高等数学 曲线积分与曲面积分习题课 非常有用
曲线积分与曲面积分常见题型攻略
曲线积分与曲面积分常见题型攻略以心同学整理一、计算第一类曲线积分步骤:(一)平面曲线积分t t g y t x L ,)()(:1.化简(1)代入化简【常用在k t g t f )](),([ (常数)的情形】Lds y x f ),(Lds t g t f )](),([ kskds L其中s 为积分曲线L 的长度。
(2)利用奇偶对称性化简①若积分曲线L 关于坐标轴y 轴对称,则有Lds y x f ),(1),(,),(2),(0L x y x f ds y x f x y x f 的偶函数是的奇函数是,其中1L 为y 轴右边部分。
②若积分曲线段L 关于坐标轴x 轴对称,则有Lds y x f ),(1),(,),(2),(0L y y x f ds y x f y y x f 的偶函数是的奇函数是,其中1L 为x 轴上边部分。
(3)利用轮换对称性化简若积分曲线L 中把x 与y 互换,积分曲线不变,则有Lds y x f ),( Ldsx y f ),(2.确定积分曲线L 的参数式方程t t g y t x L ,)()(:注:积分曲线一般以)(x f y 或)(y g x 的形式出现,此时参数式为:b x a x f y x x L,)(:,dy c y y y g x L,)(:3.套公式(一代二换三定限)化为定积分Lds y x f ),(dtt g t t g t f )()()](),([22注意:上限 大于下限 4.计算定积分例1【2017-2018期末】设L 是直线)40(1243 x y x 的一段,则Lds y x )43(60;解:Lds y x )43( Lds12代入化简6012 s 。
例2【2018-2019期末】计算Lds x y)(2,其中L 为圆周422 y x .解:法一:L 的参数方程为sin 2cos 2y x ( 20 ),d d ds 2)cos 2()sin 2(22 ,于是Lds x y )(22022)cos 2sin 4(d 0sin 8202d822148 .法二:由对称性有Lds y 2 Lds x 2(轮换对称),0 Lxds (奇偶对称)所以Lds x y )(2 Lds y 2L ds y x )(2122 Lds 421(代入化简)8422 Lds .例3【2019-2020期末】计算曲线积分Lds y xy x )(22,其中L 为平面区域}0,1|),{(22 y y x y x D 的边界曲线。
高等数学 曲线积分与曲面积分习题课 非常有用
+
∂Q ∂y
+
∂R ∂z
)dv
=
∫∫ Σ
Pdydz
+
Qdzdx
+
Rdxdy
高斯公式
4.曲面积分与曲线积分的联系
∫∫
Σ
∂R ( ∂y
−
∂Q )dydz
∂z
+
∂P (
∂z
−
∂R )dzdx
∂x
+
∂Q (
∂x
−
∂P ∂y
)dxdy
= ∫ Pdx + Qdy + Rdz Γ
斯托克斯公式
高等数学十
Green公式,Guass公式,Stokes公式之1144//228★8
f2 x
+
f
2 y
)dσ
D
∫+ f ( x, y)ds L
o
y
x
D L
高等数学十
2222//228★8
2
2
例 3 求柱面 x 3 + y 3 = 1在球面 x2 + y2 + z2 = 1内
的侧面积.
解 由对称性
∫ S = 8 zds L ∫= 1 − x2 − y2ds L
Q
2
L: x3 +
2
y3
系Σ
Σ
计
∫∫ f (x, y,z)ds
Σ
∫∫R(x, y,z)dxdy
Σ
= ∫∫ f[x, y,z(x, y)] 1+ zx2 + z2ydxdy = ±∫∫R[x, y,z(x, y)]dxdy
Dxy
Dxy
算 一代,二换,三投(与侧无关) 一代,二投,三定向 (与侧有关)
高等数学D10习题课
Pdx Qdy Rdz
dydz dzdx dxdy
PdydzQdzdx Rdxdy
x
y
z
PQ R
(Px
Q y
R)dv z
(三)场论初步
梯度 gra duiu u juk x y z
通量 散度
Pdy Q dzd zR dxdxdy
diA vPQR x y z
环流量 PdQ x d R y dz
计
f(x, y,z)ds
R(x,y,z)dxdy
算
f[x,y,z(x,y)]1zx 2z2 ydxdyR[x,y,z(x,y)d] xdy
D xy
Dxy
一代,二换,三投(与侧无关) 一代,二投,三定向 (与侧有关)
(二)各种积分之间的联系
曲线积分
计算
定积分
Stokes公式
计算 曲面积分
Guass公式
格林公式
3.三重积分与曲面积分的联系
( P x Q y R z)d v P d Q yd d R zzd dx xd
高斯公式
4.曲面积分与曲线积分的联系
R Q
P R
Q P
(yz)dyd(zzx)dzdx (xy)dxd
PdxQdyRdz
斯托克斯公式
Green公式,Guass公式,Stokes公式 之间的关系
旋度 rA o ( R t Q ) i ( P R ) j ( Q P ) k y z z x x y
二、典型例题
例 1 计 算 I (x22x)ydx (x2y4)d, y L
其 中 L为 由 点 O(0,0)到 点 A(1,1)的 曲 线 ysi nx. 2
(PcosQcos Rcos)ds
第四章 曲线积分与曲面积分 习题课(一)
2 [ a cos t ( a sin t ) b sin t ( b cos t )] dt 0
- 12 -
a b
2
2
2
习 题 课(一)
三 格林公式及其应用 设区域 D 是由分段光滑正向曲线 L 围成, 函数
第 十 章
在 D 上具有连续一阶偏导数, 则有
Q P x y d xd y D
y dx
L
2
2
2
-8-
习 题 课(一)
(3) L ( y z ) dx ( z x ) dy ( x y ) dz , 其中
2 2 2 2 2 2
L
为球面的一部分
x y z 1, x 0 , y 0 , z 0
2 2 2
第 的围线,其方向从 z 正向看去是逆时针的。 十 y2 z2 1 章 z 解 L L1 L 2 L 3 x 0 曲 L2 x2 z2 1 x cos t 线 积 L y 0 L3 t :0 1 y sin t 分 2 o 与 z 0 L1 曲 x x2 y2 1 面 积 z 0 分 y cos t z cos t t :0 L 3 x sin t L 2 z sin t t :0 2 2 x 0 y 0
Pd x Qd y
L
曲 在D 内具有一 线 设D 是单连通域 , 函数 积 分 阶连续偏导数, 则以下四个条件等价: 与 P Q . 曲 (1) 在 D 内每一点都有 y x 面 积 Pd x Qd y 0 . 分 (2) 沿D 中任意光滑闭曲线 L , 有 L
高等数学《曲线积分与曲面积分》习题课
L( A,B)
b
f (x, y)
1 y2dx
a
曲顶柱体的表面积
如图曲顶柱体,
z z f (x, y)
S
(1
1
f2 x
f
2 y
)d
D
f ( x, y)ds L
o
y
x
D L
2
2
例 3 求柱面 x 3 y 3 1在球面 x2 y2 z 2 1内
的侧面积.
解 由对称性
S 8Lzds 1 x2 y2ds
2
解
z
y 1绕y轴旋转面方程为
x 0
y 1 z2 x2
(如下图)
欲求
I
(8
y
1) xdydz
2(1
2
y
)dzdx
4
yzdxdy
z
且有 I
* *
P Q R
*
(
x
y
z
)dxdydz
x
2
o1
*
y
3
(8 y 1 4 y 4 y)dxdydz dv
3
2
2
3
dxdz
D
8
a 0 dx (e x m) 0 0, OA 0
M
A(a,0) x
I
m a2 0 m a2.
AMOA OA
8
8
曲面面积的计算法
z
z f (x, y) S
z
z f (x, y)
o
Dxy
y
a
bo
A
s LB
y
x S dS
1
z
2 x
z
2 y
第四章 曲线积分与曲面积分 习题课(二)
R ( x , y , z ) dxdy
0
( x , y ) D xy
R ( x , y , z ) dxdy
D xy
R ( x , y , z ( x , y )) dxdy
上正下负
-5-
习 题 课(二)
Q ( x , y , z ) dzdx 的计算
第 十 章 曲 线 积 分 与 曲 面 积 分
d
1
dz
0
2
d
0
1
( cos 1 ) d
2 2
9 4
- 16 -
习 题 课(二)
例5 计算曲面积分
为柱面 x 2 y 2 1
第 十 章 曲 线 积 分 与 曲 面 积 分
x dydz y dzdx z dxdy
2 2 2
其中
zox 面 ,
: y y ( x , z ),
Q ( x , y , z ) dzdx
0
( x , z ) D zx
R ( x , y , z ) dzdx
R ( x , y ( x , z ), z ) dzdx
D zx
右正左负
三 两类曲面积分的关系
1 2
D xy
2
(1)
( x y ) dS ,
2 2
其中 为由锥面 z
z
2
x y
2
2
与
1
2
o x
y
D xy
( x y ) 2 dxdy
2 2
(1
曲线积分与曲面积分的应用
曲线积分与曲面积分的应用曲线积分与曲面积分是微积分的重要概念,在应用数学和物理学领域经常被用到。
本文将介绍曲线积分与曲面积分的概念、计算方法以及在实际问题中的应用。
一、曲线积分的概念与计算方法曲线积分用于计算曲线上的某个向量场的沿曲线的积分。
设曲线C 为参数方程r(t)=(x(t), y(t), z(t)), 其中t∈[a, b]。
向量场F(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))在曲线C上的曲线积分定义为:∫[a,b] F·dr = ∫[a,b] (Pdx + Qdy + Rdz)计算曲线积分的方法有两种,一种是根据参数方程直接计算,另一种是通过换元法转化为定积分。
无论使用哪种方法,都需要注意确定积分路径的方向。
二、曲线积分的应用1. 力的做功:假设有一个物体沿曲线C移动,受到力F(x, y, z)的作用。
则力F在曲线C上做的功可以通过曲线积分来计算。
例如,当物体受到重力作用时,曲线积分可以用于计算物体从一个位置到另一个位置的重力做功。
2. 流量计算:曲线积分还可以用于计算流体通过给定曲线边界的流量。
例如,在计算液体或气体通过管道的流量时,可以通过曲线积分来确定通过给定管道截面的流体的体积流量。
三、曲面积分的概念与计算方法曲面积分用于计算曲面上的某个向量场的通过曲面的流量。
设曲面S由参数方程r(u, v)=(x(u, v), y(u, v), z(u, v))定义,其中(u, v)∈D。
向量场F(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))在曲面S上的曲面积分定义为:∬S F·dS = ∬D (F·(ru×rv)) dA其中,ru和rv分别是参数方程r(u, v)对u和v的偏导数向量,ru×rv 是其叉乘,dA是面积元素。
计算曲面积分的方法包括参数化法、单位法向量法和投影法等。
大学高数第十章曲线积分与曲面积分课后参考答案及知识总结
,
原式=
注:利用二重积分的被积函数的奇偶性及积分区域的对称性有 .
★★4.利用曲线积分,求星形线 所围成图形的面积。
解:由公式
★★5.求双纽线 所围区域的面积。
解:双纽线的极坐标方程为:
由图形的对称性知:
★★6.计算 ,其中 为圆周 的顺时针方向。
解: 参数方程为: 变化从 到
原式
原式
法二: 线积分与路径无关。
原式 =
★★15.利用曲线积分,求下列微分表达式的原函数:
(1) ;
(2) ;
(3) .
解:(1) ,
是某函数的全微分
.
(2)
是某函数的全微分
.
(3)
是某函数的全微分
★★16.设有一变力在坐标轴上的投影为 , ,改变力确了一个力场.
证明质点在此场内移动时,场力所作的功与路径无关.
(1)螺旋形弹簧关于 轴的转动惯量 ;
(2)螺旋形弹簧的重心.
解:
(1)
.
(2)
螺旋形弹簧关于 平面的静力矩分别为:
同法得:
.
,
.
提高题
★★★1.计算 ,其中 为正向圆周 ,直线 及 轴在第一项限内所围成的扇形的整个边界.
解: 与 在第一象限的交点为 .
如图:
;
; .
则原式
★★★★2.计算 ,其中 为圆柱面 与锥面 的交线.
解:摆线的参数方程为:
原式
★★5.计算曲线积分 ,其中 为螺旋线 上相应于 从 到 的一段弧。
解:
原式
★★6.计算曲线积分 ,其中 为折线 ,这里 , , , 依次为点 , , , .
解:如图,原式=
曲线积分与曲面积分重点总结+例题
第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
2.掌握计算两类曲线积分的方法.3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数.4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。
【教学重点】1。
两类曲线积分的计算方法;2。
格林公式及其应用;3。
第一类曲面积分的计算方法;【教学难点】1。
两类曲线积分的关系及第一类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3。
应用格林公式计算对坐标的曲线积分;6.两类曲线积分的计算方法;7.格林公式及其应用格林公式计算对坐标的曲线积分;【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社。
[2]同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3]同济大学数学系。
《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy面内的一段曲线弧L上,已知曲线形构件在点(x,y)处的线密度为μ(x,y)。
求曲线形构件的质量.把曲线分成n小段,∆s1,∆s2,⋅⋅⋅,∆s n(∆s i也表示弧长);任取(ξi,ηi)∈∆s i,得第i小段质量的近似值μ(ξi,ηi)∆s i;整个物质曲线的质量近似为;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n}→0,则整个物质曲线的质量为.这种和的极限在研究其它问题时也会遇到。
定义设函数f(x,y)定义在可求长度的曲线L上,并且有界。
,将L任意分成n个弧段:∆s1,∆s2,⋅⋅⋅,∆s n,并用∆s i表示第i段的弧长;在每一弧段∆s i上任取一点(ξi,ηi),作和;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n},如果当λ→0时,这和的极限总存在,则称此极限为函数f(x,y)在曲线弧L上对弧长的曲线积分或第一类曲线积分,记作,即.其中f(x,y)叫做被积函数,L叫做积分弧段。
高等数学曲线积分和曲面积分总结
高等数学曲线积分和曲面积分总结
高等数学曲线积分和曲面积分是微积分领域中的重要概念,它们在实际应用中具有广泛的应用,例如在物理、工程、计算机科学等领域中都有重要的应用。
本文将对高等数学曲线积分和曲面积分的概念、计算方法和应用进行总结。
一、曲线积分的概念
曲线积分是指对一维曲线上的点的函数值求导的积分,也称为路径积分。
曲线积分的基本思想是通过对曲线上的点进行积分,得到曲线的面积或体积。
曲线积分的计算公式为:
∫Cf(x,y)dS = ∫∫∫Cf(x^TC(y), y^TC(z))dxdydz
其中,C是曲线,f(x,y)是曲线上的点值函数,T是曲线上的任意一点,S是曲线上的面积,z是曲线上的任意一点。
二、曲面积分的概念
曲面积分是指对三维曲面上的点的函数值求导的积分,也称为向量场积分。
曲面积分的基本思想是通过对曲面上的点进行积分,得到曲面的面积或体积。
曲面积分的计算公式为:
∫∫∫Sf(x,y,z)dsdV = ∫∫∫Sf(x^TS(y^TS(z)))dsdV
其中,S是曲面,f(x,y,z)是曲面上的点值函数,T是曲面上的任意一点,V是曲面上的任意体积,s是曲面上的任意法向量,dV是曲面上的任意体积法向量。
拓展:曲线积分和曲面积分在物理学中的应用
曲线积分和曲面积分在物理学中具有广泛的应用。
例如,在量子力学中,曲线积分被用来计算波函数的面积,而曲面积分被用来计算量子场论的场速可变的相对性原理。
在相对论中,曲线积分被用来计算相对论效应的积分,而曲面积分被用
来计算四维空间中的弯曲曲面。
第八章曲线与曲面积分习题
重心坐标为(0,0, a ). 2
p54. 4.设曲面是柱面x2 y2 9及z 0, z 3
所围成的区域的整个边界曲面,计算 ( x2 y2 )ds.
解 1 2 3, 其中 1 : x2 y2 9,0 z 3,
2 : z 0,( x2 y2 9), 3 : z 3,( x2 y2 9),
p57 §8.4格林公式
p57.一.填空题 1.设f ( x)具有连续导数,C为简单闭曲线,则
(1)C f ( xy)( ydx xdy) C f ( xy)d( xy) 0 ;
(2) f ( x2 y2 )( xdx ydy) C
Ñ f ( x2 y2 ) 1 d( x2 y2 ) 0
Jx
( y2 z2 )( x, y, z)ds .
p53. 2.设 为xoy面内的一个闭区域D,则曲面积分
f ( x, y, z)ds化为D上的二重积分为 f ( x, y,0)d .
D
p53. 3.设是球面x2 y2 z2 R2,则
( x2 y2 z2 )ds
R2 ds 4 R4
解 令x a cos t, y a sin t,
I
2 0
1 a2
[a 2
(cos
t
sin
t
)(
sin
t
)
(cos
t
sin
t
)
cos
t
]dt
2
0 dt 2 .
p55. 2.计算 ( x2 2xy)dx ( y2 2xy)dy,其中 L
L为抛物线y x2上从点(1,1)到点(1,1)的一段弧.
则 f ( x, y)ds 2 f ( x, y)ds.
高数 第十章 曲线积分与曲面积分
计算
定积分
计算
Stokes公式 计算 曲面积分 Gauss公式
重积分
16
积分概念的联系
定积分
f ( M )d lim f ( M ) i , f ( M )点函数
0
i 1
n
当 R1上区间 a, b]时, f ( M )d f ( x )dx. [
5
基本问题: 如何熟练掌握各种积分的计算
首先判断准确要求的是哪一类积分 重要的是牢牢记住各种积分的计算方法
1、I
L
f ( x , y )ds 代入曲线的方程以及ds,从而化为定积分解之
2、I Pdx Qdy 代入曲线的方程,化为定积分解之 L
P Q 闭合 y x 非闭
( y 2 z 2 ) dS; I z
( x 2 y 2 ) dS
曲面质心: 曲面形心:
x
x
dS ; y
S
;y
ydS ydS
dS ; z
S
;z
dS S
dS zzdS
15
(二)各种积分之间的联系
积分是
P cos Q cos R cos ds
,其中, ,为有向曲面上点
x, y, z 处的
法方向 的方向角。
20
2.选择以下各题中给出的四个结论中一个正确的结论:
(1)设曲面是上半球面 : x 2 y 2 z 2 R 2 , z 0, 曲面 1 是 曲面在第一卦限中的部分 , 则有 C .
条 件 等
曲线积分与曲面积分解题技巧
曲线积分与曲面积分的解题技巧1.对弧长的曲线积分的解题技巧一般采用直接计算法,即写出曲线的参数方程,借助弧微分计算公式,直接代入被积被积表达式转换为定积分的方法计算,注意定积分下限小于上限。
也可以考虑借助于其实际意义,借助元素法转换为其他类型的积分来完成计算。
2.对坐标的曲线积分的解题技巧(1) 直接计算方法,参数方程表达式直接代入,转换为定积分计算的方法。
注意定积分下限为起点对应的参数,上限为终点对应的参数。
(2) 两类曲线积分之间的关系。
注意方向余弦构成的切向量的方向应与曲线方向一直。
(3) 格林公式,当积分曲线为空间曲线时,则使用格林公式。
(注意三个条件:封闭性,方向性与偏导的连续性)(4) 积分与路径无关(格林公式)。
3.对面积的曲面积分的解题技巧一般采用直接计算法,要求积分曲面为简单类型,不为简单类型的积分曲面借助于积分对积分区域的可加性,将其分割为简单类型,借助面积微元的积分变量微元的描述形式转换为二重积分计算。
也可以考虑借助于其实际意义,借助元素法转换为其他类型的积分来完成计算。
对面积的曲面积分只需要考虑曲面为一种简单类型。
4.对坐标的曲面积分的解题技巧(1) 直接计算方法,将对不同坐标的曲面积分分开单独计算,考虑曲面为单独的三种不同简单类型,采取直接代入函数表达式转换为二重积分的方法计算,唯一要注意的是,法向量与相应坐标轴的方向关系决定直接将曲面积分转换为二重积分的正负。
(2) 两类曲面积分之间的关系。
注意方向余弦构成的法向量的方向应与曲面的法向量方向一直。
(3) 利用两类曲面积分之间的关系,将三个对坐标的曲面积分转换为一种类型的对坐标的曲面积分,这样就只要考虑曲面为一种类型的简单类型即可。
(4) 高斯公式,当积分曲线为空间曲线时,则使用格林公式。
(注意三个条件:封闭性,方向性与偏导的连续性)。
曲线与曲面积分习题参考答案
十 曲线积分与曲面积分习题(一) 对弧长的曲线积分1. 计算ds y x L⎰+)(22,其中L 为圆周t a y t a x sin ,cos == )20(π≤≤t .解32032222202222222cos sin )sin cos ()(a dt a dt t a t a t a t a ds y x Lπππ==++=+⎰⎰⎰.2. 计算ds x L⎰,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界.解 )12655(1214121210-+=++=⎰⎰⎰dx x x dx x ds x L. 3.计算⎰Lyds ,其中L 是抛物线x y 42=上从)0,0(O 到)2,1(A 的一段弧.解⎰L y d s =dy y y dy y y ⎰⎰+=+202202421)2(1 )122(34)4(4412202-=++=⎰y d y . 4.计算⎰+Lds y x )(,其中L 为从点)0,0(O 到)1,1(A 的直线段.解⎰+L ds y x )(=23211)(10=++⎰x x . 5.计算⎰L xyzds ,其中L 是曲线2321,232,t z t y t x ===)10(≤≤t 的一段. 解 ⎰Lx y z d s =⎰⎰+=++13102223)1(232)2(121232dt t t t dt t t t t t =143216.6.计算L⎰ ,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限所围成的扇形的整个边界.解L⎰ =⎰1L +⎰2L +⎰3L=dx e dt t a t a edx eax aa x⎰⎰⎰+++++024022222201)sin ()cos (11π=(2)14ae a π+-7.设在xoy 面内有一分布着质量的曲线L ,在点(),x y 处它的线密度为(),x y μ,试用对弧长的曲线积分分别表达(1)这条曲线弧对x 轴,y 轴的转动惯量,x y I I ; (2) 这条曲线弧的质心坐标,x y . 解 (1)⎰=Lx dS yI 2μ ⎰=Ly dS x I 2μ(2)⎰⎰=L L dSy x dS y x x x ),(),(μμ ⎰⎰=LL dSy x dS y x y y ),(),(μμ (二) 对坐标的曲线积分1.计算⎰+Lxdy ydx ,其中L 为圆周t R y t R x sin ,cos ==上对应t 从0到2π的一段弧. 解⎰+Lx d y y d x =0]cos cos )sin (sin [20=+-⎰dt t tR R t R t R π2.计算⎰+Lydx xdy ,其中L 分别为(1)沿抛物线22x y =从)0,0(O 到)2,1(B 的一段; (2)沿从)0,0(O 到)2,1(B 的直线段.; (3)沿封闭曲线OABO ,其中)0,1(A ,)2,1(B .解 (1)⎰=+=122)24(dx x x x I .(2)2)22(1=+=⎰dx x x I .(3)⎰+Lydx xdy =⎰⎰⎰++BOABOA=210(22)0dy x x dx +++=⎰⎰.3.计算⎰-+++Ldz y x zdy xdx )1(,其中Γ是从点)1,1,1(到点)4,3,2(的一段直线.解 直线方程为312111-=-=-z y x ,其参数方程为13,12,1+=+=+=t z t y t x ,t 从0变到1.13])13(3)12(2)1[(1=+++++=⎰dt t t t I .4.计算2()Lxydx x y dy x dz +-+⎰,其中L 是螺旋线bt z t a y t a x ===,sin ,cos 从0=t 到π=t 上的一段.解 dt t b a t a t a t a t a t a t a I ⎰+-+-∙=π22]cos cos )sin cos ()sin (sin cos [)(222b a a +=π.5.设Γ为曲线23,,x t y t z t ===上相应于t 从0变到1的曲线弧.把对坐标的曲线积分Pdx Qdy Rdz Γ++⎰化成对弧长的曲线积分.解 由于)3,2,1()3,2,1(),,(2y x t t dt dz dt dy dt dx ==,故229411c o s y x ++=α,229412cos yx x ++=β,229413cos yx y ++=γ.(cos cos cos )Pdx Qdy Rdz P Q R dS αβγΓΓ++=++⎰⎰=dS yx yR xQ P ⎰Γ++++2294132.(三) 格林公式及应用1.计算⎰-L ydy x dx xy 22,其中L 为圆周222a y x =+,取逆时针方向. 解⎰-Lydy x dx xy22=0)22(=--⎰⎰Ddxdy xy xy2.计算⎰+--Ldy y x dx y x )sin ()(22,其中L 是在圆周22x x y -=上由点)0,0(到点)1,1( 的一段弧.解 y x P -=2,)sin (2y x Q +-= ()122017sin sin 246I x x x x dx =---=-⎰ 3. 计算(1)()xxL ye dx x e dy +++⎰,其中L 为椭圆22221x y a b +=的上半周由点(,0)A a 到(,0)B a -的弧段.解 x ye P +=1,x e x Q +=⎰⎰-=+11L L L I =2aD adxdy dx ab a π--=-⎰⎰⎰4. 计算3222(2cos )(12sin 3)Lxy y x dx y x x y dy -+-+⎰,其中L 为在抛物线22x y π=上由点(0,0)到,12π⎛⎫⎪⎝⎭的一段弧. 解 322cos P xy y x =-,2212sin 3Q y x x y =-+ ⎰⎰⎰--=+211L L L L I =0)4321(00122-+--⎰⎰⎰y y dxdy D π=42π5. 计算⎰+-L y x xdy ydx )(222,其中L 为圆周2)1(22=+-y x ,L 的方向为逆时针方向. 解 )(222y x y P +=,)(222y x x Q +-=,当022≠+y x 时, yPy x y x x Q ∂∂=+-=∂∂)(22222 L 所围区域为D ,由于D ∈)0,0(,故不能直接用格林公式.选适当小的0>r ,作位于D 内的小圆周222:r y x l =+.记L 与l 所围区域为1D ,在1D 上应用格林公式,得⎰+-L y x xdyydx )(222-⎰+-l y x xdy ydx )(222=0其中l 取逆时针方向.所以⎰+-L y x xdyydx )(222=⎰+-l y x xdy ydx )(222=πθθπ=--⎰20222222cos sin r r r . 6. 计算星形线t a y t a x 33sin ,cos ==,)20(π≤≤t 所围成区域的面积.解 ⎰-=L ydx xdy A 21=2024224283)cos sin 3sin cos 3(a dt t t a t t a ππ=+⎰7. 证明曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关,并计算积分值.解 (1)42y xy P -=,324xy x Q -=xQy x y P ∂∂=-=∂∂342在整个xoy 面上成立 故曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关.(2)⎰⎰+=21L L I =8.验证dy x xydx 22+在整个xoy 平面内是某一函数),(y x u 的全微分,并求这样的一个),(y x u .解 (1)验证略;(2)y x dy x y x u yABOA2020),(=+=+=⎰⎰⎰9.试用曲线积分求dy y x dx y x )cos ()sin 2(++的原函数. 解 y x P sin 2+=,y x Q cos =,xQ y y P ∂∂==∂∂cos 在整个xoy 面上成立 所以 ⎰++=),()0,0()cos ()sin 2(),(y x dy y x dx y x y x u=y x x ydy x xdx yxsin cos 220+=+⎰⎰+C.(四) 对面积的曲面积分1.计算⎰⎰∑+dS y x)(22,其中∑是锥面22y x z +=及平面1=z 所围成的区域的整个边界曲面. 解⎰⎰∑+dS y x)(22=⎰⎰⎰⎰∑∑+21=⎰⎰⎰⎰+++++xyxyD D y x dxdy y x dxdy z z y x )(1)(222222 ⎰⎰++=xyD dxdy y x )()12(22=π212+. 2. 计算⎰⎰∑++dS zy x )223(,其中∑为平面1432=++z y x 在第一卦限的部分.解 d x d y y x y x I xyD ⎰⎰-+-+--++=22)34()2(1))321(223(, =⎰⎰⎰⎰-+=+x D dy y dx dxdy y xy 23302)265(361)265(361 =614)42741549(361202=+-⎰dx x x . (x y x D xy 2330,20:-<<<<) 3.计算⎰⎰∑dS z 2,其中∑为球面2222a z y x =++. 解⎰⎰∑dS z 2=⎰⎰⎰⎰--=++--xyxyD D y x dxdy y x a a dxdy z z y x a2222222221)(2=42022342a d a d a aπρρρθπ=-⎰⎰4.计算⎰⎰∑++dS z y x )(,∑是球面0,222≥=++z a z y x .有问题 解 ⎰⎰----++=xyD dxdy y x a y x a y x I 222222)(=⎰⎰⎰⎰--+--+xyxyD D dxdy y x a dxdy y x a y x )()(222222 =πρρρθπ2)(002220=-+⎰⎰ad a d 5.求抛物面壳221()(01)2z x y z =+≤≤的质量,此壳的面密度为z μ=. 解 ⎰⎰∑=zdS M =dxdy y x y x xyD 22221)(21+++⎰⎰=2012d d πρ⎰(五) 对坐标的曲面积分1.计算⎰⎰∑zdxdy y x22,其中∑是球面2222R z y x =++的下半部分的下侧.解⎰⎰∑zdxdy y x22=dxdy y x R y x xyD ⎰⎰--2222=24220cos sin Rd πθρθρ⎰⎰ =72105R π2.计算⎰⎰∑++yzdzdx xydydzxzdxdy ,其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧. 解 4321∑+∑+∑+∑=∑0321===⎰⎰⎰⎰⎰⎰∑∑∑⎰⎰⎰⎰--=++∑xyD dxdy y x x yzdzdx xydydz xzdxdy )1(34=dy xy x x dx x⎰⎰---10102)(3=85. 3.计算⎰⎰∑++=dxdy z h dxdz y g dydz x f I )()()(,其中h g f ,,为已知连续函数,∑为平行六面体c z b y a x ≤≤≤≤≤≤Ω0,0,0:表面的外侧. 解 654321∑+∑+∑+∑+∑+∑=∑⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dydz a f dydz f dydz x f I )()0()(1=bc f a f )]0()([-⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dxdz b g dxdz g dxdz y g I )()0()(2=ac g b g )]0()([-ab h c h I )]0()([3-=所以321I I I I ++==ab h c h ac g b g bc f a f )]0()([)]0()([)]0()([-+-+-. 4.计算⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑为半球面222y x a z --=的上侧.解⎰⎰⎰⎰⎰⎰∑∑∑+=21222dydz x dydz x dydz x=0)()(222222=-----⎰⎰⎰⎰dydz z y a dydz z y a yzyzD D 同理:02=⎰⎰∑dzdx y 4202222222)()(a d a d dxdy y x a dxdy z aD xyπρρρθπ=-=--=⎰⎰⎰⎰⎰⎰∑故⎰⎰∑++dxdy z dzdx y dydz x 222=42a π. 5.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是柱面122=+y x 被0=z 及3=z 所截得的在第一卦限内的部分的前侧. 解⎰⎰∑=0zdxdy⎰⎰⎰⎰⎰⎰-=-=∑1032211dz y dy dydz y xdydz yzDπθθθθππ43)2cos 1(23cos 320202=+==⎰⎰d d同理:π43=⎰⎰∑ydzdx 故⎰⎰∑++zdxdy ydzdx xdydz =π23. 6.设∑为平面x z a +=在柱面222x y a +=内那一部分的上侧,下面两个积分的解法是否正确?如果不对,给出正确解法. (1)3()()x z dS a dS a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积; (2)3()()x z dxdy a dxdy a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积. 解 (1)正确;(2)错误.正确解法是:()x z dxdy a dxdy ∑∑+=⎰⎰⎰⎰=3adxdy a xyD π=⎰⎰.(六) 高斯公式利用高斯公式计算: 1.计算⎰⎰∑++dxdy z dzdx y dydz x 333,其中∑为球面2222a z y x=++的内侧.解 2223()I x y z dv Ω=-++⎰⎰⎰2403sin Rd d r dr ππθϕϕ=-⎰⎰⎰5125R π=- 2.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是曲面22y x z +=在第一卦限中10≤≤z 部分的下侧.解 补充曲面:)0,0,1(,1:221≥≥≤+=∑y x y x z ,取上侧; )1,10(,0:22≤≤≤≤=∑z x x y ,取左侧;)1,10(,0:23≤≤≤≤=∑z y y x ,取后侧.∑,1∑,2∑和3∑构成闭曲面,所围的空间闭区域记为Ω,由高斯公式,得⎰⎰∑++zdxdy ydzdx xdydz =⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑+∑+∑+∑---++321zdxdy ydzdx xdydz=003+++⎰⎰⎰⎰⎰⎰⎰ΩzxxyD D dzdx dxdy dv=ππρρθρπ=+⎰⎰⎰43110202dz d d .3.计算⎰⎰∑+++-dxdy xz y dzdx x dydz z x y )()(22,∑为正方体Ω的表面并取外侧,其中 {(,,)|0,0,0}x y z x a y a z a Ω=≤≤≤≤≤≤.解 ()I y x dv Ω=+⎰⎰⎰=400)(a dz y x dy dx aaa=+⎰⎰⎰ 4.计算⎰⎰∑++dS z y x )cos cos cos (222γβα,其中∑是由222z y x =+及)0(>=h h z 所围成的闭曲面的外侧,γβαcos ,cos ,cos 是此曲面的外法线的方向余弦. 解 2()2()2I x y z d x d y d z x y d x d y d z z d x d y d zΩΩΩ=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰=2220()xyxyh D D dxdy zdz h x y dxdy +=--⎰⎰⎰⎰=412h π.(七) 斯托克斯公式1.计算⎰-+-++Ldz z y dy z x dx z y )()()2(,其中L 为平面1=++z y x 与各坐标面的交线,取逆时针方向为正向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1. 2.计算⎰-+-+-Ldz x y dy z x dx y z )()()(,其中L 是从)0,0,(a 经)0,,0(a 和),0,0(a 回到)0,0,(a 的三角形.解 由斯托克斯公式,得⎰-+-+-Ldz x y dy z x dx y z )()()(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =2242222a dxdy dxdy dydz dxdy dydz xyxyyzD D D ==+=+⎰⎰⎰⎰⎰⎰⎰⎰∑. (八) 曲线积分与曲面积分自测题1.计算曲线积分 (1)ds y x L⎰+22,其中L 为圆周ax y x =+22;解 :cos (-)22L r a ππθθ=≤≤)d s d d a θθθ==cos r a θ==ds y x L⎰+22=222cos 2a ad a ππθθ-=⎰ .(2)⎰Lzds ,其中Γ为曲线)0(,sin ,cos 0t t t z t t y t t x ≤≤===;解d s t d t=⎰Lz d s=0322(2)3t t +-=⎰ (3)⎰+-Lxdy dx y a )2(,其中L 为摆线)cos 1(),sin (t a y t t a x -=-=上对应t 从0到π2的一段弧;解⎰+-Lx d y dx y a )2(=20{[(2(1cos ))](1cos )(sin )sin }a a t a t a t t a t dt π---+-⎰=2220sin 2at tdt a ππ=-⎰. (4)⎰Γ-+-dz x yzdy dx z y 2222)(,其中Γ是曲线32,,t z t y t x ===上由01=t 到12=t 的一段弧;解⎰Γ-+-dz x yzdy dx z y2222)(=14623220[()1223]t t t t t t t dt -+-⎰=16401(3)35t t dt -=⎰(5)⎰-+-Lx x dyy e dx y y e )2cos ()2sin (,其中L为上半圆周0,)(222≥=+-y a y a x 沿逆时针方向;解 补充积分路径1:0L y =,x 从0到2a. sin 2,cos 2xxP e y y Q e yy =-=-11(s i n 2)(c o s 2)xx LL L L ey y dx e y dy +-+-=-⎰⎰⎰=220()(sin 020)0ax D Q Pdxdy e dx a x y π∂∂---+=∂∂⎰⎰⎰2.计算曲面积分 (1)⎰⎰∑++222z y x dS ,其中∑是介于平面0=z 及H z =之间的圆柱面222R y x =+; 解x =,dS ==⎰⎰∑++222z y x dS=12∑∑+⎰⎰⎰⎰=yzD+yzD=221yzD R z =+⎰⎰=2arctanHR π. (2) ⎰⎰∑-+-+-dxdy y x dzdx x z dydz z y )()()(222,其中∑为锥面)0(22h z y x z ≤≤+=的外侧;解 11I ∑+∑∑=-⎰⎰⎰⎰=()P Q Rdxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰2()xyD x y dxdy --⎰⎰ =44044h h ππ-=-.(3)⎰⎰∑++zdxdy ydzdx xdydz ,其中∑为半球面22y x R z --=的上侧;解11I ∑+∑∑=-⎰⎰⎰⎰=()P Q R dxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰0xyD dxdy -⎰⎰ =3302dv R πΩ-=⎰⎰⎰.(4)⎰⎰∑++++3222)(z y x zdxdyydzdx xdydz ,其中∑为曲面)0(9)1(16)2(5122≥-+-=-z y x z 的上侧;解 0I = (利用高斯公式) (5) ⎰⎰∑xyzdxdy ,其中∑为球面)0,0(1222≥≥=++y x z y x 外侧. 解⎰⎰∑xyzdxdy =12xyzdxdy xyzdxdy ∑∑+⎰⎰⎰⎰=12022cos sin xyD d r r πθθθ=⎰⎰⎰⎰=215. 3.证明:22yx ydyxdx ++在整个xoy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分,并求出一个这样的二元函数.解 在整个xoy 平面除去y 的负半轴及原点的区域G 是单连通域.在G 内,222()Q xy Px x y y ∂-∂==∂+∂, 所以存在(,)u x y ,使22xdx ydydu x y+=+. 取积分路径:(1,0)(,0)(,)x x y →→(,)22222(1,0)10(,)x y yx xdx ydy x y u x y dx dy x y x x y +==+++⎰⎰⎰=221ln()2x y +. 4.计算⎰Γ-+-++dz x y dy z x dx z y )()()2(,其中Γ为平面1=++z y x 与各坐标面的交线,从z 轴正向看取逆时针方向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q Pdydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1.5.求均匀曲面222y x a z --=的质心的坐标.解 设面密度为ρ,重心(,,)x y z 由对称性:0x y ==2200xyaD M dS πρρ∑===⎰⎰⎰=22a πρ2112xyD z zdS Ma ρπ∑==⎰⎰=2a 故重心的坐标为(0,0,)2a .。
(完整版)第十章曲线积分与曲面积分练习题
第十章 曲线积分与曲面积分§10.1 对弧长曲线的积分一、判断题1.若f(x)在(-+∞∞,)内连续,则⎰badx x f )(也是对弧长的曲线积分。
( )2.设曲线L 的方程为x=)(y ϕ在[βα,]上连续可导则⎰⎰'+=Ldyy y y f ds y x f βαϕϕ2)]([1)),((),(( )二、填空题1.将⎰+Lds y x)(22,其中L 为曲线x=a(cost+tsint),y=a(sint-tcost)()20π≤≤t 化为定积分的结果是 。
2.⎰+L ds y x )(= ,其中L 为连接(1,0)和(0,1)两点的直线段。
三、选择题1.⎰+Lds y x )(22=( ),其中L 为圆周122=+y x (A )⎰02πθd (B )⎰πθ2d (C )⎰πθ22d r (D )⎰πθ22d2.⎰Lxds =( ),L 为抛物线2x y =上10≤≤x 的弧段。
(A ))155(121- (B ))155(- (C )121 (D ))155(81-四、计算⎰+Cds y x )(,其中C 为连接点(0,0)、(1,0)、(0,1)的闭折线。
五、计算⎰++L ds z y x )2(22,其中L 为⎩⎨⎧=++=++02222z y x R z y x六、计算⎰+Ln ds y x)(22,L 为上半圆周:)(222N n R y x ∈=+七、计算⎰+Ly x ds e22,其中L 为圆周222a y x =+,直线y=x 和y=0在第一象限内围成扇形的边界。
八、求半径为a ,中心角为ϕ2的均匀圆弧(ρ=1)的重心。
§10.2 对坐标的曲线积分一、判断题1.定积分也是对坐标的曲线积分。
( ) 2.022=+-⎰L y x ydx xdy ,其中L 为圆周122=+y x 按逆时针方向转一周。
( )二、填空题1.ydz x dy y dx x 2233++⎰Γ= ,其中Γ是从点A (1,2,3)到点B (0,0,0)的直线段AB 。
9-习题课
Pdx Qdy
非闭
闭合 I (
Q P )dxdy x y
由 I ( x 2 2 xy )dx ( x 2 y 4 )dy 解 L
P 2 知 ( x 2 xy ) 2 x y y
y
1
D
A
Q 2 ( x y4 ) 2x x x
2 2 2 2
: z 1 x y
2
2
z 0 的下侧.
解 下向xoy面的投影区域Dxy : x 2 y 2 1
x 2 y 2 z x 2 y 2 dxdy = x 2 y 2 dxdy
三重积分
当 R3上区域时,
f ( M )d f ( x , y , z )dV
当 R3上空间曲线时,
曲线积分
f ( M )d f ( x , y , z )ds.
曲面积分
当 R3上曲面S时,
S
f ( M )d f ( x , y , z )dS .
Pdydz Qdzdx Rdxdy
( P cos Q cos R cos )dS
理论上的联系
1.定积分与不定积分的联系
b
a
f ( x )dx F (b) F (a )
( F ( x ) f ( x ))
牛顿--莱布尼茨公式
2.二重积分与曲线积分的联系
对坐标的曲线积分
ቤተ መጻሕፍቲ ባይዱ
L
f ( x , y )ds lim f ( i , i )si
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 1,
参数方程为⎨⎧ ⎩
x y
= =
cos3 sin 3
t, t,
(0 ≤ t ≤ π) 2
高等数学十
ds = ( xt′)2 + ( y′t )2dt = 3sin t cos tdt,
π
∫ S = 8 2 1 − cos6 t − sin6 t 3sin t cos tdt 0
π
∫ = 24 2 3sin2 t cos2 t sin t cos tdt 0
[P(ξi ,ηi
)Δxi
+Q(ξi
, ηi
)Δyi
]
联
系
∫LPdx+Qdy= ∫L(Pcosα +Qcosβ)ds
计 ∫L f (x, y)ds
∫=
β
f [ϕ, ψ]
ϕ′2 + ψ′2dt
α
算 三代一定
(α < β)
∫LPdx + Qdy
∫=
β
[
P
(ϕ,
ψ)ϕ′
+
Q(ϕ,
ψ
)ψ′]dt
α
二代一定 (与方向有关)
∂Q = ∂ (e x cos y − m) = e x cos y ∂x ∂x
即 ∂P ≠ ∂Q ∂y ∂x
(如下图)
高等数学十
1188//228★8
1199//228★8
∫ ∫ ∫ ∫ I = − = −
y
L+OA O A AMOA OA
∫ ∫∫= (∂Q − ∂P )dxdy
AMOA D ∂x ∂y
一、主要内容 二、典型例题
22//228★8
(一)曲线积分与曲面积分 (二)各种积分之间的联系 (三)场论初步
高等数学十
(一)曲线积分与曲面积分
对对弧弧长长的的
对对面面积积的的
曲曲
曲曲线线积积分分
曲曲面面积积分分
线线 积积 分分
定定 义义
联 系
计计 算算
定定 联 义义 系
计计 算算
对对坐坐标标的的 曲曲线线积积分分
系Σ
Σ
计
∫∫ f (x, y,z)ds
Σ
∫∫R(x, y,z)dxdy
Σ
= ∫∫ f[x, y,z(x, y)] 1+ zx2 + z2ydxdy = ±∫∫R[x, y,z(x, y)]dxdy
Dxy
Dxy
算 一代,二换,三投(与侧无关) 一代,二投,三定向 (与侧有关)
高等数学十
77//228★8
D
a y1 ( x )
∫∫∫ ∫ ∫ ∫ f ( x, y, z)dV =
b
dx
y2
(
x
)
dy
z2( x,y) f ( x, y, z)dz, (dV体元素)
Ω
a
y1 ( x )
z1 ( x , y )
∫ ∫ f ( x, y)ds =
b
f [ x, y( x)]
1 + y′2dx, (ds线元素(曲))
(三)场论初步
梯度 gradu = ∂u ir + ∂u rj + ∂u kr ∂x ∂y ∂z
通量 散度
Φ = ∫∫ Pdydz + Qdzdx + Rdxdy Σ divAr = ∂P + ∂Q + ∂R ∂x ∂y ∂z
∫ 环流量 Γ = Pdx + Qdy + Rdz Γ
旋度
r rotA
=
(
曲线积分 当Σ → R3上空间曲线Γ时,
∫Σ f (M )dσ = ∫Γ f ( x, y, z)ds.
曲面积分 当Σ → R3上曲面S时,
∫Σ f (M )dσ = ∫∫ f ( x, y, z)dS. S
高等数学十
1100//228★8
计算上的联系
∫∫ ∫ ∫ f ( x, y)dσ =
b
[
y2( x) f ( x, y)dy]dx, (dσ面元素)
− 1 [2 f ( x, y, z) + y]dzdx + 1 [ f ( x, y, z) + z]}ds
3
3
=
1 3
∫∫
∑
(
x
−
y
+
z)ds
∫∫ = 1 1⋅ 3dxdy = 1 .
3 Dxy
2
高等数学十
2266//228★8
向量点积法
{ } 设Σ :
z=
f ( x, y),
法向量为
−
f
′
x
高等数学十
2277//228★8
例5 计算 I = ∫∫ ydydz − xdzdx + z2dxdy, 其中 ∑ 为 ∑
锥面 z = x2 + y2 被平面 z = 1, z = 2 所截部分的外侧.
23 . 15
高等数学十
例 2 计算
∫ I = (e x sin y − my )dx + (e x cos y − m)dy , L
其中 L为由点(a ,0)到点(0,0)的上半圆周 x 2 + y2 = ax, y ≥ 0.
解
Q
∂P = ∂ (e x sin y − my) = e x cos y − m ∂y ∂y
+
∂Q ∂y
+
∂R ∂z
)dv
=
∫∫ Σ
Pdydz
+
Qdzdx
+
Rdxdy
高斯公式
4.曲面积分与曲线积分的联系
∫∫
Σ
∂R ( ∂y
−
∂Q )dydz
∂z
+
∂P (
∂z
−
∂R )dzdx
∂x
+
∂Q (
∂x
−
∂P ∂y
)dxdy
= ∫ Pdx + Qdy + Rdz Γ
斯托克斯公式
高等数学十
Green公式,Guass公式,Stokes公式之1144//228★8
∫π
= 24 3 2 sin2 t cos2 tdt
= 3 3 π.
0
2
高等数学十
2233//228★8
2244//228★8
例4 计算
I = ∫∫[ f ( x, y, z) + x]dydz + [2 f ( x, y, z) + y]dzdx ∑
+ [ f ( x, y, z) + z]dxdy, 其中 f ( x, y, z) 为连续函数,
∑ 为平面 x − y + z = 1在第一卦限部分的上侧 .
z
解 利用两类曲面积分之间的关系
1
Q ∑ 的法向量为 nr = {1,−1,1},
∑
∴cosα =
1
, cos β =
1
, cosγ
=
1
−1
.
3
3
3
o
1
x
y
高等数学十
2255//228★8
I
=
∫∫ {
∑
1[ 3
f
( x,
y,z) +
x]dydz
o
Dxy
y
bo
a
s
y
LB
A
x S = ∫∫ dS
Σ
∫∫ =
1
+
z
2 x
+
z
2 y
dxdy
Dxy
∫ x S =
f ( x, y)ds
L( A,B)
∫=
b
f (x, y)
1 + y′2dx
a
高等数学十
曲顶柱体的表面积
2211//228★8
如图曲顶柱体,
z z = f (x, y)
∫∫ S =
(1 +
1+
I = ∫L Pdx + Qdy
∫ ∫∫ I =
( x, y)
Pdx
( x0 , y0 )
+ Qdy 非闭 ∂P
=
∂Q
∂P ≠ ∂Q 闭合 I =
(∂Q − ∂P )dxdy D ∂x ∂y
∫ I = L Pdx + Qdy =0闭合 ∂y ∂x ∂y ∂x 非闭 补充曲线或用公式
高等数学十
1177//228★8
∫∫ ( Ar ⋅ nr )ds = ∫∫∫ div Ar dv
Σ
Σ
Ω
∫Γ Pdx + Qdy + Rdz
dydz dzdx dxdy
∫∫ Pdydz+ Qdzdx+ Rdxdy
Σ
= ∫∫ Σ
∂ ∂x
∂ ∂y
∂ ∂z
PQ R
=
∫Ω∫∫(∂∂Px
+
∂Q ∂y
+
∂R)dv ∂z
高等数学十
1155//228★8
∂R
−
∂Q
r )i
+
(
∂P
−
∂R)
r j
+
(∂Q
−
∂P
r )k
∂y ∂z ∂z ∂x ∂x ∂y
高等数学十
1166//228★8
∫ 例 1 计算I = ( x2 + 2xy)dx + ( x2 + y4 )dy, L
其中L为由点O(0,0)到点 A(1,1)的曲线 y = sin π x. 2