不完全信息静态博弈-贝叶斯纳什均衡(博弈论与信息经济学-中科院张玲玲)
第三章 不完全信息静态博弈
二、例子
1、抓钱博弈 这个博弈有两个非对 称纯战略均衡:一个 参与人抓,另一个参 与人不抓;一个对称 混合战略均衡:每个 参与人以0.5的概率 选择抓。 (1)完全信息
参与人2 抓 参与人1 不抓 抓 -1,-1 1,0
不抓 0,1
0,0
(2)不完全信息 每个参与人有相同 参与人2 的支付结构,但若 抓 不抓 他赢了,其利润是 抓 -1,-1 1+θ1,0 (1+θi)。 θi是参 参与人1 与人的类型,参与 不抓 0 , 1+θ 0,0 人i自己知道θi,但 另一参与人不知道。 假定θ 在[-ε,+ε]区间上均匀分 i 布。
博弈方的类型 原来的静态博弈,即各 中选择行动方案 a1 , , a n 个实际博弈方
u i u i ( a 1 , , a n , i ), i 1, , n
根据海萨尼公理,假定分布函数P(θ1,…,θn)是所有 参与人的共同知识,用θ-i =(θ1,…, θi-1 ,θi+1,…,θn)表示 除i之外的所有参与人的类型组合。这样, θ= (θ1,…, θn)= (θi,θ- i)。称pi(θ-i | θi)为参与人i的条 件概率,即给定参与人i属于类型θi的条件下,他有 关其他参与人属于θ- i的概率。根据条件概率规则, p i , i p i , i p i i | i p i p i , i 这里, p (θi)是边缘概率。如果类型的分布是独立的, pi(θ-i | θi)= p (θ-i)。
2
均衡意味着两个反应函数同时成立。解两个反应函数 得贝叶斯均衡为:
q1
*
1 3
; q2
L*
第五章 不完全信息静态博弈
不完全信息的古诺模型 5
不完全信息的古诺模型 6
三、静态贝叶斯博弈的战略式表述
参与人的类型
要准确地表示静态贝叶斯博弈,关键的问题是反映这种博弈中各参与 人虽然清楚自己的支付函数,却无法确定其他参与人支付函数这一特征。 解决这个问题的前提和基本思路:某些参与人虽然不能确定其他 参与人在一定策略组合下的支付,但至少知道其他参与人的支付有哪 几种可能的结果,而哪种可能的结果会出现则取决于其他参与人属于 哪种“类型”。 定义:一个参与人自己清楚而他人无法完全清楚的私人内部消息、有 关情况或数据等(所有个人信息),即所有不是共同知识的信息称为参 与人的类型。 上述方法实际上是将博弈中某些参与人对其他参与人支付的不了 解,转化成为对这些参与人“类型”的不了解,是一种“追根溯源 ”的思想方法。
与人不知道其他参与人的支付或支付函数。
暗标拍卖 注:不完全信息并不是完全没有信息,实际上不完全信息的博弈方至 少必须有关于其他博弈方支付分布的可能范围和分布概率的知识,否则 博弈方的决策选择就会完全失去依据,我们的博弈分析也就无意义了。
1. 不完全信息博弈例子:市场进入博弈
潜在进入企业(参与人1) 决定是否进入一个新的产业, 但不知道在位企业(参与人2) 的成本函数,不知道在位者 决定默许还是斗争。假设在 位者的成本有两种可能的成 本函数:高成本或低成本(称 为类型)。
四、海萨尼转换 2
海萨尼(Harsanyi,1967-1968)提出了一种在前述将对支付的不了解
转化为对类型的思路的基础上,进一步将不完全信息静态博弈转化为完全 但不完美信息动态博弈进行分析的思路,被称为海萨尼转换。
之后,
四、海萨尼转换 3
N
在位者 1 p 高成本 低成本
第四章 不完全信息静态博弈-贝叶斯纳什均衡(博弈论与信息经济学-中科院, 张玲玲)
第四章 不完全信息静态博弈 -贝叶斯纳什均衡
一 不完全信息静态博弈和贝叶斯纳什均衡
不完全信息博弈
海萨尼转换
不完全信息静态博弈的战略式表述和贝叶斯纳什均衡
二 贝叶斯纳什均衡应用举例
三 贝叶斯纳什均衡与混合战略均衡
四 机制设计理论与显示原理
不完全信息库诺特模型
企业1
企业2
海萨尼转换
设θi表示参与人i的一个特定的类型,根据海萨尼 公理:
假定参与人类型的分布函数P (θ1,…, θn) 是所有参与人的共同知识,所有参与人知道P (θ1,…, θn),所有参与人知道所有参与人知道 P (θ1,…, θn),如此等等。 这意味着在进入市场的博弈中,如果进入者 有一种类型,在位者有两种类型,那么p是共同知 识,即进入者知道在位者是高成本的概率是p,进 入者知道在位者知道进入者知道在位者是高成本 的概率是p,如此等等,即在博弈开始时,所有参 与人有关自然行动的信念(belief)是相同的。
海萨尼转换
类型:一个参与人拥有的所有的个人信息(即所有不是共同知
识的信息)称为他的类型。 根据这个定义,甚至允许参与人不知道其他参与人是否知道自己 的类型。
例如:市场进入博弈:在位者不知道进入者是否知道自己是高成 本还是低成本,只知道进入者有p’的概率知道自己的成本函数, (1-p’)的概率不知道自己的成本函数。
真正的“信息不对称”
一个古董商发现一个人用珍贵的茶碟做 猫食碗,于是假装对这只猫很感兴趣, 要丛主人手里买下,主人不卖,为此古 董商出了大价钱。成交之后,古董商装 做不在意地说:这个碟子它已经用惯了, 就一块送给我吧。猫主人不干了:你知 道用这个碟子,我已经卖了多少只猫了?
第3章不完全信息静态博弈详解
博弈论与信息经济学 江西财经大学 陶长琪
3.2.3 一级密封价格拍卖(招标)
拍卖或招标(auction)有两个基本功能,一是揭示信息,二是减少代理 成本。
一级密封价格拍卖(the first-price sealed auction)是许多 拍卖方式
中的一种。在这种拍卖中,投标人(bidders)同时将自己的出价写下来 装入一个信封,密封后交给拍卖人,拍卖人打开信封,出价最高者是 赢者,按他的出价支付价格,拿走被拍卖的物品。
定义:n人静态贝叶斯博弈的战略式表述包括:参与人的类型空 间 , 1 n 条件概率 p1 ,, pn ,类型依存战略空间 A 和类型依存支 1 (1 ), An ( n ), 付函数 u1 (a1 ,an ;1 ),, un (a1 ,an ;n ) 。 参与人i知道自己的类型i i 条件概率 pi pi (i | i ) 描述给定自己属于 i 的情况下,人i有关其他 参与人类型 i i 的不确定性。我们用 G {A1, An ;1,n ; p1,, pn ; u1,, un } 代表这个博弈。
k [0,1], Pr ob( k ) k
)
maxui (v b) P r ob(b j b) (v b)(b)
b
最优化的一阶条件是: 如果
(b) (v b)' (b) 0
b* (.) 是投标人i的最优战略, (b) v 。
(b) ((b) b)' (b)
给定参与人i只知道自己的类型 i 而不知道其他参与人的类型 i ,参与人 ai (i ) 最大化自己的期望效用。参与人i期望效用函数定义如下: i将选择
博弈论与信息经济学 江西财经大学 陶长琪
第3章 不完全信息静态博弈
贝叶斯纳什均衡
有了上述概念,贝叶斯纳什均衡可以定义为, n人不完全信息静态博弈G={A1,…,An;1,…,n; P;u1,…,un}的纯战略贝叶斯纳什均衡是一个类 型依存战略组合{ai*( i )},i=1,…,n,其中每 个参与人i在给定自己的类型i和其他参与人类 型依存战略{a-i*( -i )}的情况下,选择行动 ai*(i)最大化自己的期望效用函i。 贝叶斯纳什均衡是完全信息静态博弈纳什均衡 概念在不完全信息静态博弈上的扩展。
3.1-3不完全信息静态博弈的战略 式表述和贝叶斯纳什均衡
不完全信息静态博弈又称为静态贝叶斯博弈。 不完全信息静态博弈的参与人也称为贝叶斯参 与人。如同在完全信息静态博弈中一样,在不 完全信息静态博弈中,所有参与人同时行动, 参与人i的战略空间Si等同于他的行动空间Ai。 但是,与完全信息静态博弈不同的是,在不完 全信息静态博弈中,参与人i的行动空间Ai可能 依赖于他的类型i ,换句话说,行动空间是类 型依存的(type contingent)。
不完全信息与参与人的类型
不完全信息意味着,至少有一个参与人有多个 类型(否则,就成为完全信息博弈)。 我们用 i 表示参与人i的一个特定类型, i 表 示参与人i所有可能类型的集合,i i。 我们假定,={i},i=1,…,n,取自某个客观的 分布函数P(1,…,n)。 为了简单起见,我们假定只有参与人i观测到 自己的类型i,除i之外的其他参与人都不能观 测到i。
N
高成本 低成本
[p]
在位者 默许 进入者 进入 不进入 进入 不进入 进入 斗争
[1-p]
默许
斗争
不进入 进入
不进入
(50,40) (300,0) (0,-10) (300,0) (80,30) (400,0) (100,-10) (400,0)
博弈论与信息经济学 不完全信息静态博弈
不完全信息和贝叶斯纳什均衡
定义:在静态贝叶斯G {A1, , An ; 1, , n ; p1, , pn ;u1, , un}博弈中, 纯策略贝叶斯纳什均衡是一个类型依存策略组
合a (θ) (a1 (1 ),
,
a
n
(
n
)),其中,每个参与人
i
在给定自己的类
型
i
和其他参与人依存策略
a
i
(θ i
不完全信息和贝叶斯纳什均衡
n 人不完全信息静态博弈的时间顺序为:
⑴自然给定类型向量θ 察到 i ,但参与人
(1, ,
j( i
n ) ,其中,i )只知道 p j
(θ j
i
|
,参与人 i 观 j ),观察不
到 i;
⑵参与人同时选择行动,参与人 i 从可行集 Ai (i )中选择行
动 a i,n 人的行动组合为a (a1, , an );
p(i ,i ) p(i )
p(i ,i ) p(i ,i )
ii
这里,p(i ) 是边缘概率。如果类型的分布是独立的,pi (i i ) p(i )
不完全信息和贝叶斯纳什均衡
贝叶斯纳什均衡是完全信息静态博弈纳什均衡概念在不完 全信息静态博弈上的扩展。不完全信息静态博弈又称为静 态贝叶斯博弈。 ◆定义:n人静态贝叶斯博弈的战略式表述包括:参与人的类 型空间 1, , n,条件概率 p1 ,..., pn ,类型依存战略空间
A11,..., An n ,和类型依存支付函数u1(a1, , an ;1),..., un (a1, , an ;n )
参与人i知道自己的类型 i i ,条件概率 pi pi (i i ) 描述 给定自己属于 i 的情况下,参与人i有关其他参与人类型 i i的不确定性。我们用 G {A1, , An ;1, ,n ; p1, , pn ;u1, ,un} 代表这个博弈。
不完全信息静态博弈
❑❑This chapter begins our study of games of incomplete information, also called Bayesian games. Recall that in a game of complete information the players’functions are common knowledge. In a game of incomplete information, in❑例如:❑❑K型集),既引入一个虚拟的参与人,记为定它的支付函数;它的唯一作用是决定TPN己,把P所有参与人同时行动,从各自的a由此变成BayesianDefinitionof an n-player static Bayesian game specifies the players’type spaces TP 1 , …, Pμ1known by player i, determines player i’s payoff function,member of the set of possible types, Ti’s belief Pn-1 other players’game by G={Aμ1Definition(T人si含了自然赋予己的策略空间的行动空间Definition T任意博弈方sias一个a❑❑❑❑如果在位者是高成本进入者进入者最优行为是进入,在位者最优行为是默许。
进入者如果在位者是低成本进入者进入者最优行为是不进入,在位者最优行为是斗争(一旦低成本者进入)。
进入者但进入者不知道在位者究竟是高成本还是低成本,因此,进入者的最优选择依赖于他对在位者成本的信念。
进入者❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑E ❑q❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑。
3_不完全信息静态博弈
5 不完全信息的古诺模型
逆需求函数
P(Q) 2 (q1 q2 )
为
企业1成本函数为C1 (q1 ) c1q1 , c1 1 为共同知识。
企业2采用了一种新技术,单位成本可能为是c2H=5/4, 也可能是c2L=3/4
单位成本是企业2的私人信息,企业1只知道 p(cH1 )只知道企业 0.5 p(cL2 )单位成本的概率分布) 0.5 (企业
2 不完全信息
一个村子有100对夫妇,村里有个习俗,每天晚上村里的男人要聚在 篝火周围讨论他们的妻子。 如果丈夫相信自己妻子是忠诚的,那么就会在聚会时赞美自己的妻子; 但是一旦得到妻子不忠诚的证据,就会在聚会中公开诅咒自己的妻子 如果一妻子有了自己的情人,那么就会马上让村里除了自己丈夫外的 所有男人知道,但他们不会告诉该妻子的丈夫 事实:每个妻子都已经有了情人。所以每个丈夫都知道除了自己妻子 外的其他99个妻子都不忠诚. 每天晚上每个丈夫都仍然赞美自己的妻子。 有一天晚上,村子里来了一个牧师,他在篝火旁,坐听每个人赞美自 己的妻子,然后,站在他们之间大声宣布:“村子里至少有一位妻子 不忠诚” 接下来将会发生什么?村里的赞美声还能持续多久?
进入 不进入
[1-P]
进入
(0,300)
B
合作
在位者
斗争
(0,400)
B
合作
在位者
斗争
(40,50) (-10,0)
(30,80) (-10,10的在位者选 择斗争。只有当高成本的概率p=1/5时,进入者才选择进入, 否则不进入。
4 贝叶斯纳什均衡
由于司马懿不知道双方行动的支付,根据其策略我们可以 假设他对此次博弈的预期支付为:
不完全信息静态博弈Harsanyi(1967-68)提出了一个不完全信息博弈的
β (x)F (x) + (N − 1)β(x) = (N − 1)x
– Typeset by FoilTEX –
4
我们以下定义均以纯策略为例:
不完全信息博弈 要求:虽然每个博弈者并不知道对手 的类型,但是所有类型出现的联合概率分布 F : Θ → [0, 1] 需为共同认识, 其中 Θ = Θ1 × Θ2... × ΘN。 博弈者 i 观察到私人类型 θi 后的效用可以表示为 Ui[s1(θ1), ..., sN(θN)|θi], Ui(·|θi) 是 在给定 θi 下的 von Neumann-Morgenstern 期望效用函 数, 因为其自变量均为随机变量。于是,
– Typeset by FoilTEX –
7
拍卖理论
现代拍卖理论是从 Vickery(1961) 开始的,80 年代以来 快速衍生出大量文献,其中以静态博弈为分析框架 的 拍卖问题主要是围绕收入相等法则(Revenue Equivalence Principle)和联系法则 (Linkage Principle) 两个基本原理展开。
方案 3? A 省在修路的情况下, 其支付额应在 50 万元 的修路费基础上,减去它给 B 省的外部性 30 万元,
– Typeset by FoilTEX –
20
方案 3 为: 如果 A 省上报值与 B 省收益和大于 100 万元,修路,但 A 省只支付 20 万元,B 省支付 50 万 元。
– Typeset by FoilTEX –
不完全信息静态博弈
假设我们观察到一个人干了一件好事,那么,这个人 是好人的后验概率为: P(GP |GT)= P(GT|GP定张三是好人的先验概率是0.5, 那么, 在观察到张三干了一就好事后,我们如何修正他是好 人的先验概率依赖于我们认为这间好事好到什么程度. 1,这是一件非常好的好事,好人一定干,坏人决不可能 干,即P(GT|GP)=1, P(GT|BP)=0
进入者似乎是与两个不同的在位者博弈, 一个是高成本的在位者,一个是低成本的 在位者.
不完全信息古诺模型 参与人的类型是成本函数.假设逆需求函数 为P = a-q1-q2,每个企业的单位成本不变, 为ci,则企业的利润函数为: πi = qi (a-q1-q2-ci), i=1,2
假设企业1的单位成本c1是共同知识,企 业2的单位成本可能是高的也可能是低的, 企业2知道自己的成本类型,但企业1只 知道企业2属于这两种类型的概率分布 和1-,是共同知识. 进一步假设 a = 2, h c 2 = 1.25, = 0.5 c1 = 1, l c2 = 0.75,
不完全信息静态博弈: 不完全信息静态博弈:贝叶斯纳什均衡
完全信息博弈的基本假设是所有的参与人都知 道博弈的结构,博弈的规则,和博弈的支付函 数.例如在"市场进入"博弈中,进入者知道 在位者的偏好,战略空间和各种战略组合下的 利润水平,反之亦然.当然,这个假设在许多 情况下是不成立的.
哈桑尼( 哈桑尼(Harsanyi)定义了"贝叶斯纳什均衡": )定义了"贝叶斯纳什均衡" 贝叶斯均衡是纳什均衡在不完全信息博弈中的 扩展:
在静态不完全信息博弈中,参与人同时行动,没有机 会观察到其他人的选择; 每个参与人仅知道其他参与人类型的概率分布而不知 道其真实类型; 他不可能准确地知道其他参与人实际上会选择什么战 略,但是,他能正确地预测到其他参与人的选择是如 何依赖于其各自的类型的 决策目标就是在给定自己的类型和别人的类型依从战 略的情况下,最大化自己的期望效用.
博弈论讲义3-不完美信息静态博弈
不完全信息博弈中,至少有一个参与者i有多个可能的 类型,其他参与者虽然知道ti∈Ti,但都无法确知ti在 Ti中的具体取值。
如果只有虚拟参与人具有多个类型,则是不完全信息
如果有虚拟参与人以外的某些参与人有多个类型,则属于信息 不对称。
版权所有余向华源自12信息问题与市场的建立
“柠檬”市场现象(Akerlof):
由于信息问题引发逆向选择(劣币驱逐良币),
导致有效的市场可能建立不起来,或发展慢。
普遍存在于产品市场、劳动力市场(包括教师市场的问
题)、保险市场、信贷市场等上
“碟猫”市场现象:
本能不存在的市场,由于信息的不完全反给创
造出来了。比如赌石市场、彩票市场
第3篇 不完全信息静态博弈
3.1 不完全信息静态博弈和贝叶斯纳什均衡
不完全信息博弈 海萨尼转换 不完全信息静态博弈的策略式表述和贝叶斯纳什均衡
3.2 贝叶斯纳什均衡与混合策略均衡的纯化 3.3 贝叶斯纳什均衡应用举例 3.4 非对称信息下的机制设计问题
版权所有
余向华
1
信息问题与现实生活
爱心困惑:面对一个个乞丐向你行乞,你会如何决定呢? 佛心者:宁可被骗一千次,绝不放过一次帮助需要帮助者。 人心者:宁可错过千次帮助需要帮助的人,绝不愿被骗一次?
不帮、或者收集信息再决定?
婚恋困惑:知人知面与知心问题 食品安全中的信息问题 信息与法律举证问题 …
版权所有
余向华
2
信息问题与市场运行
在信息不完美的情况下,博弈参与者的收益为期望收益: 被求者
接受 不接受
求爱博弈:
求爱 100,100
品德优良者求爱 求爱者 不求爱 0,0
博弈论与信息经济学第三章不完全信息静态博弈讲义
⑴自然给定类型向量θ 察到 i ,但参与人
(1 ,,
j( i
n ) ,其中,i )只知道 p j
(θ j
i
|
,参与人 i 观 j ),观察不
到 i;
⑵参与人同时选择行动,参与人 i 从可行集 Ai (i )中选择行
动 a i,n 人的行动组合为a (a1,, an );
⑶参与人 i 的支付函数为 ui (ai ,ai ;i ) 。 注意,在上面的定义中,虽然参与人 i 的类型是私人信息,
i i 我们称 pi (i i ) 为参与人 的条件概率,即给定参与人 属于类型 i
的条件下,他有关其他参与人属于θ i 的概率。根据条件概率规则,
pi (i i )
p(i ,i ) p(i )
p(i ,i ) p(i ,i )
ii
这里,p(i ) 是边缘概率。如果类型的分布是独立的,pi (i i ) p(i )
不完全信息和贝叶斯纳什均衡
贝叶斯纳什均衡是完全信息静态博弈纳什均衡概念在不完 全信息静态博弈上的扩展。不完全信息静态博弈又称为静 态贝叶斯博弈。 定义:n人静态贝叶斯博弈的战略式表述包括:参与人的类 型空间 1,, n,条件概率 p1 ,..., pn ,类型依存战略空间
A11,..., An n ,和类型依存支付函数u1(a1,, an ;1),..., un (a1,, an ;n )
(-10,100)
上例市场进入阻挠博弈就可以转换为如图的完全但不完美信息博弈。
*完美信息博弈:如果博弈树的所有信息集都是单结的。
海萨尼转换
海萨尼转换已成为处理不完全信息博弈的标准方法。
将一个参与人所拥有的所有私人信息(即所有不是共同知
识的信息)被称为该参与人的类型。一般地,用 i 表示
博弈论-不完全信息静态博弈
从而V(b)=2b,或b=v/2
竞价者的最优战略是以自己保留价格的一 半作为叫价。
2021/4/9
24
一级密封价格拍卖(四)
如果有n人参与竞标,则b=(n-1)v/n,即b 随n的增加而增加,特别地,当n时, bv,就是说,投标人越多,卖者能得到 的价格就越高;当投标人趋于无穷时,卖 者几乎得到买者价值的全部。因此,让更 多的人加入竞标是卖者的利益所在。
不完全信息博弈
在生活中我们也会碰到这样的问题,比 如一个乞丐向你乞讨,你愿意帮助别人, 但不知道他是真的乞丐还是骗子,该如 何决定呢?如果你喜欢与人为善,你可 能愿意冒一点上当的危险,这不等于你 愚蠢,而是你认为,帮助一个困境中的 人比回绝一个骗子更重要。
2021/4/9
36
不完全信息博弈
❖ 不完全信息:每一个参与人对所有其他参与人 的(对手)的特征、战略空间及支付函数有准 确的 知识,否则为不完全信息。
不求爱 0,0
0,0
2021/4/9
33
市场需求信 息是不完全的。
不完全信息博弈
需求大的情况
开发商B 开发 不开发
开发商A
开发 4000,4000 不开发 0,8000
8000,0 0,0
需求小的情况 开发商A
开发商B 开发 不开发
开发 -3000,-3000 1000,0
不开发 0,1000
0,0
2021/4/9
32
不完全信息博弈
被求爱者对于
求爱者的品德的 信息是不完全的。
你 接受 不接受
求爱博弈:
求爱 100,100 -50,0
品德优良者求爱 求爱者 不求爱 0,0
0,0
100x+(-100)(1-x)=0
博弈论与信息经济学不完全信息静态博弈
参加人i懂得自己旳类型 i i ,条件概率 pi pi (i i ) 描述 给定自己属于 i 旳情况下,参加人i有关其他参加人类型 i i旳不拟定性。我们用 G {A1,, An ;1,,n ; p1,, pn ;u1,,un} 代表这个博弈。
j
bi
aj cj
bi
aj cj
ui (vi bi ) P bi b j v j
1 2 (vi
bi ) P
bi
bj
vj
(vi
bi )
bi
aj cj
求导得:bi vi
1 2
vi
1 2
aj
由于bi vi
ci vi
ai
ci
1 2 , ai
1 2 aj
0
综上所述,bi vi
贝叶斯均衡是一组战略组合源自(a1.,a
2
.)
,使得对于每一
种
i
和每一种可能旳 ci
,战略
a
i
(.)最大化参加人
i
旳期望
效用函数
Ec
j
ui
(ai
,
a
j
ci
,
ci
)
。令
z
j
Pa j c j 1为均衡状
态下参加人 j 提供旳概率。最大化行为意味着,只有当参加
人 i 预期参加人 j 不提供时,参加人 i 才会考虑自己是否提
懂得(成本ci 是参加人 i 旳类型)。 c1和 c2 具有相同旳、独立旳定义在[c, c]
上旳分布函数,且是共同知识。
博弈论——不完全信息静态博弈讲义
3 不完全信息静态博弈3.1 简介博弈论在1970年代之后逐渐进入主流经济学体系,主要是由于它在不完全信息条件下的经济分析中表现出特别的优势。
不完全信息指经济活动中一部分经济主体的某些特征对于其他主体来说是不清楚的。
如在拍卖商品或工程招投标中。
信息不完全又称为信息不对称,即其他局中人没有特定局中人清楚特定局中人自身的特征。
不完全信息静态博弈就是假定某些局中人具有其他局中人不清楚的某些特征的静态博弈。
但对于局中人本身来说,他自身的这些不为人所知的特征对于他自己来说是清楚的,因而称这些特征为局中人自己拥有的“私人信息”(private information)。
在博弈论中,习惯地将局中人的“私人信息”集中表现为局中人的支付函数特征,也就是说,局中人的私人特征将完全通过其支付函数特征表征出来,而不完全信息就表现为一些局中人不清楚另一局中人的支付函数,当然,每个局中人是完全清楚自己的支付函数的。
3.2 理论: 静态贝叶斯博弈和贝叶斯纳什均衡在假定局中人拥有私人信息的情况下,其他局中人对特定局中人的支付函数类型并不清楚,局中人不知道他在与谁博弈,在1967年前,博弈论专家认为此时博弈的结构特征是不确定的,无法进行分析。
Harsanyi (1967、1968)提出了一种处理不完全信息博弈的方法,即引入一个虚拟的局中人——“自然N ”。
N 首先行动,决定每个局中人的特征。
每个局中人知道自己的特征,但不知道其他局中人特征。
这种方法将不完全信息静态博弈变成一个两阶段动态博弈,第一个阶段是自然N 的行动选择,第二阶段是除N 外的局中人的静态博弈。
这种转换被称为“Harsanyi 转换”,它将不完全信息博弈转换为完全但不完美信息博弈。
局中人拥有的私人信息为他的“类型”,由其支付函数决定,故常将支付函数等同于类型。
用i θ表示局中人i 的一个特定类型,i H 表示局中人i 所有可能类型的集合,即i i H ∈θ,称i H 为局中人i 的类型空间,n i ,,1 =。
非完全信息静态博弈
知道企业1知道自己的信息优势。
古诺博弈:企业2的产量选择
• 企业2的边际成本较高时和较低时,他希望生产的产出水平是不同的 (一般而言,前一种情况时的产出要更低一些)。 • 企业1从自己的角度,也会预测到企业2根据其成本情况将选择不同的 产量。 * * * (cH )和 q2 (cL ) 分别把企业的产量选择并表示为成本的函数,并令 q1 • 用 q2 * 表示企业1的单一产量选择。如果企业2的成本较高,他会选择 q2 (cH ) 满足:
一个n人静态贝叶斯博弈的标准式表述
定义 一个n人静态贝叶斯博弈的标准式表述包括:参与
人的行动空间 A1,…An,它们的类型集空间T1, …Tn,他们的
信念 p1, …pn以及他们的收益函数 u1, …un。参与人 i的类型 ti作为参与人 i的私人信息,决定了参与人 i的收益函数 ui (a1, …an;ti),并且是可能的类型集Ti中的一个元素。参与 人 i的信念 pi ( t-i| ti)描述了 i在给定自己的类型 ti 时,对其他 n-1个参与人可能的类型 t-i的不确定性。我们用 G = {A1, …An;T1, …Tn;p1, …pn;u1, …un}
双向拍卖: 线性贝叶斯纳什均衡-5
• 双向拍卖中当且仅当pb≥ps时,交易才会发生。 • 在线性贝叶斯纳什均衡中,当且仅当vb﹥vs+1/4时,交 易才会发生,如图3.2
在这样定义参与人的类型之后,说参与人 i知道自己的收益函数也就 等同于说参与人 i知道自己的类型,类似地,说参与人 i可能无法确定其他 参与人的收益函数,也就等同于说参与人 i不能确定其他参与人的类型, 我们用 t-i={t1, …,ti-1,ti+1, …,tn}表示,并用 T-i表示 t-i所有可能的值的集合, 用概率 pi( t-i| ti)表示参与人在知道自己的类型是 ti的前提下,对其他参与 人类型(即 t-i)的信念(belief)。 在3.2节分析的所有应用中,参与人之间的类型是相互独立的,这种 情况下 pi( t-i| ti)与 ti不相关,于是我们可以把参与人的信念写成P1, …Pn。 但是,也存在参与人之间类型相关的情况,所以在给定静态贝叶斯博弈的 定义时,我们考虑到这种情况,仍把参与人的信念写为pi(t-i|ti)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 不完全信息静态博弈 -贝叶斯纳什均衡
一 不完全信息静态博弈和贝叶斯纳什均衡
不完全信息博弈 海萨尼转换 不完全信息静态博弈的战略式表述和贝叶斯纳什均衡
二 贝叶斯纳什均衡应用举例 三 贝叶斯纳什均衡与混合战略均衡 四 机制设计理论与显示原理
海萨尼转换
被求爱者对于
求爱者的品德的 信息是不完全的。
不完全信息博弈
你 接受 不接受
求爱博弈:
求爱 100,100 -50,0
品德优良者求爱 求爱者 不求爱 0,0
0,0
100x+(-100)(1-x)=0
当x大于1/2时,接受求爱
求爱博弈: 品德恶劣者求爱 求爱者
你 接受 不接受
求爱 100,-100 -50,0
不完全信息博弈
在生活中我们也会碰到这样的问题,比 如一个乞丐向你乞讨,你愿意帮助别人, 但不知道他是真的乞丐还是骗子,该如 何决定呢?如果你喜欢与人为善,你可 能愿意冒一点上当的危险,这不等于你 愚蠢,而是你认为,帮助一个困境中的 人比回绝一个骗子更重要。
不完全信息博弈
不完全信息:每一个参与人对所有其他参与人 的(对手)的特征、战略空间及支付函数有准 确的 知识,否则为不完全信息。
众官听得这个消息,尽皆失色。孔明登城 望之,果然尘土冲天,魏兵分两路杀来。
孔明令众将旌旗尽皆藏匿,打开城门,每 一门用20军士,扮作百姓,洒扫街道。而孔明 羽扇纶巾,引二小童携琴一张,于城上敌楼前 凭栏而望,焚香操琴。
不完全信息博弈
司马懿自马上远远望之,见诸葛亮神态自 若,顿时心生疑忌,犹豫再三,难下决断。又 接到远山中可能有埋伏的情报,于是叫后军做 前军,前军做后军,急速退去。司马懿之子司 马昭问:“莫非诸葛亮无军,故做此态,父何 故便退兵?”
这里主要探讨如何在不确定性的情况下做出理 性、一致的决策,换句话说,首先必须承认自 己虽然没有办法做到无所不知,但也不至于一 无所知,而应该或尽可能有效运用自己所知的 一切为自己谋利。
不完全信息博弈
“空城计”
街亭失守,司马懿引大军蜂拥而来,当时 孔明身边只有一班文官,军士一半已经运粮草 去了,只有2500军士在城中。
博弈论与信息经济学
(Game Theory and Information Economics )
张玲玲
中国科学院研究生院管理学院
zhangll@
主要内容简介
第一章 概述-人生处处皆博弈
第一篇 非合作博弈理论
第二章 完全信息静态信息博弈-纳什均衡 第三章 完全信息动态搏弈-子博弈精炼纳什均衡 第四章 不完全信息静态博弈-贝叶斯纳什均衡 第五章 不完全信息动态博弈-精练贝叶斯纳什均衡
不求爱 0,0
0,0
市场需求信 息是不完全的。
不完全信息博弈
需求大的情况
开发商B 开发 不开发
开发商A
开发 4000,4000 不开发 0,8000
8000,0 0,0
需求小的情况 开发商A
开发商B 开发 不开发
开发 -3000,-3000 1000,0
不开发 0,1000
0,0
房地产开发博弈
不完全信息博弈
司马懿说:“亮平生谨慎,不曾弄险,今 大开城门,必有埋伏,我兵若进,必中计也。”
孔明见魏军退去,抚掌而笑,众官无不骇 然。诸葛亮说,司马懿“料吾生平谨慎,必不 弄险,疑有伏兵,所以退去。吾非行险,盖因 不得已而用之,弃城而去,必为之所擒。”
不完全信息博弈
分析这个博弈 参与人 行动 战略 支付 画出这个博弈的战略式或扩展式表述
主要内容简介
第二篇 信息经济学
第六章 委托-代理理论(I) 第七章 委托-代理理论(II) 第八章 逆向选择与信号传递
第四章 不完全信息静态博弈 -贝叶斯纳什均衡
一 不完全信息静态博弈和贝叶斯纳什均衡
不完全信息博弈 海萨尼转换 不完全信息静态博弈的战略式表述和贝叶斯纳什均衡
二 贝叶斯纳什均衡应用举例 三 贝叶斯纳什均衡与混合战略均衡 四 机制设计理论与显示原理
付)。迫使其认为,撤退比进攻好,降低其进攻的预期收益。 如用概率论的术语来说,诸葛亮的做法是加大司马懿对进攻失败的主 观概率,使司马懿认为进攻的期望收益小于撤退的期望收益。
不完全信息博弈
在信息不充分的情况下,博弈参与者 不是使自己的支付或效用最大,而是使 自己的期望效用或支付最大。
如让你在50%的概率获得100元与10% 的概率获得200元两者之间选择的话,前 者的期望所的是50元,后者是20元,故 选前者。
不完全信息博弈-信息的重要性
诸葛亮
弃城 守城
司马懿
进攻
撤退
被擒,?
不被擒,?
被擒,?
不被擒,?
司马懿关于自
己策略的支付的 信息是不完全的。
司马懿:兵多将广,但不知道自己和对方在不同行动策略下的支付; 诸葛亮:处于劣势,但知道博弈的结构,比对方掌握更多的信息。 计策:使用各种手段迷惑司马懿,为的是不让对方知道其策略的结果(支
不完全信息博弈-无法避免的不确定性
有一次,主人派伊索进城。半路上,他遇 见一位法官。
法官严厉地盘问:“你要去哪儿?” “不知道”伊索回答说。 法官起了疑心,派人把伊索关进了监狱, 严加审问。 “法官先生,要知道,我讲的是实话。” 伊索说,“我确实不知道我会进监狱”。
不完全信息博弈
我们不可能料事如神,也无法掌握所有变因, 更无力预测未来,不确定性就象缴税一样不可 避免。
进者关于
在位者成本信息 是不完全的。
市场进入博弈:不完全信息
在位者
高成本情况
低成本情况
进入者
默许
进入 -3, -3 不进入 0, 1
斗争
-3, -3 0, 0
默许
1, 0 0, 1
斗争
1, 0 0, 0
进入者的最优选择依赖于他在多大程度上认为在位者 是低成本的。
假定进入者认为在位者是高成本的概率是p,低成本的概率是(1-p), 那么,进入者选择进入的期望利润是p(40)+(1-p)(-10),选择不 进入的利润是0,因此,进入者的最优选择是:如果p>=1/5,进入,如 果p<1/5,当p=1/5时,进入与不进入是无差异的,我们假定其进入。