最新人教A版选修1-1高中数学2.3复合函数的导数教学设计

合集下载

简单复合函数的导数教学设计-高二下学期数学人教A版(2019)选择性必修第二册

简单复合函数的导数教学设计-高二下学期数学人教A版(2019)选择性必修第二册

复合函数的导数教学设计学情分析:1.学生已经掌握了函数的求导以及一些基本初等函数的求导公式2.对于复合函数的导数,学生的认知困难主要在两个方面: (1)什么是复合函数?学生对新概念的理解和接受是比较困难的;(2)如何对复合函数进行求导?要求学生掌握方法并运用。

因此,应该重视学生的独立思考和计算,亲身体验,重视学生的发现过程、重视课堂问题的设计,引导学生解决问题。

教材分析:教材主要研究形如y=f(g(x))的简单复合函数的求导,不要求证明函数的求导法则。

力求通过具体的例子帮助学生理解复合函数的求导法则。

一.教学目标【知识与技能】理解复合函数的概念,掌握复合函数的求导公式,以及会利用基本初等函数的求导公式求复合函数的导数。

【过程与方法】通过观察、比较、分析、归纳等数学活动,能正确分解简单的复合函数,具备求出简单的形如复合函数的导数的能力。

【情感态度与价值观】1.激发学生的求知欲,培养学生良好的数学思维习惯以及勤于动脑的学习习惯。

2.学生在独立思考的基础上,主动参与到数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,增强学好数学的信心。

二、教学重难点【重点】会分解简单的复合函数及会求导。

【难点】正确分解复合函数的复合过程。

三、教学过程(一)创设情景,导入新课复习导入--教师活动:教师通过引导学生回忆函数的导数,以及求导公式,引出复合函数y=ln(3x+2)。

提出问题:大家还能告诉老师这个函数的导数是什么吗?大家可以思考一下,你觉得复合函数应该是什么样子呢?学生活动:学生就教师提出的问题进行回忆,思考,回答得出,复合函数应该和上面两个函数有关。

教师活动:教师针对学生的回答给予评价,引出复合函数的定义,以及课题:复合函数的导数。

(设计意图:通过复习导入课题,能使学生很快有新内容的学习的抵制状态,进入回忆的兴奋状态,提高学生的学习兴趣,使学生把知识的学习当作是自我的需要,使教学任务顺利完成。

)(二)新课讲授环节一:初步感知教师活动:引导学生自己思考复合函数的定义,给出复合函数的定义。

2019-2020学年高中数学 1.2.3复合函数的导数教案 新人教版选修2-2.doc

2019-2020学年高中数学 1.2.3复合函数的导数教案 新人教版选修2-2.doc

2019-2020学年高中数学 1.2.3复合函数的导数教案 新人教版选修2-2
【学情分析】:
在学习了用导数定义这种方法计算常见函数的导数,而且已经熟悉了导数加减运算法则后.本节将继续介绍复合函数的求导方法. 【教学目标】:
(1)理解掌握复合函数的求导法则.
(2)能够结合已学过的法则、公式,进行一些复合函数的求导
(3)培养学生善于观察事物,善于发现规律,认识规律,掌握规律,利用规律. 【教学重点】:
简单复合函数的求导法则,也是由导数的定义导出的,要掌握复合函数的求导法则,须在理解复合过程的基础上熟记基本导数公式,从而会求简单初等函数的导数并灵活应用. 【教学难点】:
复合函数的求导法则的导入,复合函数的结构分析,可多配例题, 让学生对求导法则有一个直观的了解.
【教学过程设计】:
个年头,这种商品的价格上涨的速度大约是多少?)()]g x f ='')()])f x g =
x
u . 求下列函数的导数:32(32)31812x x =-=-,x u u y ''⋅
对于一般的复合函数,结论也成立,以后我们求。

【数学】1.2.3《复合函数的求导法则》教案(新人教A版选修2-2)

【数学】1.2.3《复合函数的求导法则》教案(新人教A版选修2-2)

1.2.2复合函数的求导法则教学目标 理解并掌握复合函数的求导法则.教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积.教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确.一.创设情景(一)基本初等函数的导数公式表(2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)二.新课讲授复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作()()y f g x =。

复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.若()()y f g x =,则()()()()()y f g x f g x g x ''''==⋅⎡⎤⎣⎦三.典例分析例1求y =sin (tan x 2)的导数.【点评】求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果. 例2求y =ax x ax 22--的导数.【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理.例3求y =sin 4x +cos 4x 的导数.【解法一】y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2cos 2x =1-21sin 22 x =1-41(1-cos 4 x )=43+41cos 4 x .y ′=-sin 4 x . 【解法二】y ′=(sin 4 x )′+(cos 4 x )′=4 sin 3 x (sin x )′+4 cos 3x (cos x )′=4 sin 3 x cos x +4 cos 3 x (-sin x )=4 sin x cos x (sin 2 x -cos 2 x )=-2 sin 2 x cos 2 x =-sin 4 x【点评】解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步.例4曲线y =x (x +1)(2-x )有两条平行于直线y =x 的切线,求此二切线之间的距离.【解】y =-x 3 +x 2 +2 x y ′=-3 x 2+2 x +2令y ′=1即3 x 2-2 x -1=0,解得 x =-31或x =1. 于是切点为P (1,2),Q (-31,-2714), 过点P 的切线方程为,y -2=x -1即 x -y +1=0.显然两切线间的距离等于点Q 到此切线的距离,故所求距离为2|1271431|++-=22716. 四.课堂练习1.求下列函数的导数 (1) y =sin x 3+sin 33x ;(2)122sin -=x x y ;(3))2(log 2-x a 2.求)132ln(2++x x 的导数五.回顾总结六.布置作业。

人教A版高中数学选修1-1《三章导数及其应用3.1变化率与导数3.2导数的概念》优质课教案_24

人教A版高中数学选修1-1《三章导数及其应用3.1变化率与导数3.2导数的概念》优质课教案_24

1.1.2导数的概念(一)教材分析本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础•同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.(二)教学目标(1)在上一节学习平均变化率的基础上,了解瞬时速度、瞬时变化率的概念;(2)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;(3)会求函数在某点的导数及简单应用.(三)教学重点与难点重点:通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 难点:使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.(四)教学过程1. 复习引入(1)函数y = f(x)从x i到X2的平均变化率公式;(2)函数y = f(x)从x0到X Q L X的平均变化率公式.2. 合作探究在高台跳水运动中,运动员在不同时刻的速度是不同的. 我们把物体在某一时刻(某一位置)的速度称为瞬时速度.探究一:瞬时速度的求解从前面的学习我们知道,平均速度只能粗略地描述某段时间内物体的运动状态,不一定能反映运动员在某一时刻的瞬时速度. 如何求运动员的瞬时速度呢?设计意图:让学生产生进一步学习的需求,即有必要知道任意时刻的速度.以高台跳水运动为例,研究运动员在某一时刻的瞬时速度.在高台跳水运动中,如果运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系ht =-4.9t26.5t 10.探究:如何求运动员瞬时速度?比如t =2s的瞬时速度是多少?平均速度与瞬时速度有关系吗?设计意图:问题具体化,即求运动员在t=2s时的瞬时速度.针对具体的问题情境,寻求解决问题的想法.我们求t=2s的瞬时速度是多少,先察t=2s附近平均速度的情况:(2) 我们如何表示运动员在t=2s 时的瞬时速度? (3) 运动员在某一时刻t o 的瞬时速度怎样表示?设计意图:从特殊到一般,即从特殊点t=2上升到任意点t=t °瞬时速度的表示. (4) 函数f(x)在x=x 0处的瞬时变化率怎样表示?设计意图:舍弃具体变化率问题的实际意义,抽象为数学问题,定义导数. 探究二:导数的定义瞬时速度是平均速度—当览趋近于0时的极限.L t导数的定义:函数y =f(x)在x =x o 处的瞬时变化率是啊卡=|m f(xo:-f (xo),我们称它为函数y = f(x)在x=x o 处的导数,记作 f (x o ) 或 y'U 即 f(x o )pm of(x x)—f(x o )注意:(1) 函数应在点X 。

高中数学 2-1 第三章 导数导学案 新人教A版选修1-1

高中数学 2-1 第三章 导数导学案 新人教A版选修1-1

§3.1.1 变化率问题学习目标. 体会数学的博大精深以及学习数学的意义;.学习过程一、课前准备7880复习1:曲线221259x y +=与曲线221(9)259x y k k k+=<--的( )A .长、短轴长相等B .焦距相等C .离心率相等D .准线相同复习2:当α从0到180变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化?二、新课导学 ※ 学习探究 探究任务一:问题1:气球膨胀率,求平均膨胀率吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?问题2:高台跳水,求平均速度新知:平均变化率:2121()()f x f x fx x x-∆=-∆试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ∆,即x ∆= 或者2x = ,x ∆就表示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ∆,即y ∆= ;如果它们的比值yx∆∆,则上式就表示为 ,此比值就称为平均变化率.反思:所谓平均变化率也就是 的增量与 的增量的比值.※ 典型例题例1 过曲线3()y f x x ==上两点(1,1)P 和(1,1)Q x y +∆+∆作曲线的割线,求出当0.1x ∆=时割线的斜率.变式:已知函数2()f x x x =-+的图象上一点(1,2)--及邻近一点(1,2)x y -+∆-+∆,则yx∆∆=例2 已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]小结:※ 动手试试练1. 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.T(月)639 12练2. 已知函数()21f x x =+,()2g x x =-,分别计算在区间[-3,-1],[0,5]上()f x 及()g x 的平均变化率.(发现:y kx b =+在区间[m ,n]上的平均变化率有什么特点?三、总结提升 ※ 学习小结1.函数()f x 的平均变化率是2.求函数()f x 的平均变化率的步骤:(1)求函数值的增量 (2)计算平均变化率※ 知识拓展※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 21y x =+在(1,2)内的平均变化率为( ) A .3 B .2 C .1 D .02. 设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( ) A .0()f x x +∆ B .0()f x x +∆ C .0()f x x ∆ D .00()()f x x f x +∆-3. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆C .3t +∆D .9t +∆4.已知212s gt =,从3s 到3.1s 的平均速度是_______ 5. 223y x x =-+在2x =附近的平均变化率是____ 课后作业1. 国家环保局对长期超标排污,污染严重而未进行治理的单位,规定出一定期限,强令在此期限内完成排污治理. 下图是国家环保局在规定的排污达标日期前,对甲、乙两家企业连续检测的结果(W 表示排污量),哪个企业治理得比较好?为什么?2. 水经过虹吸管从容器甲中流向容器乙,t s 后容器甲中水的体积0.1()52t V t -=⨯(单位:3cm ), 计算第一个10s 内V 的平均变化率.§3.1.2 导数的概念学习目标2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 学习过程一、课前准备7880复习1:气球的体积V 与半径r 之间的关系是33()4Vr V π=求当空气容量V 从0增加到1时,气球的平均膨胀率.复习2:高台跳水运动中,运动员相对于水面的高度h 与起跳后的时间t 的关系为:2() 4.9 6.510h t t t =-++. 求在12t ≤≤这段时间里,运动员的平均速度.二、新课导学 ※ 学习探究探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 得导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x fxx ∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y ='即000()()()lim x f x x f x f x x∆→+∆-'=∆注意:(1)函数应在点0x 的附近有定义,否则导数不存在 (2)在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可以为0(3)xy∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率(4)导数xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度.小结:由导数定义,高度h 关于时间t 的导数就是运动员的瞬时速度,气球半径关于体积V 的导数就是气球的瞬时膨胀率.※ 典型例题例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热. 如果在第xh 时,原油的温度(单位:0c )为2()715(08)f x x x x =-+≤≤. 计算第2h 和第6h 时,原油温度的瞬时变化率,并说明它们的意义.总结:函数平均变化率的符号刻画的是函数值的增减;它的绝对值反映函数值变化的快慢.例2 已知质点M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s),(1)当t =2,Δt =0.01时,求t s ∆∆. (2)当t =2,Δt =0.001时,求ts∆∆.(3)求质点M 在t =2时的瞬时速度小结:利用导数的定义求导,步骤为:第一步,求函数的增量00()()y f x x f x ∆=+∆-;第二步:求平均变化率0()f x x y x x+∆∆=∆∆; 第三步:取极限得导数00()lim x yf x x∆→∆'=∆.※ 动手试试练1. 在例1中,计算第3h 和第5h 时原油温度的瞬时变化率,并说明它们的意义.练2. 一球沿一斜面自由滚下,其运动方程是2()s t t =(位移单位:m ,时间单位:s),求小球在5t =时的瞬时速度三、总结提升 ※ 学习小结这节课主要学习了物体运动的瞬时速度的概念,它是用平均速度的极限来定义的,主要记住公式:瞬时速度v =tt ∆→∆lim※ 知识拓展有极限※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么0lim t s t∆→∆∆为( )A.从时间t 到t t +∆时,物体的平均速度; B.在t 时刻时该物体的瞬时速度;C.当时间为t ∆时物体的速度; D.从时间t 到t t +∆时物体的平均速度 2. 2y x =在 x =1处的导数为( ) A .2x B .2 C .2x +∆ D .13. 在0000()()()limx f x x f x f x x∆→+∆-'=∆中,x ∆不可能( )A .大于0B .小于0C .等于0D .大于0或小于04.如果质点A 按规律23s t =运动,则在3t =时的瞬时速度为5. 若0()2f x '=-,则0001[]()2lim k f x k f x k→--等于1. 高台跳水运动中,ts 时运动员相对于水面的高度是:2() 4.9 6.510h t t t =-++(单位: m),求运动员在1t s =时的瞬时速度,并解释此时的运动状况.2. 一质量为3kg 的物体作直线运动,设运动距离s(单位:cm)与时间(单位:s )的关系可用函数2()1s t t =+表示,并且物体的动能212U mv =. 求物体开始运动后第5s 时的动能.§3.1.3 导数的几何意义学习目标求导数. 学习过程一、课前准备7880复习1:曲线上向上11111(,),(,)P x y P x x y y +∆+∆的连线称为曲线的割线,斜率yk x∆==∆复习2:设函数()y f x =在0x 附近有定义当自变量在0x x =附近改变x ∆时,函数值也相应地改变y ∆= ,如果当x ∆ 时,平均变化率趋近于一个常数l ,则数l 称为函数()f x 在点0x 的瞬时变化率.记作:当x ∆ 时, →l二、新课导学 ※ 学习探究探究任务:导数的几何意义问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化趋是什么?新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线 割线的斜率是:n k =当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x∆→+∆-'==∆新知:函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()limx f x x f x f x x∆→+∆-'=∆※ 典型例题例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况.小结:例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min)变化的函数图象.根据图象,估计t =0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1)※ 动手试试 练1. 求双曲线1y x =在点1(,2)2处的切线的斜率,并写出切线方程.练2. 求2y x =在点1x =处的导数.三、总结提升 ※ 学习小结函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率.即k =000()()()limx f x x f x f x x∆→+∆-'=∆其切线方程为 ※ 知识拓展导数的物理意义:如果把函数()y f x =看做是物体的运动方程(也叫做位移公式,自变量x 表示时间),那么导数0()f x '表示运动物体在时刻o x 的速度,,即在o x 的瞬时速度.即000()lim x t yv f x x∆→∆'==∆而运动物体的速度()v t 对时间t 的导数,即0()lim t vv t t∆→∆'=∆称为物体运动时的瞬时加速度.). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知曲线22y x =上一点,则点(2,8)A 处的切线斜率为( ) A. 4 B. 16 C. 8 D. 22. 曲线221y x =+在点(1,3)P -处的切线方程为( )A .41y x =--B .47y x =--C .41y x =-D .47y x =+3. ()f x 在0x x =可导,则000()()lim h f x h f x h→+-( ) A .与0x 、h 都有关 B .仅与0x 有关而与h 无关C .仅与h 有关而与0x 无关D .与0x 、h 都无关4. 若函数()f x 在0x 处的导数存在,则它所对应的曲线在点00(,())x f x 的切线方程为5. 已知函数()y f x =在0x x =处的导数为11,则000()()lim x f x x f x x ∆→-∆-∆= 课后作业()f x 在x =5,4,2,0,1---附近的变化情况.2.已知函数()f x 的图象,试画出其导函数()f x '图象的大致形状.§3.2.1几个常用函数导数学习目标2.学会利用公式,求一些函数的导数;3.理解变化率的概念,解决一些物理上的简单问题.学习过程一、课前准备8889复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为复习2:求函数)(x f y =的导数的一般方法:(1)求函数的改变量y ∆=(2)求平均变化率y x∆=∆ (3)取极限,得导数/y =()f x '=xy x ∆∆→∆0lim =二、新课导学※ 学习探究探究任务一:函数()y f x c ==的导数.问题:如何求函数()y f x c ==的导数新知:0y '=表示函数y c =图象上每一点处的切线斜率为 .若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态.试试: 求函数()y f x x ==的导数反思:1y '=表示函数y x =图象上每一点处的切线斜率为 .若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数.(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?(3)函数(0)y kx k =≠增(减)的快慢与什么有关?※典型例题例1 求函数1()y f xx==的导数变式:求函数2()y f x x==的导数小结:利用定义求导法是最基本的方法,必须熟记求导的三个步骤:作差,求商,取极限.例2 画出函数1yx=的图象.根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程.变式1:求出曲线在点(1,2)处的切线方程.变式2:求过曲线上点(1,1)且与过这点的切线垂直的直线方程.小结:利用导数求切线方程时,一定要判断所给点是否为切点,它们的求法是不同的. ※动手试试练1. 求曲线221y x =-的斜率等于4的切线方程.(理科用)练2. 求函数()y f x ==三、总结提升※ 学习小结1. 利用定义求导法是最基本的方法,必须熟记求导的三个步骤: , , .2. 利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.※ 知识拓展微积分的诞生具有划时代的意义,是数学史上的分水岭和转折点.关于微积分的地位,恩格斯是这样评价的:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的纯粹.”).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.()0f x =的导数是( )A .0B .1C .不存在D .不确定2.已知2()f x x =,则(3)f '=( )A .0B .2xC .6D .93. 在曲线2y x =上的切线的倾斜角为4π的点为( ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24 4. 过曲线1y x=上点(1,1)且与过这点的切线平行的直线方程是 5. 物体的运动方程为3s t =,则物体在1t =时的速度为 ,在4t =时的速度为 .1. 已知圆面积2S r π=,根据导数定义求()S r '.2. 氡气是一种由地表自然散发的无味的放射性气体.如果最初有500克氡气,那么t 天后,氡气的剩余量为()5000.834t A t =⨯,问氡气的散发速度是多少?§3.2.2基本初等函数的导数公式及导数的运算法则1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数.9092复习1:常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=; ()ln (0)x x aa a a '=>;()x x e e '=;1()(0,ln log a x a x a '=>且1)a ≠;1(ln )x x'=.复习2:根据常见函数的导数公式计算下列导数(1)6y x = (2)y = (3)21y x =(4)y =二、新课导学※ 学习探究探究任务:两个函数的和(或差)积商的导数新知:[()()]()()f x g x f x g x '''±=±[()()]()()()()f x g x f x g x f x g x '''=+2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'=试试:根据基本初等函数的导数公式和导数运算法则,求函数323y x x =-+的导数.※ 典型例题例1 假设某国家在20年期间的年均通贷膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?变式:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少?例2 日常生活中的饮用水通常是经过净化的. 随着水纯净度的提高,所需净化费用不断增加. 已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-. 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90%; (2)98%.小结:函数在某点处导数的大小表示函数在此点附近变化的快慢.※ 动手试试练1. 求下列函数的导数:(1)2log y x =; (2)2x y e =;(3)522354y x x x =-+-; (4)3cos 4sin y x x =-.练2. 求下列函数的导数:(1)32log y x x =+;(2)n x y x e =;(3)31sin x y x-=三、总结提升※ 学习小结1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.※ 知识拓展1.复合函数的导数:设函数()u g x =在点x 处有导数()xu g x ''=,函数y =f (u )在点x 的对应点u 处有导数()uy f u ''=,则复合函数(())y f g x =在点x 处也有导数,且x u x u y y '''⋅= :分解——求导——相乘——回代.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 函数1y x x=+的导数是( ) A .211x - B .11x - C .211x + D .11x+ 2. 函数sin (cos 1)y x x =+的导数是( )A .cos2cos x x -B .cos2sin x x +C .cos2cos x x +D .2cos cos x x +3. cos x y x=的导数是( ) A .2sin x x- B .sin x - C .2sin cos x x x x +- D .2cos cos x x x x+-4. 函数2()138f x x =-,且0()4f x '=,则0x =5.曲线sin x y x=在点(,0)M π处的切线方程为1. 求描述气球膨胀状态的函数()r V =.2. 已知函数ln y x x =. (1)求这个函数的导数;(2)求这个函数在点1x =处的切线方程.理: §3.2.2复合函数求导.1617复习1:求)4(23-=x x y 的导数复习2:求函数2(23)y x =+的导数二、新课导学※ 学习探究探究任务一:复合函数的求导法则问题:求(sin 2)x '=?解答:由于(sin )cos x x '=,故(sin 2)cos2x x '=这个解答正确吗?新知:一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作:(())y f g x =复合函数的求导法则:两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自变量的导数.用公式表示为:x u x y y u '''=,其中u 为中间变量.即: y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.试试:(sin 2)x '=反思:求复合函数的导数,关键在于分析清楚函数的复合关系,选好中间变量。

人教A版高中数学选修1-1 第三章 导数及其应用复习课说课教学课件 (共32张PPT)

人教A版高中数学选修1-1 第三章 导数及其应用复习课说课教学课件 (共32张PPT)
x [3, )有三个零点,求实数t的取值范围。
2.6【畅所欲言------说反思】
出题者的意图想考我们求导知识,极值与零点概念、分 类讨论思想,数形结合思想等,所以我们平时要加强这 方面知识,同时它也反应出用导数知识解决函数问题的 基本题型与基本步骤,其它的可根据个人依不同角度总
结。你体会到了吗?比如:
2.3【各抒己见------说解法】(1)
例1:已知函数f(x)=(x2+ax+a)gex, (a R)。
(1)求函数f(x)的单调区间与极值;
2.3【各抒己见------说解法】(2)
例1:已知函数f(x)=(x2 +ax+a)gex, (a R)。
(2)设g(x)=f (x) t, (t R, a 2), 若函数g(x)在
x [3, )有三个零点,求实数t的取值范围。
分类讨论是否重复或遗漏? 定义域优先考虑了吗? 隐含条件注意了吗? 分类讨论后“综上所述”了吗? 计算过程都正确吗? 有谁可以把错解拿来辨析吗? 有没有其他方法?
2.5【引申拓展------说变式】 例1:已知函数f(x)=(x2+ax+a)gex, (a R)。 (1)求函数f(x)的单调区间与极值; (2)设g(x)=f (x) t, (t R, a 2),若函数g(x)在
f(-a)
f(-3)
-2 -3 -a
f(-2)
a2 (3) 3 a 解得a ? 至多两个零点,不合题意
f(-a)
f(-3)
-2 -a -3
f(-2)
2.3【各抒己见------说解法】(3)
2.4【精益求精------说检验】
例1:已知函数f(x)=(x2+ax+a)gex, (a R)。 (1)求函数f(x)的单调区间与极值; (2)设g(x)=f (x) t, (t R, a 2),若函数g(x)在

高中数学:导数教案 新人教A版选修1-1 教案

高中数学:导数教案 新人教A版选修1-1 教案

导数教案导数是近代数学中微积分的核心概念之一,是一种思想方法,这种思想方法是人类智慧的骄傲.一、教材分析导数的概念是高中新教材人教A版选修1-1第三章3的内容,是在学生学习了平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。

新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。

问题1气球平均膨胀率--→瞬时膨胀率问题2高台跳水的平均速度--→瞬时速度根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点二、教学目标1、知识与技能:通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。

2、过程与方法:①通过动手计算培养学生观察、分析、比较和归纳能力②通过问题的探究体会逼近、类比、以已知探求未知、从非凡到一般的数学思想方法3、情感、态度与价值观:通过运动的观点体会导数的内涵,使学生把握导数的概念不再困难,从而激发学生学习数学的爱好.三、重点、难点重点:导数概念的形成,导数内涵的理解难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵通过逼近的方法,引导学生观察来突破难点四、教学设想(具体如下表)教学环节教学内容师生互动设计思路创设情境引入新课幻灯片这段时间里的平均速度,并思考下面的问题:(1)运动员在这段时间里是静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?首先回顾上节课留下的思考题:在学生相互讨论,交流结果的基础上,提出:大家得到运动员在这段时间内的平均速度为“0”,但我们知道运动员在这段时间内并没有“静止”。

为什么会产生这样的情况呢?引起学生的好奇,意识到平均速度只能粗略地描述物体在某段时间内的运动状态,为了能更精确地刻画物体运动,我们有必要研究某个时刻的速度即瞬时速度。

简单复合函数的导数(教学设计)

简单复合函数的导数(教学设计)

§一、内容和内容解析内容:简单复合函数的导数.内容解析:要正确地对复合函数求导,首先要分析清楚复合函数的结构,教学中应将重点放在引导学生理解简单复合函数地复合过程中,即因变量通过中间变量表示为自变量的函数的过程,并明确复合过程中的自变量、因变量以及中间变量分别是什么.二、目标和目标解析目标:掌握复合函数求导法则,会用复合函数求导法则求简单复合函数的导数. 目标解析:通过观察、比较、分析、归纳等数学活动,能正确分解简单的复合函数,具备求出简单的形如复合函数的导数的能力.学生在独立思考的基础上,主动参与到数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,增强学好数学的信心.三、教学问题诊断分析教学问题:学生已经掌握了函数的求导以及一些基本初等函数的求导公式对于复合函数的导数,学生的认知困难主要在两个方面:(1)什么是复合函数?学生对新概念的理解和接受是比较困难的;(2)如何对复合函数进行求导?要求学生掌握方法并运用.因此,应该重视培养学生独立思考和计算的能力,重视学生参与知识的发现过程、重视课堂问题的设计,引导学生解决问题.基于以上分析,本节课的教学重点定为:运用复合函数求导法则求简单复合函数的导数的过程;教学难点定为:记忆复合函数求导法则的公式结构.四、教学策略分析教材主要研究形如()()y f g x =()ln 21y x =-,这样学生更容易理解复合函数是怎样“复合”的,同时也说明了该函数不是由基本初等函数通过加减乘除运算得到的,教材中通过细致研究sin 2y x =的导数,进而“抽象”地给出了复合函数的求导法则.对于复合函数的导数,教师在教学时要注意引导学生分析复合函数结构,找出中间变量,从而根据复合函数的求导法则进行求导;也可以再给几个复合函数的例子帮助学生掌握简单复合函数的求导,限于()f ax b +的形式即可.。

人教A版选修1-1教案:2.3复合函数的导数(含答案)

人教A版选修1-1教案:2.3复合函数的导数(含答案)

§1.2.3复合函数的导数
【学情分析】:
在学习了用导数定义这种方法计算常见函数的导数,而且已经熟悉了导数加减运算法则后.本节将继续介绍复合函数的求导方法.
【教学目标】:
(1)理解掌握复合函数的求导法则.
(2)能够结合已学过的法则、公式,进行一些复合函数的求导
(3)培养学生善于观察事物,善于发现规律,认识规律,掌握规律,利用规律.
【教学重点】:
简单复合函数的求导法则,也是由导数的定义导出的,要掌握复合函数的求导法则,须在理解复合过程的基础上熟记基本导数公式,从而会求简单初等函数的导数并灵活应用.
【教学难点】:
复合函数的求导法则的导入,复合函数的结构分析,可多配例题,让学生对求导法则有一个直观的了解.
32(32)31812x x =-=-,x u u y ''⋅
对于一般的复合函数,结论也成立,以。

高中数学《复合函数的导数》教案【导数】

高中数学《复合函数的导数》教案【导数】
高中数学《复合函数的导数》教案【导数】
一、教学目标 【知识与技能】 掌握复合函数的概念,会求复合函数的导数。 【过程与方法】 通过对复合函数求导的探究,提升分析问题、解决问题的能力。 【情感态度与价值观】 感受数学内在的逻辑美,提升对数学的兴趣。 二、教学重难点 【重点】复合函数的概念及求导。 【难点】复合函数的求导。 三、教学过程 (一 )导 入 新 课 复习:求 y=Inx 和 y=3x+2 的导数。 出示: y=ln(3x+2),组织学生思考如何求其导数,引出本节课学习。 (二 )探 索 新 知 带领学生分析 y=ln(3x+2)的结构特点,学生初步感受 y=ln(3x+2)是由 u=3x+2(x>-(2/3))和 y=Inu“复合”得到的,学生初步感受“复合”的含义。 组织学生类比上述分析的过程,再举出类似“复合”的例子,并分析其结构 特点。例如: y=(x+2)3、y=(2x+ 3)2. 教 师 先 讲 解 这 些 函 数 都 是 复 合 函 数 ,然 后 组 织 学 生 尝 试 给 出 复 合 函 数 的 一 般 概念。 师 生=f(u)和 u=g(x),如 果 通 过 变 量 u,y 可以表示成 x 的函数,那么称这个函数为函数 y=f(u)和 u=g(x)的复合函数,记 作 y= f(g(x))。 教 师 直 接 介 绍 复 合 函 数 的 求 导 方 法: y'X=yu'nx', 并 讲 解 每-个 字 母 的 含 义 。
作业:求 y= x -1 的导数。
让 学 生 利 用 复 合 函 数 的 求 导 方 法 ,求 y=ln(3x+2)的 导 数 ,可 以 直 接 预 设 学 生 能够得到正确答案,
教师详细讲解并规范步骤。 (三 )应 用 新 知 例 :求 下 列 函 数 的 导 数 。 (1) y=(2x+3); (2) y=sin(πx+φ) (其中πφ均为常数) (四 )小 结 作 业 小 结 :学 生 总 结 本 节 课 收 获 。

《1.2.3简单复合函数的求导》教学设计

《1.2.3简单复合函数的求导》教学设计

《1.2.3简单复合函数的求导》教学设计(共1课时,第1课时)【课程标准要求】利用导数的概念能求简单的复合函数的导数。

【教学目标】1.理解掌握复合函数的求导法则。

2.能够结合已学过的法则、公式,进行一些复合函数的求导。

3.培养学生善于观察事物,善于发现规律,认识规律,掌握规律,利用规律。

【学情与内容分析】本节在教材中起到了“承上启下”的作用,是前几节内容知识的延续,也是后面研究导数在函数中应用等函数综合问题的基础。

前几节学习了导数基本概念、基本初等函数的导数公式以及导数的四则运算法则。

教材以“你会求sin(21)y x =+的导数吗?”这个问题引入, 这个函数是不能通过基本初等函数的四则运算得到的,旧知识是不能求导的,那么我们有必要去研究这类函数的求导方法,激发学生对新知的求知欲。

在求导之前要弄清楚函数的结构,首先是引导学生分析sin(21)y x =+这个特殊复合函数的结构,让学生感受函数的复合过程,初步感知“复合函数”的概念,然后给出了复合函数的一般概念,体会数学抽象的过程。

在理解复合函数“复合”的过程中,重点引导学生理解因变量是如何通过中间变量表示为自变量的函数过程,自变量、中间变量、因变量是什么。

然后引导学生利用导数的定义来推导复合函数的求导公式,即((()))(())g ()f g x f g x x '''=,最后举例应用。

本节主要采用了“从特殊到一般”、“从具体到抽象”的数学思想方法,体现数学学科核心素养。

【教学准备】多媒体课件,挂图,实物,模型,仪器。

【难重点】重点:复合函数的结构分析、复合函数的求导法则推导及应用。

难点:复合函数的结构分析、求导法则的推导。

【教学过程】,),0h dx ,(),()(f u x g x '→'→记作)【板书设计】【评价设计】【作业设计】1、完成导学案内容;2、教材P26 1题、P27 8题【教学反思】。

统编通用版高考数学全套电子教案之人教A版选修1-1教案:2.3复合函数的导数(含答案)

统编通用版高考数学全套电子教案之人教A版选修1-1教案:2.3复合函数的导数(含答案)
可板演,可小测。
巩固提高 .
(3) y=(2 -x2 )3 (4) y=(2 x3+x)2
核对答案、讲评并小结 .
(10) 课堂小结
⑴复合函数求导, 要注意分析复合函数的结构, 引入中间变量, 将复
合函数分解成为较简单的函数,然后再用复合函数的求导法则求导;
⑵复合函数求导的基本步骤是:分解——求导——相乘——回代
较 , 体会不同的解决方
yuux 2u 3 2(3 x 2) 3 18x 12 , 从 法与策略 . 鼓励学生模
而有 y 'x y 'u u' x
仿并及时修正 .
对于一般的复合函数,结论也成立,以 后我们求 y′x 时,就可以转化为求 yu′和 u′ x 的乘积,关键是找中间变量,随着中间 变量的不同,难易程度不同 . (3) 能否用方法 (2)解决 (2) 教科书 P16 思考
4 sin2 x
4 sin 2 x
ax
(a x) (a x) (a x)(a x)
2. (1)y ′ =(
)′
ax
(a x)2
(a x) (a x)
2a
(a x) 2
(a x)2
x2
( x 2) (3x2 ) (x 2)(3x2 )
(2)y ′ =(
)′
2
(3x 2 )2
3x2 ( x 2)(6x) 9x4
(1 cos x) 2
0(1 cosx) sin x = (1 cosx)2
sin x (1 cosx)2
3. 不正确,分母未平方,分子上正负号弄错 .
1 cos x (1 cosx) x2 (1 cosx)( x2)
( x2 )

高中数学1.23复合函数的导数导学案新人教A版选修22

高中数学1.23复合函数的导数导学案新人教A版选修22

高中数学1.23复合函数的导数导学案新人教A版选修221.2.3复合函数的导数【学习目标】明确复合函数的定义及构成,掌握复合函数的求导法则【重点难点】复合函数求导法则的运用(多层复合,求导彻底)一、自主学习要点1 对于函数y =f [φ(x )],令u =φ(x ),若y =f (u )是中间变量u 的函数,u =φ(x )是自变量x 的函数,则函数y =f [φ(x )]是自变量x 的要点2 复合函数y =f (g (x ))是y =f (u ),u =g (x )的复合,那么y ′x =二、合作,探究,展示,点评题型一明确复合关系例1 指出下列函数的复合关系:(1)y =(2-x 2)3; (2)y =sin x 2; (3)y =cos(π4-x ); (4)y =ln sin(3x -1).思考题1 (1)指出下列函数的复合关系.①y =(sin x )2;②y =sin 3(1-1x); (2)若f (x )=x ,φ(x )=1+sin2x ,则f [φ(x )]=________,φ[f (x )]=________.题型二求复合函数的导数例2 求下列函数的导数:(1)y =11-2x2; (2)y =sin x 2; (3)y =a cos x (a >0,a ≠1); (4)y =5log 2(2x +1).思考题2 求下列函数的导数:(1)y =cos(3x 2-π6); (2)y =ln(ln x ); (3)y =11+5x3. 题型三切线问题例3 求曲线y =1x 2-3x在点(4,12)处的切线方程.思考题3 (1)曲线y =3x 2+1在点(1,2)处的切线方程为__________________.(2)y =11-x2的水平切线方程是________.三、知识小结复合函数的求导过程就是对复合函数由外层向里求导,每次求导都是针对着最外层的相应变量进行的,直至求到最里层为止,所谓最里层是指可以直接引用基本公式表进行求导.《导数的四则运算》课时作业1.函数y =2sin x cos x 的导数为 ( )A .y ′=cos xB .y ′=2cos2xC .y ′=2(sin 2x -cos 2x )D .y ′=-sin2x2.函数f (x )=1x 3+2x +1的导数是 ( ) A.1x 3+2x +12 B.3x 2+2x 3+2x +12 C.-3x 2-2x 3+2x +12 D.-3x 2x 3+2x +123.函数y =(x -a )(x -b )在x =a 处的导数为 ( )A .abB .-a (a -b )C .0D .a -b4.函数y =x ·ln x 的导数是 ( )A .x B.1xC .ln x +1D .ln x +x 5.函数y =cos x x的导数是 ( ) A .-sin x x 2 B .-sin x C .-x sin x +cos x x 2 D .-x cos x +cos x x 26.曲线y =x x -2在点(1,-1)处的切线方程为 ( ) A .y =x -2 B .y =-3x +2 C .y =2x -3D .y =-2x +1 7.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A.193 B.163 C.133D.103 8.设点P 是曲线y =x 3-3x +23上的任意一点,点P 处切线倾斜角为α,则角α的取值范围是 ( )A.23π,πB.? ????π2,56πC.0,π2∪? ????56π,πD.0,π2∪23π,π 9.函数y =xcos x的导数是 ( ) A.1+x cos x B.cos x -x sin x cos 2x C.cos x +x cos 2x D.cos x +x sin x cos 2x10.已知f (x )=x 2+2xf ′(1),则f ′(0)等于 ( )A .0B .-4C .-2D .211.已知f (1x )=x 1+x,则f ′(x )= ( ) A.11+x B .-11+x C.11+x 2 D .-11+x2 12.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为 ( )A .4B .-14C .2D .-1213.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为______________.14.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________. 15.求下列函数的导数.(1)f (x )=(x 3+1)(2x 2+8x -5); (2)f (x )=1+x 1-x +1-x1+x; (3)f (x )=ln x +2x x 2. 16.已知函数f (x )=2x 3+ax 与g (x )=bx 2+c 的图像都过点P (2,0),且在点P 处有公共切线,求f (x )、g (x )的表达式.17.若直线y =kx 与曲线y =x 3-3x 2+2x 相切,求k 的值.18.已知曲线S :y =3x -x 3及点P (2,2),则过点P 可向S 引切线,其切线条数为( )A .0B .1C .2D .319.曲线y =x (x +1)(2-x )有两条平行于y =x 的切线,则两切线之间的距离为________.。

2024-2025学年高中数学模块综合提升(教师用书)教案新人教A版选修1-1

2024-2025学年高中数学模块综合提升(教师用书)教案新人教A版选修1-1
学具准备
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源准备
1. 教材:确保每位学生都有《2024-2025学年高中数学 模块综合提升(教师用书)教案 新人教A版选修1-1》以及相关的练习册和学习资料,以便学生能够跟随教学进度进行学习和复习。
2. 辅助材料:准备与教学内容相关的图片、图表、视频等多媒体资源,如导数的定义和计算的动画演示、实际问题中的应用案例等,以帮助学生更直观地理解和掌握导数的概念和应用。
- 函数图像的变换:通过导数研究函数图像的平移、缩放等变换。
- 曲线的相交:求解两条曲线的交点。
6. 实际问题中的应用
- 优化问题:利用导数求解最大值和最小值问题。
- 物理问题:速度、加速度、位移等物理量的计算。
- 经济问题:成本、收益、利润等经济量的分析。
课后拓展
1. 拓展内容:
- 阅读材料:《微积分学导论》、《导数及其应用》等书籍,让学生进一步深入学习导数的理论和应用。
2. 学生的学习兴趣、能力和学习风格:对于高中阶段的学生,数学学科是他们的重要学习内容之一。他们对于函数和导数的学习有一定的兴趣,希望能够通过学习导数来更深入地理解函数的性质。学生的能力方面,他们具备一定的逻辑推理能力和数学运算能力,能够进行函数的导数计算和应用。在学习风格上,学生可能更倾向于通过实例和实际问题来理解和掌握导数的概念和应用。
2024-2025学年高中数学 模块综合提升(教师用书)教案 新人教A版选修1-1
主备人
备课成员
教学内容分析
本节课的主要教学内容是《2024-2025学年高中数学 模块综合提升(教师用书)教案 新人教A版选修1-1》中的“导数的概念及应用”。具体包括:

复合函数的导数教学设计教案

复合函数的导数教学设计教案

复合函数的导数教学设计教案一、概述复合函数是指将两个或多个函数合成一个函数。

对于复合函数,求其导数时,要用到链式法则,这是一种将复杂问题进行分解,从其各部分组成求解的技术。

它可以帮助学生更好地理解复合函数的性质,更快地解决复合函数的导数问题。

二、教学目标1. 理解复合函数的概念;2. 熟练掌握链式法则,学会使用链式法则计算复合函数的导数;3. 整体运用链式法则,求解复合函数的导数的更复杂的问题。

四、教学方法1. 讲解+练习:利用教师上课讲解链式法则和复合函数概念,引导学生理解复合函数的概念和链式法则的原理,再通过师生共同讨论的方式和学生自主解决的练习形式,帮助学生熟练掌握链式法则的运用。

2. 提问+指导:教师在讲课过程中,对学生提出相关的问题,以帮助他们理清思路,并指导他们自己解决,帮助学生理解、运用这种方法解决更加复杂的复合函数导数问题。

三、教学材料1. 教材:复合函数及其导数的课本2. 实物:黑板、笔等一些学习工具五、教学过程1. 教师首先介绍复合函数的概念,指导学生理解;2. 接着介绍链式法则,讲解两者之间的联系,分析链式法则的运用;3. 教师准备几个简单的复合函数,传授学生如何使用链式法则计算复合函数的导数;4. 教师准备更复杂的复合函数,提出问题,指导学生理解、解决问题;5. 教师总结本节课所讲的内容,结合实例检验学生对于链式法则理解程度到底有多少。

六、教学评价检查学生对本节课学习内容的掌握程度,做出书面测试,并根据实际情况进行调整;另外,以学生在课堂学习任务、讨论和实际练习中表现的动态考核,及时发现和改正学生的掌握不足之处。

高中数学123复合函数的求导法则学案新人教a版选修2-

高中数学123复合函数的求导法则学案新人教a版选修2-

1.2.3 复合函数的未求导法例试一试: (sin2x)=反省:求复合函数的导数,要点在于剖析清楚函数的复合关系,选好中间变量。

【学习目标】典型例题 理解并掌握复合函数的求导法例例 1 求以下函数的导数: ( )(1) y (2 x 3) 2 ;0.05x 1;2 y e 【学习重难点】(3) y sin( x ) (此中 , 均为常数)要点:复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数 乘以中间变量对自变量的导数之积难点:正确分解复合函数的复合过程,做到不漏,不重,娴熟,正确【学习过程】一、学前准备1:求 y x 3 ( x 24) 的导数2:求函数 y(2 x 3)2 的导数二、合作研究:研究一:复合函数的求导法例问题:求 (sin 2 x) =?解答:因为 (sin x) cos x ,故 (sin 2x)cos2 x这个解答正确吗 ?新知:一般地,关于两个函数 y f (u ) 和 u g( x) ,假如经过变量 u , y 能够表示成 x 的函数,那么称这个函数为函数 y f (u) 和 u g (x) 的复合函数,记作: y f (g (x))复合函数的求导法例:两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自变量的导数 . 用公式表示为: y x y u u x ,此中 u 为中间变量 . 即: y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积 .变式:求以下函数的导数: (1) y cos x;( ) yx 13小结:复合函数的求导不单能够推行到三重,还可推行到四重、五重 .例 2 求描绘气球膨胀状态的函数 r (V ) 33V的导数 .4小结:求复合函数的导数,要点在于剖析清楚函数的复合关系,选好中间变量。

函数 r (V )33V能够当作是哪两个函数的复合 ?4【学习检测】1.(A) 设y sin 2x ,则 y =()A.sin2x B.2sin x C.2sin2x D.cos2x2.(A) 已知f ( x)ln( x x21) ,则 f(x) 是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数3.(A) (log2(2x3)) =4.(A) (lg tan x) =5(B) 求以下函数的导数;(1)y( x1)99;(2) y2e x;( 3)y 2x sin(2 x5)6.(B) 求以下函数的导数;(1)y2x tan x ;(2)y(x 2)3 (3x 1)2;(3)y2xln x ;(4)yx2(2 x 1)3【小结与反省】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2.3复合函数的导数
【学情分析】:
在学习了用导数定义这种方法计算常见函数的导数,而且已经熟悉了导数加减运算法则后.本节将继续介绍复合函数的求导方法.
【教学目标】:
(1)理解掌握复合函数的求导法则.
(2)能够结合已学过的法则、公式,进行一些复合函数的求导
(3)培养学生善于观察事物,善于发现规律,认识规律,掌握规律,利用规律.
【教学重点】:
简单复合函数的求导法则,也是由导数的定义导出的,要掌握复合函数的求导法则,须在理解复合过程的基础上熟记基本导数公式,从而会求简单初等函数的导数并灵活应用. 【教学难点】:
复合函数的求导法则的导入,复合函数的结构分析,可多配例题, 让学生对求导法则有一个直观的了解.
【教学过程设计】:。

相关文档
最新文档