第10章 非参数检验
医学统计学 -第10章 基于秩次的非参数检验
H0:多个总体分布相同(或者中位数相等) H1:多个总体分布不同或不全相同(或者中位数不全相等)
26
例10.5
某医院用3种方法治疗15例胰腺癌患者,每种方 法各治疗5例,治疗后生存月数如下表,问3种方法的 疗效有无差别?
当n≤50时,通过查T界值表来确定是否波动过
大
T在界值范围内,波动不大
P>α
T在界值范围外或等于界值时,波动大,P≤α
11
(4) 查表及推断结论 查T界值表T0.05(16)=29~107 由于T=28在上下界值范围外,所以P≤0.05。 按a=0.05检验水准拒绝H0,接受H1,可以 认为该厂工人尿铅含量不当地正常人有差异, 通过正负秩和的大小可以推断工人的尿铅含 量要高于正常人。
第十章 基于秩次的非参数检验
1
假设检验的方法分为两类
参数检验(parametric test)
已知总体分布类型,对未知参数(μ、π)进行统计推断 依赖于特定分布类型,比较的是参数 一般有严格的适用条件
如:样本来自正态分布、总体方差齐同等 这类方法比如:t检验、F检验等
非参数检验(nonparametric test)
Z
T n1(N 1) / 2 0.5
n1n2 (N 3 N
12N(N 1)
(t
3 j
t
j
))
2036 40(84 1) / 2 0.5
40 44 (843 84 (323 32) (323 32) (203 20)) 12 40 (84 1)
7.01
由于Z=7.01,大于Z0.05=1.96,所以P<0.05,按照α=0.05 检验水准拒绝H0,接受H1,可以认为夏冬两季居民体 内核黄素含量有差别。根据平均秩次可以知道夏季的含
统计学第十章 非参数统计方法
4
参数统计与非参数统计
• 参数统计
– 对那些其总体分布族或称统计模型只依赖于有限个实参 数的问题,通称为“参数统计问题”,也就是说,总体 分布服从正态分布或总体分布已知条件下的统计检验, 称为参数检验,研究这一问题的统计分支称为参数统计。 参数统计的大部分方法要求所分析的数据至少是定距尺 度测量的结果。如统计学中的检验、检验等,都属于参 数检验。
13
符号检验
•符号检验的步骤
–建立假设
–计算检验统计量
•检验统计量S+为S—和。 S+表示为正符号的数目, S—表示 为负符号的数目。 S+ + S— =n,n是符号的总数目。
–作出判定
•要对假设作出判定,需要找到一个值P。因为对于S+和S—
来说,抽样分布是一个带有θ=0.5(表示成功的概率)的二
F0 (x) 表示一个特定的累积概率分布函数,也就是说,对于任一值,
x 值代表小于或等于值的那些预期结果所占的比例。于是,可以定
义
与 Sn (x) 之F0 (间x) 的差值,即
Sn (x) F,0 (x若) 对每一个x值来说,
两者与十分接近,也就是差异很小,则表明经验分布函数与特定
分布函数的拟合程度很高,有理由认为样本数据来自具有该理论
15
游程检验
• 游程检验的步骤
– 提出假设:零假设为:随机产生(随机性) – 检验统计量:R (游程个数)
– 随机性假设的拒绝域为 :{R≤c1} ∪ {R ≥c2 },(c1< c2)
7
2. 单样本非参数检验
2020/2/4
8
χ2 检验
非参数检验
?
等级资料的分析方法是否和 一般计数资料的检验方法相同呢?
等级资料的分析应该选用什么方法?
实例1 考察硝苯地平治疗老年性支气管炎的疗效,治疗组 60人,用硝苯地平治疗,对照组58人,常规治疗,两组患
者的性别、年龄、病程无显著性差异,治疗结果见表1。
表 1 治疗组与对照组疗效比较 组别 治疗组 对照组 例数 60 58 例 数 无效 6 14 有效 19 20 显效 35 24 百分比(%) 无效 10.00 24.14 有效 31.67 34.48 显效 58.33 41.38
Test Statistics Chi-Squarea df Asymp. Sig. 身 体状 况 12.135 4 .016
a. 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 5.0.
分布类型检验
分布位置检验
Nonparametric Test菜单(1)
• 分布类型检验方法
–Chi-Square 检验二项/多项分布 分类资料 –Binomial 检验二项分类变量分布 –Runs 检验样本序列随机性(游程检验) –1-Sample K-S 检验样本是否服从各种分布
Nonparametric Test菜单(2)
ill 1.00 num 1.00
1
2
0.00
399.00
• 1.weight cases by:num • 2.analyze-nonparametric test-binomial
Binomial Test Category 1.00 .00 N 1 399 400 Observed Prop. .00 1.00 1.00 Test Prop. .01 Asymp. Sig. Exact Sig. (1-tailed) (1-tailed) a,b .090 .090
两配对样本非参数检验
Wilcoxon检验结果如下两表所示。
出现了一个差值等于零的个案,删除此个 案,于是样本容量从10变成了9。符号为 正的有9个,秩和为45,符号为负的有0个, 秩和为0。这样,统计量W=0,构造的 Z=-2.673,近似相伴概率值p=Pr{|Z| >=-2.673}=0.008,(Z服从标准正态分 布。)因而拒绝原假设,认为训练前后学 生的成绩有显著性差异。
训练后成绩
70.00 71.00 65.00 68.00 50.00 55.00 75.00 70.00 65.00 70.00
实验步骤
图10-23 在菜单中选择“2 Related Samples”命令
图10-24 “TwoRelatedSamples Tests” 对话框
设置配对 的样本
配对样本的几种检验方法,(其 中Marginal Homogeneity检 验是McNemar检验针对多取值 有序数据的推广方法)
01
按照符号检验的方法,将 第二组样本的各个观察值 减去第一组样本对应的观 察值,如果得到差值是一 个正数,则记为正号;差 值为负数,则记为负号。 (出现差值等于0时,删 除此个案,样本数n相应 地减少。)
02
保留差值数据。根据差值 数据的绝对值大小按升序 排序,并求出相应的秩。
03
分别计算符号为正号的秩 和 W+、负号秩总合 W− 以及正号平均秩、 负号平均秩。
SPSS中有以下3种两配对样本非参数检验方法。
1.两配对样本的McNemar(麦克尼马尔)变化显著性检验
1 McNemar变化显著性检验以研究对象自身为对 照,检验其两组样本变化是否显著。 原假设:样本来自的两配对总体分布无显著差异。
【统计分析】非参数检验
3. 查表与结论 查T界值表,T0.05(11)=10~56,T=3.5,在界 值范围外,P<0.05,拒绝H0。
符号检验(Sign test)
z n n 1 n
二、两样本比较的秩和检验 (Wilcoxon法)
适用条件:完全随机设计的两个样本比较,若不满足参数 检验的应用条件,则用本法;两个等级资料比较。
-0.45
-1
13
15.20
5.50
9.70
11
14
16.50
9.00
7.50
8.5
步骤
1. 建立假设:H0:差值的总体中位数=0, H1:差值的总体中位数0;
=0.05 2. 计算统计量
计算差值d,由小到大的顺序编秩次,并冠以原d 的正负号,然后分别求正负秩和,得到T+=73, T-=5,取秩和较小者作为检验统计量T=5 3. 查表及结论
1.0
2.5
4
17.00
6.50
10.50
12
5
13.00
5.50
7.50
8.5
6
18.00
13.50
4.50
5
7
17.50
10.00
7.50
8.5
8
10.20
10.20
0.00
-
9
10.00
10.00
0.00
-
10
10.50
9.50
1.00
2.5
11
13.80
6.80
7.00
6
12
3.03
3.48
10非参数秩和检验
n2=7
T2=134
Kruskal-Wallis test
(1) 建立假设检验
H0:四组鼠脾DNA含量的总体分布相同
H1:四组鼠脾DNA含量的总体分布位置不全相同 α=0.05
(2) 计算统计量
‣ 四个样本总例数N=8+7+9+8=32。将四样本32个观
察值统一由小到大编秩,见上表第(2)、(4)、(6)、 (8)列。在不同组中有相同含量值10.3两个,12.3三 个,均取各自的平均秩次。
Kruskal-Wallis test
Ti 2 12 H 3( N 1) N ( N 1) ni 1262 1342 123.5 2 54.5 2 12 3( 32 1) 19.90 32( 32 1) 8 7 9 8
Wilcoxon rank sum test
(3) 查表及结论
‣ n=n2-n1,查T界值表T0.05(4)=91~159,
两组患者的平均生存时间不同。
T1=162
落在界值范围外,所以P<0.05,拒绝H0,认为
二、正态近似法
例10-3 44例健康人与24例慢性气管炎病人痰液嗜酸 性粒细胞数的测量值(×106/L),问健康人与慢性 气管炎病人痰液嗜酸性粒细胞数有无显著差别?
0
计量 T 与总体的平均秩和应该相差不大;当与平均
秩相差太大时,超过了抽样误差可以解释的范围,
则 有 理 由 怀 疑 原 假 设 的 正 确 性 , 从 而 拒 绝 H0 。
(刘启贵)
的血清抗体滴度水平间差异是否有统计学意义?
抗体 滴度 (1) 1:10 1:20 1:40 1:80 1:160 1:320 合计 气 雾 组 皮下注 80亿 100亿 射组 (2) (3) (4) 2 15 10 5 1 — 33 4 7 12 7 2 — 32 2 1 13 9 5 1 31 累计 平均 秩次 (6) 4.5 20 49 77 91.5 96 秩 80亿 (7) 9 300 490 385 91.5 — 1275.5 100亿 (8) 18 140 588 539 183 — 1468 和 皮下 (9) 9 20 637 693 475.5 96 1912.5 和
第10章__非参数检验
第10章非参数检验平时我们使用的统计推断方法大多为参数统计方法,它们都是在已知总体分布的条件下,对相应分布的总体参数进行估计和检验。
比如单样本u检验就是假定该样本所在总体服从正态分布,然后推断总体的均数是否和已知的总体均数相同。
本节要讨论的统计方法着眼点不是总体参数,而是总体分布情况,即研究目标总体的分布是否与已知理论分布相同,或者各样本所在的分布位置/形状是否相同。
由于这一类方法不涉及总体参数,因而称为非参数统计方法。
SPSS的Nonparametric Tests菜单中一共提供了8种非参数分析方法,它们可以被分为两大类:1、分布类型检验方法:亦称拟合优度检验方法。
即检验样本所在总体是否服从已知的理论分布。
具体包括:Chi-square test:用卡方检验来检验二项/多项分类变量的几个取值所占百分比是否和我们期望的比例有没有统计学差异。
Binomial Test:用于检测所给的变量是否符合二项分布,变量可以是两分类的,也可以使连续性变量,然后按你给出的分界点一分为二。
Runs Test:用于检验样本序列随机性。
观察某变量的取值是否是围绕着某个数值随机地上下波动,该数值可以是均数、中位数、众数或人为制定。
一般来说,如果该检验P值有统计学意义,则提示有其他变量对该变量的取值有影响,或该变量存在自相关。
One-Sample Kolmogorov-Smirnov Test:采用柯尔莫哥诺夫-斯米尔诺夫检验来分析变量是否符合某种分布,可以检验的分布有正态分布、均匀分布、Poission 分布和指数分布。
2、分布位置检验方法:用于检验样本所在总体的分布位置/形状是否相同。
具体包括:Two-Independent-Samples Tests:即成组设计的两独立样本的秩和检验。
Tests for Several Independent Samples:成组设计的多个独立样本的秩和检验,此处不提供两两比较方法。
医学统计学精品教学第十章-非参数检验精品文档
1
第十章 非参数秩和检验
吴库生 汕头大学医学院预防医学教研室
参数统计与非参数统计
1、参数统计(parametric statistics) 样本所来自的总体分布具有某个已知
的函数形式(如正态分布),而其中有 的参数是未知的,统计分析的目的是对 这些未知的参数进行估计或检验。
2019/10/13
28
符号秩和检验的SPSS实现
2019/10/13
秩和检验
29
Wilcoxon Signed Ranks Test
结 果
Ranks
N Mean RankSum of Ranks
光 电 比 色 法 -Negative Ranks
5a
氰 化 高 铁 法 Positive Ranks
5b
4.60 6.40
X
41.00±29.81
14.75±11.73
方差齐性检验:
F
S12(大) S22(小)
864.94816.2863 137.5929
F F0.05,(7,7) 4.99
P<0.05
两样本方差不齐,不能应用t检验
2019/10/13
医学统计学-秩和检验
31
采用Wilcoxon两独立样本秩和检验
10
Contents
第一节 配对资料的符号秩和检验(Wilcoxon配对法) 第二节 两独立样本比较的秩和检验(Wilcoxon两样本
法) 第三节 完全随机设计多个样本比较的秩和检验
(Kruskal-Wallis检验)
2019/10/13
秩和检验
11
第一节 两配对样本差值的符号秩和检验 (Wilcoxon signed rank test)
非参数检验
组别 95-99 90-94 85-89 80-84 75-79 70-74 65-69 60-64 55-59 50-54 45-49
fo 4 12 18 28 44 72 46 40 22 18 10 314
组上限 99.5 94.5 89.5 84.5 79.5 74.5 69.5 64.5 59.5 54.5 49.5
fe 行合计数 列合计数 总次数
, fb , fd
( a b )( b d ) abcd ( c d )( b d ) abcd
注意:2×2列联表的自由度df=(2-1)(2-1)=1
例 为比较某新药与传统药物治疗脑动脉硬化的疗效, 临床试验结果见表,问两种药物的疗效有无差异? 表 两种药物治疗脑动脉硬化的疗效 处理措施 新药组 有效 无效 合计 44 24 68
41(38.18) 3(5.82)
传统药物组 18(20.82) 6(3.18) 合计 59 9
• 4、关于2×2列联表在数据合并上应注意 的问题 • 2×2列联表只是 的一个特例,实际上, 在很多情况下,变量的分类不止两个,当 我们把各部分数据合并成2×2列联表来表 达时,可能会忽略其中一些重要的变量, 造成 检验的失真,即可能会出现这样的 情况:单独分析每一个2×2列联表所得的 结果与合并成一个2×2列联表所做的 分 析结果相矛盾。
2
( 69 74 . 4 ) 74 . 4
(16 11 . 6 ) 11 . 6
22 . 2748
• 3、推断:
取 0 . 05 , df 5 1 4 , 查表得: 22 . 2748
2 2 0 . 05 ( 4 ) 2 0 . 05 ( 4 )
卫生统计学第八版李晓松第十章基于秩的非参数检验
第一节 配对样本的比较
(一)单样本数据的符号秩和检验
基本思想 1.假设样本所对应的总体中位数与给定的总体中位数相同,H0:M1 = M0。 2.计算样本中所有数值与给定中位数的差值,根据所有差值绝对值进行编 秩,得到正差值的秩和R+和负差值的秩和R-。
n(n +1) 3.若H0成立,理论上,R+与R-的总体均数应相等,等于: R ,总体 4 n(n 1)(2n 1) 标准差也应相等,等于: R 。 24 4.若R+与R-相差悬殊,均远离M0,则有理由拒绝H0 。具体通过R+ 或R- 的
第二节 两组独立样本的比较
(一)两组定量数据的比较
12岁男童与女童发样中Ca含量(μg/g)的比较 男童 Ca含量(1) 秩(2) 1843 18 383 4 406 5 334 1 443 6 676 11 771 13 358 3 607 9 484 7 n1=10 R1=77 女童 Ca含量(3) 秩(4) 842 14 336 2 742 12 1367 15 1623 16 597 8 1976 19 1818 17 643 10 4534 20 n2=10 R2=133
第一节 配对样本的比较
(二)配对样本数据的符号秩和检验
检验步骤
(1) 建立检验假设,确定检验水准 H0:差值的总体中位数等于0, Md = 0 H1:差值的总体中位数不等于0, Md ≠ 0
=0.05
(2) 求差值、编秩、求秩和
首先计算每对数据的差值,并对差值进行编秩。分别计算正、负差
值的秩和,得出 R+与R- ,如表所示。
第二节 两组独立样本的比较
(一)两组定量数据的比较
基本思想
非参数检验
非参数检验的优点:
①适用范围广,不论样本来自的 总体分布形式如何,都可适用;
②某些非参数检验方法计算简便, 研究者在急需获得初步统计结果时可 采用;
的总体分布不同。 α=0.05
2.混合编秩
依据两组数值由小到大编秩,结果 见上表。
3.求秩和并确定检验统计量T
把两组秩次分别相加求出两组的秩 和值,R1=315.5,R2=149.5。因乳 酸钙组样本含量较小,故 T=R2=149.5。
4.确定P值和作出推断结论 以较小样本含量为n1,n1=14, n2n1=2,查附表6,两样本比较秩和检验 用T界值表(双侧)。
当n1>20或(n2-n1)>10时,附表6 中查不到P值,则可采用正态近似法求u 值来确定P值,其公式如下:
u T n1(N 1) / 2 0.5 n1n2(N 1) 12
上式中T为检验统计量值,n1、n2 分别为两样本含量,N=n1+n2,0.5这 连续性校正数。上式为无相同秩次时使 用或作为相同秩次较少时的近似值。当 两样本相同秩次较多(超过总样本数的 25%)时,应按下式进行校正,u经校 正后可略增大,P值则相应减小。
式中,Ri为各组的秩和,ni为各组 样本含量,N为总样本含量。
当各组相同秩次较多时,可对H值进 行校正,按下式求值。
Hc H c
C 1
(t
3 j
t
j
)
(N3 N)
4.确定P值和作出推断结论
当组数K=3,每组样本含量ni≤5时, 可查附表7(H界值表)得到P值。若 k>3或ni>5时,H值的分布近似于自 由度为k-1的χ2分布,此时可查附表 4χ2界值表得到P值。最后按P值作出 推断结论。
非参数检验
➢ 编秩:数据相等则取平均秩,
➢ 求秩和
➢ 计算检验统计量H值
H 12 N(N 1)
Ri2 3( N 1) ni
出生体重(kg)xij ABCD
相应秩次 Rij A BCD
2.7 2.9 3.3 3.5
3
4
7 11
2.4 3.2 3.6 3.6
2 5.5 12.5 12.5
2.2 3.2 3.4 3.7
χ 2 12
R
2 i
3(N1)
N(N1) ni
χ2
12 14(14 1)
152
4
152 3
37.52 4
37.52 3
3(14
1)
χ 2 9.375
χ
2 c
1
χ2
(t
3 j
t
j
)
n3 n
1
(23
9.375 2) (33 3) (23
143 14
2)
9.50
四、随机区组设计资料的秩和检验 (Friedman test)
正态近似法
如果n1或n2-n1超出附表的范围,可按下式 计算u值:
u | T n1(N 1) / 2 | 0.5 n1n2 (N 1) / 12
在相同秩次较多时,应用下式进行校正:
uC u / C
C 1
(t
3 j
t
j
)
/(N
3
N)
tj为第j组相同秩次的个数
频数表资料(或等级资料)两样本资料比较
xi (2) 86 71 77 68 91 72 77 91 70 71 88 87
12 对双胞胎兄弟心理测试结果
后出生者得分 差 值
第十讲非参数检验详解
4
第一节 非参数检验简述
表 11-1 参数检验与非参数检验的区别 非参数检验 推断总体分布,如中位数是否相等,是 否符合某种分布 参数检验 推断总体的参数,如算数均数、方 差、率是否相等 已知总体分布:如正态分布、二项 分布、poission 分布
推断目的
总体分布
未知总体分布
检验方法 检验效能
t 检验、 z 检验、 F 分析等
中医药统计学与软件应用
曹治清
成都中医药大学管理学院 数学与统计教研室 czq9771@
第10讲 非参数检验
非参数检验简述
秩和检验
Ridit分析
2
第10讲 非参数检验—引言
假设检验分为参数检验(parametric tests)和 非参数检验(nonparametric tests)。参数检验是 在总体分布形式已知的情况下,用样本指标对 总体分布的参数进行推断的方法。常用的参数 检验方法有t、z、F检验等。非参数检验 (nonparametric tests)是在总体分布未知情况 下,比较总体分布或分布位置是否相同的统计 方法。
高
T 检验、 H 检验、 M 检验等
低
非参数检验适用于:
(1)资料的总体分布类型未知或偏态;(2)方差不齐; (3)一端或两端开口的资料;(4)等级资料。
5
第二节秩和检验 ——基本思想
将原始数据转化为秩次,计算各组秩次之和, 比较各组秩和的不同来推断总体分布有无差异。 若比较组之间的秩和接近,则认为各组间没有 差别;反之,如果各组间的秩和相差悬殊,则 认为各组间存在差别。
10
第二节秩和检验 —成组设计资料的秩和检验
表 11-3 糖尿病早期微血管病变患者疗效
非参数检验
• 可以看出,由于检验结果中的P值为0.352,大于 显著性水平0.05,因此不能拒绝“抗菌有效时间 不高于12小时的比例为15%”的零假设。
旅游与管理工程学院
4、单样本K-S检验(1 Sample K-S Tests) • 若说前两种主要是对单样本的分布比例(多项或 两项)的检验,那么单样本K(柯尔莫哥, Kolmogorov)-S(斯米诺夫,Smirnov)检验是 利用样本数据推断总体是否服从某一理论分布, 包括正态分布、均匀分布、指数分布、泊松分布 。其零假设是H0:样本来自的总体其分布形态与 期望分布或某一理论分布无显著差异。其中应用 最多的是正态分布检验。
旅游与管理工程学院
旅游与管理工程学院
心脏病猝死日期 Observed N 55 23 18 11 26 20 15 168 Expected N 53.5 19.1 19.1 19.1 19.1 19.1 19.1 Residual 1.5 3.9 -1.1 -8.1 6.9 .9 -4.1
1 2 3 4 5 6 7 Total
旅游与管理工程学院
• 实例分析: • 考察广告对某商品的每日销量是否起作用。广告 前后每日销售量见文件“广告对某商品的每日销 量是否起作用.sav”。我们设H0:广告前与广告后 每日销量相同。 • 步骤:AnalyzeNonparametric Tests 2 Related Samples,打开两相关样本检验对话框。
旅游与管理工程学院
旅游与管理工程学院
One-Sample Kolmogorov -Smirnov Test 事 故数 N a,b Uniform Parameters Most Extreme Differences Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed) a. Test distribution is Uniform. b. Calculated from data. Minimum Maximum Absolute Positive Negative 7 7 12 .229 .171 -.229 .605 .858
785-第十章 非参数检验
体育教学训练方法改革试验测试结果(不同方法训练后学生达标情况登记)
序号
控制组
实验组
1
达标
达标
2
不达标
达标
3
不达标
不达标
4
达标
达标
5
不达标
达标
6
不达标
达标
7
达标
达标
8
不达标
不达标
9
不达标
达标
10
不达标
达标
2
79
75
71
70
3
85
80
75
75
4
80
75
68
70
5
75
75
74
70
6
74
74
70
69
7
65
65
63
61
8
70
70
70
70
9
80
70
65
65
10
75
72
70
60 SPSS过程演示
实例2:某公司聘请了5名心理学家为其进行中层干部招聘 考试中的面试,面试分数记录如下。请问各考官评分的一致性 如何?(Kendall’s W)
记忆障碍药物治疗试验测试结果
序号
药物治疗前
药物治疗后
1
30
40
2
35
32
3
45
4
40
5
20
6
40
7
50
8
55
9
40
《医学统计学》第十章+非参数秩和检验
0.05
,即两个不同部位IL-6水平差值的总体中位数不为零
医学统计学(第7版)
符号秩和检验方法
(2)编秩次并求秩和统计量
首先求出各对数据的差值,见表的第(4)列;然后编秩次,按照差值绝
对值由小到大编秩,并按差值的正负给秩次加上正负号;若差值为“0”,舍
去不计,总的对子数也要减去此对子数(记为 n);若差值的绝对值相等,取
➢ 查表法:查 T 界值表(附表8),
T0.05(23) 73 ~ 203
,
T T 91 73
T 在此范围内,P >0.05, 按 α=0.05水准无理由拒绝 H0 ,即实行良好
的口腔卫生6个月后,尚不能说明此项干预对牙周改善有显著效果。
,
医学统计学(第7版)
(3) 确定P 值,做出推断
检测结果如下表(书中表10-1所示) 。
白癜风病人的不同部位白介素指标(pg/ml)
病人号
(1)
白斑部位
(2)
正常部位
(3)
d=(3)-(2)
秩次
(5)
1
2
3
4
5
6
7
8
合计
40.03
97.13
80.32
25.32
19.61
14.50
49.63
44.56
88.57
88.00
123.72
39.03
24.37
上表中第(1)列按第(2)与(3)列数据统一编秩号,第(5)列为各等级的平均秩次,
第(6)列则是较小样本的秩和,本例中 T=T1=560.5, 将其代入公式得出:
zc
| T n1 ( N 1) / 2 | 0.5
第十章基于秩次的非参数检验
53-99
55-105
…
47-97
49-103
51-109
45-99
47-105
49-111
…
…
…
…
说明
• 如果n1或n2-n1超出了T界值表的范围, 可用正态近似检验。
正态近似法
当n1>10或(n2-n1)>10时
连续性校正
Z T n1 (n1 n2 1) 2 0.5
n1n2 (n出1 现n2相1同) 1的2 数据 若Z值超过标准正态分布的临界值,则拒绝 H0;若出现相持较多,则用下式进行校正
秩次
8
7
6
0.3
1
2.2
6
3.5
9
10
n2=8
表1 高中生与大学生的每周平均上网时间比较(小时/周)
高中生
上网时间
秩次
0.5
2 2.5
3
1
4
0.5
3 2.5
11
1.5
5
2.5
7
3.5
n1=8
大学生
上网时间
秩次
8
7
6
0.3
1
2.2
6
3.5
9
10
n2=8
表1 高中生与大学生的每周平均上网时间比较(小时/周)
α=0.05
秩和检验的步骤
2. 编秩
3.
将两组数据由小到大统一编秩,编
秩时如遇有相同数据,取平均秩次。
4. 3. 求秩和
5.
两组秩次分别相加。
6. 4. 确定统计量
7.
若两组例数相等,则任取一组的秩
和为统计量,若两组例数不等,则以样本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章非参数检验
非参数检验是指在总体不服从正态分布或分布情况不明时,用来检验数据资料是否来自同一个总体假设的一类检验方法。
SPSS提供的非参数检验共有以下几种:
Chi-Square:卡方检验(举例data16-01,data16-02)
在前面介绍的方法中,往往都事先假定总体服从正态分布,然后对其均值或方差作检验。
但某个随机变量是否服从某种特定的分布是需要进行检验的。
可以根据以往的经验或实际的观测数据的分布情况,推测总体可能服从某种分布函数F(x),利用这些样本数据来具体检验该总体分布函数是否真的就是F(x)。
卡方检验(Chi-Square)就是这样一种用来检验给定的概率值下数据来自同一总体的无效假设的方法。
data16-01:掷一颗六面体300次,用1、2、3、4、5、6分别代表六面的六个点,试问这颗六面体是否均匀。
表16—1 300次掷一颗六面体实验观测结果
data16-02:100名健康成年女子血清总蛋白含量,试它是否服从正态分布。
Binomial:二项检验(举例data16-03)
二项分布检验(Binomial test)是一种用来检验在给定的落入二项式中第一项概率值的前提下数据来自二项分布的无效假设的方法。
(二项分布是从二分类总体抽得的随机样本中可能观察到的两类比例的抽样分布。
这就是说,它给出了在零假设成立时两类比例的各种可能值。
这里,零假设是指总体值为P的假设,当一项研究的“结果”可分为两类时,就可以用二项分布来检验零假设。
这种检验属于拟合优度型。
它告诉我们是否能够认为从样本中观察到的两类比例(或频数)来自于具有指定P值的总体。
)
data16-03:掷一枚球类比赛用的挑边器31次,出现A面、B面在上的次数见表16-3,取变量名为“tbh”,用数字型数据1代表“A”,用数字型数据1代表“B”,试问这枚挑边器是否均匀。
表16-3 31次掷一枚球类比赛用的挑边器实验观测结果
Runs:游程检验(举例data16-04)
例如,假定观察的结果用加、减号表示,得到一组这样的记录顺序:
++---++----++-+
我们总共观察到7个游程。
游程检验是指根据游程数所作的二分变量的随机性检验。
游程检验可用来检验样本的随机性,这对统计推断是很重要的,游程检验也可用来检验任何序列的随机性,而不管这个
序列是怎样产生的,此外还可用来判断两个总体的分布是否相同,从而检验出它们的位置中心有无显著差异。
data16-04:为了鉴别两种操作方法对劳动效率的影响,随机抽取12人用第一种操作法,10人用第二种操作法,对每人平均日产量记录,第一组的数据用数字型数据1表示,第二组的数据用数字型数据2表示,取变量名为“zb”。
试问两种操作方法对日产量影响有无显著差异。
1-S ample K-S:Kolmogorov-Smirnov 单样本检验(举例data16-05)
一个样本的柯尔莫哥洛夫-斯米诺夫检验(1-Sample Kolmogorov-Smirnov)是用来检验样本来自同一总体(Normal、Uniform、Poisson)的假设。
这也是一种拟合优度检验方法,它主要是运用某随机变量x的顺序样本来构造样本分布函数,使得能以一定的概率保证x 的分布函数F(x)落在某个范围内。
data16-05:芦瑟福与盖革作了一个著名的实验,他们观察了长为7.5秒的时间间隔里到达某个计数器的某块放射物质放出的α质点数,共观察了2608次。
下面是完整的实验记录,表中第1行给出的是质点数I,第2行表示有I个质点到达计数器的时间间隔数vi(每个时间间隔都是长为7.5秒)。
试问这种分布规律是否遵从泊松分布。
2 Independend Samples:两独立样本检验(举例data16-06)
有时样本隶属的总体的分布类型往往可能是不明的,但还是想知道在这种情况下两个独立样本间是否具有相同的分布,两独立样本检验就是用来处理此类问题的一种有效方法。
data16-06:设有甲、乙两种安眠药,用X表示失眠者服甲药后睡眠时间延长的时数;用y 表示失眠者服乙药后睡眠时间延长的时数。
20个患者,10人服甲药,10人服乙药。
现延长的睡眠时数的分布不明,试问这两种药物的疗效有无显著差异。
“ycss”表示睡眠时间延长的时数;“zb”表示组别,1表示甲药,2表示乙药。
表16-6 两种安眠药效果对比数据
K Independend Samples:K个独立样本的检验(举例data16-07)
上面所提到的两个独立样本检验是多个独立样本检验中最基本的形式,要解决多个独立样本间是否具有相同分布的问题,需借助于多个独立样本检验的方法。
data16-07:用四种不同的操作方法各作若干批试验,试验中优等品率%用“ydpl”表示,用“ff”表示操作方法,试问操作方法对产品优等品率是否有显著影响。
表16-7 四种不同操作方法的优等品率试验数据
2 Related Samples:两个相关样本的检验(举例data16-08)
从同一个被测试对象身上测试2个或多个观测值的情况,这样数据间就不再是相互独立的了,而是彼此相关,在此种情况下,检验样本间是否具有相同的分布,要用两个相关样本的检验。
data16-08:对某院15名男生进行实验,经过5个月的长跑锻炼后看其晨脉是否减少。
锻炼前后晨脉数据如下,试问锻炼前后晨脉有无显著差异。
锻炼前晨脉用“dlq”,锻炼后晨脉用“dlh”。
表16-8 长跑锻炼后晨脉变化
K Related Samples:K个相关样本的检验(举例data16-09)
上面所提到的两个相关样本检验是多个相关样本检验中最基本的形式,要解决多个相关样本间是否具有相同分布的问题,需借助于多个相关样本检验的方法。
data16-09:某日询问了9名顾客,请他们对3种款式的衬衣喜爱程度排次序(最喜爱给秩1,其次秩2,再其次秩3),结果如下,试问顾客对3种款式的衬衣的喜爱程度是否相同。
表16-9 顾客对不同款式服装喜爱程度。