有公共点”D. “直线 l 与直线 l' 在平面 α 内平行”等价于“直线 l 与直线 l' 没有公共点”一个袋子中有大小形状相同的红、黄、蓝三种颜色的球各一个,现有放回地依次取出三个球,则取到红、黄、蓝三种颜色的球各一个的概率为:A. 1/8B. 1/6C. 1/4D. 1/3在等比数列 {an} 中,a7 · a11 = 6,a3 + a13 = 5,则 a23 + a27 的值为:A. -5/6 B. -1 C. -6 D. -5/4二、填空题11. 若 f(n) = (n - a)/(n + a),则 f(4) + f(9) + ... + f(99) + f(104) 的值为 _______。

数学高中奥赛试题及答案

数学高中奥赛试题及答案

数学高中奥赛试题及答案一、选择题(每题5分,共20分)1. 若函数\( f(x) = ax^2 + bx + c \)的图像经过点(1, 0)和(-1,0),则下列哪个选项是正确的?A. \( a + b + c = 0 \)B. \( a - b + c = 0 \)C. \( a + b - c = 0 \)D. \( a - b - c = 0 \)答案:B2. 已知等差数列\( \{a_n\} \)的前三项分别为1, 4, 7,那么第10项\( a_{10} \)是多少?A. 26B. 28C. 30D. 32答案:A3. 一个圆的半径是5,圆心到直线\( y = 2x \)的距离是3,那么圆的方程是什么?A. \( (x-2)^2 + (y-3)^2 = 25 \)B. \( (x+2)^2 + (y+3)^2 = 25 \)C. \( (x-3)^2 + (y-2)^2 = 25 \)D. \( (x-3)^2 + (y+2)^2 = 25 \)答案:A4. 若\( \sin \theta = \frac{3}{5} \),且\( \theta \)在第一象限,求\( \cos \theta \)的值。

A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{5} \)D. \( -\frac{3}{5} \)答案:A二、填空题(每题5分,共20分)1. 计算\( \int_{0}^{1} x^2 dx \)的值是______。

答案:\( \frac{1}{3} \)2. 已知\( \log_2 8 = 3 \),那么\( \log_2 32 \)的值是______。

答案:53. 一个等腰三角形的两边长分别为3和4,那么第三边的长度是______。

答案:44. 一个数的平方根是2和-2,那么这个数是______。

答案:4三、解答题(每题10分,共60分)1. 已知函数\( f(x) = x^3 - 3x + 1 \),求\( f(x) \)的导数。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 1/3D. -3.142. 若函数f(x) = 2x^2 + 3x + 1,求f(-2)的值。

A. -1B. 3C. 5D. 73. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第5项的值。

A. 11B. 13C. 15D. 175. 以下哪个是二次方程x^2 - 5x + 6 = 0的根?A. 2B. 3C. -2D. -3二、填空题(每题4分,共20分)6. 一个三角形的内角和为______度。

7. 若a,b,c是三角形的三边,且a^2 + b^2 = c^2,则此三角形是______三角形。

8. 一个正六边形的内角为______度。

9. 将一个圆分成4个扇形,每个扇形的圆心角为______度。

10. 若sinθ = 1/2,且θ在第一象限,则cosθ = ______。

三、解答题(每题10分,共65分)11. 证明:对于任意实数x,等式e^x ≥ x + 1成立。

12. 解不等式:2x^2 - 5x + 3 > 0。

13. 已知数列{an}的通项公式为an = 3n - 2,求前n项和Sn。

14. 求函数y = x^3 - 3x^2 + 2x的极值点。

15. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。

四、附加题(10分)16. 一个圆内接正六边形的边长为a,求圆的半径。

答案一、选择题1. A2. B3. B4. C5. A二、填空题6. 1807. 直角8. 1209. 9010. √3/2三、解答题11. 证明:设g(x) = e^x - (x + 1),则g'(x) = e^x - 1。

当x < 0时,g'(x) < 0,当x > 0时,g'(x) > 0。

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。

解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。

因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。

由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。

所以 \( a^2 + 5a + 6 = 0 \)。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。

将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。

试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。

解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。

将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。

试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。

高中数学奥赛试题

高中数学奥赛试题

高中数学奥赛试题一、选择题1. 设集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},则A与B 的交集的补集为:A. {1, 2}B. {6, 7}C. {1, 2, 6, 7}D. {1, 2, 3, 4, 5, 6, 7}2. 若一个等差数列的前三项分别为a-2, a, a+2,那么其第10项为:A. 3a-6B. 3aC. 3a+6D. 3a+123. 在直角坐标系中,点A(2,3)关于直线y=x的对称点坐标为:A. (3, 2)B. (1, 4)C. (4, 1)D. (3, 1)4. 已知函数f(x) = x^3 - 3x^2 + 2x + 1,求f(x)的最小值:A. -2B. -1C. 0D. 15. 若一个圆的周长为12π,那么这个圆的面积为:A. 3πB. 4πC. 6πD. 9π二、填空题6. 一个等比数列的前三项分别是2, 6, 18,那么其第5项为_______。

7. 在平面直角坐标系中,圆的方程为(x-3)^2 + (y-4)^2 = 49,求该圆的圆心坐标和半径_______。

8. 设函数g(x) = |2x - 3| + |x + 1|,求g(x)的最小值_______。

9. 一个直角三角形的两条直角边长分别为3和4,求该直角三角形的外接圆半径_______。

10. 已知一个等差数列的前n项和为S_n = 3n^2 - 2n,求该等差数列的公差_______。

三、解答题11. (本题满分10分)设数列{an}满足a1 = 2,且对于所有正整数n,有an+1 = an + 3n。

求证:数列{an}的通项公式为an = 3n - 1。

12. (本题满分15分)在直角坐标系中,给定三个点A(1,2),B(4,5)和C(7,8)。

求:(i)线段AB的中点M的坐标;(ii)线段BC的斜率k_BC;(iii)点A到直线BC的距离d_AB。

13. (本题满分20分)已知函数h(x) = x^4 - 4x^3 + 6x^2 - 4x + 1,求:(i)函数h(x)的所有驻点;(ii)函数h(x)在区间[0, 3]上的最大值和最小值。

2024年全国高中数学联赛(浙江预赛)试题(含答案)

2024年全国高中数学联赛(浙江预赛)试题(含答案)

2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计96分)1.设集合10,21x A xx ⎧−⎫=≤⎨⎬−⎩⎭集合2{20}B x x x m =++≤。

若A B ⊆,则实数m 的取值范围为 。

2.设函数{}{}:1,2,32,3,4f → 满足 ()()1()ff x f x −=,则这样的函数有_______个。

3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。

4.已知数列{}n x满足:11,12n x x x n +==≥,则通项n x =__________。

5 .已知四面体A BCD −的外接球半径为1,1,60BC BDC =∠=,则球心到平面BDC 的距离为______________。

6.已知复数z 满足24510(1)1zz =−=,则z =__________________。

7.已知平面上单位向量,a b 垂直,c 为任意单位向量,且存在(0,1)t ∈,使得向量(1)a t b +−与向量c a −垂直,则a b c +−的最小值为__________________________。

8. 若对所有大于2024的正整数n ,成立202420240, ii n i i na C a ==∈∑,则12024a a +=_________。

9.设实数,,(0,2]a b c ∈,且3b a ≥或43a b +≤,则max{,,42}b a c b c −−−的最小值为 ___ __ __。

10.在平面直角坐标系xOy 上,椭圆E 的方程为221124x y +=,1F 为E 的左焦点;圆C 的方程为222())x a y b r −+−=( ,A 为C 的圆心。

直线l 与椭圆E 和圆C 相切于同一点(3,1)P 。

则当1OAF ∠最大时,实数r =_____________________。

全国高中生数学竞赛试题

全国高中生数学竞赛试题

全国高中生数学竞赛试题一、选择题(每题4分,共20分)1. 若函数\( f(x) = 2x^2 + 3x - 5 \),求\( f(-1) \)的值。

A. 0B. 1C. 2D. 32. 圆的方程为\( (x-1)^2 + (y-2)^2 = 25 \),求圆心到直线\( x + 2y - 5 = 0 \)的距离。

A. 2B. 3C. 4D. 53. 若\( a, b \)为正整数,且\( a^2 + b^2 = 2023 \),求\( a + b \)的可能值。

A. 44B. 45C. 46D. 474. 已知\( \sin A = \frac{3}{5} \),\( \cos A = -\frac{4}{5} \),求\( \tan A \)的值。

A. 3/4B. -3/4C. 4/3D. -4/35. 一个等差数列的首项为2,公差为3,求第10项的值。

A. 29B. 32C. 35D. 38二、填空题(每题5分,共30分)6. 若\( \frac{1}{a} + \frac{1}{b} = \frac{5}{6} \),且\( a,b > 0 \),求\( a + b \)的最小值。

7. 已知三角形ABC的三边长分别为a, b, c,且满足\( a^2 + b^2 = c^2 \),求证\( \cos A = \frac{b^2 + c^2 - a^2}{2bc} \)。

8. 若\( \log_{2}3 = m \),求\( \log_{3}2 \)的值。

9. 一个圆的半径为5,求其内接正六边形的边长。

10. 已知等比数列的前三项分别为2, 6, 18,求其第4项。

三、解答题(每题25分,共50分)11. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = \frac{n^2(n+1)^2}{4} \)。

12. 已知函数\( g(x) = x^3 - 3x^2 - 9x + 5 \),求其极值点,并判断其单调性。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数不是无理数?A. πB. √2C. √3D. 0.33333(无限循环)答案:D2. 已知函数f(x) = x^2 - 4x + 4,求f(2x)的值。

A. 4x^2 - 16x + 16B. 4x^2 - 12x + 12C. 4x^2 - 8x + 4D. 4x^2 - 4x + 4答案:C3. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B4. 一个圆的半径为3,求其内接正六边形的边长。

A. 3√3B. 6C. 2√3D. 3答案:A5. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值。

A. 29B. 32C. 35D. 38答案:A6. 根据题目所给的函数f(x) = 2x - 1,求f(x+1)的值。

A. 2x + 1B. 2x + 3C. 2x - 1D. 2x - 3答案:A7. 若x^2 - 5x + 6 = 0,求x的值。

A. 2, 3B. -2, -3C. 2, -3D. -2, 3答案:A8. 已知一个等比数列的首项a1=3,公比q=2,求第5项a5的值。

A. 48B. 96C. 192D. 384答案:A9. 一个圆的直径为10,求其面积。

A. 25πB. 50πC. 100πD. 200π答案:B10. 已知一个二次方程x^2 + 8x + 16 = 0,求其根的判别式Δ。

A. 0B. 64C. -64D. 16答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 若一个数列{an}是等差数列,且a3 = 7,a5 = 13,求a7的值。

答案:1912. 已知一个函数y = x^3 - 3x^2 + 2x,求其一阶导数dy/dx。

答案:3x^2 - 6x + 213. 一个长方体的长、宽、高分别是2,3,4,求其表面积。

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。

2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。

3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。

试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。

2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。

3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。

试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。

2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。

3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。

试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。

2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。

3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。

试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。

2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。

全国高中生数学竞赛试题

全国高中生数学竞赛试题

全国高中生数学竞赛试题一、选择题1. 若一个等差数列的前三项分别是2x-1、3x+1和7x-5,那么x的值为:A. 1B. 2C. 3D. 42. 已知函数f(x) = ax^2 + bx + c在点x=1取得极小值,且有a>0,b>0,c>0,那么a+b+c的值是:A. 0B. 1C. 2D. 33. 一个圆的半径是5cm,圆心位于坐标系的原点,那么圆上一点(3,4)到圆心的距离是:A. 5cmB. 5√2cmC. 2√5cmD. 10cm4. 以下哪个三角形的内角和不是180°?A. 直角三角形B. 等腰三角形C. 钝角三角形D. 等边三角形5. 若a、b、c是等比数列,且abc=8,a+b+c=6,那么b的值是:A. 2B. 3C. 4D. 6二、填空题6. 一个等差数列的前四项之和为26,首项为2,公差为3,求该等差数列的第四项。

7. 已知一个圆的周长为4πcm,求该圆的面积(π取3.14)。

8. 若函数g(x) = x^3 - 6x^2 + 11x - 6有唯一的零点,求该零点的值。

9. 一个直角三角形的斜边长为10cm,一条直角边长为6cm,求另一条直角边的长度。

10. 一个等比数列的前三项分别是2,6和18,求该数列的公比。

三、解答题11. 已知一个等差数列的前五项和为35,且第五项是首项的三倍。

求该等差数列的首项和公差。

12. 一个圆与直线y=2x+3相交于点A,且圆心到直线的距离为2√2cm。

若圆的半径为5cm,求圆心的坐标。

13. 证明:若n是正整数,且n^2 + 3n + 2是一个完全平方数,则n 也是正整数。

14. 一个等腰三角形的底边长为10cm,腰长为x,且周长为30cm。

求x的值。

15. 一个等比数列的前五项之和为31,首项为2,求该等比数列的公比和最后一项的值。

请注意,以上题目仅供参考,实际的全国高中生数学竞赛试题可能会有所不同。

在解答时,考生需要仔细审题,合理运用数学知识和解题技巧,力求准确、高效地完成题目。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题一.选择题(本题满分36分,每小题6分) 1.若椭圆的离心率215-=e ,则我们称这种椭圆为“黄金椭圆”,对于椭圆:E )0(12222>>=+b a by a x ,如果c b a ,,不是等比数列,那么椭圆E ( )A .一定是“黄金椭圆”B .一定不是“黄金椭圆”C .可能是“黄金椭圆”D .可能不是“黄金椭圆”2.如果θθθθcos )cos 1(sin )sin 1(22+>+,且)2,0(πθ∈,那么角θ的取值范围是( ) A .)4,0(πB .)43,2(ππC .)45,4(ππD .)2,45(ππ3. 若点(),a b 是圆()2211x y ++=内的动点,且函数()2f x x ax b =++的一个零点在()1,0-内, 则该函数的另一个零点在()0,1内的概率为( ) A .14 B .1π C .12 D .2π4.对于给定的一个Z n ∈,方程n z y x =-+222的正整数解的组数为( ) A .1 B .3 C .8 D .无穷多组5.数列{}n a 中,相邻两项1,+n n a a 是方程032=++n b nx x 的两根,已知1710-=a ,则51b 的值为( )A .5800B .5840C .5860D .60006.如图,在正方体1111D C B A ABCD -中,P 为棱AB 上一点,过点P 在空间作直线l ,使l 与平面ABCD 和平面11D A B C 均成030角,则这样的直线l 的条数为( )A .4B .3C .2D .1 二.填空题(本题满分42分,每小题7分) 7.设M 是函数xx x f 1)(+=图象上的任意一点,过点M 分别作直线x y =和y 轴的垂线,垂足分别为B A ,,则=⋅||||MB MA 8. 函数 ∈+=x x x y |)(2cos ||cos (|2R ) 的最小值是 .9.设函数)(x f )0,(≠∈x R x 对任意的非零实数21,x x ,有)()()(2121x f x f x x f +=,且)(x f 在),0(+∞上为增函数,则不等式0)21()(≤-+x f x f 的解为 10.定义运算:ba b a 1+=⊗,设z y x ,,为互不相等的三个实数,且x z z y y x ⊗=⊗=⊗,则=xyz11.若[]x 表示不超过x 的最大整数(如[]11.31,234⎡⎤=-=-⎢⎥⎣⎦等等)则334032004⎤⎤⎤++++⎢⎣=________________.12.给定正整数n (3≥n ),设正数n λλλλ,,,,321⋅⋅⋅满足n n =+⋅⋅⋅+++λλλλ321,n P P P P ,,,,321⋅⋅⋅ 是以坐标原点O 为圆心的单位圆上的n 个点,且332211=+⋅⋅⋅+++n n OP OP OP λλλλ.若M 是圆O 所在平面上的任意一点,则||||||||332211n n MP MP MP MP λλλλ+⋅⋅⋅+++的最小值是三.解答题(要求必须写出必要的演算或证明的过程)13.(本题满分16分)一个人随机地将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中,每个盒子只放一个小球,当球的编号与盒子的编号相同时叫做这个小球放对了,否则叫做放错了.求:四个小球都放错了的概率.14.(本题满分16分)已知ββαsin 3)2sin(=+,设x =αt a n ,y =βtan ,记)(x f y =(1)求)(x f 的表达式; (2)定义正数数列{}n a :211=a ,)(221n n n a f a a ⋅=+(*N n ∈).试求数列{}n a 的通项公式。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题1.若直线l1:y = -2x + 3,直线l2过点(1,5)且与l1垂直,则l2的方程是:A. y = x + 4B. y = -x + 6C. y = x - 4D. y = -x + 4答案:C2.已知集合A = {x | |x - 3|< 2},则A的值是: A. (-∞, 1) U (5, ∞) B. (-∞,1) U (3, ∞) C. (1, 5) D. (1, 5] U (5, ∞)答案:D二、填空题1.若a、b满足a+b=5,且ab=6,则a和b的值分别是____。

答案:2和32.若某几何体的体积V和表面积S满足S=3V,且V>0,则该几何体的体积V的值为____。

答案:1/3三、解答题1.设数列{an}满足a1=1,a2=2,an+2 = an + 2n,求数列的通项公式。

解答:首先给出数列的前几项: a1 = 1 a2 = 2 a3 = 1 + 2 × 1 = 3 a4 = 2 + 2 × 2 =6 a5 = 3 + 2 × 3 = 9 … 从数列的前几项可以观察到,第n项的值为n^2 - 1。

所以数列的通项公式为an = n^2 - 1。

2.已知函数f(x) = x^3 - 3x^2 + 4x - 2,求f(x)的最小值及取得最小值时的x值。

解答:对于任意x,有f’(x) = 3x^2 - 6x + 4。

令f’(x) = 0,可以解得x = 1。

再求f’‘(x) = 6x - 6,当x = 1时,f’’(x) = 0。

所以x = 1是f(x)的极小值点。

代入f(x) = x^3 - 3x^2 + 4x - 2计算得最小值为-2。

所以f(x)的最小值是-2,取得最小值时的x值为1。

四、简答题1.数列的极限是什么?如何判断一个数列的极限存在?答:数列的极限是指当项数趋向无穷大时,数列的项的值趋向的一个确定的数。

高中数学竞赛试题及解答

高中数学竞赛试题及解答

高中数学竞赛试题及解答试题(一)一、 过圆的直径AB 上一定点C 作任意弦DE ,过B 作圆的切线L ,并设直线AD 与直线AE 分别与L 交于F 、G 。

若4,AB = 3,AC =求BF BG ⋅。

(12分)二、 证明x 的三次方程式3210x x π--=只有一个正实根。

(12分)三、 试证明2009不能表示成三个正整数的立方和。

(12分)四、有各张分别标有1, 2,, n 的一叠n 张卡片。

洗过卡片后,重复进行以下操作:若最上面一张卡片的标号是k ,则将前k 张卡片的顺序颠倒;例如,若4n =且卡片排列成3124,则操作一次后的卡片将排列成2134。

证明:经过有限次操作后,标号为1的卡片会在最上面。

(13分)试题(二)一、求2222(1.1)(1.2)(1.3)(3.1)++++。

(3分)二、设, , x y z 为实数且满足222 1x y z ++=,求xy yz zx ++的最小值。

(3分)三、空间中一四面体的四个顶点分别为(0, 0, 1), (2, 4, 0), (0, 0, 0),A B C (4, 2, 0)D ,平面E 通过A 点与BD 中点且与BC 有交点。

若平面E 将此四面体分成两块,其中一块的体积为原四面体的13,求E 的方程式。

(3分)四、求n ∞=,其中[]x 表示小于或等于x 的最大整数,例如[1.2]1=。

(4分)五、假设有5根电线杆,其中有2根会漏电,以致于停在它们上面的小鸟会立刻被电昏而摔落地面。

今有5只小鸟各自独立的随机选择其中一根电线杆逗留休息,试计算只有2根电线杆上有小鸟的机率。

(4分)试题(一)解答一、 【解】过C 作HI //FG ,与AF , AG 分别交I 和H ,连结BE , BH 。

因90BEH ∠=, 90BCH ∠=,所以四边形CBEH 是圆内接四边形BEC BHC ∠=∠而BED BAD ∠=∠BHI BAD ∴∠=∠由此可知,B , H , A , I 共圆 CI CH AC CB ∴⋅=⋅ (1)ACI ABF ∆∝∆ ::AC AB CI BF =又 ACH ABG ∆∝∆::AC AB CH BG ∴=22::AC AB CI CH BF BG ∴=⋅⋅ (2)由(1), (2), 22::AC AB AC CB BF BG =⋅⋅22AC CB AC BF BG AB ⋅=⋅, 2222()()4311633AB AC CB BF BG AC ⋅⋅⋅⋅===.二、 【证】令 32()1f x x x π=--则 (0)1f =-, (100)0f >由堪根定理,0与100之间有一个根r令 2()()()f x x r x ax b =-++32()()x a r x b ra x rb =+-+--得 a r π-=-b ra -= 1rb = (2)由(2) 0b >由(1) 0a => ,a b ∴皆为正数 20x ax b ∴++> for 0x ≥()f x ∴没有第二个正根。

数学竞赛高中试题及答案

数学竞赛高中试题及答案

数学竞赛高中试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 - 4x + 1,那么f(2)的值是多少?A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为1, 4, 7,求该数列的第五项。

A. 10B. 13C. 16D. 19答案:A3. 一个圆的直径为10cm,那么它的半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm答案:A4. 在直角坐标系中,点P(3, -4)关于x轴的对称点坐标是多少?A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)答案:A二、填空题(每题5分,共20分)5. 计算:\(\sqrt{49} - \sqrt{16} = \)______。

答案:56. 一个等腰三角形的两边长分别为5cm和8cm,那么它的周长是_______cm。

答案:187. 已知函数g(x) = x^3 - 3x^2 + 2,求g(2)的值。

答案:-28. 一个数的平方加上它的两倍等于17,设这个数为n,则n的值为______。

答案:3或-4三、解答题(每题10分,共60分)9. 已知函数h(x) = x^3 - 6x^2 + 11x - 6,求函数的零点。

答案:函数h(x)的零点为x = 1, 2, 3。

10. 一个长方体的长、宽、高分别为a、b、c,且a > b > c,求证:长方体对角线的长度d满足\(d^2 = a^2 + b^2 + c^2\)。

答案:证明略。

11. 已知数列{bn}满足:b1 = 2,bn+1 = 2bn + 1,求数列的前五项。

答案:2, 5, 11, 23, 4712. 一个圆的内接三角形的三个顶点分别在圆上,且三角形的周长为12cm,求圆的半径。

答案:2cm13. 已知函数f(x) = x^2 - 6x + 9,求函数的最小值。

答案:函数的最小值为0。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案试题(一)一、 ABC ∆为等边三角形,P 为其内一动点,且120APC ∠=。

AP 交BC 于N 、CP交AB 于M 。

求BMN ∆外心O 的轨迹。

(12分)二、 任意选24个相异且小于88的正奇数,试证:其中必有两个数它们的和是90。

(12分)三、 试证:对实数,,,0a b c d ≥,()()()()()()()()222222224a b c d a b b c c d d a ++++≥++++。

(12分) 四、定义:设A 是二阶整系数方阵,若存在二阶整系数方阵B ,使得1001AB BA I ⎡⎤===⎢⎥⎣⎦,则称A 可逆。

(13分) (1) A 是二阶整系数方阵。

试证:A 可逆的充要条件为A 的行列式||1A =±。

(2) 设A , B 均为二阶整系数方阵,且,,2,3,4A A B A B A B A B ++++均可逆,试证:5A B +亦可逆。

试题(二) 一、设(1)2(,,)(1)2,,,(1)2x x yz A x y y z z x y y zx x y z z z xy ⎧⎫-+⎪⎪=---=-+∈⎨⎬⎪⎪=-+⎩⎭,试求A 。

(5分)二、记不大于t 的整数中最大的整数为[]t 。

求方程 22[2]2[][]x x x x -+=在03x ≤<内所有实数解。

(5分)三、设a 和b 为实数,且使方程43210x ax bx ax ++++=至少有一个实根,对所有这种数对(,)a b ,求出22a b +的最小可能值。

(6分)四、令N 为自然数集,若函数:f N N →满足(1)()f n f n +>且(())3f f n n =,求(54)f 。

(5分)试题(一)解答一、 【解】令G 为ABC ∆的外心。

因120MPN APC ∠=∠=与B ∠互补,P 在BMN ∆的外接圆上。

因120APC AGC ∠=∠=,A 、P 、G 、C 共圆,且30CPG CAG ∠=∠=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.高中数学竞赛试题
◇1986年上海高中数学竞赛试题
◇1987年上海高中数学竞赛试题
◇1987年上海市黄埔区高中数学选拔赛试题
◇1988年上海市高一数学竞赛试题.doc
◇1988年上海高中数学竞赛试题
◇1989年上海高中数学竞赛试题
◇1990年上海高中数学竞赛试题
◇1991年上海高中数学竞赛试题
◇1992年上海高中数学竞赛试题
◇1993年上海高中数学竞赛试题
◇1994年上海高中数学竞赛试题
◇1995年上海高中数学竞赛试题
◇1996年上海高中数学竞赛试题
◇1997年上海高中数学竞赛试题
◇1998年上海高中数学竞赛试题
◇1999年上海高中数学竞赛试题
◇1999年上海市高中数学竞赛试题.doc
◇2000年上海高中数学竞赛试题
◇2000年上海市高中数学竞赛试题.doc
◇2001年上海高中数学竞赛试题
◇2002年上海市高中数学竞赛.doc
◇2003年上海高中数学竞赛试题
◇杭州市第7届"求是杯"高二数学竞赛
◇杭州市第8届"求是杯"高二数学竞赛
◇北京市海淀区第9届高二数学竞赛团体赛
◇北京市海淀区第10届高二数学竞赛团体赛
◇北京市海淀区第11届高二数学竞赛团体赛
◇1986年杭州市高中数学竞赛第二试试题
◇1990年四川省高中数学竞赛一试试卷
◇1991年四川省高中数学联合竞赛决赛试题
◇1992年四川省高中数学联合竞赛决赛试题
◇1996河北省高中数学联合竞赛
◇1999年河北省高中数学竞赛试题
◇2000年锦州市“语数外”三科联赛高一数学试题.doc ◇2000年创新杯数学竞赛高一初赛试卷.doc
◇2000年上海市中学生业余数学学校高一招生试题.doc ◇2000年河北省高中数学竞赛试卷.doc
◇2000年温州市高二数学竞赛
◇2001年锦州市“语数外”三科联赛高二数学竞赛试题◇2001年温州市高一数学竞赛试卷.wps
◇2001年锦州市“语数外”三科联赛高一数学试题.doc
◇2002年湖南省高中数学竞赛题
◇2002年全国高中数学联赛山东赛区预赛试题
◇2002年全国高中联合竞赛四川、重庆初赛
◇2002年宁波市高二数学竞赛
◇2002年全国高中数学联赛重庆市预赛高一试题.doc
2.高中数学奥林匹克
◇1986-2002中国数学奥林匹克
◇1988年国家教委理科(数学)实验班招生初试试题.doc
◇1988年国家教委理科(数学)实验班招生复试试题.doc
◇1996年中国数学奥林匹克(英文).DOC
◇1997年中国队选拔考试试题(英文).DOC
◇1997年中国数学奥林匹克(英文).DOC
◇1999年IMO中国集训队选拔考试试题.doc
◇2000年中国队训练题(组合数学).doc
◇2000年IMO中国国家集训队选拔考试
◇2000年IMO中国国家集训队测验题
◇2000年中国队训练题组合数学
◇2001中国西部数学奥林匹克试题.pdf
◇2002年中国首届女子数学奥林匹克(CGMO)试题.doc
◇2002中国西部数学奥林匹克
◇2003年中国数学奥林匹克暨第18届全国中学生数学冬令营
3。

专题讲座
◇(高一数学竞赛资料)映射与函数
◇(高一数学竞赛资料)集合
◇(高一数学竞赛讲座)简易逻辑。

相关文档
最新文档