曲线拟合与数据分析演示文稿
曲线拟合PPT演示文稿
1
第四讲主要知识点
1、曲线拟合的概念 2、曲线拟和的方法 3、解矛盾方程组
2
函数插值问题回忆
• 设已知某个函数关系y f (x) 在某些离散点上的函数值:
x x0 x1 y y0 y1
x n 1 x n y n 1 y n
• 插值问题:根据这些已知数据来构造函数 y f (x)
合函数形式为 pm (x)a0a1xam xm (mn1) , 求系数 a0*,a1*, ,am * ,使得
n
n
m
( a 0 ,a 1 , ,a m )[ y i p m ( x i) ] 2 [ y ia k x ik ] 2
p m * (x ) i 1 a 0 * a 1 * x a m * x i m 0
15
拟合例题
例2 有一滑轮组,要举起W公斤的重物需要用 F公斤的力,实验所得的数据如下表。
求适合上述关系的近似公式。
16
拟合例题
解 首先,将这些数据画在直角坐标系中,从图形上 看,数据点的分布大致呈一条直线,所以设所求
的拟合直线为 yabx ,
得关于a和b的线性方程组
17
其他类拟合问题
最小二乘法并不只限于多项式,也可用于任 何具体给出的函数形式。特别重要的是有些非线 性最小二乘拟合问题通过适当的变换可以转化为 线性最小二乘问题求解。
确定a和b取何值时,二元函数
的值最小?
N
Q(a,b) [yi (abxi)]2 i1
11
直线拟合
由微积分的知识可知,这一问题的求解, 可归结为求二元函数
Q (a, b) 的极值问题,即 a 和 b
应满足:
12
直线拟合
曲线拟合-PPT精选文档
-11.2705
-8.0196 -4.0604 0.0000 3.9012 7.6049
12.62
15.77 18.01 19.75 21.16 22.36
0.1017
0.0053 0.0361 1.0921 0.0563 0.0566
1.6
23.8
0.4700
0.2209 566.44
4.1078 2671.63
54 50 45 37 35 25 20 16 18 13
4.双曲形式关系
6.多项式形式关系
(一) 指数关系曲线
ˆ ae y
两种形式:
y
bx
ˆ ab y
x
a >0,b>0
a >0,b<0
0
x
当a>0,b>0时,Y随x的↑而↑,曲线凹向上; 当a>0,b<0时,Y随x的↑而↓,曲线也是凹向上。
(二) 对数关系曲线
方程为:
y
ˆ y a b ln x
(五) S型曲线 • S型曲线由于其曲线形状与动、植物的生长过程的 基本特点类似,故又称生长曲线,曲线一开始时 增长较慢,而在以后的某一范围内迅速增长,达 到一定的限度后增长又缓慢下来,曲线呈拉长 的”S”,故称S曲线 • 最著名的曲线是Logistic生长曲线,它最早由比利 时数学家 P.F.Vehulst 于 1838 年导出,但直至 20 世 纪 20 年代才被生物学家及统计学家 R.Pearl 和 L.J. Reed 重新发现,并逐渐被人们所发现。目前它已 广泛应用于多领域的模拟研究。
解决办法
曲线直线化估计(Curve estimation) 非 线 性 / 曲 线 回 归 (Nonlinear/curvilinear regression)
离散数据的曲线拟合-PPT精选文档
第二章 插值与拟合
2.5.2 多项式的拟合
前面讨论了子空间 中的最小二乘拟合。这是一种线性拟合模型。在离 m 散说据 {xi , yi }i0的最小二乘拟合中,最简单、最常用的数学模型是多项式
( x ) a a x a x .
0 1 n n
n
span { 1 , x , , x } 即在多项是空间 中作曲线拟合,称为多项式拟合。 这是一种特定的线性模型,因此可用上面讨论的方法求解。子空间 得基 k ( x ) x , k 0 , 1 , , n 。 函数为 k
( x)
*
n
k 0
* a k k ( x ) .
* 可以证明,这样得到的 ( x ),对于任何
n n
(x),都有
2 i
[ y ( x )] [ y ( x )] ,
* 2 i 0 i i i 0 i
* * (x ),显然,平方误差 2 故 ( x )是所求的最小二乘拟合。记 y 2 越小,拟合的效果越好。平方误差有与(2.4.15)相同 或 均方误差 形式的表达式。
第二章 插值与拟合
§2.5 离散数据的曲线拟合
2.5.1 最小二乘拟合
2.5.2 多项式的拟合 2.5.3 正交多项式拟合
曲线拟合
学习目标: 了解曲线拟合最小二乘法的意义。掌握线 性拟合和二次多项式拟合的方法。
第二章 插值与拟合
2.5
离散数据的曲线拟合
m 对于已知的m+1的离散数据 {xi , yi }i0和权数 { i }im 0 ,记
2.5.1 最小二乘拟合
a m in x m ax x i, b i
数值分析课件-6曲线拟合
第六章 曲线拟合的最小二乘 /函数平方逼近初步实例:考察某种纤维的强度与其拉伸倍数的关系,下表是实际测定的24个纤维样品的强度与相应的拉伸倍数是记录:编 号拉伸倍数 强 度编 号拉伸倍数 强 度1 1.9 1.4135 5.522 1.314 5.253 2.1 1.8156 5.54 2.5 2.516 6.3 6.45 2.7 2.817 6.566 2.7 2.5187.1 5.37 3.53198 6.58 3.5 2.72087944218.98.5104 3.5229811 4.5 4.2239.58.112 4.63.524108.1i i y x ii y x 一.实例讲解6.2 数据拟合(最小二乘法)§2(())m nj j i i i j a x f ϕ===-∑∑2(())mi i i S x f ==-∑三、法方程组22δ∑==nj j j x a x S 0)()(ϕ由的函数为拟合系数),,1,0(n j a j =可知因此可假设01(,,,)n F a a a 2(())mnj j i i i j a x f ϕ===-∑∑因此求最小二乘解转化为二次函数四、加权最小二乘法(,)(0,1,,)i i x f i m = 对于一组给定的数据点(,)(0,1,,)i i x f i m = 在拟合的数据点中各点的重要性可能是不一样的()(,)0,1,,i i i i x x f i mρρ= 假设=表示数据点的权(或权重),权:即权重或者密度,统称为权系数.定义加权平方误差为222m i i i δρδ==∑2(())mi i i i S x f ρ==-∑-----(9)6.3 连续函数的最佳平方逼近§0102**222*[,],{,,,}[,].(),()();()[()()]()[()()]()().min n ni i i b a b a S f C a b span C a b S x S x a x f S x f x S x dx x f x S x dx S x f x ϕϕϕϕρρ=∈Φ∈Φ=⊂∀∈Φ=-=-=-∑⎰⎰ 设为的最佳平方逼近1. 最佳平方逼近问题-----(14)0(,)(,)(,)()()()(,)()()()0,1,,x n k i i k k i b k i k i a b k k k a a f d x x x dx d f x f x x dxk nG dϕϕϕϕϕρϕϕϕρϕ=⎧==⎪⎪⎪=⇒⎨⎪==⎪⎪=⎩⇒=∑⎰⎰ ⎪⎪⎪⎪⎭⎫ ⎝⎛),(),(),(01000n ϕϕϕϕϕϕ ),(),(),(11101n ϕϕϕϕϕϕ ),(),(),(10n n n n ϕϕϕϕϕϕ G =最小二乘法方法评注曲线拟和的最小二乘法是实验数据处理的常用方法。
最小二乘法与曲线拟合-PPT
量的矛盾方程组
0 + 1 1 + 2 12 + ⋯ + 1 = 1
其矩阵形式为
Ԧ =
0 + 1 2 + 2 22 + ⋯ +
其中
1
= 1
⋮
1
1
2
⋮
12
22
⋮
2
⋯
⋯
⋱
最小二乘法与曲线拟合
§5.0 问题的提出
如果实际问题要求解在[a,b]区间的每一点都“很
好地” 逼近f(x)的话,运用插值函数有时就要失败。
另外,插值所需的数据往往来源于观察测量,本身有
一定的误差。要求插值曲线通过这些本身有误差的点,
势必使插值结果更加不准确。
如果由试验提供的数据量比较大,又必然使得插值
不为零,从而有rankA=m+1。由引理2知,正则方程
组有唯一解。
证毕
四、最小二乘法拟合曲线的步骤
1..通过观察、分析得到拟合曲线的数学模型,或
根据经验公式确定数学模型。
2.将拟合曲线的数学模型转换为多项式。
3.写出矛盾方程组。
4.写出正则方程组。(可由多项式模型直接得到)
5.求解正则方程组,得到拟合曲线的待定系数。
多项式的次数过高而效果不理想。
从给定的一组试验数据出发,寻求函数的一个近似
表达式y=(x),要求近似表达式能够反映数据的基本
趋势而又不一定过全部的点(xi,yi),这就是曲线拟合
问题,函数的近似表达式y=(x)称为拟合曲线。本章
介绍用最小二乘法求拟合曲线。
§5.1 用最小二乘法求解矛盾方程组
第五章曲线拟合PPT课件
华南师范大学数学科学学院 谢骊玲
曲线拟合的概念
在科学和工程试验中,经常产生一组数据 (x1,y1),…,(xN,yN),如果所有的数值 {xk}, {yk} 有多位有效数字精度,则能用多项式插值; 若数据的精度不高,或者有试验误差,则 只能使用多项式拟合。
问题:如何找到一个经过数据点附近(不总是穿过) 的最佳逼近表达式?
线性最小二乘法(续2)
矩阵形式:构造矩阵F
f1(x1)
f1(x2 )
F
f1(x3 )
f1(xN )
f2 (x1) f2 (x2 ) f2 (x3 )
f2 (xN )
fM (x1)
f
M
(
x2
)
f
M
(
x3
)
fM (xN )
f1(x1)
则
F'
f2(x1)
f1(x2) f2(x2)
f1(x3) f2(x3)
华南师范大学数学科学学院 谢骊玲
多项式拟合
使用函数集合{fj(x)=xj-1}, j=1,…, M+1作线性最小 二乘,则得到的拟合函数f(x)为M阶多项式 f(x)=c1+c2x+c3x2+…+cM+1xM
使用最小二乘多项式拟合非线性数据的方法简单有 效,但如果数据不具有多项式特性,则求出的曲线可 能产生大的振荡。这种现象称为多项式摆动,它在高 阶多项式情况下更容易发生。由于这个原因,一般很 少使用超过6阶的多项式,除非已知被拟合的曲线是 真实的多项式。
几何意义是:数据点到曲线的垂直距离平方和最小
华南师范大学数学科学学院 谢骊玲
最小二乘拟合直线
定理5.1 设{(xk, yk)}kN1有N个点,其中横坐标{xk}是
《曲线拟合》PPT课件
Curve fitting
医学研究中X和Y的数量关系常常不是线性的,如毒 物剂量与动物死亡率,人的生长曲线,药物动力学等, 都不是线性的。如果用线性描述将丢失大量信息,甚至 得出错误结论。
此时可以用曲线直线化估计(Curve estimation) 或非线性回归(Nonlinear regression) 方法分析。
散点图辨析
预后指数Y
60 50 40 30 20 10
0 0
对数曲线 指数曲线
10 20 30 40 50 60 70 病人住院天数X
如果条件允许最好采用非线性回 归(Nonlinear Regression)拟合幂 函数曲线与指数函数曲线
注意绘制散点图,并结合专业知 识解释
采用SAS进行曲线拟合
①幂函数: Yˆ ea X b 或 ln(Yˆ) a bln(X )
②对数:
Yˆ a bln(X )
③指数函数: Yˆ eabX
或 ln(Yˆ) a bX
④多项式: Yˆ a b1X b2 X 2 bn X n
⑤logistic:
Yˆ
1/(1
eabX
)
或
ln[
Yˆ
/(1
Yˆ)]
-8.0196 -4.0604 0.0000 3.9012 7.6049 11.1860 -12.8898
Yˆ
7.23 12.62 15.77 18.01 19.75 21.16 22.36
23.40
残差平方
0.1380 0.1017 0.0053 0.0361 1.0921 0.0563 0.0566 0.1597
(lnX)2 Y2
2.5902 57.76 0.8396 151.29 0.2609 246.49 0.0498 331.24 0.0000 349.69 0.0332 457.96 0.1132 510.76 0.2209 566.44 4.1078 2671.63
3.4 离散数据的曲线拟合——数值分析课件PPT
4
(P0 , P0 ) i P02 (xi ) 5 i0
4
(xP0 , P0 ) i xi P02 (xi ) 2.5 i0
a0
(xP0 , P0 ) (P0 , P0 )
0.5
P1(x) x a0 x 0.5
由此得 从而有
4
(P1, P1) i P12 (xi ) 0.625 i0
aj j (x)存在唯一;
j0
(b) p *(x)
n
aj j (x)的系数
a
j
n 可由法方程组
j0
j0
(0 ,0 ) (1 ,0 )
(n ,0 )
(0 ,1 ) (0 ,n ) a0 ( f ,0 )
(1 ,1 )
(1
,n
)
a1
( f
,1
)
(n ,1 )
(n ,n )an
i1
m
xi
i 1
m
xi2
i 1
m
xi3
i 1
m
xi
2
m
yi
i1 m
xi
3
a0
a1
i 1
m
xi yi
i1 m
xi 4
a2
i1
i1
m
xi
2
yi
i1
例 3.4.1 用多项式拟合表3-4中的离散数据。
表3-4
i
1
2
3
45
xi 0.00 0.25 0.50 0.75 1.00 yi 0.10 0.35 0.81 1.09 1.96
(
f
,
n
)
或Ga
d
数值分析课件Chapter7曲线拟合与线性最小二乘问题.ppt
可以验证 x GT (GGT )1(F T F )1 F T b
是法方程组的一个解,故是原方程组的一个最小二乘解
推论7.1.2 若 rankA ,r则方n程组
有无穷多个最小二乘解。
Ax b
Def 2 方程组 Ax b 的所有最小二乘解中2-范数最小
8.9
8.5
10
4
3.5
22
9
8
11
4.5
4.2
23
9.5
8.1
12
4.6
3.5
24
10
8.1
可以看出,纤维强度随 拉伸倍数增加而增加
并且24个点大致分 布在一条直线附近
因此可认为强度与 拉伸倍数之间的主 要关系是线性关系
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
10
y ( x ) a bx
该直线称为这一问题的数学模型。
线性无关,下面讨论正交分解的具体实现方法。
记 A [a1, a2 , , an ],Q [q1, q2 , , qr ] 其中 a1, a2 , , ar线性无关,q1, q2 , , qr两两正交。
Gram-Schmidt正交化方法: 由 A QU 得
a1 u11q1 a2 u12q1 u22q2
y a bx c 1 x
1( x) 1;
2(x)
x;
3(x)
1 x
三、最小二乘问题解的存在性、唯一性
Def 1 设 A R,m若n 存在 x 精R确n地满足
数值分析曲线拟合最新PPT资料
(4.4)
由求多元函数极值的必要条件,有
I
ck
m
n
2 [ f (xi ) c j j (xi )]k (xi ) 0
i0
j0
(k 0,1,, n).
这里关于c0, c1,..., cn的线性方程组,可以改写为
当k
0时,
Q c0
m
0,有 [
i0
f
(xi )
n
cj
j0
j (xi )]0 (xi )
其中输入参数 为要拟合的数据0, 为0拟合多项式的次1 数1,
nn
关于多项式拟合,Matlab中有现成的程序
用最小二乘标准构造出误差的平方和 用最小二乘标准构造出误差的平方和
大致猜测离散数据,应符合的函数关系式 用最小二乘标准构造出误差的平方和
Q(c , c ,..., c ) [ f ( x ) ( x )] (正1)交根、据正离交散函数数据族描、点标画准散正点交图函,由数散族点图中点的分m布情况
0
0
10
i0 10
yi
10
( 1)c0
i0
10
10
(
i0
xi )c1
10
10
,内积( X ,Y ) xi yi
0
i0
xi yi
(
i0
xi )c0
(
i0
xi2 )c1
i0
(3)由最小二乘法得标准方程(正规方程)
10
i0 10
yi
10
( 1)c0
i0
10
10
(
i0
xi )c1
m
即 [ f (xi ) s(xi )]2最小 (最小二乘标准) i0
数学建模优秀课件回归分析曲线拟合PPT文档共75页
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
Chapter6曲线拟合_数值分析
6.1.2 曲线拟合问题
仍然是已知 x1 … xm ; y1 … ym, 求一个简单易 算的近似函数 f(x) 来拟合这些数据。
但是① m 很大;
②
yi 本身是测量值,不准确,即 yi f (xi)
这时没必要取 f(xi) = yi , 而要使 i=f(xi) yi 总体上
定理6.3.3 设A是n×k阶矩阵,x∈Rn, 那么下列三种情况是 等价的: ①x⊥R(A); ②ATx=0; ③x∈N(AT). 这里,N(AT)={ATx=0, x∈Rn}称为AT的核子空间. 证:由N(AT)的定义, ②与③显然等价. 下面证明①与②等价. 记A=(α1,α2,…,αk), 那么,αi∈R(A) (i=1,2,…,k). 假设x⊥R(A), 即αiTx=0 (i=1,2,…,k). 从而ATx=0. 另一方面,如果ATx=0, 那么有z∈Rk, 使Az=y∈R(A). 这时,yTx=zTATx=0,即x⊥y. 由z的任意性, 得Az是任意的, 因此x⊥R(A).
• 设U是Rn中的子空间, x∈Rn. 如果x与U中 任意向量正交, 称向量x与子空间U正交, 记为x⊥U. • 设U,V是Rn中两个子空间, 如果任意x∈U 和任意y∈V是正交的, 称子空间U与子空 间V正交, 记为U⊥V. • 设U,V是Rn中互补的子空间. 如果U⊥V, 那么称U,V互为正交补子空间, 记U=V⊥ 或V=U⊥. 可以证明, 一个子空间的正交补 子空间是惟一的.
法方程组(或正规方程组)
例1
数据 ti 0 20 40 60 80 100 fi 81.4 77.7 74.2 72.4 70.3 68.8
6.3 线性最小二乘问题
设A是m×n阶矩阵(m>n), 称线性方程组 Ax=b (1) 为超定方程组; 这里x∈Rn,b∈Rm. 如果A的秩r(A)=n, 称A为列满秩矩阵. 记残向量r=b-Ax,考虑确定一个向量x, 使‖r‖2 2=‖b-Ax‖2 2, 达到最小的问题称 为线性最小二乘问题, 这样的x称为方程组(1) 的最小二乘解.
实验6 曲线拟合与数据分析
实验6 曲线拟合与数据分析【实验目的】1.掌握利用Origin进行(非)线性拟合的方法。
2.掌握如何由自定义函数对数据拟合。
3.掌握利用Origin对数据进行插值与外推。
4.掌握如何实现重叠图形的分离。
实验6.1非线性拟合【实验内容】1.利用安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Polynomial Fit.dat数据文件进行二次多项式拟合,拟合结果如下图。
图6- 1二次多项式拟合结果2.利用安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Gaussian.dat文件进行非线性拟合,拟合结果如下图图6- 2非线性拟合结果3.分析分析报表,评估上面两题的拟合效果。
【实验步骤】1)多项式拟合1. 导入数据,通过【File 】→【Import 】命令打开安装目录中的D:\OriginLab\Origin8\Samples\CurveFitting\ Polynomial Fit.dat 文件。
2. 选中A 、B 列数据,生成散点图。
3. 通过【Analysis 】→【Fitting 】→【Fit Polynomial 】命令打开Polynomial Fit 对话框。
图6- 3多项式拟合对话框4. 如图6-3示,输入输出数据关系Recalculate 选为Manual ,多项式次数Polynomial Order 设置为2。
单击OK 即可得6-1结果。
2) 非线性拟合1. 导入数据,通过【File 】→【Import 】命令打开安装目录中的D:\OriginLab\Origin8\Samples\CurveFitting\ Gaussian.dat 文件。
2. 选中A 、B 列数据,生成散点图。
3. 通过【Analysis 】→【Fitting 】→【NonLinear Curve Fit 】命令打开NLFit 对话框。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.1曲线拟合
Linear Fit对话框设置 8)Find Specific X/Y 设置是否产生一个表格,显示在Y列或X列中寻找另一列对应的数 据。(输出位置在Output Result 中设置) 9)Residual Plots 用于输出各残差分析图。
9.1曲线拟合
线性拟合
关于分析报表 分析报表(Analysis Report Sheets)较之旧版本,是新版
回归分析方法是处理变量之间相关关系的有效工具,它不仅 提供建立变量间关系的数学表达式——经验公式,而且可对其 进行拟合程度评价和显著性检验,从而检验经验公式的正确性。
回归(regression)分析也可以称为拟合(fitting),回归 是要找到一个有效的关系,拟合则要找到一个最佳的匹配方程, 两者虽然略有差异,但基本一个意思。
9.1曲线拟合
Linear Fit对话框设置 5)Residual Analysis 该项设置几种残差分析的类型。 6)Output Result 该项用来定制分析报表 Paste Result Tables to Graph:是
否在拟合的图形上显示结果表格。 Output Fitted Values To:报表输
9.1曲线拟合
Linear Fit对话框设置 5)Quantities to Compute Fit Parameters:拟合参数项。 Fit Statistics:拟合统计项。 Fit Summary:拟合摘要项。 ANOVA:是否进行方差分析。 Covariance matrix:是否产生协方差Matrix。 Correlation matrix:是否显示相关性Matrix。
关系数等主要信息。 6)ANOVA 显示方差分析的结果。
9.1曲线拟合
拟合结果分析报表 7)Fitted Curves Plot 显示拟合结果缩略图。 8)Residual vs. Independent Plot 实验值与估计值的残差图。显示其他图表可以再Residual Plots中设置。
9.1曲线拟合
拟合结果分析报表 1)Notes: 记录用户、使用时间和拟合方程等信
息。 2)Input: 显示数据的来源。 3)Parameters: 显示斜率、截距和标准差。
9.1曲线拟合
拟合结果分析报表 4)Statistics 主要显示统计点个数,相关系数R-
Square。 5)Summary 摘要信息显示,整合了斜率、截距和相
曲线拟合与数据分析演示文稿
第9章 曲线拟合与数据分析
9.1曲线拟合 9.2数据管理与数学运算 9.3统计分析及其他应用
9.1曲线拟合
回归分析概述
所谓回归(regression)分析,就是一种处理变量与变量之 间相互关系的数理统计方法。用这种数学方法可以从大量观测 的散点数据中寻找到能反映事物内部的一些统计规律,并可以 按数学模型形式表达出来。
以下几项设置。 1)Recalculate 在这一项中,可以设置输入数
据与输出数据的关系,包括Auto (当源数据数据变化后,自动更 新)、Manual(手动更新)和 None。
9.1曲线拟合
Linear Fit对话框设置 2)Input Data 该项下面的选项用于设置输入数据区 域以及误差数据区域。 3)Fit Options Errors as Weight:误差权重。 Fix Intercept(at):截距限制。 Fix Slope(at):斜率限制。 Use Reduced Chi-Sqr:这个数据也 能显示误差。 Apparent Fit:使用log坐标对指数 衰减进行直线拟合。
出位置。 Output Find Specific X/Y Tables:
输出时包含一表格。自动计算X对应 的Y值或Y对应的X值。 (后面Find specific X/Y选中才出现此项 )
9.1曲线拟合
Linear Fit对话框设置 7)Fitted Curves Plot 设置拟合图形选项 Plot on Original Graph:在原图上
9.1曲线拟合
线性拟合
线性拟合是数据分析中最简单又很重要的分析方法。Origin 按以下方法把曲线拟合为直线:对X(自变量)和Y(因变量), 线性回归方程为:Y=A+BX,参数A(截距)和B(斜率)由最小 二乘法求算。
线性拟合实例 1)导入数据,通过【File】→【Import】命令打开安装目
录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Linear Fit.dat文件。
本中的一个重要改进。新版本重新设计了全新的电子表格模块, 支持复杂的格式输出。另外在新版本中,新版本分析报表并不仅 仅是用来显示分析结果的“静态”报表,而更像一种分析模板, 也即是“动态”报表。
新分析报表的特点:按树形结构组织,可根据需要进行收缩 或展开;每个节点的输出内容可以是表格、图形、统计和说明; 报表以电子表格(Workbook)形式呈现,分析报表附带的数据 会生成新的电子表格。
2)选中A、B列数据,生成散点图。 3)通过【Analysis】→【Fitting】→【Fit Linear】命令打 开Linear Fit对话框。
9.1曲线拟合
线性拟合
4)选择默认设置,单击OK按钮生成拟合曲线及分析报表。
ቤተ መጻሕፍቲ ባይዱ拟合曲线
分析报表
9.1曲线拟合
线性拟合
Linear Fit对话框设置 拟合参数设置对话框中,包含
作拟合曲线。 Update Legend on Original
Graph:更新原图上的图例。 X Data Type:设置X列数据类型。 Confidence Bands:显示置信区间。 Prediction Bands:显示预计区间。 Confidence Level for Curves:设
9.1曲线拟合
回归分析的过程
1)确定变量。包括自变量和因变量。 2)确定数学模型。即自变量和因变量之间的关系。确定数学 模型要注意两点:一是能否通过数据变换找到尽可能的模块。 3)交由计算机软件进行反复逼近,必要时进行人为干预。 4)根据运算结果,特别是相关系数进行检验。 5)如果结果不满意,则重新修改模型参数再进行运算。