因式分解2PPT课件

合集下载

人教版数学八年级上册+因式分解(2)——公式法(平方差公式)课件

人教版数学八年级上册+因式分解(2)——公式法(平方差公式)课件

-b2=(a+b)·(a-b).
(3)4x2 - 1 = ( 2x )2 - (
(2x+1)(2x-1)
______________;
3.因式分解与整式乘法的关系:
(4)25 - 4m2 = (
a2-b2
(5+2m)(5-2m)
_________________.
(a+b)(a-b)
1
)2 =
5 )2 - ( 2m )2 =
1
024,y=
,求(x+y)2-(x-y)2的值.
2 024
解:(x+y)2-(x-y)2=[(x+y)+(x-y)][(x+y)-(x-y)]=4xy.
当x=2
1
024,y=
时,原式=4×2
2 024
1
024×
=4.
2 024
因式分解(2)——公式法(平方差公式)
预习导学
1.如果把乘法公式反过来,就可
以把某些多项式因式分解,这种
方法叫公式法.
将下列各式因式分解:
(a+x)(a-x)
(1)a2-x2=____________;
(x+3)(x-3)
(2)x2-9=x2-( 3 )2=____________;
2.运用平方差公式因式分解:a2
课堂导学
知识点1
直接运用公式因式分解
【例1】将下列各式因式分解.
(3m+2n)(3m-2n)
(1)9m2-4n2=(3m)2-(2n)2=__________________;
2-62
2
2
(xy)
(xy+6)(xy-6)
(2)x y -36=__________=________________;

公式法分解因式(二)课件

公式法分解因式(二)课件

例3 分解因式
1. 3ax2+6axy+3ay2 2. -x2-4y2+4xy 3. (x+y)x2+2xy(x+y)+y2(x+y)
例4 分解因式
1. a2+b2-2ab - 4(a-b)+4 2. 9(a+2b)2- 30a- 60b+25
3. x4+x2 +1
两人一组,合作编题。
编两道分解因式题,分别满足: 1. 要用到提公因式法和完全平
完全平方公式法分解因式
复习
1、因式分解定义 2、已学过的因式分解的方法
例1 判断下列多项式是不是完 全平方式,若是,请分解因式。
1. x2+12x+36 2. x2-4xy-4y2 3. (x+y)2-6(x+y)+9
例2 分解因式
1. 9a2b2+6ab+1 2. 4-12(x-y)+9(x-y)2 3. x6-10x3+25
方公式。 2. 要用到平方差公式和完全平
方公式。
看谁做得快
1. 20022-4×2002+4 2. 1.23452+0.76552 +
2.469 × 0.7655 3. 20062-4010×2006+20052
随堂测试:分解因式
(1)x2y2-6xy+9 (2)-a+2a2-a3 (3)a4-8a2b2+16b4 (4) (x2+5x)(x2+5_______ 2.我想进一步研究的问题是______
分解因式歌 首先提取公因式,然后想到用公式。 两项想到平方差,然后立方和与差。 三项考虑全平方,十字相乘不能忘。 添项拆项试一试,整体换元功能强。

2.直接开平方法和因式分解法(二)PPT课件(华师大版)

2.直接开平方法和因式分解法(二)PPT课件(华师大版)
(2)(x+10)2=16.
解:直接开平方,得 x+10=±4, ∴x1=-14,x2=-6.
分层作业
1.若方程(x-5)2=19 的两根为 a 和 b,且 a>b,则下列结论中正确的是 ( C ) A.a 是 19 的算术平方根 B.b 是 19 的平方根 C.a-5 是 19 的算术平方根 D.b+5 是 19 的平方根
4x y x -y
交叉相乘积相加得-3xy,凑得中间项,所以分解为 4x2-3xy-y2=(4x+y)(x- y).
参考以上方法,解方程:4x2-5x+1=0.
解:4x2-5x+1=0 化为(4x-1)(x-1)=0, ∴4x-1=0 或 x-1=0 故 x1=14,x2=1.
分层作业
点击进入word链接
参考答案
点击进入答案PPT链接
点击进入答案word链接
(4)x1=3,x2=14.
6.解方程: (1)4(x+3)2=25(x-2)2;
解:开平方,得 2(x+3)=±5(x-2), 解得 x1=136,x2=47;
(2)(2x+3)2=x2-6x+9.
解:由原方程,得(2x+3)2=(x-3)2, 直接开平方,得 2x+3=±(x-3), 解得 x1=0,x2=-6.
数学HS版九年级上
第22章 22.2.1.2
第22章 一元二次方程
22.2 一元二次方程的解法 1.直接开平方法和因式分解法 第2课时 直接开平方法和因式分解法(二)
学习指南 知识管理 归类探究 当堂测评 分层作业
学习指南
教学目标 1.使学生知道形如(x+b)2=a(a≥0)的一元二次方程可以用直接开平方法求解; 2.了解因式分解法的概念,会用因式分解法解一元二次方程. 情景问题引入 小明在解关于 x 的方程(x+2)2=4(x+2)时,在方程两边都除以(x+2),得到方程的根 为 x=2,其实,在解答中,小明的做法还遗漏了方程的一个根,你认为遗漏的根是什么?

《因式分解 (2)》课件 (同课异构)2022年精品课件

《因式分解 (2)》课件 (同课异构)2022年精品课件

2 3 5
2; 5
3
4 3 9 9.
例3 x-2 的平方根是±2,2x+y+7的立方根是3, 求x2+y2的算术平方根.
解: ∵ x-2的平方根是±2, ∴ x-2=4,∴x=6. ∵ 2x+y+7的立方根是3, ∴ 2x+y+7=27. 把x=6代入,解得 y=8. ∵ x2+y2=68+82=100,
探究3 求以下各式的值: (1) 3 0.008 ; -
(2) 3 0.008
-
3 a ___3 _a__
体会: (1)求一个负数的立方根,可以先求出这个负数绝对 值的立方根,然后再取它的相反数. (2)负号可从“根号内〞 直接移到“根号外〞 .
练一练
求以下各数的值:
13 0.125;
23 64;
因为(
1 2
)3 =0.125,所以的立方是〔
1
〕;2
因为( 0)3 =0,所以0的立方根是〔0 〕;
因为 (-2 )3 =-8,所以-8的立方根是〔-2 〕;
因为(
2 3
)3

8 27
,所以 8
27
的立方(
2 3
).
知识要点
立方根的性质
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零.
• 他们的课程,无论是在内容和形式上,都是经过认真 研判,把各学科的核心素养作为教学主线。既涵盖城市中 小学、又包括乡村大局部学校的教学模式。適合全國大局 部教學大區。本課件就是從全國一等獎作品中,优选出的 具有代表性的作品。示范性强,有很大的推广价值。
第四章
八年级数学下〔BS〕 教学课件
因式分解
第6章

【课件】2 提公因式法因式分解(2)

【课件】2 提公因式法因式分解(2)
则两个多项式互为相反数. 如: a-b 和 b-a 即 a-b = -(a-b是否正确? (1) (y-x)2 = -(x-y)2 (2) (3+2x)3 = -(2x+3)3 (3) a-2b = -(-2b+a) (4) -a+b = -(a+b) (5) (a-b)(x-2y) = (b-a)(2y-x)
- =___(b+a)5;
=___(b+a)6.
(7) (a+b) =___(-b- (8) (a+b)2 =+___(-a-
a);
b)2.
合作交流探究新知
(1)a-b 与 -a+b 互为相反数.
(a-b)n = (b-a)n (n是偶 数)
(a-b)n = -(b-a)n (n是奇 数()2)a+b 与 -a-b互为相反数.
反馈练习巩固新知
(1)3(a-b)2+6(ba) (2)x(x-y)2-y(y-x)2
(3)18(a-b)3-12b(ba)2 (4)x(x+y)(x-y) -x (x+y)2
原式=3(a-b)(a-b-2) 原式=(x-y) 3 原式=6(a-b)2(3a-5b) 原式=-2xy(x+y)
课堂 小 结
合作交流探究新知
在下列各式等号右边的括号前填入“+”或 “-”号,使等式成立:
- (1) (a-b) =___(b-a); (2) (a-b+)2
- =___(b-a)2;
(3) (a-b)3 =___(b- (4) (a-b)4 =+___(b-
a)3;
(5) (a+b)5 +

苏科版七下数学课件:9.5因式分解(2)

苏科版七下数学课件:9.5因式分解(2)
初中数学七年级下册 (苏科版)
9.5 因式分解(2)
温故知新
1、平方差公式如何表示? (a+b)(a-b)=a2-b2
反过来又如何?
a2-b2 = (a+b)(a-b)
2、你能把分解因式吗?
x2-25
a2-b2 = (a+b)(a-b)
观察上面的式子,你发现其有何 特征?
左边是两数的平方差,右边是 两数和与它们差的积。
的方法,叫做运用公式法。
练一练1:把下列各式分解因式:
1.36-x2 2.a2-1 b2
9
3.x2-16y2
4.x2y2-z2
例2:把下列各式分解因式:
1.(x+y)2-(x-y)2
2.9(a+b)2-4(a-b)2
练一练2:
1.(x-2)2-9
2.(x+a)2-(y-b)2
3.-25(a+b)2+4(ab)2
例3:求圆环绿地的面积
35m 15m
练一练3:如图,在边长为 16.4厘米的正方形纸片的4 个角各剪去一边长为1.8厘米 的正方形,求余下纸片的面积
课堂小结
1.平方差公式: a2-b2 = (a+b)(a-b) 2.用平方差公式因式分解步骤:
一变、二分解
拓展训练1:因式分解
1.-125x2y2+4 2.4(a-b)2-9(2a+3b)2 3.(2a-b)2-9a2 4.(x2+3x)2-(x+1)2
填空:
(1)a2-16=a2-( 4 )2 =(a+ 4)(a- 4 )
(2)64-b2=( 8 )2-b2
=( 8 +b)( 8 -b) (3)25x2-49y2=(5x)2-(7y)2

因式分解(2)——公式法(人教版)八年级数学上册PPT课件

因式分解(2)——公式法(人教版)八年级数学上册PPT课件
原式=(x-y)(a2-b2) =(x-y)(a+b)(a-b).
13. 分解因式:n2(m-2)+(2-m).
解:原式=(m-2)(n+1)(n-1).
三级检测练
一级基础巩固练
14. 分解因式:
(1)x2-25=
(x+5)(x-5)

(2)4b2-a2=
(2b+a)(2b-a)

(3)9b2-4a2=
5. 分解因式:
(1)x2-25=
(x+5)(x-5)Biblioteka ;(2)x2-36=
(x+6)(x-6)
.
6. (例 2)分解因式:
(1)4x2-25=
(2x+5)(2x-5)

(2)9x2-16y2=
(3x+4y)(3x-4y)
.
7. 分解因式:
(1)16x2-1=
(4x+1)(4x-1)

(2)36x2-25y2=
)2.
知识点.公式法(平方差公式)
3. 平方差公式:
整式乘法:(a+b)(a-b)= a2-b2

分解因式:a2-b2=
(a+b)(a-b)
.
4. (例 1)分解因式:
(1)x2-4=
(x+2)(x-2)

(2)x2-9=
(x+3)(x-3)
.
总结:能用平方差公式分解因式的条件: ①二项式;②能化成两个平方相减.
(1)设 S1,S2 分别是图 1,图 2 的面积,若用
含 a,b 的代数式表示它们的面积,则
S1=
a2-b2

七年级数学下册第3章因式分解公式法(第2课时)课件(新版)湘教版

七年级数学下册第3章因式分解公式法(第2课时)课件(新版)湘教版

解:原式=3x2y2(3xy-7x+4). 原式= x2(x-y)-y2(x-y)=(x-y)(x2-y2) =(x-y)(x-y)(x+y)=(x-y)2(x+y). 原式=(a-b-2c)2. 原式=m2-3m-4+3m= m2-4 =(m+2)(m-2).
【火眼金睛】
因式分解: 1 x2-2x+3.
4
解:原式=x2-x+ ( 1 )2
2
= (x 1 )2 .
2
知识点一 用完全平方公式进行因式分解(P65例5、6、 7拓展) 【典例1】因式分解: 4x2-12xy+9y2.
(x-y)4-2(x-y)2+1. (x2+2x)2+2(x2+2x)+1.
【思路点拨】题目可直接利用完全平方公式进行因式 分解. 题目注意要把(x-y)看成整体,并且要分解到每个因式 都不能再分解为止. 题目要两次运用完全平方公式进行因式分解.
【基础小练】
请自我检测一下预习的效果吧!
1.下列各式中,能用完全平方公式进行因式分解的是
(A)
A. 1 x2-xy+y2
4
B.2x2+4x+1
C.2x2+4xy+y2 D.x2-y2+2xy
2.多项式x2+ax+4能用完全平方公式分解因式,则a的值
是 __±__4____.
3.因式分解:x2-x+ 1 .
(A)
A.4x2-4x+1
B.9x2+3x+1
C.x2+4x+2y2
D.x2+5xy+25y2

《公式法》因式分解PPT课件(第2课时)

《公式法》因式分解PPT课件(第2课时)

B. + −
C. − +
D. − + +
D

课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考


(2020•眉山)已知 + = − − ,则 −
. 4

的值为


解析:由 +

+






= − − ,
− + + = ,


即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解

因式分解(第2课时)-2022-2023学年七年级数学下册教材配套教学课件(沪科版)

因式分解(第2课时)-2022-2023学年七年级数学下册教材配套教学课件(沪科版)

几个非负数的和为 0,则这几个非负 数都为0.
∴x2y2+2xy+1=(xy+1)2
=112=121.
方法总结:此类问题一般情况是通过配方将原 式转化为非负数的和的形式,然后利用非负数 性质解答问题.
ห้องสมุดไป่ตู้ 当堂练习
1.下列多项式中能用平方差公式分解因式的是( D )
A.a2+(-b)2 B.5m2-20mn
C.-x2-y2
D.-x2+9
2.分解因式(2x+3)2 -x2的结果是( D )
A.3(x2+4x+3)
B.3(x2+2x+3)
C.(3x+3)(x+3) D.3(x+1)(x+3)
3.若a+b=3,a-b=7,则b2-a2的值为( A )
A.-21 B.21 C.-10 D.10
4.把下列各式分解因式: (1) 16a2-9b2=__(_4_a_+_3_b_)_(4_a_-_3_b_)___; (2) (a+b)2-(a-b)2=_____4_a_b__________; (3) -a4+16=__(_4_+_a_2_)(_2_+_a_)_(_2_-a_)__.
沪科版七年级下册配套课件
第8章 整式乘法与因式分解
第4节 因式分解 第2课时 公式法与分组分解法
学习目标
1.探索并运用平方差公式和完全平方公式进行因式分 解,体会转化思想.(重点)
2.能会综合运用平方差公式和完全平方公式对多项式 进行因式分解.(难点)
导入新课
情境引入
如图,在边长为a米的正方形上剪掉一个边长为b米的小
完全平方式: a 2 2ab b2

人教版八年级数学上册整式的乘法和因式分解《因式分解(第2课时)》示范教学课件

人教版八年级数学上册整式的乘法和因式分解《因式分解(第2课时)》示范教学课件
例2 分解因式: (1)x4-y4; (2)a3b-ab.
分析:(1)x4=(x2)2,y4=(y2)2,x4-y4=(x2)2-(y2)2,这样就可以利用平方差公式进行因式分解了.
解:(1)x4-y4=(x2+y2)(x2-y2)
此时,因式分解彻底了吗?
还可以继续分解: x2-y2=(x+y)(x-y).
解:(2)(x+p)2-(x+q)2 =[(x+p)+(x+q)][(x+p)-(x+q)] =(2x+p+q)(p-q).
用平方差公式分解因式的一般步骤 第1步:观察多项式的特点,确定a,b; 第2步:把多项式的两项写成两个数(或式子)的平方; 第3步:因式分解成两个数(或式子)的和与两个数(或式子)的差的积的形式; 第4步:因式分解的结果,能化简的要进行化简.
运用平方差公式分解因式
利用平方差公式分解因式时,多项式需具备什么特点?
a2-b2=(a+b)(a-b)
另一个数的平方
一个数的平方


两个数的和
两个数的差
×
利用平方差公式分解因式时,多项式应满足:
1.含有两部分;
3.每一部分的绝对值都可以写成某个数(或式子)的平方.
2.这两部分的符号相反;
人教版八年级数学上册
因式分解
第2课时
把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解.
1.什么叫多项式的因式分解?
2.判断下列变形过程,哪些是整式的乘法?哪些是因式分解? (1)(x+2)(x-2)=x2-4; (2)x2-4+3x=(x+4)(x-1); (3)7m-7n-7=7(m-n-1); (4)x2-4=(x+2)(x-2).
例2 分解因式: (1)x4-y4; (2)a3b-ab.

课件《因式分解》精品PPT课件_人教版2

课件《因式分解》精品PPT课件_人教版2

十字相乘法②随堂练习: 1)4a2–9a+2 a 24a 1
2)7a2–19a–6 7a 2a 3 3)2(x2+y2)+5xy 2x y x 2y
例 .将 2(6x2 +x) 2-11(6x2 +x) +5 分解因式 解:2(6x2 +x)2-11(6x2 +x) +5 = [(6x2 +x) -5][2(6x2 +x)-1] = (6x2 +x-5) (12x2 +2x-1 ) = (6x -5)(x +1) (12x2 +2x-1 )
x2 13x 42 x 6 x 7
对二次三项式x2+px+q用x2+(a+b)x+ab=(x+a)(x+b)进行因式分解, 应重点掌握以下问题:
1.适用范围:只有当q=ab,且p=a+b时 才能用十字相乘法进

行分解。
2.掌握方法:拆分常数项,验证一次项.
3.符号规律:
当q>0时,a、b同号,且a、b的符号与p的符号相同;
3.(x-2)(x+1)= x2-x-2
4.(x-2)(x-1)= x2-3x+2 5.(x+2)(x+3)= x2+5x+6 6.(x+2)(x-3)= x2-x-6 7.(x-2)(x+3)= x2+x-6 8.(x-2)(x-3)= x2-5x+6
(x+a)(x+b) =x2+(a+b)x+ab
2
-1
例1:2x2-7x+3
解:原式=(2x-1)(x-3) 1
-3
总结:
2 × (-3)+(-1) × 1=-7

1因式分解第2课时公式法因式分解课件华东师大版数学八年级上册

1因式分解第2课时公式法因式分解课件华东师大版数学八年级上册

试一试:
(a+2b)·(a-2b)=____a_2_-_4_b_2 __; (a+2)·(a-2)=_____a_2-_4_____.
视察上面两个等式,可以得到: a2-4b2=( a+2b)(a-2b ); a2-4 =( a+2 )( a-2 ).
想一想:根据整式乘法和因式分解的互逆关系,你 对因式分解的方法有什么新的发现?
解: (1) 73.562-26.442 =(73.56+26.44)(73.56-26.44) =100×47.12 =4 712;
(2) 8002-2×800×799&知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
解:因为x-y=1,xy=2, 所以x3y-2x2y2+xy3 = xy(x2-2xy+y2) = xy(x-y)2 = 2×1 = 2.
➢ 完全平方公式中的字母a,b不仅可以代表数,还可以 代表单项式或多项式.
把乘法公式的等号两边互换位置, 就可以得到用于分解因式的公式, 用来把某些具有特殊情势的多项 式分解因式,这种因式分解的方 法叫做公式法.
例2 分解因式: (1) x2+4xy+4y2;
解: (1) x2+4xy+4y2 = x2+2·x ·2y + (2y)2 = (x+2y)2;
把整式乘法的平方差公式,反过来就得到因式分解 的公式:
(a+b)(a-b)
整式乘法 因式分解
a2-b2
根据a2-b2 = (a+b)(a-b)可知:
➢ 等式左边为两个数平方的差, 等式右边为两个数的和与这两个数的差的积. 即两个数的平方差等于这两个数的和与这两个数的 差的积.

2-4《因式分解法》课件(共35张PPT)

2-4《因式分解法》课件(共35张PPT)
(1)提取公因式法: am+bm+cm=m(a+b+c).
(2)公式法:
a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
(3)十字相乘法:
1 a
x2+(a+b)x+ab= (x+a)(x+b). 1 b
实际问题
根据物理学规律,如果把一 个物体从地面 10 m/s 的速度竖 直上抛,那么经过 x s 物体离地 面的高度(单位:m)为
3. 分别解两个一元一次方程,它们的根就 是原方程的根.
AB = 0
A=0或B=0
( A、B 表示两个因式)
用因式分解法解一元二次方程的步骤
1. 方程右边化为_零_____。
2. 将方程左边分解成两个__一__次___因__式__的乘积。 3. 至少_有___一__个__因式为零,得到两个一元一次
⑴ 5x2-3 2 x=0 (运用因式分解法)
⑵ 3x2-2=0
(运用直接开平方法)
⑶ x2-4x=6
(运用配方法)
⑷ 2x2-x-3=0
(运用公式法)
⑸ 2x2+7x-7=0 (运用公式法)
② 公式法虽然是万能的,对任何一元二次方程都适用, 但不一定是最简单的,因此在解方程时我们首先考虑能 否应用“直接开平方法”、“因式分解法”等简单方法, 若不行,再考虑公式法(适当也可考虑配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0

数学:14.4因式分解(第2课时)课件(人教课标八年级上)

数学:14.4因式分解(第2课时)课件(人教课标八年级上)

例4 分解因式:
分解因式, 必须进行
(1)x4-y4;
(2)
a3b

ab.
到每一个 多项式都
不能再分
分析:(1)x4-y4可以写成(x2)2-(y2)2的形解为式止,这. 样
就可以利用平方差公式进行因式分解
了.(2)a3b-ab有公因式ab,应先提出公因式,再
进一步分解.
解:(1) x4-y4
(2) a3b-ab
人教版 ·数学 ·八年级(上) 14.4因式分解
第2课时 平方差公式
问题1:你能叙述多项式因式分解的定义吗?
1、多项式的因式分解其实是整式乘法的逆用, 也 就是把一个多项式化成了几个整式的积的形式.
问题2:运用提公因式法分解因式的步骤是什么?
2.提公因式法的第一步是观察多项式各项是否有 公因式,如果没有公因式, 就不能使用提公因式 法对该多项式进行因式分解.
观察平方差公式:a2-b2=(a+b)(a-b)的项、指数、 符号有什么特点? (1)左边是二项式,每项都是平方的形式,两项 的符号相反.
(2)右边是两个多项式的积,一个因式是两数 的和,另一个因式是这两数的差.
(3)在乘法公式中,“平方差”是计算结果, 而在分解因式, “平方差”是得分解因式的多项式
= (x2+y2)(x2-y2)
=ab(a2-1)
= (x2+y2)(x+y)(x-y)
=ab(a+1)(a-1).
1.如果多项式各项含有公因式,则第一步是提 出这个公因式.
2.如果多项式各项没有公因式,则第一步考 虑用公式分解因式.
3.第一步分解因式以后,所含的多项式还可 以继续分解, 则需要进一步分解因式.直到每 个多项式因式都不能分解为止.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解
1. a²+a= a(a+1) 2. a²-b²= (a+b)(a-b) 3. a²+2ab+b²= (a+b)²
特点:左边是多 项式,右边是几 个整式的积
有时我们也把这一过程叫分解因式
݅所以因式分解和整式乘法是互逆关系
2020年10月2日
4
学会区分了吗? 请试一试
指出下列,那些是因式分解?那些不是
2
13 87
87 87
若正方形的边长为87mm,长方形的宽为13mm 你能求出这两个图形的面积吗?请列出式子 :
87²+87x13
想一想
谁最快得出结果
87(87+13)=8700
2020年10月2日
3
如下列的三个整式乘法:
1.a(a+1)=a²+a
特点:左边是几个
2.(a+b)(a-b)=a²-b² 整式的积,右边是 3.(a+b)²=a²+2ab+b² 多项式
2020年10月2日
5
例:检验下列因式分解是否正确 x²y-xy²=xy(x-y)
解: ∵xy(x-y)=xy.x-xy.y= x²y-xy² ∴因式分解x²y-xy²=xy(x-y) 正确
学会了吗? 请动手做一做
加油!
检验下列因式分解是否正确
1. m²-4n²=(m+2n)(m-2n)
2. x²-x-2=(x+2)(x-1)
学 2.会判定一个从左到右的恒等变形是不是因式分解 目 3.学会运用因式分解的方法来解题 标
重点:理解因式分解的概念 难点:理解因式分解与整式乘法的相互关系,
并运用它们之间的相互关系寻找因式分解的方法
关键点:会判定一个从左到右的恒等变形是不是因式
分 解的关键:左边必须是多项式,右边是几 个整式的积
2020年10月2日
看一看 想一想 你会吗?
已知:(1)a+b=7,b-a=3/7 求a²-b²的值
前后四 位同学 讨论
(2).若a+b=1,a-2b=3求a²-ab-2b²的值
2020年10月2日
9
下面大家来谈谈: 这堂课你有哪些
收获? 掌握了什么?学会
了什么?
2020年10月2日
10
因式分解
教 1.理解因式分解的概念
1. 2m(m-n)=2m²-2mn
5. -8x³y²=-8xy(x²y)
2. ab²-ab= ab(b-1)
4
6. 1-16/x²=(1-
)(1+
4
)
3.4x²-4x+1=(2x-1) ² 7. x-y=( + )( - )
4.x²-3x+1=x(x-3)+1 8. 2x²-1=( 2 x+1)( 2 x-1)
解:由题意得: 2x²+mx-2= (2x+1)(x-2)
∵ 2x²+mx-2=2x²-3x-2 ∴对应项的系数相等则m=-3
会了吗? 请试一试
若能x²+ax+b分解成(x+3)(x+4),求a,b的值
2020年10月2日
8
比一比 赛一赛
谁最快?
口答: 1.(7.5)²-(0.5)²=(
56
)
2.573²-427²=( 146000)
11
2020年10月2日
12
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
汇报人:XXX 汇报日期:20XX年10月10日
13
2020年10月2日
6
比一比 赛一赛
把左݅右两个相等的代数用线连接起来
2a²-2a
a²+6a+9 4-a²
3a²+12a
(2-a)(2+a) 2a(a-1) (a+3)² 3a(a+4)
小结:请谈谈你现学会了什么?掌握了什么?
2020年10月2日
7
想一想
?
如果2x²+mx-2可分解因式为 (2x+1)(x-2),求m的值
2020年10月2日
1
同学们:请 猜一猜
昨天,我与3岁的外甥女,在玩用积木拼图, 她一手拿着一块正方形,一手拿着一块长方形 (它的长与正方形的边长是一样长的),我指导 她把这两块积木这样放才完全合在一起,而且没
??? 有缝隙,并且这个图形是你们学过的?您猜我摆
了什么图形? 想到了吗?
2020年10月2日
相关文档
最新文档