人教版八年级数学上册 全册全套试卷专题练习(word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册全册全套试卷专题练习(word版

一、八年级数学三角形填空题(难)

1.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()

A.144°B.84°C.74°D.54°

【答案】B

【解析】

正五边形的内角是∠ABC=()

52180

5

-⨯

=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角

是∠ABE=∠E=()

62180

6

-⨯

=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–

120°–120°–36°=84°,故选B.

2.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是_____.

【答案】92°.

【解析】

【分析】

由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.

【详解】

由折叠的性质得:∠C'=∠C=46°,

根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠C',

则∠1=∠2+∠C+∠C'=∠2+2∠C=∠2+92°,

则∠1﹣∠2=92°.

故答案为:92°.

【点睛】

考查翻折变换(折叠问题),三角形内角和定理,熟练掌握折叠的性质是解题的关键.

3.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=_____cm2.

【答案】12cm2.

【解析】

【分析】

根据三角形的面积公式,得△ACE的面积是△ACD的面积的一半,△ACD的面积是△ABC 的面积的一半.

【详解】

解:∵CE是△ACD的中线,

∴S△ACD=2S△ACE=6cm2.

∵AD是△ABC的中线,

∴S△ABC=2S△ACD=12cm2.

故答案为12cm2.

【点睛】

此题主要是根据三角形的面积公式,得三角形的中线把三角形的面积分成了相等的两部分.

4.若(a﹣4)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为_______.

【答案】22

【解析】

【分析】

先根据非负数的性质列式求出a、b再根据等腰三角形和三角形三边关系分情况讨论求解即可.

【详解】

解:根据题意得,a-4=0,b-9=0,

解得a=4,b=9,

①若a=4是腰长,则底边为9,三角形的三边分别为4、4、9,不能组成三角形,

②若b=9是腰长,则底边为4,三角形的三边分别为9、9、4,能组成三角形,周长

=9+9+4=22.

【点睛】

本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.

5.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.

【答案】40.

【解析】

【分析】

利用三角形的内角和和四边形的内角和即可求得.

【详解】

∵△ABC沿着DE翻折,

∴∠1+2∠BED=180°,∠2+2∠BDE=180°,

∴∠1+∠2+2(∠BED+∠BDE)=360°,

而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,

∴80°+2(180°﹣∠B)=360°,

∴∠B=40°.

故答案为:40°.

【点睛】

本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.

6.三角形三边长分别为 3,1﹣2a,8,则 a 的取值范围是 _______.

【答案】﹣5<a<﹣2.

【解析】

【分析】

根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.

【详解】

由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.

即a的取值范围是-5<a<-2.

【点睛】

本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.

二、八年级数学三角形选择题(难)

A B C.再分7.如图,ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到111

A B C.…… 按此规律,倍长2018次后得到的

别倍长A1B1,B1C1,C1A1得到222

A B C的面积为()

201820182018

A.2017

6B.2018

7D.2018

8

6C.2018

【答案】C

【解析】

分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.

详解:连接AB1、BC1、CA1,根据等底等高的三角形面积相

等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,S△AnBnCn=7n S△ABC.∵△ABC 的面积为1,∴S△AnBnCn=7n,∴S△A2018B2018C2018=72018.

故选C.

点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.

相关文档
最新文档