八年级数学下册第八周检测(华东师大版)
华师大版八年级下学期数学《期中考试题》及答案
[答案]
[解析]
[分析]
首先根据直线AB来求出点A和点B的坐标,B′的横坐标等于OA+OB,而纵坐标等于OA.
[详解]解:直线 与x轴、y轴分别交于A、B两点,求出点 ,B(0,2),
8.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()
A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1
[答案]B
[解析]
[详解]0.056用科学记数法表示为:0.056= ,故选B.
9.如图,平行四边形的对角线 与 相交于点 , ,若 , ,则 的长是( )
A. B. C. D.
[答案]B
[解析]
[分析]
由平行四边形对角线互相平分的性质可知OA长,根据勾股定理求出BO长可得BD长.
[详解]解: 四边形ABCD是平行四边形,
,
故选:B
[点睛]本题考查了平行四边形的性质及勾股定理,灵活应用平行四边形对角线互相平分求线段长是解题的关键.
10.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴, .∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数 的图象过点C.当以CD为边的正方形的面积为 时,k的值是()
故答案为1
[点睛]本题考查了分式的混合运算,熟练掌握运算法则和整体代换的思想是解题的关键.
13.对于函数 , 的值随 值的增大而_______.
[答案]减小
[解析]
[分析]
根据一次函数的性质可知.
华东师大版八年级数学下册单元测试题及答案全套
华师大版八年级数学下册单元测试题及答案全套第16章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.2 0180的值是( C )A .2 018B .0C .1D .-1 2.下列运算正确的是( C )A .(3xy 2)2=6xy 4B .2x -2=14x2C .(-x )7÷(-x )2=-x 5D .(6xy 2)2÷3xy =23.化简(a +3a -4a -3)(1-1a -2)的结果等于( B )A .a -2B .a +2 C.a -2a -3 D.a -3a -24.下列结论错误的是( D )A .(2×10-6)2÷(10-4)3=4B .当a =1,p =2;a =2,p =2;a =3,p =4时,等式a -p =1ap 都能成立C .方程y -y -12=2-y +25是整式方程D .(-5)÷32×23=(-5)÷1=-55.将(16)-1,(-2)0,(-3)2这三个数按从小到大的顺序排列,正确的结果是( A )A .(-2)0<(16)-1<(-3)2B .(16)-1<(-2)0<(-3)2C .(-3)2<(-2)0<(16)-1D .(-2)0<(-3)2<(16)-16.下列等式中,正确的有( B )①2m -x +1=-2m x -1;②x 2-y 2x -y =x +y ;③|b -a |a -b =-1;④x +2x +3=(x +2)(x -1)(x +3)(x -1);⑤15a -15b =15(a -b ).A .1个B .2个C .3个D .4个7.下列算式:①[2+(-2)]0=1;②10-4·104=1;③(a +b)-1=a -1+b -1;④(b a )-2=(a b)2,其中运算正确的有( B )A .1个B .2个C .3个D .4个8.如果分式A x +2与B2x -3的和是5x -112x 2+x -6,那么A 、B 的值分别是( B )A .A =5,B =-11 B .A =3,B =-1C .A =-1,B =3D .A =-5,B =119.若x =12+2-p ,y =2+2p ,则x 等于( C )A.y +1y -1B.y +2y -1C.y 2y -4D.2y -4y10.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本,求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列方程正确的是( B )A.1.5×200x -240x =4B.200x -2401.5x=4C.2401.5x -200x =4 D.1.5×200x +4=240x 二、填空题(每小题3分,共24分)11.当x__≠3__时,分式4-x x -3有意义;当x =__9__时,分式|x |-9x +9的值等于零.12.(攀枝花中考)计算:9+|4|+(-1)0-(12)-1=__6__.13.分式x 3x 、3a +13a +b 、m +n m 2-n 2、2-2x2x中,最简分式的个数是__1__个.14.(襄阳中考)分式方程1x -5-10x 2-10x +25=0的解是__x =15__.15.(常德中考)埃是表示极小长度的单位名称,是为纪念瑞典物理学家埃基特朗而定的.1埃等于一亿分之一厘米,用科学记数法表示1埃为__1×10-8__厘米.16.若方程k x -2-3xx -2=0有增根,则k 的值为__6__.17.一列数a 1,a 2,a 3,…,其中a 1=12,a n =11-a n -1(n 为不小于2的整数),则a 100=__12__.18.若x +1x =52,则x x 2+x +1=__27__.三、解答题(共66分) 19.(8分)计算:(1)4-(15+2)0+(-2)3÷3-1;解:原式=2-1+(-8)÷13=2-1-24=-23. (2) 3-1+(π-3)0-|-13|.解:原式=13+1-13=1.20.(10分)(1)先化简,再求值:x 2-2x +1x 2-1÷(1-3x +1),其中x =0.解:原式=(x -1)2(x +1)(x -1)÷(x +1x +1-3x +1)=(x -1)2(x +1)(x -1)·x +1x -2 =x -1x -2, 当x =0时,原式=12.(2)已知A =x 2+2x +1x 2-1-xx -1.①化简A ;②当x 满足不等式组⎩⎨⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.解:①A =(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=x +1-x x -1=1x -1;②解不等式组,得1≤x <3.∵x 为整数,∴x =1或2.∵A =1x -1,∴x ≠1.当x =2时,A =1x -1=12-1=1.21.(10分)解下列分式方程:(1)x 2x -3+53-2x=4; 解:去分母,得x -5=4(2x -3), 去括号,得x -5=8x -12, 移项,得-7x =-7, 解得x =1.检验:x =1时,2x -3≠0. ∴原分式方程的解为x =1.(2)x -3x -2+1=32-x.解:方程两边同乘(x -2),得 x -3+(x -2)=-3, 解得x =1.检验:x =1时,x -2≠0. ∴x =1是原分式方程的解.22.(8分)“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元,求第一批盒装花每盒的进价是多少元.解:设第一批盒装花的进价是每盒x 元.由题意,得2×3 000x =5 000x -5,解得x =30.经检验,x =30是原分式方程的解. 答:第一批盒装花的进价是每盒30元.23.(8分)某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:①按原来报名参加的人数,共需费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需费用480元;②如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?解:设原来报名参加的学生有x 人.依题意,得320x -4802x=4.解得x =20.经检验,x =20是原分式方程的解,且符合题意. 答:原来报名参加的学生有20人.24.(10分)2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.解:(1)设甲种货车每辆车可装x 件帐篷,则乙种货车每辆车可装(x -20)件帐篷,由题意,得 1 000x =800x -20, 解得x =100,经检验,x =100是原分式方程的解, ∴x -20=80.答:甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷. (2)设甲种货车有m 辆,乙种货车有n 辆,由题意,得⎩⎨⎧m +n =16,100m +80(n -1)+50=1 490,解得⎩⎨⎧m =12,n =4.答:甲种货车有12辆,乙种货车有4辆.25.(12分)(哈尔滨中考)华昌中学开学初在金利源商场购进A 、B 两种品牌的足球,购买A 品牌足球花费了2 500元,购买B 品牌足球花费了2 000元,且购买A 品牌足球的数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A 品牌的足球多花30元.(1)求购买一个A 品牌、一个B 品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A 品牌足球的售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A 、B 两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B 品牌足球?解:(1)设购买一个A 品牌足球需x 元,则购买一个B 品牌足球需(x +30)元,根据题意,得2 500x =2 000x +30×2,解得x =50.经检验,x =50是原分式方程的解.50+30=80(元).答:购买一个A 品牌足球需50元,购买一个B 品牌足球需80元.(2)设本次购买a 个B 品牌足球,则购买A 品牌足球(50-a )个,根据题意,得50×(1+8%)(50-a )+80×0.9a ≤3 260,解得a ≤3119.∵a 取正整数,∴a 最大值为31.答:此次华昌中学最多可购买31个B 品牌足球.第17章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列各式中,表示y 是x 的函数的有( B )①2y +x =3;②y =x +2z ;③y =2;④y =kx +1(k 为常量);⑤y 2=2x . A .0个 B .1个 C .2个 D .3个2.下列函数中,当x <0时,y 随x 的增大而减小的是( C )A .y =-2xB .y =x -2C .y =5xD .y =(a -3)x +23.已知正比例函数y =(1-m)x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且当x 1>x 2时,y 1>y 2,则m 的取值范围是( C )A .m <0B .m >0C .m <1D .m >14.一次函数y =-x +5的图象与反比例函数y =6x的图象的交点情况是( C )A .只有一个交点,在第一象限B .只有一个交点,在第二象限C .有两个交点,都在第一象限D .没有交点5.将点P(4,3)向下平移1个单位后,落在函数y =kx的图象上,则k 的值为( D )A .12B .10C .9D .86.关于函数y =-x -2的图象,有如下说法:①图象过点(0,-2);②图象与x 轴的交点是(-2,0);③从图象知y 随x 增大而增大;④图象不经过第一象限;⑤图象是与y =-x 平行的直线.其中正确的说法有( C )A .2种B .3种C .4种D .5种7.下列图形中,阴影部分的面积相等的是( C )A .①②B .②③C .③④D .①④8.在同一直角坐标系中,函数y =-kx +k 与y =kx(k ≠0)的图象大致是( C )9.如图,反比例函数y =-4x 的图象与直线y =-13x 的交点为A 、B ,过点A 作y 轴的平行线与过点B 作的x 轴的平行线相交于点C ,则△ABC 的面积为( A )A .8B .6C .4D .210.如图,在四边形ABCD 中,动点P 从点A 开始沿A →B →C →D 的路径匀速前进到D 为止.在这个过程中,△APD 的面积S 随时间t 的变化关系用图象表示正确的是( B )二、 填空题(每小题3分,共24分)11.点(-3,2),(a ,a +1)在函数y =kx -1的图象上,则k =__-1__,a =__-1__.12.如图,函数y =x 与y =4x的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为C ,则△ABC的面积为__4__.13.一次函数y =kx +b 的自变量的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,则这个函数的表达式是__y =-13x -3或y =13x -4__.14.定义[p ,q]为一次函数y =px +q 的特征数,若特征数是[2,k -2]的一次函数为正比例函数,则k 的值是__2__.15.函数y =xx -3-(x -2)0中,自变量x 的取值范围是__x ≥0_且x ≠2且x ≠3__.16.已知点P(a ,b)在一次函数y =4x +3的图象上,则代数式4a -b -2的值等于__-5__.17.直线y =kx +b 经过点A(-6,0)和y 轴交于点B ,如果△ABO(O 为坐标原点)的面积为6,则b 的值为__±2__.18.已知平面上四点A(0,0),B(10,0),C(10,6),D(0,6),直线y =mx -3m +2将四边形ABCD分成面积相等的两部分,则m 的值为__12__.三、 解答题(共66分)19.(10分)已知一次函数的图象经过点A(2,1),B(-1,-3). (1)设此一次函数的表达式;(2)求此一次函数的图象与x 轴、y 轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.解:(1)设此一次函数的表达式为y =kx +b ,由A (2,1),B (-1,-3),得⎩⎨⎧2k +b =1,-k +b =-3,解得⎩⎨⎧k =43,b =-53,∴y =43x -53.(2)在y =43x -53中,令y =0,得x =54;令x =0,得y =-53,∴此一次函数图象与x 轴的交点坐标为(54,0),与y 轴的交点坐标为(0,-53).(3)此一次函数的图象与两坐标轴所围成的三角表面积为54×|-53|×12=2524.20.(10分)如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A.(1)求该反比例函数的表达式;(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,求过A 、B 两点的直线的表达式.解:(1)由题意,易得点A 的坐标是(1.5,2),则该反比例函数的表达式为y =3x.(2)把x =3代入y =3x,得y =1,则点B 的坐标是(3,1).设过A 、B 两点的直线的表达式为y =kx +b ,则⎩⎨⎧1=3k +b ,2=1.5k +b.解得⎩⎪⎨⎪⎧k =-23,b =3.则过A 、B 两点的直线的表达式为y =-23x +3.21.(10分)如图,直线y =12x 与双曲线y =kx(k >0)交于A 、B 两点,且点A 的横坐标为4.(1)求k 的值;(2)若双曲线y =kx(k >0)上一点C 的纵坐标为8,求△AOC 的面积.解:(1)∵点A 的横坐标为4,点A 在直线y =12x 上,∴点A 的纵坐标为y =12×4=2,即A (4,2).又∵点A (4,2)在双曲线y =kx上,∴k =2×4=8.(2)∵点C 在双曲线y =8x上,且点C 纵坐标为8,∴C (1,8).如图,过点C 作CM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N.∵S △COM =S △AON =82=4,∴S △AOC =S 四边形CMNA =12×(|y A |+|y C |)×(|x A |-|x c |)=15.22.(12分)向阳花卉基地出售两种花卉——百合和玫瑰,其单价为玫瑰4元/株、百合5元/株,如果同一客户所购的玫瑰数量大于1 200株,那么每株玫瑰还可降价1元.现某鲜花店向向阳花卉基地采购玫瑰1 000~1 500株、百合若干株,恰好花去了9 000元,然后再以玫瑰5元/株、百合6.5元/株的价格卖出.问:此鲜花店应如何采购这两种鲜花才能使获得的毛利润最大?(注:1 000~1 500株,表示大于或等于1 000株,且小于或等于1 500株,毛利润=鲜花店卖出百合和玫瑰所获的总金额—购进百合和玫瑰所需的总金额)解:设采购玫瑰x 株、百合y 株,毛利润为W 元.①当1 000≤x ≤1 200时,4x +5y =9 000,即y =9 000-4x 5,则W =x +1.5y =2 700-x5,当x 取1 000时,W 有最大值2 500,此时y =1 000.②当1 200<x ≤1 500时,3x +5y =9 000,即y =9 000-3x 5,则W =2x +1.5y =2 700+11x10,∴当x 取1 500时,W 有最大值4 350,此时y =900.综上所述,当采购玫瑰1 500株、百合900株时,毛利润最大,为4 350元.23.(12分)如图①,在矩形ABCD 中,AB =10 cm ,BC =8 cm .点P 从点A 出发,沿A →B →C →D 的路线运动,到点D 停止;点Q 从点D 出发,沿D →C →B →A 的路线运动,到点A 停止.若点P 、点Q 同时出发,点P 的速度为每秒1 cm ,点Q 的速度为每秒2 cm ,a 秒时,点P 、点Q 同时改变速度,点P 的速度变为每秒b cm ,点Q 的速度变为每秒d cm .图②是点P 出发x 秒后△APD 的面积S 1(cm 2)与时间x(秒)的函数关系图象;图③是点Q 出发x 秒后△AQD 的面积S 2(cm 2)与时间x(秒)的函数关系图象.(1)参照图②,求a 、 b 及图②中c 的值; (2)求d 的值;(3)设点P 离开点A 的路程为y 1(cm ),点Q 到点A 还需要走的路程为y 2(cm ),请分别写出改变速度后,y 1、y 2与出发后的运动时间x(秒)的函数关系式,并求出点P 、点Q 相遇时x 的值;(4)当点Q 出发__19__秒时,点Q 的运动路程为25 cm.解:(1)观察图②,得当x =a 时,S △APD =12PA ·AD =12a ×8=24,∴a =6,b =10-1×68-6=2,c =8+8+102=17.(2)依题意,得(22-6)d =28-12,解得d =1.(3)y 1=2x -6,y 2=22-x.当点P 、点Q 相遇时,2x -6=22-x ,得x =283.24.(12分)已知一次函数y =■的图象过点A(2,4),B(0,3),题目中的矩形部分因墨水污染而无法辨别.(1)根据现有的信息,请求出题中的一次函数的表达式; (2)根据表达式画出这个函数的图象;(3)过点B 能不能画出一直线BC 将△ABO(O 为坐标原点)分成面积比为1∶2的两部分?如能,可以画出几条?并求出其中一条直线所对应的函数表达式,其他的直接写出函数关系式;若不能,说明理由.解:(1)设一次函数的表达式是y =kx +b ,把A (2,4)、B (0,3)代入y =kx +b ,得⎩⎨⎧3=b ,4=2k +b ,解得k =0.5,b =3,∴一次函数的表达式是y =0.5x +3. (2)如图.(3)能,如图,直线BC 和BC ′都符合题意.∵S △BOC ∶S △ABC =S △ABC ′∶S △BOC ′=1∶2,∴OC =CC ′=AC ′,则点C 的纵坐标是13×4=43,点C ′的纵坐标是23×4=83.设直线OA 的表达式是y =k 1x ,把点A (2,4)代入y =k 1x ,得k 1=2,∴y =2x.把点C 、C ′的纵坐标代入y =2x ,得点C 的横坐标是23,点C ′的横坐标是43,∴C (23,43),C ′(43,83).设直线BC 的表达式是y =k 2x +3,把点C 的坐标代入y =k 2x +3,得k 2=-2.5, ∴直线BC 的表达式是y =-2.5x +3.同理求出直线BC ′的表达式是y =-0.25x +3.即过点B 能画出直线BC 将△ABO (O 为坐标原点)分成面积比为1∶2的两部分,且可以画出2条,直线BC 所对应的函数表达式是y =-2.5x +3或y =-0.25x +3.第18章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下面关于平行四边形的性质的结论中,错误的是( D ) A .对边平行 B .对角相等C .对边相等D .对角线互相垂直2.如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AD 于点F ,则∠1=( B )A .40°B .50°C .60°D .80°,第3题图) ,第5题图)3.如图,在平行四边形ABCD 中,CE ⊥AB ,E 为垂足.如果∠A =125°,则∠BCE 等于( B ) A .55° B .35° C .25° D .30°4.如图,在平行四边形ABCD 中,按下列条件得到的四边形EFGH 不一定是平行四边形的是( A )5.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件:①AE =CF ;②DE =BF ;③∠ADE =∠CBF ;④∠ABE =∠CDF.其中不能判定四边形DEBF 是平行四边形的有( B )A .0个B .1个C .2个D .3个6.平行四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则图中共有平行四边形的个数是( C )A .2个B .3个C .4个D .5个,第6题图) ,第7题图),第9题图)7.如图,在▱ABCD 中,E 、F 分别在BC 、AD 上,若想使四边形AFCE 为平行四边形,须添加一个条件,这个条件可以是( C )①AF =CF ;②AE =CF ;③∠BAE =∠FCD ;④∠BEA =∠FCE . A .①或② B .②或③或④ C .③或④ D .①或③或④8.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC.其中一定能判定这个四边形是平行四边形的条件有( C )A .1组B .2组C .3组D .4组9.如图,在四边形ABCD 中,对角线AC 、BD 相交于点E ,∠CBD =90°,BC =8,AE =AC =10,若四边形ABCD 的面积为96,则CD 的长为( D )A .16B .12C .213D .41310.如图,在等边三角形ABC 中,AB =6 cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1 cm /s 的速度运动,点F 从点B 出发沿射线BC 以2 cm /s 的速度运动,如果点E 、F 同时出发,当四边形AEFC 是平行四边形时,运动时间t 的值为( B )A .2 sB .6 sC .8 sD .2 s 或6 s二、 填空题(每小题3分,共24分)11.在平行四边形ABCD 中,若∠A =∠B +∠D ,则∠A =__120°__.12.在平行四边形ABCD 中,∠A =50°,AB =a ,BC =b.则∠B =__130°__,∠C =__50°__,平行四边形ABCD 的周长=__2(a +b )__.13.在▱ABCD 中,一角的平分线把一条边分成3 cm 和4 cm 两部分,则▱ABCD 的周长为__20_cm 或22_cm __.14.在平行四边形ABCD 中,BC =35AB ,它的周长为32 cm ,则AB =__10_cm __.15.如图,在▱ABCD 中,点E 在边AD 上,以BE 为折痕将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为__7__.,第15题图) ,第16题图) ,第17题图),第18题图)16.如图,在四边形ABCD 中,AD ∥BC ,∠B =70°,∠C =40°,DE ∥AB 交BC 于点E ,若AD =5 cm ,BC =12 cm ,则CD 的长是__7__cm.17.如图,分别以△ABC 的两条边为边作平行四边形,所有的平行四边形有__3__个;平行四边形第四个顶点的坐标是__(0,-4)、(-6,4)、(6,4)__.18.如图,△ABC中,如果AB=30,BC=24,AC=27,DN∥GM∥AB,EG∥DF∥AC,则图中阴影部分的三个三角形周长之和为__81__.三、解答题(共66分)19.(6分)如图,BD是▱ABCD的一条对角线.AE⊥BD于点E,CF⊥BD于点F.求证:∠DAE=∠BCF.解:∵在▱ABCD中,AD=BC,AD∥BC,∴∠ADB=∠CBD.∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,∴△ADE≌△CBF.∴∠DAE=∠BCF.20.(6分)如图,在△ABC中,AD平分∠BAC交BC于点D,点E、F分别在边AB、AC上,且BE =AF,FG∥AB交线段AD于点G,连结BG、EF.求证:四边形BGFE是平行四边形.证明:∵FG∥AB,∴∠BAD=∠AGF.∵AD平分∠BAC,∴∠BAD=∠GAF,∴∠AGF=∠GAF,∴AF=GF.∵BE=AF,∴FG=BE.又∵FG∥BE,∴四边形BGFE是平行四边形.21.(8分)如图,点O是▱ABCD的对角线AC与BD的交点,四边形OCDE是平行四边形.求证:OE与AD互相平分.证明:连结AE.∵四边形OCDE是平行四边形,∴DE∥OC,DE=OC.∵O是▱ABCD的对角线AC与BD的交点,∴AO=OC,∴DE=OA.∴四边形ODEA是平行四边形,∴OE与AD互相平分.22.(8分)如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.证明四边形DAEF是平行四边形.证明:∵△ABD和△BCF都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,BD=BA,BF=BC,∴∠DBF=∠ABC.∴△ABC≌△DBF,∴AC=DF.又∵AC=AE,∴DF=AE.同理可证得△ABC≌△EFC,∴AB=EF.又∵AB=AD,∴EF=AD,∴四边形DAEF是平行四边形.23.(12分)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=3MN.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC.∴四边形MNCD是平行四边形.(2)如图,连结DN.∵N是BC的中点,BC=2CD,∴CD=NC.又∵∠C=60°,∴△DCN是等边三角形.∴ND=NC,∠DNC=∠NDC=60°,∴ND=NB=CN,∴∠DBC=∠BDN=30°,∴∠BDC=∠BDN+∠NDC=90°,∴BD=BC2-CD2=(2DC)2-CD2=3CD.∵四边形MNCD是平行四边形,∴MN=CD,∴BD=3MN.24.(12分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC.(1)证明:四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.解:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAD=∠BCD.∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD.∵BD ⊥AC ,AF ⊥AC ,∴AF ∥BD ,∴四边形ABDF 是平行四边形.(2)∵四边形ABDF 是平行四边形,∴AB =DF ,AF =BD.∵AF =DF =5,∴AB =BD =5.设BE =x ,则DE =5-x ,∴AB 2-BE 2=AD 2-DE 2,即52-x 2=62-(5-x )2,解得x =75,∴AE =AB 2-BE 2=245,∴AC =2AE =485.25.(14分)分别以▱ABCD(∠CDA ≠90°)的三边AB 、CD 、DA 为斜边作等腰直角三角形△ABE 、△CDG 、△ADF.(1)如图①,当三个等腰直角三角形都在该平行四边形外部时,连结GF 、EF.请判断GF 与EF 的关系;(2)如图②,当三个等腰直角三角形都在该平行四边形内部时,连结GF 、EF ,(1)中结论还成立吗?若成立,给出证明;若不成立,请说明理由.解:(1)GF =EF.理由如下:∵四边形ABCD 是平行四边形,∴CD =BA.∵△CDG 和△BAE 分别是以CD 和BA 为斜边的等腰直角三角形,∴DG =AE =22CD =22AB. 在△GDF 中,∠GDF =∠GDC +∠FDA +∠CDA =90°+∠CDA ,在△EAF 中,∠EAF =360°-∠BAD -∠BAE -∠DAF =360°-(180°-∠CDA )-90°=90°+∠CDA ,∴∠GDF =∠EAF.在△GDF 和△EAF 中,⎩⎨⎧DG =AE ,∠GDF =∠EAF ,DF =FA ,∴△GDF ≌△EAF ,∴GF =EF. (2)成立,理由如下:∵四边形ABCD 是平行四边形,∴CD =BA.∵△CDG 和△BAE 分别是以CD 和BA 为斜边的等腰直角三角形,∴DG =AE =22CD =22AB. 在△GDF 中,∠GDF =∠GDC +∠FDA -∠CDA =90°-∠CDA ,在△EAF 中,∠EAF =∠BAD -∠BAE -∠DAF =180°-∠CDA -90°=90°-∠CDA ,∴∠GDF =∠EAF.在△GDF 和△EAF 中,⎩⎨⎧DG =AE ,∠GDF =∠EAF ,DF =FA ,∴△GDF ≌△EAF ,∴GF =EF.第19章检测题时间:120分钟 满分:120分一、 选择题(每题3分,共30分)1.下列说法中,错误的是( D )A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( C )A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB3.如图,将平行四边形ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是( C )A.AF=EF B.AB=EF C.AE=AF D.AF=BE,第3题图),第4题图),第5题图),第6题图)4.如图,在△ABC中,AB>BC>AC,小华依下列方法作图,①作∠C的角平分线交AB于点D;②作CD的中垂线,分别交AC、BC于点E、F;③连结DE、DF.根据小华所作的图,下列说法中一定正确的是( A )A.四边形CEDF为菱形B.DE=DAC.DF⊥CB D.CD=BD5.如图△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,若AE=4 cm,那么平行四边形AEDF周长为( B )A.12 cm B.16 cm C.20 cm D.22 cm6.如图,在△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( A )A.2 3 B.3 3 C.4 D.437.菱形ABCD的对角线的交点在坐标原点,且AD平行于x轴,若点A的坐标为(-1,2),则点C 的坐标为( A )A.(1,-2) B.(2,-1) C.(1,-3) D.(2,-3)8.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连结AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( D )A.1个B.2个C.3个D.4个,第8题图),第9题图),第10题图)9.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是( B ) A.3公里B.4公里C.5公里D.6公里10.(2017·攀枝花)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连结AC交EF于点G,过点G作GH⊥CE于点H,若S△EGH=3,则S△ADF=( A )A.6 B.4 C.3 D.2二、填空题(每小题3分,共24分)11.矩形内有一点P到各边的距离分别为1、3、5、7,则该矩形的最大面积为__64__.12.若菱形的一条对角线长为2 cm ,面积为2 3 cm 2,则它的周长为__8_cm __.13.如图,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转到能与△CBP ′重合,若PB=3,则PP ′=.14.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以线段CD 、CB为边作▱CDEB ,当AD =__75__时,▱CDEB 为菱形. ,第13题图) ,第14题图) ,第15题图)15.如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线距离之和PE +PF =__4.8__.16.在矩形ABCD 中,对角线AC 、BD 交于点O ,AE ⊥BD 于点E ,若OE ∶ED =1∶3,AE =3,则BD =__45. 17.如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且AE =EF =FA.下列结论:①△ABE ≌△ADF ;②CE =CF ;③∠AEB =75°;④BE +DF =EF ;⑤S △ABE +S △ADF =S △CEF .其中正确的是__①②③⑤__.(只填写序号),第17题图) ,第18题图)18.如图,在四边形ABCD 中,AD ∥BC ,BC =CD =AC =23,AB =6,则BD 的长为.三、 解答题(共66分)19.(10分)如图,四边形ABCD 为菱形,已知A(0,4),B(-3,0).(1)求点D 的坐标;(2)求经过点C 的反比例函数表达式.解:(1)∵A (0,4),B (-3,0),∴OB =3,OA =4,∴AB =5.∵在菱形ABCD 中,AD =AB =5,∴OD =1,∴D (0,-1).(2)∵BC ∥AD ,BC =AB =5,∴C (-3,-5).设经过点C 的反比例函数表达式为y =k x.把(-3,-5)代入表达式,得k =15, ∴y =15x.20.(10分)已知:如图,在△ABC 中,D 是BC 边上的一点,连结AD ,取AD 的中点E ,过点A 作BC 的平行线与CE 的延长线交于点F ,连结DF.(1)求证:AF =DC ;(2)请问:AD 与CF 满足什么条件时,四边形AFDC 是矩形?并说明理由.解:(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵E为AD的中点,∴AE=DE.又∵∠AEF=∠DEC,∴△AEF≌△DEC,∴AF=DC.(2)当AD=CF时,四边形AFDC是矩形,理由如下:由(1)得AF=DC且AF∥DC,∴四边形AFDC是平行四边形.又∵AD=CF,∴四边形AFDC是矩形(对角线相等的平行四边形是矩形).21.(10分)如图,在矩形ABCD中,F是BC上一点,连结AF,AF=BC,DE⊥AF,垂足为E,连结DF.求证:(1)△ABF≌△DEA.(2)DF是∠EDC的平分线.证明:(1)∵四边形ABCD为矩形,∴∠B=∠BAD=90°,∴∠BAF+∠BFA=90°,∠BAF+∠EAD=90°,∴∠BFA=∠EAD.∵DE⊥AF,∴∠AED=∠B=90°.又∵AF=BC=AD,∴△ABF≌△DEA.(2)∵△ABF≌△DEA,∴DE=AB.∵四边形ABCD为矩形,∴∠C=90°,AB=CD,∴DE=CD,∴DF是∠EDC的平分线.22.(12分)如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1 cm的速度沿射线AC移动,点Q从点C出发以每秒1 cm的速度沿射线CA移动.(1)经过几秒,以P、Q、B、D为顶点的四边形为矩形?(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.解:(1)经过7秒,四边形BPDQ为矩形.理由如下:经过7秒,PA=QC=7,∵AC=6,∴CP=AQ=1,∴PQ=BD=8.∵四边形ABCD为平行四边形,BD=8,AC=6,∴AO=OC=3,∴BO=DO=4,∴OQ=OP=4,∴四边形BPDQ为平行四边形.∵PQ=BD=8,∴四边形BPDQ为矩形,(2)由(1)得BO=4,CQ=7,CO=3.∵BC ⊥AC ,∴∠BCA =90°,∴BC =OB 2-OC 2=7.又BC 2+CQ 2=BQ 2,∴BQ =56=214.23.(12分)如图①,在正方形ABCD 中,M 是AB 的中点,E 是AB 延长线上的一点,MN ⊥DM 且交∠CBE 的平分线于点N.(1)求证:MD =MN.(2)若将上述条件中的“M 是B 的中点”改为“M 是AB 上的任意一点”,其余条件不变(如图②),则结论“MD =MN ”还成立吗?如果成立,请证明;如果不成立,请说明理由.解:(1)证明:取AD 的中点F ,连结FM.∵四边形ABCD 是正方形,∴AB =AD ,∠A =∠ABC =90°.又∵M 、F 分别是AB 、AD 的中点,∴AM =MB =12AB =12AD =DF =AF. ∴AF =AM ,DF =MB.又∵∠A =90°,∴∠AFM =45°,∴∠DFM =135°.∵BN 平分∠CBE ,∴∠MBN =90°+45°=135°,∴∠DFM =∠MBN.∵MN ⊥DM ,∴∠NMB +∠DMA =90°.又∵∠FDM +∠DMA =90°,∴∠FDM =∠NMB ,∴△DFM ≌△MBN (ASA ).∴MD =MN.(2)成立.证明:在AD 上取一点F ,使得AF =AM.同理于(1)的证明过程,可得∠FDM =∠NMB ,∠DFM =∠MBN =135°.∵AD =AB ,AF =AM ,∴DF =MB.∴△DFM ≌△MBN (ASA ).∴MD =MN.24.(12分)(1)如图矩形ABCD 的对角线AC 、BD 交于点O ,过点D 作DP ∥OC ,且DP =OC ,连结CP ,判断四边形CODP 的形状并说明理由;(2)如果题目中的矩形变为菱形,结论变为什么?说明理由;(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.解:(1)四边形CODP 的形状是菱形.理由:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∴OC =OD. ∵DP ∥OC ,DP =OC ,∴四边形CODP 是平行四边形.∵OC =OD ,∴平行四边形CODP 是菱形.(2)四边形CODP 的形状是矩形.理由:∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠DOC =90°.∵DP ∥OC ,OP =OC ,∴四边形CODP 是平行四边形.∵∠DOC =90°,∴四边形CODP 是矩形.(3)四边形CODP 的形状是正方形.理由:∵四边形ABCD 是正方形,∴AC ⊥BD ,AC =BD ,OA =OC =12AC ,OB =OD =12BD , ∴∠DOC =90°,OD =OC.∵DP ∥OC ,DP =OC ,∴四边形CODP 是平行四边形.∵∠DOC =90°,OD =OC ,∴平行四边形CODP 是正方形.第20章检测题时间:120分钟 满分:120分一、 选择题(每小题3分,共30分)1.某人一手拿六个骰子掷了一下,结果如图所示,则这些点数的众数是( B )A .1B .2C .3D .62.已知一组数据2,1,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( B )A .2B .2.5C .3D .53.某小组5名同学在一周内参加家务劳动的时间如下表所示:A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.84.甲、乙两位战士在射击训练中,打靶的次数相同,且中环的平均数相等,如果甲的射击成绩比较稳定,那么方差的大小关系是( B )A .s 甲2>s 乙2B .s 甲2<s 乙2C .s 甲2=s 乙2D .不确定5.若一组数据1,a ,2,3,4的平均数与中位数相同,则a 不可能是下列选项中的( C )A .0B .2.5C .3D .56.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误..的是( C ) A .平均数是15 B .众数是10 C .中位数是17 D .方差是4437.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是( D )A .255分B .84分C .84.5分D .86分8.某校九年级(1)班学生2016年初中毕业体育学业考试成绩统计如下表:..A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分9.如果一组数据x 1,x 2,…,x n 的方差是4,则另一组数据4x 1+3,4x 2+3,…,4x n +3的方差是( B )A .12B .16C .18D .1910.(2017·维坊)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示,丙、丁两人的成绩如统计图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( C )方差 1 1A .甲B .乙C .丙D .丁二、 填空题(每小题3分,共24分)11.平均数、中位数、众数中,受极端值影响最大的是__平均数__.12.有20个数,其中有8个数的平均数是17,其余数的平均数是12,则这20个数的平均数是__14__.13.(2017·长沙)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S 甲2=1.2,S 乙2=0.5,则在本次测试中,__乙__同学的成绩更稳定(填“甲”或“乙”).14.某校抽样调查了七年级部分学生每天上网的时间,整理数据后制成了如下所示的统计表,这个样本的中位数在第__2__组.第5组 2≤t <2.5 6,第14题图) 第15题图)15.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定.根据图中的信息,估计这两人中的新手是___小李__.16.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__90__分.17.若一组数据 1,2,x ,1,3,2,4 的众数是1,则这组数据的方差为__87__. 18.计算一组数据的方差时,列式为:s 2=110[(x 1-2)2+(x 2-2)2+…+(x 10-2)2]. 如果这些数据的平方和为50,那么方差为__1__.三、 解答题(共66分)19.(8分)(2017·宜昌)YC 市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现将随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:。
华东师大版数学八年级下册全册练习题(含答案)
2.分式的基本性质1.下列运算正确的是( D )(A)=- (B)=(C)=x+y (D)=-2.下列分式中是最简分式的是( A )(A)(B)(C)(D)3.若将分式中的x,y都扩大到原来的3倍,则分式的值( A )(A)不变 (B)扩大3倍(C)扩大6倍 (D)缩小到原来的4.(整体求解思想)(2018新乡一中月考)若y2-7y+12=0,则分式的值是( B )(A)1 (B)-1 (C)13 (D)-135.若=2,=6,则= 12 .6.若梯形的面积是(x+y)2(x>0,y>0),上底是2x(x>0),下底是2y(y>0),高是z(z>0),则z=x+y .7.化简:= x-y+1 .8.(辅助未知数法)若==≠0,则= .9.不改变分式的符号,使分式的分子、分母最高次项的系数为正数.解:==.10.通分:(1),,;(2),.解:(1),,的最简公分母为12x3y4z,所以==,==,==.(2),的最简公分母为x(x-y)(x+y),所以==,==.11.(拓展探究)不改变分式的值,把分式中分子、分母的各项系数化为整数,然后选择一个你喜欢的整数代入求值.解:==.因为6x-5≠0,所以x≠.所以当x=0时,原式==-.12.(一题多解)已知=3,求的值.解:法一分子、分母的每一项除以y2,得===.法二已知=3,得x=3y,代入得====.16.2 分式的运算1.分式的乘除1.若分式(-)2与另一个分式的商是2x6y,则另一个分式是( B )(A)- (B)(C)(D)-2.计算:的结果为( A )(A)1 (B)(C) (D)03.如果x等于它的倒数,那么÷的值是( A )(A)1 (B)-2(C)-3 (D)2或-34.计算()2·()3÷(-)4得( A )(A)x5 (B)x5y (C)y5 (D)x155.化简:÷= .6.(2018洛阳伊川期末)若·△=,则△表示的代数式是-.7.学习分式的乘除时,李老师在黑板上写出这样一道题目:若分式没有意义,则÷()2·的值是-.8.化简下列各式:(1)÷;(2) ÷(x+3)·;(3)·÷(-ab4).解:(1)原式=÷=×=.(2)原式=··=-.(3)原式=··=.9.已知a=b+2 018,求代数式·÷的值.解:原式=××(a-b)(a+b)=2(a-b),因为a=b+2 018,所以a-b=2 018,所以原式=2×2 018=4 036.10.(拓展探究)若=x-,化简:(x+)(x2+)(x4+)(x8+)(x16+) (x2-1). 解:因为=x-,所以原式=[(x-)(x+)(x2+)(x4+)(x8+)(x16+)](x2-1)÷=[(x2-)(x2+)(x4+)(x8+)(x16+)](x2-1)÷=[(x4-)(x4+)(x8+)(x16+)](x2-1)÷=[(x8-)(x8+)(x16+)](x2-1)÷=[(x16-)(x16+)](x2-1)÷=(x32-)(x2-1)·=(x32-)·x=x33-.11.(拓展探究)(1)计算:(a-b)(a2+ab+b2);(2)利用所学知识以及(1)所得等式,化简代数式÷. 解:(1)原式=a3+a2b+ab2-a2b-ab2-b3=a3-b3.(2)原式=·=m+n.2.分式的加减第1课时分式的加减1.若-β=,则β等于( D )(A)(B)(C)(D)2.计算++的结果为( D )(A)(B)(C)(D)3.化简-等于( B )(A)(B)(C)-(D)-4.化简:+的结果是a-b .5.化简:-+1=x .6.若=+,则A= 3 ,B= 6 .7.计算:(1)-;(2)-+;(3)+.解:(1)-=+===.(2)-+=-+====.(3)+=-=-===-.8.(2018广州)已知T=+.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值. 解:(1)T=+=+====.(2)因为正方形ABCD的边长为a,面积为9,所以a2=9,所以a=3(负值已舍去),所以T==.9.(规律探索题)(2018安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,…按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.解:(1)++×=1.(2)++·=1.证明如下:因为左边=++·===1,右边=1,所以左边=右边,所以等式成立.所以第n个等式为++·=1.第2课时分式的混合运算1.化简:(-)·(x-3)的结果是( B )(A)2 (B)(C) (D)2.计算:(1+)÷(1+)的结果是( C )(A)1 (B)a+1(C)(D)3.当x=6,y=3时,代数式(+)·的值是( C )(A)2 (B)3 (C)6 (D)94.化简(y-)÷(x-)的结果是( D )(A)- (B)-(C)(D)5.若x=-1,则÷-2+x的值是0 .6.化简:·÷+= .7.(整体求解法)若x+=2,则(x2+2+)·(x2-)÷(x-)+2 019的值是 2 027 .8.化简:(+)÷.解:(+)÷=·=·=.9.先化简:·+,再在-3,-1,0,,2中选择一个合适的x值代入求值. 解:·+=·+=+===x,为使原分式有意义x≠-3,0,2,所以x只能取-1或.当x=-1时,原式=-1.或当x=时,原式=.(选择其中一个即可)10.(分类讨论题)若a的立方等于它的本身,求(+)÷·的值. 解:原式=÷·=·(a+2)(a-2)·=a3.因为a的立方等于它的本身,所以a=0或1或-1.所以当a=0时,原式=03=0;当a=1时,原式=13=1;当a=-1时,原式=(-1)3=-1.所以(+)÷·的值是0或1或-1.11.(拓展题)(2018德州)先化简,再求值:÷-(+1),其中x是不等式组的整数解.解:原式=·-(+)=-=.因为不等式组的解集是3<x<5,所以不等式组的整数解是x=4.所以当x=4时,原式==.16.3 可化为一元一次方程的分式方程第1课时分式方程及解法1.(2018德州)分式方程-1=的解为( D )(A)x=1 (B)x=2 (C)x=-1 (D)无解2.若方程=+的解为x=15,则?表示的数为( C )(A)7 (B)5 (C)3 (D)13.对于非零的实数a,b,规定a⊕b=-.若2⊕(2x-1)=1,则x等于( D )(A)5 (B)6 (C) (D)4.关于x的方程=2+无解,则m的值为( A )(A)-5 (B)-8 (C)-2 (D)55.若关于x的方程+=3的解为正数,则m的取值范围是( B )(A)m<(B)m<且m≠(C)m>-(D)m>-且m≠-6.有四个方程为-=1,=2,()2=+-1,+6=.其中分式方程有 1 个.7.(2018潍坊)当m= 2 时,解分式方程=会出现增根.8.解分式方程:+=4.解:方程两边同乘(x-1),得x-2=4(x-1),整理得-3x=-2,解得x=,经检验x=是原方程的解,故原方程的解为x=.9.若|a-1|+(b+2)2=0,求方程+=1的解.解:因为|a-1|+(b+2)2=0,所以a-1=0,b+2=0.所以a=1,b=-2.把a=1,b=-2代入方程,得-=1.解得x=-1.经检验x=-1是原方程的解.所以原方程的解是x=-1.10.(拓展题)若分式无意义,则当-=0时,m= .11.(归纳猜想思想)已知方程x-=1的解是x1=2,x2=-;x-=2的解是x1=3,x2=-;x-=3的解是x1=4,x2=-;x-=4的解是x1=5,x2=-.问题:(1)观察上述方程及其解,再猜想x-=n+(n为正整数)的解(不要求证明);(2)写出方程x-=10的解并且验证你写的解是否正确.解:(1)x1=n+1,x2=-.(2)x1=11,x2=-.验证:当x=11时,左边=11-=10=右边;当x=-时,左边=-+11=10=右边.所以x1=11,x2=-都是原方程的解.第2课时分式方程的应用1.某市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是( A )(A)-=5 (B)-=5(C)+5=(D)-=52.(2018衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( A )(A)-=10 (B)-=10(C)-=10 (D)+=103.(2018嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意可列出方程=(1-10%) .4.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: =.5.已知A,B两地相距160 km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4 h到达,这辆汽车原来的速度是80 km/h.6.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是 6 .7.某校学生利用双休时间去距学校10 km的炎帝故里参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.解:设骑车学生的速度为x km/h,汽车的速度为2x km/h,根据题意得=+,解得x=15,经检验x=15是原方程的解,所以2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15 km/h,30 km/h.8.(2018威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件.根据题意,得-=+.解得x=60.经检验x=60是原方程的解.所以(1+)x=80.答:软件升级后每小时生产80个零件.9.(拓展题)某市在道路改造过程中,需要铺设一条长为1 000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求甲工程队完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的分配方案是什么?(甲、乙两工程队完成的天数均为整数)解:(1)设甲工程队每天能铺设x米,则乙工程队每天能铺设(x-20)米.根据题意,得=,解得x=70.经检验x=70是原方程的解,所以x-20=70-20=50.答:甲、乙工程队每天分别能铺设70米和50米.(2)设分配给甲工程队y米,则分配给乙工程队(1 000-y)米.所以甲工程队完成该项工程的工期为天,乙工程队完成该项工程的工期为天,根据题意,得≤10,解得y≤700.因为y是以百米为单位,所以y=100,200,300,400,500,600,700.所以1 000-y=900,800,700,600,500,400,300.因为甲、乙两工程队完成的天数均为整数,所以y=700.所以1 000-y=300.答:分配给甲工程队700米,分配给乙工程队300米.10.(分类讨论)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.解:(1)设这种笔单价为x元,则本子单价为(x-4)元,由题意得=,解得x=10,经检验x=10是原分式方程的解,则x-4=6.答:这种笔单价为10元,则本子单价为6元.(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得10m+6n=100,整理得m=10-n,因为m,n都是正整数,所以①n=5时,m=7,②n=10时,m=4,③n=15,m=1.所以有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.16.4 零指数幂与负整数指数幂1.零指数幂与负整数指数幂2.科学记数法1.下列计算正确的是( D )(A)(-1)0=-1 (B)(-1)-1=1(C)3m-2= (D)(-a)÷(-a)3=2.计算:-()2+(+π)0+(-)-2的结果是( D )(A)1 (B)2 (C)(D)33.(2018洛阳伊川模拟)某种流感病毒的直径约为0.000 000 08 m,若把0.000 000 08用科学记数法表示为8×10n,则n的值是( A )(A)-8 (B)-7 (C)-6 (D)-54.计算:|-5|+()-1-2 0170的结果是( B )(A)5 (B)6 (C)7 (D)85.某颗粒物的直径是0.000 002 5米,把0.000 002 5用科学记数法表示为 2.5×10-6.6.(2018泰安)一个铁原子的质量是0.000 000 000 000 000 000 000 000 093 kg,将这个数据用科学记数法表示为9.3×10-26kg.7.计算:|1-|+()0= .8.若(3x-15)0+8有意义,则x的取值范围是x≠5 .9.用科学记数法表示:(1)0.000 03;(2)-0.000 006 4;(3)0.000 031 4.解:(1)0.000 03=3×10-5.(2)-0.000 006 4=-6.4×10-6.(3)0.000 031 4=3.14×10-5.10.若52x-1=1,3y=,求x y的值.解:因为52x-1=1,3y=,所以52x-1=50,3y=3-3.所以2x-1=0,y=-3,所以x=,所以x y=()-3==8.11.计算:(1)|-1|-+(π-3)0+2-2;(2)(-1)2 017+(-)-2×-|-2|.解:(1)原式=1-+1+=1-2+1+=.(2)原式=-1+4×1-2=-1+4-2=1.12.(易错题)计算的结果是( B )(A)(B)(C)(2a-1)b (D)(2a-1)b313.(规律探究题)(1)通过计算比较下列各式中两数的大小:(填“>”“<”或“=”)①1-2> 2-1,②2-3> 3-2,③3-4< 4-3,④4-5< 5-4,…;(2)由(1)可以猜测n-(n+1)与(n+1)-n (n为正整数)的大小关系:当n ≤2 时,n-(n+1)>(n+1)-n;当n >2 时,n-(n+1)<(n+1)-n.第17章函数及其图象17.1 变量与函数1.(2018洛阳伊川期末)在函数y=+(9x-81)-1中,自变量x的取值范围是( D )(A)x≠1 (B)x≠-5(C)x≠9 (D)x≠-5且x≠92.下列说法正确的是( D )(A)在球的体积公式V=πr3中,V不是r的函数(B)若变量x,y满足y2=x,则y是x的函数(C)在圆锥的体积公式V=πR2h中,当h=4厘米,R=2厘米时,V是π的函数(D)变量x,y满足y=-x+,则y是x的函数3.某地的地面温度为21 ℃,如果高度每升高1千米,气温下降6 ℃,则气温T(℃)与高度h(千米)之间的表达式为( A )(A)T=21-6h (B)T=6h-21(C)T=21+6h (D)T=(21-6)h4.下列曲线中不能表示y是x的函数的是( C )5.(2018灵宝期中)若等腰△ABC的周长是36,则底边y与腰长x之间的函数表达式是y=36-2x ,其中自变量x的取值范围是9<x<18 .6.根据如图所示程序计算函数值,若输入的x的值为-1,则输出的函数值为 1 .7.下面的表格列出了一个实验的统计数据(单位:厘米),表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,则能表示这种关系的式子是b= d .d 50 80 100 150b 25 40 50 758.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则y 与n之间的函数表达式为y= 4n .9.分别指出下列表达式中的变量与常量.(1)三角形的一边长为8,它的面积S与这条边上的高h之间满足表达式S=4h;(2)圆的半径r与该圆的面积S之间满足表达式S=πr2.解:(1)变量为S与h,常量为4.(2)变量为S和r,常量为π.10.求下列函数中自变量x的取值范围.(1)y=-8x;(2)y=-x+10;(3)y=x2+2x-3;(4)y=.解:(1)自变量x的取值范围是全体实数.(2)自变量x的取值范围是全体实数.(3)自变量x的取值范围是全体实数.(4)因为11x-88≠0,所以x≠8.所以自变量x的取值范围是x≠8.11.某市出租车价格是这样规定的:不超过2.5千米,付车费8元,超过的部分按每千米2.5元收费.已知某人乘坐出租车行驶了x(x>2.5)千米,付车费y元,请写出出租车行驶的路程x(千米)与所付车费y(元)之间的表达式.解:根据题意可知所付车费为y=8+2.5×(x-2.5)=2.5x+1.75(其中x>2.5).12.一辆汽车的油箱中现有汽油49升,如果不再加油,那么油箱中的油量y(单位:升)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.07升/千米.(1)写出y与x之间的函数关系式;(2)求自变量x的取值范围;(3)汽车行驶200千米时,油箱中还有多少汽油?解:(1)根据题意,得每行驶x千米,耗油0.07x,即总油量减少0.07x,则油箱中的油剩下49-0.07x,所以y与x的函数关系式为y=49-0.07x.(2)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.07x,不能超过油箱中现有汽油量的值49,即0.07x≤49,解得x≤700.综上所述,自变量x的取值范围是0≤x≤700.(3)当x=200时,代入x,y的函数关系式得,y=49-0.07×200=35.所以汽车行驶200千米时,油箱中还有35升汽油.13.(分类讨论)已知两个变量x,y满足关系2x-3y+1=0,试问:(1)y是x的函数吗?(2)x是y的函数吗?若是,写出y与x的表达式,若不是,说明理由.解:(1)由2x-3y+1=0,得y=,因为对于x的每一个取值,y都有唯一确定的值,所以y是x的函数.(2)由2x-3y+1=0,得x=,因为对于y的每一个取值,x都有唯一确定的值,所以x是y的函数.14.(拓展探究题)用火柴棒按如图所示的方式搭一行三角形,搭1个三角形需3根火柴棒,搭2个三角形需5根火柴棒,搭3个三角形需7根火柴棒,照这样的规律搭下去,搭n个三角形需要y根火柴棒.(1)求y关于n之间的函数表达式;(2)当n=2 019时,求y的值;(3)当y=2 021时,求n的值.解:(1)因为3=2×1+1,5=2×2+1,7=2×3+1,…,所以y与n之间的函数表达式为y=2n+1.(2)当n=2 019时,y=2×2 019+1=4 039.(3)当y=2 021时,2n+1=2 021.所以n=1 010.17.2 函数的图象1.平面直角坐标系1.如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标为( D )(A)(2,1) (B)(1,2)(C)(-1,2) (D)(-1,3)2.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在( D )(A)第一象限(B)第二象限(C)第三象限(D)第四象限3.(2018洛阳栾川期末)若|3-x|+|y-2|=0,则点(x y,y x)在( A )(A)第一象限(B)第二象限(C)第三象限(D)第四象限4.已知点M(1-2m,m-1)在第四象限,则m的取值范围在数轴上表示正确的是( B )5.若点P的坐标是(8,6),则坐标原点O到点P的距离是10 .6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(a,b),则a与b的数量关系为a+b=0 .7.若21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,且22 017的个位数字是a,22 018的个位数字是b,22 019的个位数字是c,22 020的个位数字是d,则点A(a-b,c-d)在第二象限.8.已知点P(x,y)位于第二象限,并且y≤x+4,x,y为整数,写出一个符合上述条件的点P的坐标: (-1,3)或(-1,2)或(-1,1)或(-2,1)或(-2,2)或(-3,1) .9.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,求“距离坐标”是(2,1)的点的个数,并画出草图.解:到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个,如图所示.10.在一次“寻宝”游戏中,寻宝人已经找到了坐标分别为(3,2)和(3,-2)的两个标点A,B,并且知道藏宝地点C的坐标为(4,4),除此之外不知道其他信息,如何确定平面直角坐标系并找到“宝藏”(即在图中先正确画出平面直角坐标系,再描出点C的位置)?解:根据题意,建立如图所示的坐标系,点C的位置就是宝藏的位置.11.(探索规律)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是(5,0) .2.函数的图象1.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( D )2.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OA BC为折线),这个容器的形状可以是( D )3.一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列4幅图象中能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( C )4.(2018渑池模拟)星期天晚饭后,小红从家里出去散步,如图是描述她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象信息,则描述符合小红散步情景的是( B )(A)从家出发,到了一个公共阅报栏,看了一会儿报就回家了(B)从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段,然后回家了(C)从家出发,一直散步,然后回家了(D)从家出发,散了一会儿步,就找同学去,18分钟后才开始返回5.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量x的取值范围是4<x≤6 .6.甲、乙两人在一次赛跑中,路程与时间的关系如图所示,请你观察:(1)这是一次100 米赛跑;(2)甲、乙两人先到达终点的是甲;(3)在这次赛跑中乙的速度是8米/秒.7.在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法的序号是①②④.8.星期天,小明与小刚骑自行车去距家15千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在如图的平面直角坐标系中,画出符合他们行驶的路程s(千米)与行驶时间t(时)之间的函数图象.解:由题意可知,2.5个小时走完全程15千米,所以1.5小时走了9千米,休息0.5小时后1小时走了6千米,由此作图即可.9.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分)的关系(从小强开始爬山时计时),看图回答下列问题:(1)小强让爷爷先爬了多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)图中两条线段的交点表示什么意思?(4)直角坐标系中的横轴和纵轴上的单位长度取的不一致,这对问题的结论有影响吗?允许这样做吗?解:(1)小强让爷爷先爬了60米.(2)山顶离山脚的距离有300米,小强先爬上山顶.(3)图中两条线段的交点表示小强出发8分钟时,小强赶上爷爷,并且都爬了240米.(4)直角坐标系中的横轴和纵轴上的单位长度取的不一致,对问题结论没有影响,可以这样做.10.拖拉机开始工作时,油箱中有油30升,每小时耗油5升.(1)写出油箱中剩余油量Q(升)与工作时间t(时)之间的函数表达式;(2)写出自变量t的取值范围;(3)画出函数的图象.解:(1)所求的函数表达式是Q=-5t+30.(2)自变量t的取值范围是0≤t≤6.(3)①列表:t 0 2 4 6Q 30 20 10 0②描点并连线,函数图象如图所示.11.(拓展探究)如图①,点G是BC的中点,点H在AF上,动点P以每秒2 cm的速度沿图①的边线运动,运动路径为G-C-D-E-F-H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图②,若AB=6 cm,则下列四个结论中正确的个数为( D )(1)图①中的BC长是8 cm;(2)图②中的M点表示第4秒时y的值为24 cm2;(3)图①中的CD长是4 cm;(4)图②中的N点表示第12秒时y的值为18 cm2.(A)1个(B)2个(C)3个(D)4个12.(实际应用)汽车的速度随时间变化的情况如图所示:(1)这辆汽车的最高时速是多少?(2)汽车在行驶了多长时间后停了下来,停了多长时间?(3)汽车在第一次匀速行驶时共用了几分钟?速度是多少?在这段时间内,它走了多远?解:(1)这辆汽车的最高时速是120千米/时.(2)汽车在行驶了10分钟后停了下来,停了2分钟.(3)汽车在第一次匀速行驶时共用了4分钟,速度是90千米/时,在这段时间内,它走了90×=6千米.17.3 一次函数1.一次函数1.(2018洛阳实验中学月考)若长方形的周长是y,长是2x,宽比长少1,则y与x的函数表达式是( D )(A)y=2x (B)y=2x-1(C)y=2x-2 (D)y=8x-22.(2018郑州一中月考)有下列四个式子:①y-2x2=0;②y+9x=0;③6y=60-2x;④xy-18=0;⑤x-y=0.其中y是x的一次函数的有( B )(A)2个(B)3个(C)4个(D)5个3.用同样规格的黑白两种颜色的正方形瓷砖按如图所示的方式铺地板,设自左向右第x个图形中需要黑色瓷砖y块,则y与x之间的函数表达式是( D )(A)y=x2(B)y=2x+1(C)y=x+3 (D)y=3x+14.函数,一次函数和正比例函数之间的包含关系是( A )5.当m= -1 时,y=(m-1)x m+2是正比例函数.6.某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶超过3千米的部分,按每千米 1.60 元计费.则出租车收费y(元)与行驶路程x(千米)之间的函数表达式是y=.7.如图是由若干盆花组成的形如三角形的图案,每条边有n(n>1)盆花,每个图案中花盆的总数是S,按此规律,则S与n的函数关系式是S=3n-3 .8.从地面到高空11千米之间,气温随高度的升高而下降,每升高1千米,气温下降6 ℃.已知某处地面气温为23 ℃,设该处离地面x千米(0≤x≤11)处的气温为y ℃,则y与x的函数表达式是y=23-6x (0≤x≤11) .9.某用煤单位有煤m吨,每天烧煤n吨,现已知烧煤3天后余煤102吨,烧煤8天后余煤72吨.(1)求m和n的值,并求该单位余煤量y(吨)与烧煤天数x(天)之间的函数表达式;(2)当烧煤12天后,还余煤多少吨?解:(1)由题意,得解得即m=120,n=6.余煤量y吨与烧煤天数x的函数表达式为y=120-6x.(2)当x=12时,y=120-6×12=48.即当烧煤12天后,还余煤48吨.10.水是人类的生命之源,节约用水,人人有责.据测试:拧不紧的水龙头每秒钟会滴下两滴水,每滴水约0.05毫升.小明在洗手时,没有把水龙头拧紧,当小明离开x小时后水龙头滴了y 毫升水.(1)说明y与x之间的关系;(2)当滴了1 620毫升水时,小明离开水龙头多少小时?解:(1)水龙头每秒钟会滴下两滴水,每滴水约0.05毫升,所以离开x小时滴的水为3 600×2×0.05x毫升,所以y=360x(x≥0).所以y与x之间是正比例函数的关系.(2)当y=1 620时,有360x=1 620,解得x=4.5.所以当滴了1 620毫升水时,小明离开水龙头4.5小时.11.(图表信息题)某辆汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升.(1)完成下表:汽车行驶0 50 100 150 200 300路程x/千米油箱剩余油量y/升(2)写出x与y之间的关系.解:(1)填表:汽车行驶0 50 100 150 200 300路程x/千米油箱剩余100 91 82 73 64 46 油量y/升(2)x与y之间的关系为y=100-0.18x.12.(分类讨论题)新学期开始,小明用的练习本可在甲、乙两个商店内买到,已知两个商店的标价都是每本练习本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是:从第1本开始就按标价的85%出售.(1)小明要买20本练习本,到哪个商店购买较省钱?(2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的表达式,它们都是正比例函数吗?(3)小明现有24元钱,最多可买多少本练习本?解:(1)甲店:10+10×0.7=17(元),乙店:20×0.85=17(元),所以到两个商店一样.(2)甲店:y=10+0.7×(x-10),即y=0.7x+3(x>10),不是正比例函数;乙店:y=0.85x,是正比例函数.(3)因为24元钱到甲店,24=0.7x+3,解得x=30(本);24元钱到乙店,24=0.85x,解得x≈28(本),所以到甲店买,最多可买30本练习本.2.一次函数的图象1.已知坐标平面上,一次函数y=3x+a的图象经过点(0,-4),其中a为一常数,则a的值为( B )(A)-12 (B)-4(C)4 (D)122.把直线y=2x-1向左平移1个单位,平移后直线的表达式为( B )(A)y=2x-2 (B)y=2x+1(C)y=2x (D)y=2x+23.如图所示的计算程序中,y与x之间的函数关系所对应的图象是( C )4.(2018滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x-[x]的图象为( A )5.如图,在△ABC中,点O是△ABC的角平分线的交点,过点O作EF∥BC分别交AB,AC于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( B )6.若点P(-3,-4)在直线y=kx-8上,则直线y=kx-8与x轴的交点坐标是(-6,0) .7.在平面直角坐标系xOy中,点A,B的坐标分别为(3,m),(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为m-6≤b≤m-4 (用含m的代数式表示).8.画出y=2x与y=2x+3的图象,根据图象的特点,说明两者的联系.解:如图所示,从形状看:将y=2x的图象向上平移3个单位可得y=2x+3的图象.9.在直角坐标系中,求原点O到直线y=-x+5的距离.解:如图,因为当x=0时,y=5,所以直线y=-x+5与y轴的交点A的坐标是(0,5).因为当y=0时,-x+5=0,所以x=12,所以直线y=-x+5与x轴的交点B的坐标是(12,0),所以OA=5,OB=12,所以AB==13.作OC⊥AB于点C,所以×13×OC=×5×12,所以OC=.所以原点O到直线y=-x+5的距离是.10.画出函数y=x-3的图象,求出与x轴、y轴的交点坐标及这条直线与两坐标轴围成的三角形的面积.解:当y=0时,x=2,所以直线与x轴的交点坐标是A(2,0),当x=0时,y= -3,所以直线与y轴的交点坐标是B(0,-3).所以S△OAB=OA·OB=×2×3=3.11.(探究题)已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数表达式;(2)画出函数的图象.解:(1)因为y+2与x成正比例,所以设y+2=kx(k是常数,且k≠0),当x=-2时,y=0,所以0+2=k·(-2),解得k=-1.所以函数表达式为y+2=-x,即y=-x-2.(2)列表如下:x 0 -2y -2 0描点、连线,画图,如图所示.3.一次函数的性质1.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( A )(A)第一象限(B)第二象限(C)第三象限(D)第四象限2.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( D )(A)a+b<0 (B)a-b>0(C)ab>0 (D)<03.(2018汝州期末)在同一坐标系中,正比例函数y=kx与一次函数y=x-k的图象大致应为( B )4.关于直线l:y=kx+k(k≠0),下列说法不正确的是( D )(A)点(0,k)在l上(B)l经过定点(-1,0)(C)当k>0时,y随x的增大而增大(D)l经过第一、二、三象限5.(2018安阳模拟)若y是关于x的一次函数为y=(k+1)+k,且y随x的增大而减小,则k的值是-2 ,此函数的表达式是y=-x-2 .6.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k >1 ,b <0 .7.若y是关于x的正比例函数为y=(a-2)x+9-a2,且y随x的增大而增大,则点(-3,-6) 不在直线y=(a-2)x+9-a2上.(填“在”或“不在”)8.在一次函数y=2x+3中,y随x的增大而增大(填“增大”或“减小”),当0≤x≤5时,y 的最小值为 3 .9.已知一次函数y=(3a-2)x+1-b,求a,b的取值范围,使得(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.解:(1)由一次函数y=kx+b(k≠0)的性质可知,当k>0时,函数值y随x的增大而增大,即3a-2>0,所以a>,且b取任意实数.(2)函数图象与y轴的交点为(0,1-b),因为与y轴交点在x轴的下方,。
八年级数学下册周周清6华东师大版.doc
检测内容:18.1-18.2得分________ 卷后分________ 评价________一、选择题(每小题4分,共28分)1.在▱ABCD 中,∠A ∶∠B ∶∠C ∶∠D 值可能是( D ) A .1∶2∶3∶4 B .1∶2∶2∶1 C .2∶2∶1∶1 D .2∶1∶2∶12.如图,在▱ABCD 中,EF 过对角线的交点O ,如果AB =4 cm ,AD =3 cm ,OF =1.3 cm ,那么四边形BCEF 的周长为( B )A .8.3 cmB .9.6 cmC .12.6 cmD .13.6 cm3.平行四边形中一边长为8,那么它的两条对角线的长度可以是( D ) A .2和4 B .4和6 C .6和10 D .22和104.在▱ABCD 中,点E ,F 分别在BC ,AD 上,如果点E ,F 分别是由下列情况得到的,那么四边形AECF 不一定是平行四边形的是( B )A .AE ,CF 分别平分∠DAB ,∠BCD B .AE ,CF 使∠BEA =∠CFAC .点E ,F 分别是BC ,AD 的中点D .BE =35BC ,AF =25AD5.如图,▱ABCD 中,AB =5 cm ,BC =8 cm ,∠B ,∠C 的平分线分别交AD 于点E ,F ,则EF 的长为( A )A .2 cmB .3 cmC .4 cmD .5 cm6.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,-5),(-2,-2),以这三点为平行四边形的三个顶点,则第四个顶点不可能在( A )A .第一象限B .第二象限C .第三象限D .第四象限7.有下列命题:①两组对角分别相等的四边形是平行四边形;②一组对边平行,另一组对边相等的四边形是平边四边形;③一组对边平行,一组对角相等的四边形是平行四边形;④对角线相等的四边形是平行四边形;⑤一组对边相等,一组邻角互补的四边形是平行四边形.其中正确的命题个数为( B )A .1个B .2个C .3个D .4个 二、填空题(每小题4分,共20分) 8.在▱ABCD 中,∠A 的平分线分BC 成3.5 cm 和4.5 cm 两部分,则▱ABCD 的周长为__23_cm 或25_cm__.9.如图,在▱ABCD 中,BC =2AB ,M 是AD 的中点,则∠BMC =__90°__.10.▱ABCD 的对角线AC ,BD 相交于点O ,相邻两个小三角形的周长和为48 cm.平行四边形的周长为44 cm ,且AC ∶BD =8∶5,则▱ABCD 的两条对角线的长分别为__16_cm 和10_cm__.11.平行四边形的两条对角线的长分别为6 cm 和8 cm ,当两条对角线互相垂直时,这个平行四边形的周长是__20_cm__,面积是__24_cm 2__.12.▱ABCD 中,BC =3,CD =2,BD =1,则下列结论:①BD ⊥BC ;②∠ADC =150°;③AC 平分∠BCD ;④S ▱ABCD =3,其中正确的是__①②④__.(填序号)三、解答题(共52分)13.(10分)(2018·衢州)如图,在▱ABCD 中,AC 是对角线,BE ⊥AC ,DF ⊥AC ,垂足分别为点E ,F ,求证:AE =CF.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF.又BE⊥AC,DF ⊥AC ,∴∠AEB =∠CFD =90°.在△ABE 与△CDF 中,⎩⎪⎨⎪⎧∠AEB =∠CFD,∠BAE =∠DCF,AB =CD ,∴△AB E≌△CDF(AAS),∴AE =CF14.(10分)如图,在▱ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =12BC ,连结DE ,CF .(1)求证:四边形CEDF 是平行四边形;(2)若AB =4,AD =6,∠B =60°,求DE 的长.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC.∵F 是AD 的中点,∴FD =12AD.∵CE=12BC ,∴FD =CE ,∵FD ∥CE ,∴四边形CEDF 是平行四边形(2)DE =13 15.(10分)光明中学为方便师生出行,准备在校园内宽40 m 的绿化带上开一条路ABCD ,数据如图所示,你能求出这条路的宽度吗?路的宽度为8 m16.(10分)如图,在▱ABCD中,E,F是对角线BD上的两点,EB=DF,点G,H分别在BA和DC的延长线上,且AG=CH,连结GE,EH,HF,FG.求证:四边形GEHF是平行四边形.解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠GBE=∠HDF.又∵AG=CH,∴BG=DH.又∵BE=DF,∴△BEG≌△DFH,∴∠BEG=∠DFH,GE=HF,∴∠GEF=∠HFE,∴GE∥HF,∴四边形GEHF是平行四边形17.(12分)如图,在▱ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件“∠DAB=60°”,上述结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.(1)略(2)(1)中结论仍成立,理由如下:∵四边形ABCD是平行四边形,∴AF∥EC,AD∥BC,∴∠EDA=∠DAB=∠CBF.∵AE=AD,∴∠E=∠EDA.∵CF=CB,∴∠F=∠CBF,∴∠E=∠EDA=∠F=∠CBF.又∵AD=BC,∴△ADE≌△CBF,∴DE=BF.∵AB=CD,∴AB+BF=CD+DE,即AF=CE.又∵AF∥EC,∴四边形EAFC是平行四边形。
华东师大版八年级数学下册单元测试题全套及参考答案
华东师大版八年级数学下册单元测试题全套(含答案)第16章单元检测卷(时间:120分,满分90分钟)一、选择题(每题3分,共30分) 1.下列式子是分式的是( ) A.a -b 2 B.5+y π C.x +3xD .1+x 2.分式x -yx 2+y2有意义的条件是( )A .x≠0B .y≠0C .x≠0或y≠0D .x≠0且y≠0 3.分式①a +2a 2+3,②a -b a 2-b 2,③4a 12(a -b ),④1x -2中,最简分式有( ) A .1个 B .2个 C .3个 D .4个 4.把分式2aba +b中的a ,b 都扩大到原来的2倍,则分式的值( )A .扩大到原来的4倍B .扩大到原来的2倍C .缩小到原来的12 D .不变5.下列各式中,取值可能为零的是( )A.m 2+1m 2-1 B.m 2-1m 2+1 C.m +1m 2-1 D.m 2+1m +1 6.分式方程2x -3=3x的解为( )A . x =0B .x =3C .x =5D .x =97.嘉怡同学在化简1m 1m 2-5m 中,漏掉了“ ”中的运算符号,丽娜告诉她最后的化简结果是整式,由此可以猜想嘉怡漏掉的运算符号是( )A .+B .-C .×D .÷8.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则正确的是( )A .a <b <c <dB .c <a <d <bC .a <d <c <bD .b <a <d <c 9.已知a 2-3a +1=0,则分式a2a 4+1的值是( )A .3 B.13 C .7 D.1710.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15 B.20x -10x +4=15 C.20x +10x -4=15 D.20x -10x -4=15二、填空题(每题3分,共30分)11.纳米(nm)是一种长度单位,常用于度量物质原子的大小,1 nm =10-9m .已知某种植物孢子的直径为45 000 nm ,用科学记数法表示该孢子的直径为____________m.12.若关于x 的分式方程2x -ax -1=1的解为正数,那么字母a 的取值范围是____________.13.若|a|-2=(a -3)0,则a =________. 14.已知1a +1b =4,则4a +3ab +4b-3a +2ab -3b =________.15.计算:a a +2-4a 2+2a=________.16.当x =________时,2x -3与54x +3的值互为倒数.17.已知a 2-6a +9与|b -1|互为相反数,则式子⎝ ⎛⎭⎪⎫a b -b a ÷(a+b)的值为________.18.若关于x 的分式方程x x -3-m =m2x -3无解,则m 的值为________.19.当前控制通货膨胀、保持物价稳定是政府的头等大事,许多企业积极履行社会责任,在销售中保持价格稳定已成为一种自觉行为.某企业原来的销售利润率是32%.现在由于进价提高了10%,而售价保持不变,所以该企业的销售利润率变成了________.(注:销售利润率=(售价-进价)÷进价)20.若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________.三、解答题(21题20分,22题8分,23,24题每题6分,其余每题10分,共60分) 21.计算:(1)⎝ ⎛⎭⎪⎫12-1+(3.14-π)0+16-|-2|; (2)b 2c -2·⎝ ⎛⎭⎪⎫12b -2c 2-3;(3)⎝ ⎛⎭⎪⎫x 2y 2·⎝ ⎛⎭⎪⎫-y 2x 3÷⎝ ⎛⎭⎪⎫-y x 4; (4)⎝ ⎛⎭⎪⎫1+1m +1÷m 2-4m 2+m ;(5)⎣⎢⎡⎦⎥⎤4a -2×⎝ ⎛⎭⎪⎫a -4+4a ÷⎝ ⎛⎭⎪⎫4a -1.22.解分式方程:(1)12x -1=12-34x -2. (2)1-2x -3=1x -3.23.已知y =x 2+6x +9x 2-9÷x +3x 2-3x -x +3,试说明:x 取任何有意义的值,y 值均不变.24.先化简,再求值:x -2x 2-1·x +1x 2-4x +4+1x -1,其中x 是从-1,0,1,2中选取的一个合适的数.25.某校组织学生到生态园春游,某班学生9:00从樱花园出发,匀速前往距樱花园2 km 的桃花园.在桃花园停留1 h 后,按原路返回樱花园,返程中先按原来的速度行走了6 min ,随后接到通知,要尽快回到樱花园,故速度提高到原来的2倍,于10:48回到了樱花园,求这班学生原来的行走速度.26.观察下列等式:11×2=1-12,12×3=12-13,13×4=13-14. 将以上三个等式的两边分别相加,得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34. (1)直接写出计算结果:11×2+12×3+13×4+…+1n (n +1)=________. (2)仿照11×2=1-12,12×3=12-13,13×4=13-14的形式,猜想并写出:1n (n +3)=________.(3)解方程:1x (x +3)+1(x +3)(x +6)+1(x +6)(x +9)=32x +18.参考答案一、1.C 2.D 3.B 4.B 5.B 6.D 7.D 8.D9.D 分析:∵a 2-3a +1=0,∴a 2+1=3a ,∴(a 2+1)2=9a 2,∴a 4+1=(a 2+1)2-2a 2=7a 2,∴原式=a 27a 2=17.故选D. 10.A二、11.4.5×10-512.a>1且a≠2 分析:先解方程求出x ,再利用x>0且x -1≠0求解.13.-3 分析:利用零指数幂的意义,得|a|-2=1,解得a =±3.又因为a -3≠0,所以a =-3. 14.-1910 分析:利用整体思想,把所求式子的分子、分母都除以ab ,然后把条件整体代入求值.15.a -2a16.3 17.23分析:利用非负数的性质求出a ,b 的值,再代入所求式子求值即可.18.1或± 3 分析:本题利用了分类讨论思想.将原方程化为整式方程,得(1-m)x =m 2-3m.分两种情况:(1)当1-m =0时,整式方程无解,解得m =1;(2)当x =3时,原方程无解,把x =3代入整式方程,解得m =± 3.综上,得m =1或± 3. 19.20% 分析:设原来的售价是b 元,进价是a 元,由题意,得b -aa ×100%=32%.解得b =1.32a.现在的销售利润率为b -(1+10%)a(1+10%)a×100%=20%.20.12;-12;1021分析:∵1(2n -1)(2n +1)=12(2n +1)-12(2n -1)(2n -1)(2n +1)=122n -1+-122n +1,∴a =12,b =-12.利用上述结论可得:m =12×(1-13+13-15+15-17+…+119-121)=12×⎝ ⎛⎭⎪⎫1-121=12×2021=1021.三、21.解:(1)原式=2+1+4-2=5; (2)原式=b 2c -2·8b 6c -6=8b 8c -8=8b8c8;(3)原式=x 4y 2·(-y 6x 3)·x 4y 4=-x 5;(4)原式=m +2m +1÷(m +2)(m -2)m (m +1)=m +2m +1×m (m +1)(m +2)(m -2) =mm -2; (5)原式=⎣⎢⎡⎦⎥⎤4a -2×(a -2)2a ÷4-a a=4(a -2)a ×a4-a =4(a -2)4-a.22.解:(1)方程两边同时乘2(2x -1),得2=2x -1-3. 化简,得2x =6.解得x =3.检验:当x =3时,2(2x -1)=2(2×3-1)≠0, 所以,x =3是原方程的解. (2)去分母,得x -3-2=1, 解这个方程,得x =6.检验:当x =6时,x -3=6-3≠0, 所以x =6是原方程的解.23.解:y =x 2+6x +9x 2-9÷x +3x 2-3x-x +3=(x +3)2(x +3)(x -3)×x (x -3)x +3-x +3=x -x +3=3. 故x 取任何有意义的值,y 值均不变.24.解:原式=x -2(x +1)(x -1)·x +1(x -2)2+1x -1 =1(x -1)(x -2)+1x -1=1(x -1)(x -2)+x -2(x -1)(x -2)=1x -2. 因为x 2-1≠0,且x 2-4x +4≠0,且x -1≠0,所以x≠-1,且x≠1,且x≠2,所以x =0. 当x =0时,原式=-12.25.解:设这班学生原来的行走速度为x km/h.易知从9:00到10:48共1.8 h , 故可列方程为2x +660+2-660x2x +1=1.8,解得x =4.经检验,x =4是原方程的解,且符合题意. 答:这班学生原来的行走速度为4 km/h. 26.解:(1)n n +1 (2)13⎝ ⎛⎭⎪⎫1n -1n +3(3)仿照(2)中的结论,原方程可变形为13(1x -1x +3+1x +3-1x +6+1x +6-1x +9)=32x +18,即13x =116(x +9), 解得x =2.经检验,x =2是原分式方程的解.第17章单元检测卷(满分:120分,时间:90分钟)一、选择题(每题3分,共30分)1.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x 之间的关系式为Q =50-8x ,则下列说法正确的是( ) A .Q 和x 是变量 B .Q 是自变量 C .50和x 是常量 D .x 是Q 的函数 2.函数y =1x -2+x -2的自变量x 的取值范围是( ) A .x≥2 B .x>2 C .x≠2 D .x≤23.若函数y =m +2x 的图象在其所在象限内y 的值随x 值的增大而增大,则m 的取值范围是( )A .m >-2B .m <-2C .m >2D .m <24.设正比例函数y =mx 的图象经过点A(m ,4),且y 的值随x 值的增大而减小,则m =( ) A .2 B .-2 C .4 D .-45.汽车由A 地驶往相距120 km 的B 地,它的平均速度是30 km/h ,则汽车距B 地的路程s(km)与行驶时间t(h)的函数关系式及自变量t 的取值范围是( )A .s =120-30t(0≤t≤4)B .s =120-30t(t >0)C .s =30t(0≤t≤4)D .s =30t(t <4)6.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.关于x 的函数y =k(x +1)和y =kx(k≠0)在同一坐标系中的图象大致是( )A B C D8.在函数y =1x 的图象上有三个点的坐标为(1,y 1),⎝ ⎛⎭⎪⎫12,y 2,(-3,y 3),函数值y 1,y 2,y 3的大小关系为( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 29.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是( )(第9题图)A B C D10.如图,已知直线y =12x 与双曲线y =kx (k>0)交于A ,B 两点,且点A 的横坐标为4.点C 是双曲线上一点,且纵坐标为8,则△AOC 的面积为( )(第10题图)A .8B .32C .10D .15 二、填空题(每题3分,共30分)11.点A(2,a)关于x 轴的对称点是B(b ,-3),则ab =________.12.一次函数y =kx +1的图象经过点(1,2),反比例函数y =k x 的图象经过点⎝ ⎛⎭⎪⎫m ,12,则m =________. 13.已知直线y =kx +b ,若k +b =-5,kb =6,那么该直线不经过第______________象限. 14.把直线y =-x -1沿x 轴向右平移2个单位长度,所得直线对应的函数表达式为________. 15.反比例函数y 1=kx 与一次函数y 2=-x +b 的图象交于点A(2,3)和点B(m ,2).由图象可知,对于同一个x ,若y 1>y 2,则x 的取值范围是________.16.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若1x 2=1x 1+2,且y 2=y 1-12,则这个反比例函数的表达式为____________.17.直线y 1=k 1x +b 1(k 1>0)与y 2=k 2x +b 2(k 2<0)相交于点(-2,0),且两直线与y 轴围成的三角形的面积为4,那么b 1-b 2等于________.18.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系如图所示.那么,从关闭进水管起________分钟该容器内的水恰好放完.(第18题图)19.已知点A 在双曲线y =-3x 上,点B 在直线y =x -5上,且A ,B 两点关于y 轴对称.设点A 的坐标为(m ,n),则n m +mn的值是________.20.如图所示,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…,那么点A 4n +1(n 为自然数)的坐标为________(用n 表示).(第20题图)三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分) 21.已知一次函数y =32x -3.(1)请在如图所示的平面直角坐标系中画出此函数的图象; (2)求出此函数的图象与坐标轴围成的三角形的面积.(第21题图)22.如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).(1)求该反比例函数的表达式;(2)求直线BC的表达式.(第22题图)23.已知反比例函数y =m -5x(m 为常数,且m≠5).(1)若在其图象的每个分支上,y 随x 的增大而增大,求m 的取值范围; (2)若其图象与一次函数y =-x +1的图象的一个交点的纵坐标是3,求m 的值.24.已知直线y =2x +3与直线y =-2x -1.(1)若两直线与y 轴分别交于点A ,B ,求点A ,B 的坐标; (2)求两直线的交点C 的坐标; (3)求△ABC 的面积.25.1号探测气球从海拔5 m 处出发,以1 m/min 的速度上升,与此同时,2号探测气球从海拔15 m 处出发,以0.5 m/min 的速度上升.两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50). (1)根据题意,填写下表:(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.(3)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?26.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h,并且甲车途中休息了0.5 h,如图是甲、乙两车行驶的路程y(km)与时间x(h)的函数图象.(第26题图)(1)求出图中m和a的值.(2)求出甲车行驶的路程y(km)与时间x(h)的函数关系式,并写出相应的x的取值范围.(3)当乙车行驶多长时间时,两车恰好相距50 km?参考答案一、1.A 2.B3.B 分析:易知m +2<0,∴m<-2. 4.B 5.A6.C 分析:一次函数y =-x +4的图象不经过第三象限,故一次函数y =x +2m 与y =-x +4的图象的交点一定不在第三象限. 7.D 8.D9.B 分析:当点P 由点A 向点D 运动时,y =0;当点P 在DC 上运动时,y 随x 的增大而增大;当点P 在CB 上运动时,y 不变;当点P 在BA 上运动时,y 随x 的增大而减小. 10.D 分析:点A 的横坐标为4,将x =4代入y =12x ,得y =2.∴点A 的坐标为(4,2).∵点A 是直线y =12x 与双曲线y =kx (k>0)的交点,∴k=4×2=8,即y =8x .将y =8代入y =8x 中,得x =1.∴点C 的坐标为(1,8).如图,过点A 作x 轴的垂线,过点C 作y 轴的垂线,垂足分别为M ,N ,且AM ,CN 的反向延长线交于点D ,得长方形DMON.易得S 长方形DMON =32,S △ONC =4,S △CDA =9,S △OAM =4. ∴S △AOC =S 长方形DMON -S △ONC -S △CDA -S △OAM =32-4-9-4=15.(第10题答图)二、11.6 12.213.一 分析:∵kb=6>0,∴k,b 一定同号(同时为正或同时为负).∵k+b =-5,∴k<0,b<0,∴直线y =kx +b 经过第二、三、四象限,不经过第一象限. 14.y =-x +1 15.0<x <2或x >316.y =-14x 分析:设反比例函数的表达式为y =k x ,则y 1=k x 1,y 2=k x 2.因为y 2=y 1-12,所以k x 2=k x 1-12,所以1x 2=1x 1-12k .又1x 2=1x 1+2,所以-12k =2,解得k =-14,因此反比例函数的表达式为y =-14x .17.418.8 分析:由函数图象,得进水管每分钟的进水量为20÷4=5(升),设出水管每分钟的出水量为a 升.由函数图象,得20+8(5-a)=30,解得a =154.故关闭进水管后出水管放完水的时间为30÷154=8(分).19.-313 分析:因为点A(m ,n)在双曲线y =-3x上,所以mn =-3.因为A ,B 两点关于y 轴对称,所以点B 的坐标为(-m ,n).又点B(-m ,n)在直线y =x -5上,所以n =-m -5,即n +m =-5.所以n m +m n =m 2+n2mn =(m +n )2-2mn mn =(-5)2-2×(-3)-3=-313.20.(2n ,1) 分析:根据图形分别求出n =1,2,3时对应的点的坐标,然后根据变化规律即可得解.由图可知,n =1时,4×1+1=5,点A 5(2,1);n =2时,4×2+1=9,点A 9(4,1);n =3时,4×3+1=13,点A 13(6,1),所以点A 4n +1(2n ,1). 三、21.解:(1)函数图象如图所示.(2)函数的图象与坐标轴围成的三角形的面积为12×2×3=3.(第21题图)22.解:(1)设所求反比例函数的表达式为y =kx (k≠0).∵点A(1,3)在此反比例函数的图象上, ∴3=k1,∴k=3.∴该反比例函数的表达式为y =3x.(2)设直线BC 的表达式为y =k 1x +b(k 1≠0),点B 的坐标为(m ,1). ∵点B 在反比例函数y =3x 的图象上,∴1=3m,∴m=3,∴点B 的坐标为(3,1).由题意,得⎩⎪⎨⎪⎧1=3k 1+b ,0=2k 1+b ,解得⎩⎪⎨⎪⎧k 1=1,b =-2.∴直线BC 的表达式为y =x -2.23.解:(1)∵在反比例函数y =m -5x 图象的每个分支上,y 随x 的增大而增大,∴m-5<0,解得m<5.(2)当y =3时,由y =-x +1,得3=-x +1,解得x =-2.∴反比例函数y =m -5x 的图象与一次函数y =-x +1的图象的一个交点坐标为(-2,3).∴3=m -5-2,解得m =-1.24.解:(1)对于y =2x +3,令x =0,则y =3. ∴点A 的坐标为(0,3).对于y =-2x -1,令x =0,则y =-1. ∴点B 的坐标为(0,-1). (2)解方程组⎩⎪⎨⎪⎧y =2x +3,y =-2x -1,得⎩⎪⎨⎪⎧x =-1,y =1. ∴点C 的坐标为(-1,1).(3)△ABC 的面积为12×[3-(-1)]×|-1|=2.25.解:(1)35;x +5;20;0.5x +15. (2)两个气球能位于同一高度.根据题意,得x +5=0.5x +15,解得x =20. 有x +5=25.答:这时气球上升了20 min ,都位于海拔25 m 的高度. (3)当30≤x≤50时,由题意可知1号探测气球所在位置的海拔始终高于2号探测气球,设两个气球在同一时刻所在位置的海拔相差y m.则y =(x +5)-(0.5x +15)=0.5x -10. ∵0.5>0,∴y 随x 的增大而增大. ∴当x =50时,y 取得最大值15.答:两个气球所在位置的海拔最多相差15 m. 26.解:(1)由题意,得m =1.5-0.5=1. 由于甲车在行驶时的速度都是相同的, 则有a 1=120-a 3.5-1.5,解得a =40. ∴m=1,a =40.(第26题答图)(2)如图,设直线l OA :y =k 1x ,直线l BC :y =k 2x +b 1.∵直线l OA 经过点A(1,40),直线l BC 经过点B(1.5,40),C(3.5,120), ∴⎩⎪⎨⎪⎧40=k 1,40=1.5k 2+b 1,120=3.5k 2+b 1,解得⎩⎪⎨⎪⎧k 1=40,k 2=40,b 1=-20. 又∵D 点的纵坐标为260, ∴260=40x -20,解得x =7. 综上可知,y =⎩⎪⎨⎪⎧40x (0≤x≤1),40 (1<x≤1.5),40x -20 (1.5<x≤7). (3)如图,设直线l EC :y =k 3x +b 2,将点E(2,0),C(3.5,120)的坐标分别代入,得⎩⎪⎨⎪⎧0=2k 3+b 2,120=3.5k 3+b 2,解得⎩⎪⎨⎪⎧k 3=80,b 2=-160,∴直线l EC :y =80x -160.若两车恰好相距50 km ,则时间肯定在1.5 h 之后,有两种情况,一种是乙车比甲车多行驶50 km ,另一种是甲车比乙车多行驶50 km ,由此可列方程:|(80x -160)-(40x -20)|=50, 化简,得|40x -140|=50,解得x 1=194,x 2=94.当x =194时,x -2=194-2=114;当x =94时,x -2=94-2=14.∴当乙车行驶14 h 或114 h 时,两车恰好相距50 km.第18章单元检测卷(时间:120分,满分:90分钟)一、选择题(每题3分,共30分)1.在如图所示的网格中,以格点A ,B ,C ,D ,E ,F 中的4个点为顶点,你能画出平行四边形的个数为( )A .2B .3C .4D .5(第1题图) (第2题图)2.平行四边形ABCD 与等边三角形AEF 按如图所示的方式摆放,如果∠B=45°,则∠BAE 的大小是( )A .75°B .80°C .100°D .120°3.如图,在▱ABCD 中,已知AD =12 cm ,AB =8 cm ,AE 平分∠BAD 交BC 边于点E ,则CE 的长等于( )A .8 cmB .6 cmC .4 cmD .2 cm(第3题图) (第5题图) (第6题图)4.已知平行四边形的一边长为14,下列各组数据中能分别作为它的两条对角线的长的是( ) A.10与16 B.12与16 C.20与22 D.10与405.如图,已知▱ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(-2,3),则点C 的坐标为( )A.(-3,2) B.(-2,-3) C.(3,-2) D.(2,-3)6.如图,在▱ABCD中,AC,BD相交于点O,AB=10 cm,AD=8 cm,AC⊥BC,则OB等于( ) A.6 cm B.73 cm C.11 cm D.273 cm7.如图,在平行四边形ABCD中,AB=8 cm,AD=12 cm,点P在AD边上以每秒1 cm的速度从点A向点D 运动,点Q在BC边上,以每秒4 cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P达到点D时停止(同时点Q也停止).在运动过程中,以P,D,Q,B四点为顶点组成平行四边形的次数有( ) A.4次 B.3次 C.2次 D.1次(第7题图) (第8题图)8.如图所示,EF过▱ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB=4,BC=5,OE=1.5,那么四边形EFCD的周长是( )A.10 B.11 C.12 D.139.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的平行四边形ADCE 中,DE的最小值是( )A.2 B.3 C.4 D.5(第9题图) (第10题图)10.如图,在▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD边上的F点处,若△FDE的周长为14,△FCB的周长为22,则FC的长度为( )A.4 B.6 C.5 D.3二、填空题(每题3分,共30分)11.在四边形ABCD中,若分别给出三个条件:①AD∥BC;②AD=BC;③AB=CD.现以其中的两个为一组,能判定四边形ABCD为平行四边形的条件是________(只填序号,填上一组即可).12.在▱ABCD中,已知点A(-1,0),B(2,0),D(0,1),则点C的坐标为________.13.已知任意直线l把▱ABCD分成两部分,如图所示,要使这两部分的面积相等,直线l所在位置需满足的条件是______________________.(第13题图) (第14题图)14.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2.则▱ABCD的周长等于________.15.如图所示,AC平分∠BAD,∠1=∠2,AB=DC=3,则BC=________.(第15题图) (第16题图)16.如图,在▱ABCD 中,AE⊥BC 于点E ,AF⊥CD 交DC 的延长线于点F ,若AE =3,AF =4,▱ABCD 的周长为28,则S ▱ABCD =________.17.如图,在▱ABCD 中,点E 在CD 边上运动(不与C ,D 两点重合),连结AE 并延长与BC 的延长线交于点F.连结BE ,DF ,若△BCE 的面积为8,则△DEF 的面积为________.18.如图,在▱ABCD 中,AB =6 cm ,∠BCD 的平分线交AD 于点E ,则DE =________.(第17题图) (第18题图) (第19题图)19.如图,在四边形ABCD 中,AD∥BC,且AD =2BC ,BC =6 cm ,P , Q 分别从A ,C 同时出发,P 以2 cm/s 的速度由A 向D 运动,Q 以1 cm/s 的速度由C 向B 运动,设运动时间为x s ,则当x =________时,四边形CDPQ 是平行四边形.20.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE⊥AB,垂足E 在线段AB 上,连结EF ,CF.则下列结论中一定成立的是________.(把所有正确结论的序号都填在横线上)①∠DCF=12∠BCD;③S△BEC=2S△CEF;④∠DFE=3∠AEF.(第20题图)三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.已知:如图,点P是▱ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.(第21题图)22.如图所示,已知在▱ABCD中,M,N分别是AB,CD上的点,AM=CN,E,F是AC上的点,AE=CF,试说明:四边形MENF是平行四边形.(第22题图)23.如图,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,点G,H分别为AD,BC的中点,连结GH 交BD于点O.求证:EF与GH互相平分.(第23题图)24.如图所示,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC交CD于点F.(1)求证:DE=BF.(2)连结EF,写出图中所有的全等三角形.(不要求证明)(第24题图)25.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(第25题图)(1)求证:△ABD≌△CAE.(2)连结DE,线段DE与AB之间有怎样的位置关系和数量关系?请证明你的结论.26.如图,在平行四边形ABCD中,∠ABC=120°,∠BAD的平分线交BC于点E,交DC的延长线于点F,过点F作FG∥CE,且FG=CE,连结DG,EG,BG,CG.(1)试判断四边形EGFC的形状;(2)求证:△DCG≌△BEG;(3)试求出∠BDG的度数.(第26题图)参考答案一、1.B 分析:可以画出的平行四边形有:▱ABEC,▱BDEC,▱BEFC,共3个.2.A 3.C 4.C5.D 分析:由平行四边形是中心对称图形,可知C点的坐标为(2,-3).6.B=BQ.∵点P 的速度是1 cm/s ,∴两点运动的时间为12÷1=12(s),∴点Q 运动的路程为12×4=48(cm),∴点Q 在BC 上运动的次数为48÷12=4(次).第一次:12-t =12-4t ,∴t=0,此时两点都没有运动.易知点Q 在BC 上的每次运动都会有PD =QB ,∴在运动过程中,以P ,D ,Q ,B 四点为顶点组成平行四边形的次数有4次,故选A. 8.C 9.B10.A 分析:由题意可知FB =AB =DC ,AE =EF ,∵△FDE 的周长为14,△FCB 的周长为22,∴△FDE 的周长+△FCB 的周长=DE +DF +EF +FC +BC +FB =36,∴DE+AE +DF +FC +BC +AB =36.∵DE+AE =AD =BC ,DF +FC =DC =AB ,∴DC+BC =18,∴BC+FB =18,∴FC=△FCB 的周长-(BC +FB)=22-18=4. 二、11.①②(答案不唯一) 12.(3,1)13.l 过平行四边形对角线的交点14.20 分析:∵四边形ABCD 为平行四边形,∴AE∥BC,AD =BC ,AB =CD ,∴∠AEB=∠EBC.∵BE 平分∠ABC,∴∠ABE=∠EBC,∴∠A BE =∠AEB,∴AB=AE.∵AE+DE =AD =BC =6,∴AE+2=6,∴AE=4,∴AB=CD =4.∴▱ABCD 的周长为4+4+6+6=20. 15.316.24 分析:设BC =x ,CD =y.∵四边形ABCD 是平行四边形,∴AB=CD ,AD =BC.∵▱ABCD 的周长为28,∴x+y =14.∵BC·AE=CD·AF,∴3x=4y.解方程组⎩⎪⎨⎪⎧x +y =14,3x =4y ,得⎩⎪⎨⎪⎧x =8,y =6,∴S ▱ABCD =3×8=24.17.8 分析:连结AC.易知AB∥CE,∴S △ACE =S △BCE =8.∵CF∥AD,∴S △CAD =S △FAD .∵S △CAD =S △AED +S △ACE ,S △FAD =S △AED +S △DEF ,∴S △DEF =S △ACE =8.18.6 cm 分析:由四边形ABCD 是平行四边形,得AD∥BC,所以∠BCE=∠DEC,由CE 是∠BCD 的平分线,可得∠DCE=∠BCE,从而可得∠DCE=∠DEC,所以DE =DC ,又易知DC =AB =6 cm ,所以DE =6 cm. 19.4 分析:当运动时间为x s 时,AP =2x cm ,QC =x cm ,因为四边形CDPQ 是平行四边形,所以DP =CQ ,即x =12-2x ,解得x =4. 20.①②④三、21.证明:∵四边形ABCD 是平行四边形,∴AB∥CD,∴∠FCP=∠EAP.又∵点P 是AC 的中点,∴AP=CP. 在△FCP 和△EAP 中, ⎩⎪⎨⎪⎧∠FPC=∠EPA,CP =AP ,∠FCP=∠EAP, ∴△FCP≌△EAP. ∴AE=CF.22.解:因为四边形ABCD 是平行四边形,所以AB∥DC,所以∠MAE=∠NCF,又因为AM =CN ,AE =CF ,所=CN ,所以△AMF≌△CNE,所以MF =NE.所以四边形MENF 是平行四边形. 23.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB∥CD,AD =BC ,AD∥BC.∴∠ABE=∠CDF. 又∵AE⊥BD,CF⊥BD, ∴∠AEB=∠CFD=90°. ∴△ABE≌△CDF.∴BE=DF. ∵G,H 分别为AD ,BC 的中点, ∴GD=12AD ,HB =12BC.∴GD=HB.∵AD∥BC,∴∠GDO=∠HBO,∠OGD=∠OHB. ∴△GDO≌△HBO. ∴DO=BO ,GO =HO. 又∵DF=BE ,∴OF=OE. ∴EF 与GH 互相平分.24.(1)证明:∵四边形ABCD 是平行四边形,∴AD=CB ,AB =CD ,CD∥AB,∴∠CDE=∠AED.∵DE 平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD.同理可得CF =CB. 又∵AD=CB ,∴AE=CF ,∴DF=BE ,∴四边形DEBF 是平行四边形.∴DE=BF. (2)解:△ADE≌△CBF, △DEF≌△BFE.25.(1)证明:因为AB =AC ,所以∠B=∠ACB,又因为AD 是BC 边上的中线, 所以AD⊥BC,即∠ADB=90°. 因为AE∥BC,所以∠EAC=∠ACB, 所以∠B=∠EAC.因为CE⊥AE,所以∠CEA=90°, 所以∠ADB=∠CEA. 又AB =CA ,所以△ABD≌△CAE(A.A.S.). (2)解:AB∥DE 且AB =DE.证明:由△ABD≌△CAE 可得AE =BD ,又AE∥BD,所以四边形ABDE 是平行四边形,所以AB∥DE 且AB =DE. 26.(1)解:∵FG∥CE 且FG =CE ,∴四边形EGFC 是平行四边形.AD∥BC,∴∠BAE=∠DAE=∠AEB=30°,∴AB=BE,∠CEF=30°.又∵∠DCB=180°-120°=60°,∴∠CFE=30°.∴∠CEF=∠CFE.∴CF=CE.∵四边形EGFC是平行四边形,∴CF∥EG,CF=EG.∴∠CEG=∠DCB=60°,CE=EG.∴△CEG是等边三角形,∠BEG=120°.∴CG=EG,∠ECG=60°.∴∠DCG=120°,∴∠DCG=∠BEG.又∵DC=AB=BE,∴△DCG≌△BEG.(3)解:∵△DCG≌△BEG,∴DG=BG,∠CGD=∠EGB,∴∠BGD=∠EGB+∠DGE=∠CGD+∠EGD=∠EGC=60°,∴△BDG是等边三角形,∴∠BDG=60°.第19章单元检测卷(满分:120分,时间:90分钟)一、选择题(每题3分,共30分)1.下列命题是真命题的是( )A.对角线互相平分的四边形是平行四边形 B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形 D.对角线互相垂直平分的四边形是正方形2.如图,矩形OBCD的顶点C的坐标为(1,3),则对角线BD的长等于( )A.7 B.2 2 C.2 3 D.10(第2题图) (第3题图) (第4题图)3.如图,在菱形ABCD 中,∠C=108°,AD 的垂直平分线交对角线BD 于点P ,垂足为E ,连结AP ,则∠APB 等于( )A. 50° B .72° C. 70° D.80°4.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2),若反比例函数y =kx (x>0)的图象经过点A ,则此反比例函数的表达式为( )A .y =3x (x>0)B .y =-3x (x>0)C .y =-6x (x>0)D .y =6x (x>0)5.已知四边形ABCD 是平行四边形,下列结论中错误的有( )①当AB =BC 时,它是菱形;②当AC⊥BD 时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC =BD 时,它是正方形.A .1个B .2个C .3个D .4个6.如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为( )A.12B.98C.2 D.4(第6题图)7.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB,AD的垂线段PE,PF,则PE+PF等于( )A.6 B.3 C.1.5 D.0.75(第7题图) (第8题图)8.如图所示,在正方形ABCD 的内部,作等边三角形BCE ,则∠AEB 的度数为( )A .60°B .65°C .70°D .75°9.如图,四边形ABCD 是菱形,AB =5,AC =6,AE⊥BC 于E ,则AE 等于( )A .4 B.125 C.245D .5(第9题图) (第10题图)10.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P 分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM +PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个 B.1个 C.2个 D.3个二、填空题(每题3分,共30分)11.在四边形ABCD中,对角线AC,BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形.如(1)(2)(5)⇒四边形ABCD是菱形,再写出符合要求的两个:________⇒四边形ABCD是菱形;________⇒四边形ABCD是菱形.12.如图所示,矩形ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C,则矩形的一边AB的长为________.(第12题图) (第13题图) (第14题图)13.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.14.如图,在△ABC中,∠ACB=90°,D是AC的中点,DE⊥AC,AE∥BD,若BC=4,AE=5,则四边形ACBE 的周长是________.15.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在BC和CD上,下列结论:①CE =CF;②∠AEB=75°;③BE+DF=EF.其中正确的结论是________.(填序号)(第15题图) (第16题图) (第17题图)16.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ的周长的最小值为________.17.如图,在矩形ABCD中,AB=4,BC=6,点E是AD上一点,把△ABE沿BE折叠,使点A落在点F处,点Q是CD上一点,将△BCQ沿BQ折叠,点C恰好落在直线BF上的点P处.若∠BQE=45°,则AE=________.18.如图,正方形ABCD外有一点M,连结AM,BM,CM.若△AMB,△BMC和正方形ABCD的面积分别是50 cm2,30 cm2和100 cm2,则AM=________cm.19.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF 的中点,则AM的最小值为____________.(第18题图) (第19题图) (第20题图)20.在平面直角坐标系中,正方形A1B1C1O、正方形A2B2C2C1、正方形A3B3C3C2、正方形A4B4C4C3、…、正方形A n B n C n C n-1按如图所示的方式放置,其中点A1,A2,A3,A4,…,A n均在一次函数y=kx+b的图象上,点C1,C2,C3,C4,…,C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,在矩形ABCD中,AC,BD相交于点O,AE平分∠BAD,交BC于点E,若∠CAE=15°,求∠BOE 的度数.(第21题图)22.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于点F,交BC于点E,过点E作EG⊥AB于G,连结GF.求证:四边形CFGE是菱形.(第22题图)23.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE折叠至△AFE,延长EF交BC 于点G,连结AG.(1)求证:△ABG≌△AFG;(2)求BG的长.(第23题图)24.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ABC=58°,则∠DPE=________°.(第24题图)25.如图,在菱形ABCD中,E,F分别是BC,CD的中点.(1)求证:△ABE≌△ADF;(2)过点C作CG∥EA交AF于点H,交AD于点G,若∠BAE=30°,∠BCD=130°,求∠AHC的度数.(第25题图)26.在▱ABCD中,AC,BD交于点O,过点O作直线EF,GH,分别交平行四边形的四条边于E,F,G,H四点,连结EG,GF,FH,HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是________;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是________;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.(第26题图)参考答案一、1.A 2.D 3.B4.D 分析:∵菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2),∴点A 的坐标为(3,2),∴k3=2,解得k =6,∴y=6x(x>0).故选D.5.A 分析:①当AB =BC 时,它是菱形,正确;②当AC⊥BD 时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC =BD 时,它是矩形,因此④是错误的.6.C 分析:∵AB=8,AD =6,将纸片折叠,使得AD 边落在AB 边上,∴DB=8-6=2,∠EAD=45°.又∵将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,∴AB=AD -DB =6-2=4,△ABF 为等腰直角三角形,∴BF =AB =4,∴CF=BC -BF =6-4=2,而EC =DB =2,∴△CEF 的面积=12×2×2=2.7.B 8.D 9.C10.D 分析:∵四边形ABCD 是正方形,∴∠PAE=∠MAE=45°.∵PM⊥AC,∴∠PEA=∠MEA.又∵AE=AE ,∴△APE≌△AME,故①正确;由①得PE =ME ,∴PM=2PE.同理PN =2PF ,又易知PF =BF ,四边形PEOF 是矩形,∴PN=2BF ,PM =2FO ,∴PM+PN =2FO +2BF =2BO =BD ,故②正确;在Rt△PFO 中,∵FO 2+PF 2=PO 2,而PE =FO ,∴PE 2+PF 2=PO 2,故③正确. 二、11.(1)(2)(6);(3)(4)(5)(答案不唯一)12. 3 分析:连结EC.因为FC 垂直平分BE ,所以BC =EC.又因为AD =BC ,AE =1,E 是AD 的中点,所以DE =1,EC =AD =2,利用勾股定理可得CD = 3.所以AB = 3.13.12 点拨:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12×6×8=24.∵O 是菱形两条对角线的交点,∴阴影部分的面积=12×24=12.14.18 分析:易证△AED≌△DBC,∴BD=AE =5,由勾股定理得CD =3,∴AC=2CD =6,易得四边形BCDE 是矩形,∴BE=CD =3,∴四边形ACBE 的周长为4+6+5+3=18. 15.①②16.6 分析:连结DE 交AC 于点Q′.∵四边形ABCD 是正方形,∴点B 与点D 关于直线AC 对称,∴DE 的长即为BQ +QE 的最小值,Q′是使△BEQ 的周长为最小值时的点.由勾股定理得DE =AD 2+AE 2=42+32=5,∴△BEQ 的周长的最小值=DE +BE =5+1=6.17.2 分析:由折叠知∠EBQ=12∠ABC=45°.∵∠BQE=45°,∴∠BEQ =90°,BE =EQ.易证△BAE≌△EDQ,∴ED=AB =4,∴AE=AD -ED =6-4=2.18.356 分析:作ME⊥AB,交AB 的延长线于点E.作MG⊥BC,交CB 的延长线于点G.设MG =m cm ,ME =n cm.由题意可知AB =10 cm ,∵△ABM 和△BMC 的面积分别为50 cm 2,30 cm 2,∴10n=50×2,10m =30×2,∴n=10,m =6,∴AE=16 cm.∴在Rt△AME 中,AM =162+102=356(cm).19.2.4 分析:连结AP.在△ABC 中,∵AB=6,AC =8,BC =10,∴AB 2+AC 2=BC 2,∴∠BAC=90°.又∵PE⊥AB,PF⊥AC,∴四边形AFPE 是矩形,∴EF=AP.∵M 是EF 的中点,∴AM=12AP.根据直线外一点与直线上任一点所连的线段中,垂线段最短,可知当AP⊥BC 时,AP 最短,同样AM 也最短.当AP⊥BC 时,12AB·AC=12BC·AP,即12×6×8=12×10AP,∴AP=4.8.∴AM 的最小值为12×4.8=2.4. 20.(2n -1-1,2n -1) 分析:本题运用从特殊到一般的思想.由题意,得点A 1(0,1),A 2(1,2),A 3(3,4),A 4(7,8),…,根据以上总结规律,可得A n (2n -1-1,2n -1).三、21.解:∵四边形ABCD 是矩形,∴∠BAD=∠ABC=90°,AO =BO =12AC =12BD.∵AE 是∠BAD 的平分线,∴∠BAE=45°.又∵∠CAE=15°,∴∠BAC=60°. ∴△AOB 是等边三角形,∴∠ABO=60°,AB =OB.在Rt△ABE 中,∵∠BAE=45°,∴∠AEB=90°-45°=45°=∠BAE,∴AB=BE.∴OB=BE.∴∠BOE=∠BEO.又∵∠OBE=∠ABC-∠ABO=90°-60°=30°, ∴∠BOE=12×(180°-30°)=75°.22.证明:由∠ACB=90°,AE 平分∠BAC,EG⊥AB, 易证△ACE≌△AGE, ∴CE=EG ,∠AEC=∠AEG. ∵CD 是AB 边上的高,EG⊥AB, ∴EG∥CD, ∴∠EFC=∠AEG, ∴∠EFC=∠AEC, ∴FC=EC ,∴FC=EG , ∴四边形CFGE 是平行四边形. 又∵GE=CE ,∴四边形CFGE 是菱形.23.(1)证明:∵四边形ABCD 是正方形,∴∠B=∠D=90°,AD =AB. 由折叠可知,AD =AF ,∠AFE=∠D=90°,∴∠AFG=90°,AB =AF. ∴∠B=∠AFG=90°. 又∵AG=AG ,∴Rt△ABG≌Rt△AFG(H.L.). (2)解:∵△ABG≌△AFG,∴BG=FG. 设BG =FG =x ,则GC =6-x , ∵E 为CD 的中点, ∴EF=DE =CE =3, ∴EG=x +3,在Rt△CEG 中,由勾股定理,得32+(6-x)2=(x +3)2,解得x =2, ∴BG=2.24.(1)证明:在正方形ABCD 中,BC =DC ,∠BCP=∠DCP=45°. 在△BCP 和△DCP 中,。
华东师大版八年级下册数学期末质量检测试卷(Word版,含答案)
华东师大版八年级下册数学期末质量检测试卷学校姓名班级题号一二三总分得分第Ⅰ卷(选择题,共30分)1.在代数式3x+12,5a,6x2y,35+y,a2+b3,2ab2c35,1π中,分式有 ( )A.4个B.3个C.2个D.1个2.将6.18×10⁻³化为小数是 ( )A.0.000 618B.0.006 18C.0.061 8D.0.6183.点(3,2)关于x轴的对称点为 ( )A.(3,-2)B.( -3,2)C.(-3,-2)D.(2,-3)4.P₁(x₁,y₁),P₂(x₂,y₂)是正比例函数y=−12x图象上的两点,下列判断中,正确的是( )A.y₁>y₂B.y₁<y₂C.当x₁<x₂时,y₁<y₂D.当x₁<x₂时,y₁>y₂5.在共有15 人参加的演讲比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进入前八名,只需了解自己的成绩以及全部成绩的 ( )A.平均数B.众数C.中位数D.方差6.如图,在▱ABCD中,下列结论中错误的是 ( )A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD一、选择题(每小题3分,共30分)7.在四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件不能判定这个四边形是平行四边形的是 ( )A.OA =OC,OB =ODB.AD‖BC,AB‖DCC.AB =DC,AD =BCD.AB‖DC,AD =BC8.将一组数据中每个数据的值都减去同一个常数,那么下列结论成立的是 ( )A.平均数不变B.方差不变C.方差改变D.方差和平均数都不变9.已知反比例函数 y =b x (b 为常数, b ≠0),,当x>0时,y 随x 的增大而增大,则一次函数. y =x +b 的图象不经过 ( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在正方形 ABCD 中,点 E 、F 分别在 CD 、BC 上,且BF=CE ,连结BE 、AF 相交于点G ,则下列结论不正确的是 ( )A. BE=AFB.∠DAF=∠BECC.∠AFB+∠BEC=90°D. AG⊥BE第Ⅱ卷(非选择题,共90分)11.|−1|+(−2)2+(7−π)0−(13)−1= . 12.将一次函数y=3x-1的图象沿y 轴向上平移3个单位长度后,得到的图象对应的函数关系式为 .13.某工厂10名工人某一天生产的同一种型号的零件的个数分别是:15,17,14,10,15,17,17,16,14,12,设平均数为a ,中位数为b ,众数为c ,则a ,b ,c 的大小关系是14.如图,在平行四边形ABCD 中,AB =3,BC=5,AC 的垂直平分线交AD 于点 E,则△CDE 的周长是 .二、填空题(每小题3分,共12分)15.(4分)解方程:xx+1−4x2−1=1.16.(4分)化简求值:x 2−xx2−2x+1⋅(x−1x),其中x=15.17.(6分)在平面直角坐标系中,点A( -2,3)关于y轴的对称点为点 B,连结AB,反比例函数y=kx(x⟩0)的图象经过点 B,点 P 是该反比例函数图象上任意一点.(1)求k的值;(2)若△ABP的面积等于2,求点P坐标.18.(4 分)如图,在▱ABCD中,AE=CF,M、N分别是DE、BF的中点,求证:四边形 MFNE 是平行四边形.三、解答题(共78分)。
2022-2023学年华东师大版八年级数学下册《分式方程的应用》同步练习题(附答案)
2022-2023学年华东师大版八年级数学下册《分式方程的应用》同步练习题(附答案)1.为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18km,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程多10km.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的.小王乘公交车上班平均每小时行驶()A.30km B.36km C.40km D.46km2.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为()A.1.8升B.16升C.18升D.50升3.某地为美化环境,计划种植树木6000棵.由于志愿者加入,实际每天植树棵数比原计划增加了25%,结果提前3天完成任务.则实际每天植树棵.4.端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?5.小江与小杰两名同学为学校图书馆清点一批图书,小江清点完600本图书比小杰清点完540本图书少用了5min.已知小江平均每分钟清点图书的数量是小杰的1.25倍,求两名同学平均每分钟清点图书各多少本.6.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多25元,用2000元购进篮球的数量是用750元购进足球数量的2倍,求:每个篮球和足球的进价各多少元?7.为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成.已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装36间教室比甲公司安装同样数量的教室多用3天.(1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天1000元,乙公司安装费每天500元,现需安装教室120间,若想尽快完成安装工作且安装总费用不超过18000元,则最多安排甲公司工作多少天?8.“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?9.某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.(1)原来每天生产健身器械多少台?(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?10.为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,求甲、乙两个工程队每天改造的道路长度分别是多少米?11.某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?12.某中学初三学生在开学前去商场购进A,B两款书包奖励班级表现优秀的学生,购买A 款书包共花费6000元,购买B款书包共花费3200元,且购买A款书包数量是购买B款书包数量的3倍,已知购买一个B款书包比购买一个A款书包多花30元.(1)求购买一个A款书包、一个B款书包各需多少元?(2)为了调动学生的积极性,学校在开学后再次购进了A,B两款书包,每款书包不少于14个,总花费恰好为2268元,且在购买时商场对两款书包的销售单价进行了调整,A 款书包销售单价比第一次购买时提高了8%,B款书包按第一次购买时销售单价的九折出售.求此次A款书包有几种购买方案?(3)在(2)的条件下,商场这次销售两款书包,单价调整后利润比调整前减少72元,直接写出两款书包的购买方案.13.为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本.(1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?14.为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?15.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A品牌足球共花费2880元,B品牌足球共花费2400元,且购买A品牌足球数量是B品牌数量的1.5倍,每个足球的售价,A品牌比B品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买A、B两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A品牌比去年提高了5%,B品牌比去年降低了10%,如果今年购买A、B两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?16.永州市某村经济合作社在乡村振兴工作队的指导下,根据市场需求,计划在2022年将30亩土地全部用于种植A、B两种经济作物.预计B种经济作物亩产值比A种经济作物亩产值多2万元,为实现2022年A种经济作物年总产值20万元,B种经济作物年总产值30万元的目标,问:2022年A、B两种经济作物应各种植多少亩?17.小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.(1)求小刚跑步的平均速度;(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.18.六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?19.为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同.求每千克有机大米的售价为多少元?20.为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?参考答案1.解:设小王用自驾车方式上班平均每小时行驶xkm,则乘公交车平均每小时行驶(x+10)km,由题意得:=×,解得:x=30,经检验,x=30是原方程的解,则x+10=40,即小王乘公交车上班平均每小时行驶40km,故选:C.2.解:根据题意得:3斗=30升,设可以换得的粝米为x升,则=,解得:x==18(升),经检验:x=18是原分式方程的解,答:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为18升.故选:C.3.解:设原计划每天植树x棵,则实际每天植树(1+25%)x棵,依题意得:﹣=3,解得:x=400,经检验,x=400是原方程的解,且符合题意,∴(1+25%)x=500.故答案为:500.4.解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,依题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,则2x=8,答:甲种粽子的单价为8元,乙种粽子的单价为4元.(2)设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,依题意得:8m+4(200﹣m)≤1150,解得:m≤87.5,答:最多购进87个甲种粽子.5.解:设小杰平均每分钟清点图书x本,则小江平均每分钟清点图书1.25x本,依题意得:﹣=5,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴1.25x=1.25×12=15.答:小杰平均每分钟清点图书12本,小江平均每分钟清点图书15本.6.解:设每个足球的进价是x元,则每个篮球的进价是(x+25)元,依题意得:=2×,解得:x=75,经检验,x=75是原方程的解,且符合题意,∴x+25=75+25=100.答:每个足球的进价是75元,每个篮球的进价是100元.7.解:(1)设乙公司每天安装x间教室,则甲公司每天安装1.5x间教室,根据题意得:=3,解得:x=4,经检验,x=4是所列方程的解,则1.5x=1.5×4=6,答:甲公司每天安装6间教室,乙公司每天安装4间教室;(2)设安排甲公司工作y天,则乙公司工作天,根据题意得:1000y+×500≤18000,解这个不等式,得:y≤12,答:最多安排甲公司工作12天.8.解:(1)设A奖品的单价为x元,则B奖品的单价为(x﹣25)元,由题意得:=,解得:x=40,经检验,x=40是原方程的解,则x﹣25=15,答:A奖品的单价为40元,则B奖品的单价为15元;(2)设购买A种奖品的数量为m件,则购买B种奖品的数量为(100﹣m)件,由题意得:,解得:22.5≤m≤25,∵m为正整数,∴m的值为23,24,25,∴有三种方案:①购买A种奖品23件,B种奖品77件;②购买A种奖品24件,B种奖品76件;③购买A种奖品25件,B种奖品75件.9.解:(1)设原来每天生产健身器械x台,则提高工作效率后每天生产健身器械1.4x台,依题意得:+=8,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:原来每天生产健身器械50台.(2)设使用m辆大货车,使用n辆小货车,∵同时使用大、小货车一次完成这批健身器械的运输,∴50m+20n≥500,∴n≥25﹣m.又∵运输公司大货车数量不足10辆,且运输总费用不多于16000元,∴,即,解得:8≤m<10.又∵m为整数,∴m可以为8,9.当m=8时,n≥25﹣m=25﹣×8=5;当m=9时,n≥25﹣m=25﹣×9=,又∵n为整数,∴n的最小值为3.∴共有2种运输方案,方案1:使用8辆大货车,5辆小货车;方案2:使用9辆大货车,3辆小货车.方案1所需费用为1500×8+800×5=16000(元),方案2所需费用为1500×9+800×3=15900(元).∵16000>15900,∴运输方案2的费用最低,最低运输费用是15900元.10.解:设甲工程队每天改造的道路长度是x米,列方程得:,解得:x=80.经检验x=80是所列方程的根,所以80﹣20=60.答:甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米.11.解:设该商品打折前每件x元,则打折后每件0.8x元,根据题意得,+2=,解得,x=50,检验:经检验,x=50是原方程的解.答:该商品打折前每件50元.12.解:(1)设购买一个A款书包需要x元,则购买一个B款书包需要(x+30)元,依题意得:=3×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+30=50+30=80(元).答:购买一个A款书包需要50元,购买一个B款书包需要80元.(2)设购买m个B款书包,则购买=(42﹣m)个A款书包,依题意得:,解得:14≤m≤21.又∵(42﹣m)为整数,∴m为3的倍数,∴m可以取15,18,21,∴此次A款书包有3种购买方案.(3)依题意得:80×(1﹣0.9)m﹣50×8%(42﹣m)=72,解得:m=18,∴42﹣m=42﹣×18=18(个).答:购买18个A款书包,18个B款书包.13.解:(1)设“文学类”图书的单价为x元/本,则“科普类”图书的单价为(1+20%)x 元/本,依题意:﹣20=,解之得:x=15.经检验,x=15是所列方程的根,且符合题意,所以(1+20%)x=18.答:科普类书单价为18元/本,文学类书单价为15元/本;(2)设“科普类”书购a本,则“文学类”书购(100﹣a)本,依题意:18a+15(100﹣a)≤1600,解之得:a≤.因为a是正整数,所以a最大值=33.答:最多可购“科普类”图书33本.14.解:设该景点在设施改造后平均每天用水x吨,则在改造前平均每天用水2x吨,根据题意,得﹣=5.解得x=2.经检验:x=2是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2吨.15.解:设去年A足球售价为x元/个,则B足球售价为(x+12)元/个.由题意得:,即,∴96(x+12)=120x,∴x=48.经检验,x=48是原分式方程的解且符合题意.∴A足球售价为48元/个,B足球售价为60元/个.设今年购进B足球的个数为a个,则有:.∴50.4×50﹣50.4a+54a≤2640.∴3.6a≤120,∴.∴最多可购进33个B足球.16.解:设2022年A种经济作物应种植x亩,则B种经济作物应种植(30﹣x)亩,根据题意,得+2=.解得x=20或x=﹣15(舍去).经检验x=20是原方程的解,且符合题意.所以30﹣x=10.答:2022年A种经济作物应种植20亩,则B种经济作物应种植10亩.17.解:(1)设小刚跑步的平均速度为x米/分,则小刚骑自行车的平均速度为1.6x米/分,根据题意,得,解得:x=150,经检验,x=150是所列方程的根,答:小刚跑步的平均速度为150米/分.(2)他不能在上课前赶回学校,理由如下:由(1)得小刚跑步的平均速度为150米/分,则小刚跑步所用时间为1800÷150=12(分),骑自行车所用时间为12﹣4.5=7.5(分),∵在家取作业本和取自行车共用了3分,∴小刚从开始跑步回家到赶回学校需要12+7.5+3=22.5(分).又∵22.5>20,∴小刚不能在上课前赶回学校.18.解:(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据题意得:,解得:x=50,经检验:x=50是方程的解,且符合题意,答:第一次每件的进价为50元;(2)70×()﹣3000×2=1700(元),答:两次的总利润为1700元.19.解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x﹣2)元,依题意得:=,解得:x=7,经检验,x=7是原方程的解,且符合题意.答:每千克有机大米的售价为7元.20.解:(1)设一等奖奖品单价为4x元,则二等奖奖品单价为3x元,依题意得:+=25,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴4x=60,3x=45.答:一等奖奖品单价为60元,二等奖奖品单价为45元.(2)设购买一等奖奖品m件,二等奖奖品n件,依题意得:60m+45n=1275,∴n=.∵m,n均为正整数,且4≤m≤10,∴或或,∴共有3种购买方案,方案1:购买4件一等奖奖品,23件二等奖奖品;方案2:购买7件一等奖奖品,19件二等奖奖品;方案3:购买10件一等奖奖品,15件二等奖奖品.。
最新华师大版八年级数学下册:周周清【7】(16页名师资料汇编
解:(1)证明:∵四边形ABCD为平行四边形,
∴AB∥DF,∴∠ABE=∠FCE,
又∵BE=CE,∠BEA=∠CEF, ∴△ABE≌△FCE,∴AB=CF (2)当BC=AF时,四边形ABFC是矩形. 理由:易证四边形ABFC是平行四边形, 又∵BC=AF,∴四边形ABFC是矩形
解:(1)证明: ∴AO=OC,
16.(14分)如图,一个含45°的三角板HBE的两条直角边 与正方形ABCD的两邻边重合,过点E作EF⊥AE交∠DCE 的平分线于点F,试探究线段AE与EF的数量关系,并说明 理由.
解:∵AE⊥EF,∴∠AEF=90°, 又∵AD∥BC∴∠DAE=∠AEC. 又∵∠HAD=90° ∴∠HAD+∠DAE=∠AEF+∠AEC, 即∠HAE=∠CEF. ∵CF 平分∠DCE, 1 ∴∠FCE= ∠DCE=45°.又∵∠H=45°,∴∠H=∠FCE. 2 又∵HB=BE,AB=BC,∴HB-AB=BE-BC,即 HA=CE. ∴△HAE≌△CEF(ASA),∴AE=EF
3.如图,在正方形ABCD中,点E是CD边上一点,
连结AE,交对角线BD于点F,连结CF,则图中全
等三角形共有( C
A.1对
)
C.3对 D.4对
B.2对
4.有一张矩形纸片ABCD,AB=2.5,AD=1.5,
将纸片折叠,使AD边落在AB边上,折痕为AE,
再将△AED以DE为折痕向右折叠,AE与BC交于
∴DB∥CE,∴∠ABO=∠E=50°.
又∵四边形ABCD为菱形,∴AO⊥OB. ∴∠BAO+∠ABO=90°.∴∠BAO=90°-50°=40°
13.(10分)如图,在▱ABCD中,E为BC的中点,连结AE 并延长交DC的延长线于点F. (1)求证:AB=CF; (2)当BC与AF满足什么数量关系时, 四边形ABFC是矩形,并说明理由.
华东师大版八年级下册数学答案
华东师大版八年级下册数学答案【篇一:华东师大版八年级下期末考试数学试卷与答案】s=txt>班级第组 XX20XX6月注意事项:1.本试卷满分120分,时间120分钟.2.解答题应写出演算过程,推理步骤或文字说明.一、选择题(每题3分,共36分)2无意义,则()a.x?1 b.x?1c.x??1 d.x?1 x?12.在下列函数中,自变量x的取值范围是x?3的函数是()1.若分式a.y?1b.y?x?3c.y?x?3 d.y?abcd3.如图,平行四边形abcd的周长为40,△boc的周长比△aob的周长多10,则ab为() a.20 b.15 c.10 d.5 4.下列约分正确的是()a?xaa6a2?b2?x?y3?c.?a?bd.??1 a.2?ab.b?xbaa?bx?y5.下列命题是假命题的是()a.菱形的四条边都相等 b.互为倒数的两个数的乘积为1 c.若a⊥b,a⊥c,则b⊥c d.两个负数的和仍然是负数1x?的结果为() x?1x?1a.1 b.2 c.?1 d.?211,27.分式2的最简公分母是() x?xx?x6.计算:2ecbada.(x?1)(x?1) b.x(x?1)(x?1)c.x(x?1)(x?1) d.x(x?1)8.如图,已知:△abc≌△ade,bc与de是对应边,那么∠eab=() 9.a.∠eac b.∠cad c.∠bac d.∠dae9.在4月14日玉树发生的地震导致公路破坏,为抢修一段120米的公路,施工队每天比原来计划多修5米,结果提前4天通了汽车,问原计划每天修多少米?若设原计划每天修x米,则所列方程正确的是()2??4 b.??4 c.??4 d.??4 xx?5x?5xx?5xxx?510.函数y?的图象经过点(?4,6),则下列各点中,在函数y?图象上的是()xxa.(3,8) b.(3,?8) c.(?8,?3) d.(?4,?6)11.若点p(3,2m?1)在第四象限,则m的取值范围是()a.a.m?1111 b.m? c.m?? d.m? 222212.一组数据3,2,1,2,2的众数、中位数、方差分别是()a.2,1,0.4 b.2,2,0.4c.3,1,2 d.2,1,0.2 二、填空题(每题4分,共24分) 13.计算:(3a)2?a5=__________.14.某小食堂存煤25000千克,可使用的天数x和平均每天的用煤m(千克)的函数关系足的条件是:_______________.(只填写一个条件即可)a17.若(a?3)?3b??0,则a2d2009?b2010=____________.18.如图,在菱形abcd中,对角线ac、bd相交于点o,若再补充一个条件能使菱形abcd成为正方形,则这个条件是:___________________.(只填一个条件即可)三、解答题(19小题6分,20、21小题各7分,共20分)c1a2?2a?119.计算:(a?)?aa20.如图,已知△abc是等边三角形,d点是ac的中点,延长bc到e,使ce=cd.(1)请用尺规作图的方法,过点d作dm⊥be,垂足为m;(不写作法,保留作图痕迹)(2)求证:bm=em.dbec21.如图,在平行四边形abcd中,e、f为bc上两点,且be=cf,af=de.求证:(1)△abf≌△dce;(2)四边形abcd是矩形. adbcef四、本大题共3个小题,22、23小题各7分,24小题8分,共24分.3aaa2?1?)?22.先化简,再求值:(,其中a?2. a?1a?1a23.今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?24.如图,一次函数y?kx?b的图象与反比例函数y?m的图象相交于a、b两点, x(1)利用图中条件,求反比例函数和一次函数的解析式;(2五、本大题共2个小题,25小题8分,26小题10分,共18分.25.如图,已知△abc中,d是bc边上的一点,e是ad的中点,过a点作bc的平行线,交ce的延长线于点f,且af=bd,连接bf.(1)求证:bd=cd;(2)如果ab=ac,试判断四边形afbd的形状,并证明你的结论.febcd26.今年,我省部分地区出现持续干旱现象,为确保生产生活用水,某村决定由村里提供一点,村民捐一点的办法筹集资金维护和新建一批储水池.该村共有243户村民,准备维护和新建的储水池共有20个,费用和可供使用的户数与用地情况如下表:已知可支配使用土地面积为106m,若新建储水池x个,新建和维护的总费用为y万元.(1)求y与x之间的函数关系式;(2)满足要求的方案各有几种;(3)在以上备选方案中,若平均每户捐2000元时,村里出资最多和最少分别是多少?八年级(下)期末考试数学试卷参考答案20XX6月一、选择题(每题3分,共36分) ddddccbbab bb二、填空题(每题4分,共24分) 13.9a7 14.x?250001三、解答题:19小题6分,20、21小题各7分,共20分a2?1a?219.原式= ………………2分 aa?2a?1=(a?1)(a?1)a………………4分 ?2a(a?1)a?1…………………………………6分 a?1=20.①作图正确,保留作图痕迹,给满分.(3分)②证明:∵△abc是等边三角形,d是ac的中点∴bd平分∠abc (三线合一)∴∠abc=2∠dbc ………………………4分∵ce=cd∴∠ced=∠cde 又∵∠abc=∠ced+∠cde∴∠acb=2∠e …………………………5分又∵∠abc=∠acb∴2∠dbc=2∠e ∴∠dbc=∠e …………………………6分∴bd=ed ∵dm⊥be∴bm=em……………………………………7分 21.证明:(1)∵be=cf,bf=be+ef,ce=cf+ef,∴bf=ce.…………………………………………………………2分∵四边形abcd是平行四边形,∴ab=dc.………………………………………………………3分在△abf和△dce中,∵ab=dc,bf=ce,af=de,∴△abf≌△dce.………………………………………………4分(2)∵△abf≌△dce,【篇二:华师大版八年级数学下册目录】>17.2 分式与其基本性质全章复习与测试第19章全等三角形19.4 逆命题与逆定理第21章数据的整理与初步处理全章复习与测试16.1平方根与立方根原教材第18章图形的相似18.4画相似图形19.1测量期末总复习【篇三:华师大版八年级下册数学知识点总结】t>第16章分式16.1分式与基本性质一、分式的概念1、分式的定义:如果a、b表示两个整式,并且b中含有字母,那么式子叫做分式。
八年级数学下册周周清8华东师大版.doc
检测内容:20.1—20.3得分________ 卷后分________ 评价________一、选择题(每小题5分,共35分)1.数据0,1,1,3,3,4的中位数和平均数分别是( B )A.2和2.4 B.2和2 C.1和2 D.3和22.在开展爱心捐助的活动中,某团支部8名团员捐款(单位:元)分别为6,5,3,5,6,10,5,5,这组数据的中位数是( B )A.3 B.5 C.6 D.103.(2018·天门)下列说法正确的是( C )A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定4.(2018·盘锦)要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是( C ) A.甲 B.乙 C.丙 D.无法确定5.(2018·葫芦岛)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是( A )A.众数是90分 B.中位数是95分C.平均数是95分 D.方差是156.一组数据按从小到大排列为2,4,8,x,10,14,若这组数据的中位数为9,则这组数据的众数为( D )A.6 B.8 C.9 D.107.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子做调查,以决定最终买哪种粽子,下面的调查数据中最值得关注的是( D )A.方差 B.平均数 C.中位数 D.众数二、填空题(每小题5分,共25分)8.某单位举行歌咏比赛,分两场举行,第一场8名参赛选手的平均成绩为88分,第二场4名参赛选手的平均成绩为94分,那么这12名选手的平均成绩是__90__分.9.(2018·福建)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为__120__.10.(2018·安顺)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环) 9.5 9.5方差0.035 0.015__乙__.11.数据-2,-1,0,3,5的方差是__6.8__.12.若五个正整数的中位数是3,唯一的众数是7,则这五个数的平均数是__4__.三、解答题(共40分)13.(12分)(温州中考)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:(1)(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.(1)x -甲=84,x -乙=80,x -丙=81,从高到低确定三名应聘者的排名顺序为:甲,丙,乙(2)乙将被录取14.(14分)(2018·贵阳)在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分析,成绩如下:整理、描述数据:得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共________人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.解:(1)97.5(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共300×(25%+20%)=135人,故答案为135(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一,∴初二年级掌握禁毒知识的总体水平较好15.(14分)(2018·嘉兴)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176 mm ~185 mm 的产品为合格),随机各抽取了20个样品进行检测,过程如下:收集数据(单位:mm )甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.解:(1)甲车间样品的合格率为5+620×100%=55% (2)∵乙车间样品的合格产品数为20-(1+2+2)=15(个),∴乙车间样品的合格率为错误!×100%=75%,∴乙车间的合格产品数为1000×75%=750(个)(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好;②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比较稳定,所以乙车间生产的新产品更好。
华东师大版八年级数学下册单元测试题全套(含答案)
华东师大版八年级数学下册单元测试题全套(含答案)第16章单元检测卷(时间:120分,满分90分钟)一、选择题(每题3分,共30分) 1.下列式子是分式的是( )A.a -b 2B.5+y πC.x +3x D .1+x2.分式x -yx 2+y2有意义的条件是( )A .x≠0B .y≠0C .x≠0或y≠0D .x≠0且y≠0 3.分式①a +2a 2+3,②a -b a 2-b 2,③4a 12(a -b ),④1x -2中,最简分式有( )A .1个B .2个C .3个D .4个 4.把分式2aba +b中的a ,b 都扩大到原来的2倍,则分式的值( )A .扩大到原来的4倍B .扩大到原来的2倍C .缩小到原来的12 D .不变5.下列各式中,取值可能为零的是( )A.m 2+1m 2-1B.m 2-1m 2+1C.m +1m 2-1D.m 2+1m +1 6.分式方程2x -3=3x的解为( )A . x =0B .x =3C .x =5D .x =97.嘉怡同学在化简1m 1m 2-5m 中,漏掉了“ ”中的运算符号,丽娜告诉她最后的化简结果是整式,由此可以猜想嘉怡漏掉的运算符号是( )A .+B .-C .×D .÷ 8.若a =-0.32,b =-3-2,c =⎝⎛⎭⎫-13-2,d =⎝⎛⎭⎫-130,则正确的是( )A .a <b <c <dB .c <a <d <bC .a <d <c <bD .b <a <d <c 9.已知a 2-3a +1=0,则分式a 2a 4+1的值是( )A .3 B.13 C .7 D.1710.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=15二、填空题(每题3分,共30分)11.纳米(nm)是一种长度单位,常用于度量物质原子的大小,1 nm =10-9 m .已知某种植物孢子的直径为45 000 nm ,用科学记数法表示该孢子的直径为____________m.12.若关于x 的分式方程2x -ax -1=1的解为正数,那么字母a 的取值范围是____________.13.若|a|-2=(a -3)0,则a =________. 14.已知1a +1b =4,则4a +3ab +4b -3a +2ab -3b =________.15.计算:a a +2-4a 2+2a =________.16.当x =________时,2x -3与54x +3的值互为倒数. 17.已知a 2-6a +9与|b -1|互为相反数,则式子⎝⎛⎭⎫a b -b a ÷(a +b)的值为________. 18.若关于x 的分式方程x x -3-m =m 2x -3无解,则m 的值为________.19.当前控制通货膨胀、保持物价稳定是政府的头等大事,许多企业积极履行社会责任,在销售中保持价格稳定已成为一种自觉行为.某企业原来的销售利润率是32%.现在由于进价提高了10%,而售价保持不变,所以该企业的销售利润率变成了________.(注:销售利润率=(售价-进价)÷进价)20.若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________.三、解答题(21题20分,22题8分,23,24题每题6分,其余每题10分,共60分) 21.计算: (1)⎝⎛⎭⎫12-1+(3.14-π)0+16-|-2|; (2)b 2c -2·⎝⎛⎭⎫12b -2c 2-3;(3)⎝⎛⎭⎫x 2y 2·⎝⎛⎭⎫-y 2x 3÷⎝⎛⎭⎫-y x 4; (4)⎝⎛⎭⎫1+1m +1÷m 2-4m 2+m ;(5)⎣⎡⎦⎤4a -2×⎝⎛⎭⎫a -4+4a ÷⎝⎛⎭⎫4a -1.22.解分式方程:(1)12x -1=12-34x -2. (2)1-2x -3=1x -3.23.已知y =x 2+6x +9x 2-9÷x +3x 2-3x -x +3,试说明:x 取任何有意义的值,y 值均不变.24.先化简,再求值:x -2x 2-1·x +1x 2-4x +4+1x -1,其中x 是从-1,0,1,2中选取的一个合适的数.25.某校组织学生到生态园春游,某班学生9:00从樱花园出发,匀速前往距樱花园2 km 的桃花园.在桃花园停留1 h 后,按原路返回樱花园,返程中先按原来的速度行走了6 min ,随后接到通知,要尽快回到樱花园,故速度提高到原来的2倍,于10:48回到了樱花园,求这班学生原来的行走速度.26.观察下列等式:11×2=1-12,12×3=12-13,13×4=13-14. 将以上三个等式的两边分别相加,得: 11×2+12×3+13×4=1-12+12-13+13-14=1-14=34. (1)直接写出计算结果:11×2+12×3+13×4+…+1n (n +1)=________. (2)仿照11×2=1-12,12×3=12-13,13×4=13-14的形式,猜想并写出:1n (n +3)=________.(3)解方程:1x (x +3)+1(x +3)(x +6)+1(x +6)(x +9)=32x +18.参考答案一、1.C 2.D 3.B 4.B 5.B 6.D 7.D 8.D9.D 分析:∵a 2-3a +1=0,∴a 2+1=3a ,∴(a 2+1)2=9a 2,∴a 4+1=(a 2+1)2-2a 2=7a 2,∴原式=a 27a 2=17.故选D. 10.A二、11.4.5×10-512.a>1且a≠2 分析:先解方程求出x ,再利用x>0且x -1≠0求解.13.-3 分析:利用零指数幂的意义,得|a|-2=1,解得a =±3.又因为a -3≠0,所以a =-3. 14.-1910 分析:利用整体思想,把所求式子的分子、分母都除以ab ,然后把条件整体代入求值.15.a -2a16.317.23分析:利用非负数的性质求出a ,b 的值,再代入所求式子求值即可. 18.1或±3 分析:本题利用了分类讨论思想.将原方程化为整式方程,得(1-m)x =m 2-3m.分两种情况:(1)当1-m =0时,整式方程无解,解得m =1;(2)当x =3时,原方程无解,把x =3代入整式方程,解得m =±3.综上,得m =1或±3.19.20% 分析:设原来的售价是b 元,进价是a 元,由题意,得b -aa ×100%=32%.解得b =1.32a.现在的销售利润率为b -(1+10%)a(1+10%)a×100%=20%.20.12;-12;1021分析:∵1(2n -1)(2n +1)=12(2n +1)-12(2n -1)(2n -1)(2n +1)=122n -1+-122n +1,∴a =12,b =-12.利用上述结论可得:m =12×(1-13+13-15+15-17+…+119-121)=12×⎝⎛⎭⎫1-121=12×2021=1021. 三、21.解:(1)原式=2+1+4-2=5; (2)原式=b 2c -2·8b 6c -6=8b 8c -8=8b 8c8;(3)原式=x 4y 2·(-y 6x 3)·x 4y 4=-x 5;(4)原式=m +2m +1÷(m +2)(m -2)m (m +1)=m +2m +1×m (m +1)(m +2)(m -2) =mm -2; (5)原式=⎣⎢⎡⎦⎥⎤4a -2×(a -2)2a ÷4-a a =4(a -2)a ×a4-a =4(a -2)4-a.22.解:(1)方程两边同时乘2(2x -1),得2=2x -1-3. 化简,得2x =6.解得x =3.检验:当x =3时,2(2x -1)=2(2×3-1)≠0,所以,x =3是原方程的解. (2)去分母,得x -3-2=1, 解这个方程,得x =6.检验:当x =6时,x -3=6-3≠0, 所以x =6是原方程的解.23.解:y =x 2+6x +9x 2-9÷x +3x 2-3x-x +3=(x +3)2(x +3)(x -3)×x (x -3)x +3-x +3=x -x +3=3. 故x 取任何有意义的值,y 值均不变.24.解:原式=x -2(x +1)(x -1)·x +1(x -2)2+1x -1 =1(x -1)(x -2)+1x -1=1(x -1)(x -2)+x -2(x -1)(x -2)=1x -2. 因为x 2-1≠0,且x 2-4x +4≠0,且x -1≠0,所以x≠-1,且x≠1,且x≠2,所以x =0. 当x =0时,原式=-12.25.解:设这班学生原来的行走速度为x km/h.易知从9:00到10:48共1.8 h , 故可列方程为2x +660+2-660x2x +1=1.8,解得x =4.经检验,x =4是原方程的解,且符合题意. 答:这班学生原来的行走速度为4 km/h. 26.解:(1)n n +1 (2)13⎝⎛⎭⎫1n -1n +3(3)仿照(2)中的结论,原方程可变形为13(1x -1x +3+1x +3-1x +6+1x +6-1x +9)=32x +18,即13x =116(x +9), 解得x =2.经检验,x =2是原分式方程的解.第17章单元检测卷(满分:120分,时间:90分钟)一、选择题(每题3分,共30分)1.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x 之间的关系式为Q =50-8x ,则下列说法正确的是( )A .Q 和x 是变量B .Q 是自变量C .50和x 是常量D .x 是Q 的函数 2.函数y =1x -2+x -2的自变量x 的取值范围是( ) A .x≥2 B .x>2 C .x≠2 D .x≤23.若函数y =m +2x 的图象在其所在象限内y 的值随x 值的增大而增大,则m 的取值范围是( )A .m >-2B .m <-2C .m >2D .m <24.设正比例函数y =mx 的图象经过点A(m ,4),且y 的值随x 值的增大而减小,则m =( ) A .2 B .-2 C .4 D .-45.汽车由A 地驶往相距120 km 的B 地,它的平均速度是30 km/h ,则汽车距B 地的路程s(km)与行驶时间t(h)的函数关系式及自变量t 的取值范围是( )A .s =120-30t(0≤t≤4)B .s =120-30t(t >0)C .s =30t(0≤t≤4)D .s =30t(t <4)6.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.关于x 的函数y =k(x +1)和y =kx(k≠0)在同一坐标系中的图象大致是( )A B C D8.在函数y =1x 的图象上有三个点的坐标为(1,y 1),⎝⎛⎭⎫12,y 2,(-3,y 3),函数值y 1,y 2,y 3的大小关系为( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 29.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是( )(第9题图)A B C D10.如图,已知直线y =12x 与双曲线y =kx(k>0)交于A ,B 两点,且点A 的横坐标为4.点C 是双曲线上一点,且纵坐标为8,则△AOC 的面积为( )(第10题图)A .8B .32C .10D .15 二、填空题(每题3分,共30分)11.点A(2,a)关于x 轴的对称点是B(b ,-3),则ab =________.12.一次函数y =kx +1的图象经过点(1,2),反比例函数y =kx 的图象经过点⎝⎛⎭⎫m ,12,则m =________. 13.已知直线y =kx +b ,若k +b =-5,kb =6,那么该直线不经过第______________象限. 14.把直线y =-x -1沿x 轴向右平移2个单位长度,所得直线对应的函数表达式为________. 15.反比例函数y 1=kx 与一次函数y 2=-x +b 的图象交于点A(2,3)和点B(m ,2).由图象可知,对于同一个x ,若y 1>y 2,则x 的取值范围是________.16.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若1x 2=1x 1+2,且y 2=y 1-12,则这个反比例函数的表达式为____________.17.直线y 1=k 1x +b 1(k 1>0)与y 2=k 2x +b 2(k 2<0)相交于点(-2,0),且两直线与y 轴围成的三角形的面积为4,那么b 1-b 2等于________.18.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系如图所示.那么,从关闭进水管起________分钟该容器内的水恰好放完.(第18题图)19.已知点A 在双曲线y =-3x 上,点B 在直线y =x -5上,且A ,B 两点关于y 轴对称.设点A 的坐标为(m ,n),则n m +mn的值是________.20.如图所示,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…,那么点A 4n +1(n 为自然数)的坐标为________(用n 表示).(第20题图)三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.已知一次函数y=32x-3.(1)请在如图所示的平面直角坐标系中画出此函数的图象;(2)求出此函数的图象与坐标轴围成的三角形的面积.(第21题图)22.如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).(1)求该反比例函数的表达式;(2)求直线BC的表达式.(第22题图)23.已知反比例函数y=m-5x(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=-x+1的图象的一个交点的纵坐标是3,求m的值.24.已知直线y=2x+3与直线y=-2x-1.(1)若两直线与y轴分别交于点A,B,求点A,B的坐标;(2)求两直线的交点C的坐标;(3)求△ABC的面积.25.1号探测气球从海拔5 m处出发,以1 m/min的速度上升,与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升.两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).(1)根据题意,填写下表:(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.(3)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?26.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h,并且甲车途中休息了0.5 h,如图是甲、乙两车行驶的路程y(km)与时间x(h)的函数图象.(第26题图)(1)求出图中m和a的值.(2)求出甲车行驶的路程y(km)与时间x(h)的函数关系式,并写出相应的x的取值范围.(3)当乙车行驶多长时间时,两车恰好相距50 km?参考答案一、1.A 2.B3.B分析:易知m+2<0,∴m<-2.4.B 5.A6.C分析:一次函数y=-x+4的图象不经过第三象限,故一次函数y=x+2m与y=-x+4的图象的交点一定不在第三象限.7.D8.D9.B分析:当点P由点A向点D运动时,y=0;当点P在DC上运动时,y随x的增大而增大;当点P 在CB上运动时,y不变;当点P在BA上运动时,y随x的增大而减小.10.D分析:点A的横坐标为4,将x=4代入y=12x,得y=2.∴点A的坐标为(4,2).∵点A是直线y=12x与双曲线y=kx(k>0)的交点,∴k=4×2=8,即y=8 x.将y=8代入y=8x中,得x=1.∴点C的坐标为(1,8).如图,过点A作x轴的垂线,过点C作y轴的垂线,垂足分别为M,N,且AM,CN的反向延长线交于点D,得长方形DMON.易得S长方形DMON=32,S△ONC=4,S△CDA=9,S△OAM=4.∴S △AOC =S 长方形DMON -S △ONC -S △CDA -S △OAM =32-4-9-4=15.(第10题答图)二、11.6 12.213.一 分析:∵kb =6>0,∴k ,b 一定同号(同时为正或同时为负).∵k +b =-5,∴k<0,b<0,∴直线y =kx +b 经过第二、三、四象限,不经过第一象限. 14.y =-x +1 15.0<x <2或x >316.y =-14x 分析:设反比例函数的表达式为y =k x ,则y 1=k x 1,y 2=k x 2.因为y 2=y 1-12,所以k x 2=k x 1-12,所以1x 2=1x 1-12k .又1x 2=1x 1+2,所以-12k =2,解得k =-14,因此反比例函数的表达式为y =-14x .17.418.8 分析:由函数图象,得进水管每分钟的进水量为20÷4=5(升),设出水管每分钟的出水量为a 升.由函数图象,得20+8(5-a)=30,解得a =154.故关闭进水管后出水管放完水的时间为30÷154=8(分).19.-313 分析:因为点A(m ,n)在双曲线y =-3x 上,所以mn =-3.因为A ,B 两点关于y 轴对称,所以点B 的坐标为(-m ,n).又点B(-m ,n)在直线y =x -5上,所以n =-m -5,即n +m =-5.所以n m +mn =m 2+n 2mn =(m +n )2-2mn mn =(-5)2-2×(-3)-3=-313. 20.(2n ,1) 分析:根据图形分别求出n =1,2,3时对应的点的坐标,然后根据变化规律即可得解.由图可知,n =1时,4×1+1=5,点A 5(2,1);n =2时,4×2+1=9,点A 9(4,1);n =3时,4×3+1=13,点A 13(6,1),所以点A 4n +1(2n ,1). 三、21.解:(1)函数图象如图所示.(2)函数的图象与坐标轴围成的三角形的面积为12×2×3=3.(第21题图)22.解:(1)设所求反比例函数的表达式为y =kx (k≠0).∵点A(1,3)在此反比例函数的图象上, ∴3=k1,∴k =3.∴该反比例函数的表达式为y =3x.(2)设直线BC 的表达式为y =k 1x +b(k 1≠0),点B 的坐标为(m ,1). ∵点B 在反比例函数y =3x 的图象上,∴1=3m,∴m =3,∴点B 的坐标为(3,1).由题意,得⎩⎪⎨⎪⎧1=3k 1+b ,0=2k 1+b ,解得⎩⎪⎨⎪⎧k 1=1,b =-2.∴直线BC 的表达式为y =x -2. 23.解:(1)∵在反比例函数y =m -5x图象的每个分支上,y 随x 的增大而增大,∴m -5<0,解得m<5. (2)当y =3时,由y =-x +1,得3=-x +1,解得x =-2. ∴反比例函数y =m -5x的图象与一次函数y =-x +1的图象的一个交点坐标为(-2,3). ∴3=m -5-2,解得m =-1.24.解:(1)对于y =2x +3,令x =0,则y =3. ∴点A 的坐标为(0,3).对于y =-2x -1,令x =0,则y =-1. ∴点B 的坐标为(0,-1). (2)解方程组⎩⎪⎨⎪⎧y =2x +3,y =-2x -1,得⎩⎪⎨⎪⎧x =-1,y =1. ∴点C 的坐标为(-1,1).(3)△ABC 的面积为12×[3-(-1)]×|-1|=2.25.解:(1)35;x +5;20;0.5x +15. (2)两个气球能位于同一高度.根据题意,得x +5=0.5x +15,解得x =20. 有x +5=25.答:这时气球上升了20 min ,都位于海拔25 m 的高度.(3)当30≤x≤50时,由题意可知1号探测气球所在位置的海拔始终高于2号探测气球,设两个气球在同一时刻所在位置的海拔相差y m.则y =(x +5)-(0.5x +15)=0.5x -10. ∵0.5>0,∴y 随x 的增大而增大. ∴当x =50时,y 取得最大值15.答:两个气球所在位置的海拔最多相差15 m. 26.解:(1)由题意,得m =1.5-0.5=1. 由于甲车在行驶时的速度都是相同的, 则有a 1=120-a 3.5-1.5,解得a =40. ∴m =1,a =40.(第26题答图)(2)如图,设直线l OA :y =k 1x ,直线l BC :y =k 2x +b 1.∵直线l OA 经过点A(1,40),直线l BC 经过点B(1.5,40),C(3.5,120), ∴⎩⎪⎨⎪⎧40=k 1,40=1.5k 2+b 1,120=3.5k 2+b 1,解得⎩⎪⎨⎪⎧k 1=40,k 2=40,b 1=-20. 又∵D 点的纵坐标为260, ∴260=40x -20,解得x =7. 综上可知,y =⎩⎪⎨⎪⎧40x (0≤x≤1),40 (1<x≤1.5),40x -20 (1.5<x≤7). (3)如图,设直线l EC :y =k 3x +b 2,将点E(2,0),C(3.5,120)的坐标分别代入,得⎩⎪⎨⎪⎧0=2k 3+b 2,120=3.5k 3+b 2,解得⎩⎪⎨⎪⎧k 3=80,b 2=-160,∴直线l EC :y =80x -160.若两车恰好相距50 km ,则时间肯定在1.5 h 之后,有两种情况,一种是乙车比甲车多行驶50 km ,另一种是甲车比乙车多行驶50 km ,由此可列方程:|(80x -160)-(40x -20)|=50, 化简,得|40x -140|=50,解得x 1=194,x 2=94.当x =194时,x -2=194-2=114;当x =94时,x -2=94-2=14.∴当乙车行驶14 h 或114 h 时,两车恰好相距50 km.第18章单元检测卷(时间:120分,满分:90分钟)一、选择题(每题3分,共30分)1.在如图所示的网格中,以格点A ,B ,C ,D ,E ,F 中的4个点为顶点,你能画出平行四边形的个数为( )A .2B .3C .4D .5(第1题图) (第2题图)2.平行四边形ABCD 与等边三角形AEF 按如图所示的方式摆放,如果∠B =45°,则∠BAE 的大小是( )A .75°B .80°C .100°D .120°3.如图,在▱ABCD 中,已知AD =12 cm ,AB =8 cm ,AE 平分∠BAD 交BC 边于点E ,则CE 的长等于( )A .8 cmB .6 cmC .4 cmD .2 cm(第3题图) (第5题图) (第6题图)4.已知平行四边形的一边长为14,下列各组数据中能分别作为它的两条对角线的长的是( )A .10与16B .12与16C .20与22D .10与405.如图,已知▱ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为( )A .(-3,2)B .(-2,-3)C .(3,-2)D .(2,-3)6.如图,在▱ABCD 中,AC ,BD 相交于点O ,AB =10 cm ,AD =8 cm ,AC ⊥BC ,则OB 等于( )A .6 cm B.73 cm C .11 cm D .273 cm7.如图,在平行四边形ABCD中,AB=8 cm,AD=12 cm,点P在AD边上以每秒1 cm的速度从点A 向点D运动,点Q在BC边上,以每秒4 cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P达到点D时停止(同时点Q也停止).在运动过程中,以P,D,Q,B四点为顶点组成平行四边形的次数有()A.4次B.3次C.2次D.1次(第7题图) (第8题图)8.如图所示,EF过▱ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB=4,BC=5,OE =1.5,那么四边形EFCD的周长是()A.10 B.11 C.12 D.139.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的平行四边形ADCE 中,DE的最小值是()A.2 B.3 C.4 D.5(第9题图) (第10题图)10.如图,在▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD边上的F点处,若△FDE的周长为14,△FCB的周长为22,则FC的长度为()A.4 B.6 C.5 D.3二、填空题(每题3分,共30分)11.在四边形ABCD中,若分别给出三个条件:①AD∥BC;②AD=BC;③AB=CD.现以其中的两个为一组,能判定四边形ABCD为平行四边形的条件是________(只填序号,填上一组即可).12.在▱ABCD中,已知点A(-1,0),B(2,0),D(0,1),则点C的坐标为________.13.已知任意直线l把▱ABCD分成两部分,如图所示,要使这两部分的面积相等,直线l所在位置需满足的条件是______________________.(第13题图) (第14题图)14.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2.则▱ABCD的周长等于________.15.如图所示,AC平分∠BAD,∠1=∠2,AB=DC=3,则BC=________.(第15题图) (第16题图)16.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD交DC的延长线于点F,若AE=3,AF=4,▱ABCD 的周长为28,则S▱ABCD=________.17.如图,在▱ABCD中,点E在CD边上运动(不与C,D两点重合),连结AE并延长与BC的延长线交于点F.连结BE,DF,若△BCE的面积为8,则△DEF的面积为________.18.如图,在▱ABCD中,AB=6 cm,∠BCD的平分线交AD于点E,则DE=________.(第17题图) (第18题图) (第19题图)19.如图,在四边形ABCD中,AD∥BC,且AD=2BC,BC=6 cm,P,Q分别从A,C同时出发,P 以2 cm/s的速度由A向D运动,Q以1 cm/s的速度由C向B运动,设运动时间为x s,则当x=________时,四边形CDPQ是平行四边形.20.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连结EF,CF.则下列结论中一定成立的是________.(把所有正确结论的序号都填在横线上)①∠DCF=12∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.(第20题图)三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.已知:如图,点P是▱ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.(第21题图)22.如图所示,已知在▱ABCD中,M,N分别是AB,CD上的点,AM=CN,E,F是AC上的点,AE=CF,试说明:四边形MENF是平行四边形.(第22题图)23.如图,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,点G,H分别为AD,BC的中点,连结GH交BD于点O.求证:EF与GH互相平分.(第23题图)24.如图所示,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC交CD 于点F.(1)求证:DE=BF.(2)连结EF,写出图中所有的全等三角形.(不要求证明)(第24题图) 25.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(第25题图)(1)求证:△ABD≌△CAE.(2)连结DE,线段DE与AB之间有怎样的位置关系和数量关系?请证明你的结论.26.如图,在平行四边形ABCD中,∠ABC=120°,∠BAD的平分线交BC于点E,交DC的延长线于点F,过点F作FG∥CE,且FG=CE,连结DG,EG,BG,CG.(1)试判断四边形EGFC的形状;(2)求证:△DCG≌△BEG;(3)试求出∠BDG的度数.(第26题图)参考答案一、1.B分析:可以画出的平行四边形有:▱ABEC,▱BDEC,▱BEFC,共3个.2.A 3.C 4.C5.D分析:由平行四边形是中心对称图形,可知C点的坐标为(2,-3).6.B7.A 分析:∵四边形ABCD 是平行四边形,∴BC =AD =12 cm ,AD ∥BC.∵四边形PDQB 是平行四边形,∴PD =BQ.∵点P 的速度是1 cm/s ,∴两点运动的时间为12÷1=12(s),∴点Q 运动的路程为12×4=48(cm),∴点Q 在BC 上运动的次数为48÷12=4(次).第一次:12-t =12-4t ,∴t =0,此时两点都没有运动.易知点Q 在BC 上的每次运动都会有PD =QB ,∴在运动过程中,以P ,D ,Q ,B 四点为顶点组成平行四边形的次数有4次,故选A. 8.C 9.B10.A 分析:由题意可知FB =AB =DC ,AE =EF ,∵△FDE 的周长为14,△FCB 的周长为22,∴△FDE 的周长+△FCB 的周长=DE +DF +EF +FC +BC +FB =36,∴DE +AE +DF +FC +BC +AB =36.∵DE +AE =AD =BC ,DF +FC =DC =AB ,∴DC +BC =18,∴BC +FB =18,∴FC =△FCB 的周长-(BC +FB)=22-18=4.二、11.①②(答案不唯一) 12.(3,1)13.l 过平行四边形对角线的交点14.20 分析:∵四边形ABCD 为平行四边形,∴AE ∥BC ,AD =BC ,AB =CD ,∴∠AEB =∠EBC.∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠ABE =∠AEB ,∴AB =AE.∵AE +DE =AD =BC =6,∴AE +2=6,∴AE =4,∴AB =CD =4.∴▱ABCD 的周长为4+4+6+6=20. 15.316.24 分析:设BC =x ,CD =y.∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC.∵▱ABCD 的周长为28,∴x +y =14.∵BC·AE =CD·AF ,∴3x =4y.解方程组⎩⎪⎨⎪⎧x +y =14,3x =4y ,得⎩⎪⎨⎪⎧x =8,y =6,∴S ▱ABCD =3×8=24.17.8 分析:连结AC.易知AB ∥CE ,∴S △ACE =S △BCE =8.∵CF ∥AD ,∴S △CAD =S △FAD .∵S △CAD =S △AED +S △ACE ,S △FAD =S △AED +S △DEF ,∴S △DEF =S △ACE =8.18.6 cm 分析:由四边形ABCD 是平行四边形,得AD ∥BC ,所以∠BCE =∠DEC ,由CE 是∠BCD 的平分线,可得∠DCE =∠BCE ,从而可得∠DCE =∠DEC ,所以DE =DC ,又易知DC =AB =6 cm ,所以DE =6 cm.19.4 分析:当运动时间为x s 时,AP =2x cm ,QC =x cm ,因为四边形CDPQ 是平行四边形,所以DP =CQ ,即x =12-2x ,解得x =4. 20.①②④三、21.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠FCP =∠EAP.又∵点P 是AC 的中点,∴AP =CP. 在△FCP 和△EAP 中, ⎩⎪⎨⎪⎧∠FPC =∠EPA ,CP =AP ,∠FCP =∠EAP , ∴△FCP ≌△EAP.∴AE =CF.22.解:因为四边形ABCD 是平行四边形,所以AB ∥DC ,所以∠MAE =∠NCF ,又因为AM =CN ,AE =CF ,所以△AME ≌△CNF.所以ME =NF.又因为AF =AE +EF ,CE =CF +EF ,所以AF =CE.又因为∠MAF =∠NCE ,AM =CN ,所以△AMF ≌△CNE ,所以MF =NE.所以四边形MENF 是平行四边形. 23.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,AD =BC ,AD ∥BC.∴∠ABE =∠CDF. 又∵AE ⊥BD ,CF ⊥BD , ∴∠AEB =∠CFD =90°. ∴△ABE ≌△CDF.∴BE =DF. ∵G ,H 分别为AD ,BC 的中点, ∴GD =12AD ,HB =12BC.∴GD =HB.∵AD ∥BC ,∴∠GDO =∠HBO ,∠OGD =∠OHB. ∴△GDO ≌△HBO. ∴DO =BO ,GO =HO. 又∵DF =BE ,∴OF =OE. ∴EF 与GH 互相平分.24.(1)证明:∵四边形ABCD 是平行四边形,∴AD =CB ,AB =CD ,CD ∥AB ,∴∠CDE =∠AED.∵DE 平分∠ADC ,∴∠ADE =∠CDE ,∴∠ADE =∠AED ,∴AE =AD.同理可得CF =CB. 又∵AD =CB ,∴AE =CF ,∴DF =BE ,∴四边形DEBF 是平行四边形.∴DE =BF. (2)解:△ADE ≌△CBF , △DEF ≌△BFE.25.(1)证明:因为AB =AC ,所以∠B =∠ACB ,又因为AD 是BC 边上的中线, 所以AD ⊥BC ,即∠ADB =90°. 因为AE ∥BC ,所以∠EAC =∠ACB , 所以∠B =∠EAC.因为CE ⊥AE ,所以∠CEA =90°, 所以∠ADB =∠CEA. 又AB =CA ,所以△ABD ≌△CAE(A.A.S.). (2)解:AB ∥DE 且AB =DE.证明:由△ABD ≌△CAE 可得AE =BD ,又AE ∥BD ,所以四边形ABDE 是平行四边形,所以AB ∥DE 且AB =DE.26.(1)解:∵FG∥CE且FG=CE,∴四边形EGFC是平行四边形.(2)证明:∵在平行四边形ABCD中,∠ABC=120°,AF平分∠BAD,AD∥BC,∴∠BAE=∠DAE=∠AEB=30°,∴AB=BE,∠CEF=30°.又∵∠DCB=180°-120°=60°,∴∠CFE=30°.∴∠CEF=∠CFE.∴CF=CE.∵四边形EGFC是平行四边形,∴CF∥EG,CF=EG.∴∠CEG=∠DCB=60°,CE=EG.∴△CEG是等边三角形,∠BEG=120°.∴CG=EG,∠ECG=60°.∴∠DCG=120°,∴∠DCG=∠BEG.又∵DC=AB=BE,∴△DCG≌△BEG.(3)解:∵△DCG≌△BEG,∴DG=BG,∠CGD=∠EGB,∴∠BGD=∠EGB+∠DGE=∠CGD+∠EGD=∠EGC=60°,∴△BDG是等边三角形,∴∠BDG=60°.第19章单元检测卷(满分:120分,时间:90分钟)一、选择题(每题3分,共30分)1.下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形2.如图,矩形OBCD的顶点C的坐标为(1,3),则对角线BD的长等于( )A.7 B.2 2 C.2 3 D.10(第2题图)(第3题图)(第4题图)3.如图,在菱形ABCD中,∠C=108°,AD的垂直平分线交对角线BD于点P,垂足为E,连结AP,则∠APB等于()A. 50°B.72° C. 70°D.80°4.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2),若反比例函数y =kx (x>0)的图象经过点A ,则此反比例函数的表达式为( )A .y =3x (x>0)B .y =-3x (x>0)C .y =-6x (x>0)D .y =6x (x>0)5.已知四边形ABCD 是平行四边形,下列结论中错误的有( )①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形.A .1个B .2个C .3个D .4个6.如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为( )A.12B.98C .2D .4(第6题图)7.如图,菱形ABCD 的周长为16,面积为12,P 是对角线BD 上一点,分别作P 点到直线AB ,AD 的垂线段PE ,PF ,则PE +PF 等于( )A .6B .3C .1.5D .0.75(第7题图) (第8题图)8.如图所示,在正方形ABCD 的内部,作等边三角形BCE ,则∠AEB 的度数为( )A .60°B .65°C .70°D .75°9.如图,四边形ABCD 是菱形,AB =5,AC =6,AE ⊥BC 于E ,则AE 等于( )A .4 B.125 C.245D .5(第9题图) (第10题图)10.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC ,BD 相交于点O ,过点P 分别作AC ,BD 的垂线,分别交AC ,BD 于点E ,F ,交AD ,BC 于点M ,N.下列结论:①△APE ≌△AME ;②PM +PN =BD ;③PE 2+PF 2=PO 2.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题(每题3分,共30分)11.在四边形ABCD中,对角线AC,BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形.如(1)(2)(5)⇒四边形ABCD是菱形,再写出符合要求的两个:________⇒四边形ABCD是菱形;________⇒四边形ABCD 是菱形.12.如图所示,矩形ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C,则矩形的一边AB的长为________.(第12题图) (第13题图) (第14题图)13.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.14.如图,在△ABC中,∠ACB=90°,D是AC的中点,DE⊥AC,AE∥BD,若BC=4,AE=5,则四边形ACBE的周长是________.15.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF.其中正确的结论是________.(填序号)(第15题图) (第16题图) (第17题图)16.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ的周长的最小值为________.17.如图,在矩形ABCD中,AB=4,BC=6,点E是AD上一点,把△ABE沿BE折叠,使点A落在点F处,点Q是CD上一点,将△BCQ沿BQ折叠,点C恰好落在直线BF上的点P处.若∠BQE=45°,则AE=________.18.如图,正方形ABCD外有一点M,连结AM,BM,CM.若△AMB,△BMC和正方形ABCD的面积分别是50 cm2,30 cm2和100 cm2,则AM=________cm.19.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则AM的最小值为____________.(第18题图)(第19题图) (第20题图)20.在平面直角坐标系中,正方形A1B1C1O、正方形A2B2C2C1、正方形A3B3C3C2、正方形A4B4C4C3、…、正方形A n B n C n C n-1按如图所示的方式放置,其中点A1,A2,A3,A4,…,A n均在一次函数y=kx+b的图象上,点C1,C2,C3,C4,…,C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,在矩形ABCD中,AC,BD相交于点O,AE平分∠BAD,交BC于点E,若∠CAE=15°,求∠BOE的度数.(第21题图)22.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于点F,交BC 于点E,过点E作EG⊥AB于G,连结GF.求证:四边形CFGE是菱形.(第22题图)23.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE折叠至△AFE,延长EF 交BC于点G,连结AG.(1)求证:△ABG≌△AFG;(2)求BG的长.(第23题图)24.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ABC=58°,则∠DPE=________°.(第24题图)25.如图,在菱形ABCD中,E,F分别是BC,CD的中点.(1)求证:△ABE≌△ADF;(2)过点C作CG∥EA交AF于点H,交AD于点G,若∠BAE=30°,∠BCD=130°,求∠AHC的度数.(第25题图)26.在▱ABCD中,AC,BD交于点O,过点O作直线EF,GH,分别交平行四边形的四条边于E,F,G,H四点,连结EG,GF,FH,HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是________;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是________;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.(第26题图)参考答案一、1.A 2.D 3.B4.D 分析:∵菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2),∴点A 的坐标为(3,2),∴k3=2,解得k =6,∴y =6x(x>0).故选D.5.A 分析:①当AB =BC 时,它是菱形,正确;②当AC ⊥BD 时,它是菱形,正确;③当∠ABC =90°时,它是矩形,正确;④当AC =BD 时,它是矩形,因此④是错误的.6.C 分析:∵AB =8,AD =6,将纸片折叠,使得AD 边落在AB 边上,∴DB =8-6=2,∠EAD =45°.又∵将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,∴AB =AD -DB =6-2=4,△ABF 为等腰直角三角形,∴BF =AB =4,∴CF =BC -BF =6-4=2,而EC =DB =2,∴△CEF 的面积=12×2×2=2.7.B 8.D 9.C10.D 分析:∵四边形ABCD 是正方形,∴∠PAE =∠MAE =45°.∵PM ⊥AC ,∴∠PEA =∠MEA.又∵AE =AE ,∴△APE ≌△AME ,故①正确;由①得PE =ME ,∴PM =2PE.同理PN =2PF ,又易知PF =BF ,四边形PEOF 是矩形,∴PN =2BF ,PM =2FO ,∴PM +PN =2FO +2BF =2BO =BD ,故②正确;在Rt △PFO 中,∵FO 2+PF 2=PO 2,而PE =FO ,∴PE 2+PF 2=PO 2,故③正确. 二、11.(1)(2)(6);(3)(4)(5)(答案不唯一)12.3 分析:连结EC.因为FC 垂直平分BE ,所以BC =EC.又因为AD =BC ,AE =1,E 是AD 的中点,所以DE =1,EC =AD =2,利用勾股定理可得CD = 3.所以AB = 3.13.12 点拨:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12×6×8=24.∵O 是菱形两条对角线的交点,∴阴影部分的面积=12×24=12.14.18 分析:易证△AED ≌△DBC ,∴BD =AE =5,由勾股定理得CD =3,∴AC =2CD =6,易得四边形BCDE 是矩形,∴BE =CD =3,∴四边形ACBE 的周长为4+6+5+3=18. 15.①②16.6 分析:连结DE 交AC 于点Q′.∵四边形ABCD 是正方形,∴点B 与点D 关于直线AC 对称,∴DE 的长即为BQ +QE 的最小值,Q′是使△BEQ 的周长为最小值时的点.由勾股定理得DE =AD 2+AE 2=42+32=5,∴△BEQ 的周长的最小值=DE +BE =5+1=6.17.2 分析:由折叠知∠EBQ =12∠ABC =45°.∵∠BQE =45°,∴∠BEQ =90°,BE =EQ.易证△BAE ≌△EDQ ,∴ED =AB =4,∴AE =AD -ED =6-4=2.18.356 分析:作ME ⊥AB ,交AB 的延长线于点E.作MG ⊥BC ,交CB 的延长线于点G.设MG =m cm ,ME =n cm.由题意可知AB =10 cm ,∵△ABM 和△BMC 的面积分别为50 cm 2,30 cm 2,∴10n =50×2,10m =30×2,∴n =10,m =6,∴AE =16 cm.∴在Rt △AME 中,AM =162+102=356(cm).19.2.4 分析:连结AP.在△ABC 中,∵AB =6,AC =8,BC =10,∴AB 2+AC 2=BC 2,∴∠BAC =90°.又∵PE ⊥AB ,PF ⊥AC ,∴四边形AFPE 是矩形,∴EF =AP.∵M 是EF 的中点,∴AM =12AP.根据直线外一点与直线上任一点所连的线段中,垂线段最短,可知当AP ⊥BC 时,AP 最短,同样AM 也最短.当AP ⊥BC 时,12AB·AC =12BC·AP ,即12×6×8=12×10AP ,∴AP =4.8.∴AM 的最小值为12×4.8=2.4.20.(2n -1-1,2n -1) 分析:本题运用从特殊到一般的思想.由题意,得点A 1(0,1),A 2(1,2),A 3(3,4),A 4(7,8),…,根据以上总结规律,可得A n (2n -1-1,2n -1).三、21.解:∵四边形ABCD 是矩形,∴∠BAD =∠ABC =90°,AO =BO =12AC =12BD.∵AE 是∠BAD 的平分线,∴∠BAE =45°.又∵∠CAE =15°,∴∠BAC =60°. ∴△AOB 是等边三角形,∴∠ABO =60°,AB =OB.在Rt △ABE 中,∵∠BAE =45°,∴∠AEB =90°-45°=45°=∠BAE ,∴AB =BE.∴OB =BE.∴∠BOE =∠BEO.又∵∠OBE =∠ABC -∠ABO =90°-60°=30°, ∴∠BOE =12×(180°-30°)=75°.22.证明:由∠ACB =90°,AE 平分∠BAC ,EG ⊥AB , 易证△ACE ≌△AGE , ∴CE =EG ,∠AEC =∠AEG. ∵CD 是AB 边上的高,EG ⊥AB , ∴EG ∥CD , ∴∠EFC =∠AEG , ∴∠EFC =∠AEC , ∴FC =EC ,∴FC =EG , ∴四边形CFGE 是平行四边形. 又∵GE =CE ,∴四边形CFGE 是菱形.23.(1)证明:∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB. 由折叠可知,AD =AF ,∠AFE =∠D =90°,∴∠AFG =90°,AB =AF. ∴∠B =∠AFG =90°. 又∵AG =AG ,∴Rt △ABG ≌Rt △AFG(H.L.). (2)解:∵△ABG ≌△AFG ,∴BG =FG. 设BG =FG =x ,则GC =6-x , ∵E 为CD 的中点,。
八级数学测试卷[下学期]华师大版
04-05学年八年级(下)数学测试卷班级: 姓名:一、选择题(每小题3分,共30分)1、16的平方根是( ) A 、±4 B 、+4 C 、-4 D 、162、无限不循环小数是( ) A 、无理数 B 、分数 C 、负数 D 、正数3、下列语句正确的是( )A 、带根号的数是无理数B 、不带根号的数一定是有理数C 、无理数一定是无限不循环小数D 、无限小数都是无理数4、已知30=477.5,则下列各式中成立的是( )A 、77.54300=B 、7.5473000=C 、05477.03.0=D 、005477.000003.0=5、如果x x -=-5)5(2,那么( )A 、5>xB 、5≤xC 、5=xD 、以上结论都不对6、若0<x ,则23x 等于( ) A 、x 3 B 、x 3- C 、x 3- D 、x 37、下列最简二次根式是( ) A 、a 27 B 、24a + C 、a1 D 、b a 23 8、下列与3是同类根式的是( ) A 、18 B 、61 C 、31- D 、9 9、计算144925⨯的结果是( ) A 、45 B 、±45 C 、180 D 、±180 10、当A=23-,B=32-时,A 与B 满足( )A 、A >B B 、A <BC 、A =BD 、不确定二、填空题(每小题3分,共30分)11、计算:=-⨯--)169(2710212、代数式41-x 中x 的取值范围是13、若52<<x ,则=-+-22)5()2(x x 14、若b a <,则化简=+--222b ab a ba a 15、将根号外字母移入根号内,则有a a3-= 16、若011=++-b a ,则=-201100b a17、若最简根式b a -3与a b a -+47是同类二次根式,则=a ,=b18、已知32+=x ,则=+-1062x x 。
【华东师大版】初二数学下期末模拟试卷(附答案)
一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数2.某校10名学生参加某项比赛成绩统计如图所示。
对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .参赛学生最高成绩与最低成绩之差是153.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .84.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .85.关于一次函数2y x b =-+(b 为常数),下列说法正确的是( ) A .y 随x 的增大而增大 B .当4b =时,直线与坐标轴围成的面积是4C .图象一定过第一、三象限D .与直线32y x =-相交于第四象限内一点6.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定7.某水电站蓄水池有2个进水口,1个出水口,每个进水口进水量1y 与时间x 的关系为1y x =,出水口出水量2y 与时间x 的关系为22y x =,已知某天0点到6点,进行机组试运行,试机时至少打开1个水口,且水池的蓄水量V 与时间的关系.如图所示:给出以下判断:①0到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是( )A .①B .②C .②③D .①③8.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个9.在ABCD 中AB BC ≠.F 是BC 上一点,AE 平分FAD ∠,且E 是CD 的中点,则下列结论:①AB BF =;②AF CF CD =+;③AF CF AD =+;④AE EF ⊥,其中正确的是( )A .①②B .②④C .③④D .①②④ 10.下列二次根式中,最简二次根式是( ) A .22a b -B .27C .32a a b -D .0.5a11.如图在ABCD 中,对角线,AC BD 相交于点O ,AOD △与AOB 的周长相差3,8AB =,那么AD 为( )A .5B .8C .11或5D .11或1412.如图,在平面直角坐标系中,点P 为x 轴上一点,且到A (0,2)和点B (5,5)的距离相等,则线段OP 的长度为( )A .3B .4C .4.6D .25二、填空题13.如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作2S 甲、2S 乙,则2S 甲____2S 乙.(填“>”,“=”或“<”)14.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表: 植树棵数(单位:棵) 4 5 6 8 10 人数(人)302225158则这100名学生所植树棵数的中位数为_____. 15.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 16.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.17.如图,正方形ABCD 的边长为2,O 是对角线BD 上一动点(点O 与端点B ,D 不重合),OM ⊥AD 于点M ,ON ⊥AB 于点N ,连接MN ,则MN 长的最小值为_____.18.如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若1DE =,则BF 的长为__________.19.已知20202020m a a =---,则m a =_____________.20.如图,45,AOB AOB ∠=︒∠内有一定点P ,且1OP =,在OA 上有一动点Q ,OB 上有一动点R ,若PQR 周长最小,则最小周长是___________.三、解答题21.下表是随机抽取的某公司部分员工的月收入资料. 月收入/元 45000 18000 10000 5500 5000 3400 3000 2000 人数111361112(1)请计算样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平.22.某中学七、八年级各选10名同学参加“创全国文明城市”知识竞赛,计分10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或9分以上为优秀,这次竞赛后,七、八年级两支代表队成绩分布的条形统计图和成绩分析表如下,其中七年级代表队得6分、10分选手人数分别为a ,b . 队列 平均分中位数方差合格率优秀率七年级 6.7m3.41 90% n八年级7.1 7.5 1.6980%10%(1)根据图表中的数据,求a,b的值.(2)直接写出表中的m= ,n=.(3)你是八年级学生,请你给出两条支持八年级队成绩好的理由.23.科学研究发现.地表以下岩层的温度y(℃)与所处深度x(千米)之间近似地满足一次函数关系.经测量,在深度2千米的地方,岩层温度为90℃;在深度5千米的地方,岩层温度为195℃.(1)求出y与x的函数表达式;(2)求当岩层温达到1805℃时,岩层所处的深度.24.如图,已知,四边形ABCD是平行四边形,AE∥BD,交CD的延长线于点E,EF BC⊥交BC延长线于点F,求证:四边形ABFD是等腰梯形.25.计算:1181220202-⎛⎫+-+-⎪⎝⎭.26.在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据方差的意义即可判断. 【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 故选:B . 【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.C解析:C 【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案. 【详解】解:∵90出现了5次,出现的次数最多,∴众数是90; 故A 正确;∵共有10个数,∴中位数是第5、6个数的平均数, ∴中位数是(90+90)÷2=90; 故B 正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89; 故C 错误;参赛学生最高成绩与最低成绩之差是:95-80=15; 故D 正确. 故选:C . 【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.3.C解析:C 【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案. 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9 ∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C .【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.4.B解析:B 【解析】 【分析】众数是出现次数最多的数,据此求解即可. 【详解】∵数据4出现了2次,最多, ∴众数为4, 故选:B . 【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.5.B解析:B 【分析】由一次函数的增减性判断A ;通过求直线与坐标轴交点可判断B ;根据一次函数图象与系数的关系判断C ;根据k 值相同而b 值不相同两条直线平行判断D ;. 【详解】解:A 、因为-2<0,所以y 随x 的增大而减小,故A 错误;B 、当b=4时,直线与坐标轴的交点分别为(2,0),(0,4),所以与坐标轴围成的面积是4,故B 正确;C 、图象一定过第二、四象限,故C 错误;D 、2y x b =-+与直线y=3-2x 重合或平行,不相交,故D 错误; 故选:B . 【点睛】本题主要考查了一次函数的图象与性质,采用数形结合的方法求解是关键.6.A解析:A 【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解. 【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小, ∵-2<3, ∴12y y >, 故选:A . 【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.7.A解析:A【分析】根据题意可以得出进水速度和出水速度,再根据图象中的折线走势,判断进水、出水状态解答即可.【详解】解:根据题意,每个进水口速度是每小时1万立方米,出水速度是每小时2万立方米,由图象可知,①在0到3点,蓄水量每小时增加2万立方米,即0到3点只进水不出水,正确;②在3点到4点,蓄水量每小时减少1万立方米,即打开一个进水口和一个出水口,错误;③在4点到6点,需水量没发生变化,即打开两个进水口和一个出水口,错误,故选:A.【点睛】本题考查一次函数的图象与性质,能根据函数图象获取有效数据和所需条件是解答的关键.8.B解析:B【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,甲始终是匀速行进,乙的行进不是匀速的,故①正确;-=个小时到达目的地,故②错误;乙用了50.5 4.5乙比甲迟出发0.5小时,故③正确;甲在出发不到5小时后被乙追上,故④错误;故选:B.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.C解析:C【分析】首先延长AD,交FE的延长线于点M,易证得△DEM≌△CEF,即可得EM=EF,又由AE 平分∠FAD,即可判定△AEM是等腰三角形,由三线合一的知识,可得AE⊥EF,进而可对各选项进行判断.【详解】解:延长AD,交FE的延长线于点M,∵四边形ABCD是平行四边形,∴AD ∥BC , ∴∠M =∠EFC , ∵E 是CD 的中点, ∴DE =CE ,在△DEM 和△CEF 中,M EFC DEM CEF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEM ≌△CEF (AAS ), ∴EM =EF , ∵AE 平分∠FAD , ∴AM =AF ,AE ⊥EF .即AF =AD +DM =CF +AD ;故③,④正确,②错误. ∵AF 不一定是∠BAD 的角平分线, ∴AB 不一定等于BF ,故①错误. 故选:C .【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.A解析:A 【分析】根据最简二次根式的定义逐项判断即可得. 【详解】A 22a b -是最简二次根式,此项符合题意;B 2733=C ()322a a b a a b a a b -=-=-D 20.52a aa ==故选:A . 【点睛】本题考查了最简二次根式,熟记定义是解题关键.11.C解析:C 【分析】根据平行四边形的性质可得BO=DO ,再根据AOD △与AOB 的周长相差3,可分情况得出结果. 【详解】解:∵四边形ABCD 是平行四边形, ∴BO=DO ,AO=AO ,∵AOD △与AOB 的周长相差3, ∴AB-AD=3,或AD-AB=3, ∵AB=8,∴AD 的长为5或11, 故选C . 【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形对角线互相平分.12.C解析:C 【分析】设点P (x ,0),根据两点间的距离公式列方程,即可得到结论. 【详解】解:设点P (x ,0), 根据题意得,x 2+22=(5﹣x )2+52, 解得:x =4.6, ∴OP =4.6, 故选:C . 【点睛】本题考查了利用勾股定理求两点间的距离,熟练掌握两点间的距离公式是解题的关键.二、填空题13.【分析】先分别求出甲乙的平均数再根据方差公式计算各自的方差进行比较即可得【详解】即故答案为【点睛】本题考查了方差的计算熟练掌握方差的计算公式是解题的关键 解析:<【分析】先分别求出甲、乙的平均数,再根据方差公式计算各自的方差,进行比较即可得. 【详解】87869823==63x +++++甲,74795713==62x +++++乙, 222221232323238S =38769=633339⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦甲, 2222211313131331S =37459=6222212⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙, 831912<, 即22S S <甲乙,故答案为<.【点睛】本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.14.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.4【分析】首先求出直线y =x ﹣1向上平移m 个单位长度得到y =﹣1+m 结合y =x+3即可求得m 的值【详解】解:直线y =x ﹣1向上平移m 个单位长度得到直线y =x+3∴﹣1+m =3解得m =4故答案为4【点解析:4【分析】首先求出直线y =12x ﹣1向上平移m 个单位长度得到y =12x ﹣1+m ,结合y =12x+3,即可求得m 的值.【详解】解:直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3, ∴﹣1+m =3,解得m =4,故答案为4.【点睛】此题主要考查了一次函数图象与几何变换,关键是掌握直线y=kx+b 向上平移a 个单位,则解析式为y=kx+b+a ,向下平移a 个单位,则解析式为y=kx+b-a .16.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.17.1【分析】连接AO 可证四边形AMON 是矩形可得AO =MN 当AO ⊥BD 时AO 有最小值即MN 有最小值由等腰直角三角形的性质可求解【详解】解:如图连接AO ∵四边形ABCD 是正方形∴AB =AD =BD =AB =解析:1.【分析】连接AO ,可证四边形AMON 是矩形,可得AO =MN ,当AO ⊥BD 时,AO 有最小值,即MN 有最小值,由等腰直角三角形的性质可求解.【详解】解:如图,连接AO ,∵四边形ABCD是正方形,∴AB=AD=2,BD=2AB=2,∠DAB=90°,又∵OM⊥AD,ON⊥AB,∴四边形AMON是矩形,∴AO=MN,∵当AO⊥BD时,AO有最小值,∴当AO⊥BD时,MN有最小值,此时AB=AD,∠BAD=90°,AO⊥BD,∴AO=1BD=1,2∴MN的最小值为1,故答案为:1.【点睛】本题考查了正方形的性质,矩形的判定和性质,垂线段最短,等腰直角三角形的性质,利用矩形的对角线相等,把线段MN的最小值转化为线段AO的最小值是解题的关键. 18.【分析】连接FE根据题意得CD=2AE=设BF=x则FG=xCF=2-x在Rt△GEF中利用勾股定理可得EF2=(-2)2+x2在Rt△FCE中利用勾股定理可得EF2=(2-x)2+12从而得到关于解析:51【分析】连接FE,根据题意得CD=2,AE=5,设BF=x,则FG=x,CF=2-x,在Rt△GEF中,利用勾股定理可得EF2=(5-2)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(2-x)2+12,从而得到关于x方程,求解x即可.【详解】解:连接EF,如图,∵E是CD的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴=设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴2,在Rt △GFE 中,222222)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴22222)(2)1x x +=-+解得:1x ,即1,1【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.1【分析】根据二次根式有意义的条件列出不等式求出am 根据指数为0得到答案【详解】解:根据题意得2020﹣a≥0a ﹣2020≥0解得a =2020则m =0∴am =20200=1故答案为:1【点睛】本题考解析:1【分析】根据二次根式有意义的条件列出不等式,求出a 、m ,根据指数为0,得到答案.【详解】解:根据题意得, 2020﹣a ≥0,a ﹣2020≥0,解得,a =2020,则m =0,∴a m =20200=1,故答案为: 1.【点睛】本题考查的是二次根式有意义的条件和0指数幂,掌握二次根式的被开方数是非负数是解题的关键.20.【分析】作点P 关于OA 的对称点关于OB 的对称点连接与OAOB 分别相交于点QR 根据轴对称的性质可得从而得到△PQR 的周长并且此时有最小值连接再求出为等腰直角三角形再根据等腰直角三角形的性质求解即可【详【分析】作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R ,根据轴对称的性质可得1PQ PQ =,2PR P R =,从而得到△PQR 的周长12PP =,并且此时有最小值,连接12,PO P O ,再求出12POP△为等腰直角三角形,再根据等腰直角三角形的性质求解即可.【详解】解:如图,作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R ,所以,1PQ PQ =,2PR P R =, 所以,PQR 的周长1212PQ QR PR PQ QR P R PP ++=++=,由两点之间线段最短得,此时PQR 周长最小,连接12,PO P O ,则1122,,AOP AOP OP OP BOP BOP OP OP ∠=∠=∠=∠=,,所以,12121224590OP OP OP POP AOB ===∠=∠=⨯︒=︒,,所以,12POP △为等腰直角三角, 所以,22121222PP OP OP ===, 即PQR 2. 2.【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于作辅助线得到与PQR 周长相等的线段.三、解答题21.(1)平均数:6150元;中位数:3200元;(2)乙推断比较科学合理,答案见解析.【分析】(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入;【详解】解:(1)平均数:450001180001100001550035000634001300011200026150111361112⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=+++++++(元)中位数:这组数据共有26个,第13 、14个数据分别为3400,3000, 所以样本的中位数为:3400300032002+=(元) (2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.由题意可知,样本中的26名员工,只有3位员工的收入在6150以上,原因是该样本数据极差较大,所以平均数不能真实的反映实际情况.【点睛】本题考查的知识点是平均数与中位数,掌握平均数与中位数的求法是解此题的关键. 22.(1)51a b =⎧⎨=⎩;(2)6m = 20%n =;(3)详见解析. 【分析】(1)根据七年级代表队的总人数为10人以及七年级的成绩的平均分为6.7,列方程组可求出a 与b 的值;(2)根据(1)a 与b 的值,确定出m 与n 的值即可;(3)从中位数,平均数,方差等角度考虑,给出两条支持八年级队成绩好的理由即可.【详解】解:(1)由题意,得 101111 6.73167181911010a b a b +=----⎧⎪=⨯++⨯+⨯+⨯+⎨⎪⎩,即:661040a b a b +=⎧⎨+=⎩,解得:51a b =⎧⎨=⎩. (2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6; 优秀率为111=105+=20%,即n=20%; (3)答案不唯一.如:支持八年级队成绩好的理由有: ①八年级队的平均分比七年级队高,说明总成绩八年级好;②八年级队中位数是7.5,而七年级队中位数是6,说明八年级队半数以上的学生比七年级队半数以上成绩好【点睛】此题考查了条形统计图,以及中位数,平均数,以及方差,弄清概念是解题的关键. 23.(1)3520y x =+;(2)岩层所处的深度是51km【分析】(1)设y 与x 的函数关系式为y kx b =+,把()2,90,()5,195带入求解即可; (2)当1805y =时,求出x 的值即可;【详解】解:(1)设y 与x 的函数关系式为y kx b =+, 2905195k b k b +=⎧⎨+=⎩, 解得,3520k b =⎧⎨=⎩, 即y 与x 的函数关系式为3520y x =+;(2)当1805y =时,18053520x =+,解得,51x =,即当岩层温达到1805℃时,岩层所处的深度是51km .【点睛】本题主要考查了一次函数的应用,准确分析计算是解题的关键.24.见解析.【分析】首先证明四边形ABDE 是平行四边形,即可得AB=DE ,等量代换可得CD=DE ,根据直角三角形斜边中线的性质定理可得DF =CD =DE ,进而可得AB=DF ,再说明线段AB 和DF 不平行即可求证结论.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB CD =.∴AB ∥DE ;又∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB DE =.∴CD DE =.∵EF BC ⊥,∴DF =CD =DE .∴AB DF =.∵CD 、FD 交于点D ,∴线段AB 与线段FD 不平行.∴四边形ABFD 是等腰梯形.【点睛】本题考查平行四边形的判定及其性质、梯形的判定,直角三角形的斜边中线的性质定理,解题的关键是掌握两腰相等的梯形是等腰梯形.25.【分析】利用二次根式的化简,去绝对值,负整数指数幂,零指数幂进行计算,再进行混合加减即可.【详解】11120202-⎛⎫+-⎪⎝⎭121=+-=.【点睛】本题考查二次根式的混合运算.掌握二次根式的化简,绝对值、负整数指数幂、零指数幂的意义是计算本题的关键.26.△ABC的面积为84.【分析】先根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【详解】∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,,∴BC=BD+CD=6+15=21,∴S△ABC=12BC•AD=12×21×8=84.∴△ABC的面积为84.【点睛】此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.。
【华东师大版】八年级数学下期末试卷(附答案)
一、选择题1.八年级某班五个合作学习小组人数如下:5,7,6,x ,7.已知这组数据的平均数是6,则x 的值为( ) A .7 B .6 C .5 D .4 2.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .03.某学习小组的5名同学在一次数学文化节竞赛活动中的成绩分别是:92分,96分,90分,92分,85分,则下列结论正确的是( ) A .平均数是92B .中位数是90C .众数是92D .极差是74.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。
已知某同学从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a 颗球的号码小于40,有b 颗球的号码大于40,则关于a,b 的值,下列选项正确的是( ) A .a=15B .a=16C .b=24D .b=355.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .6.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .57.甲、乙两辆汽车分别从A 、B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为()y km 甲、()y km 乙,甲车行驶的时间为(h)x ,y 甲、y 乙与x 之间的函数图象如图所示,结合图象下列说法不正确的是( )A .甲车的速度是80/km hB .乙车休息前的速度为100/km hC .甲走到200km 时用时2.5hD .乙车休息了1小时8.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-9.下列计算正确的是( )A .532-=B .832112-=C .236⨯=D .824÷=10.矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,连接AG ,取AG 的中点H ,连接EH .若4AB CF ==,2BC CE ==,则EH =( )A 2B .2C 3D 511.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .43C .43+D .423+12.如图,在Rt ABC 中,AB AC =,BAC 90∠=︒,点D ,E 为BC 上两点.DAE 45∠=︒,F 为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论: ①CE BF =;②222BD CE DE +=;③ADE 1S AD EF 4=⋅△;④222CE BE 2AE +=,其中正确的是( )A .①②③④B .①②④C .①③④D .②③二、填空题13.商店某天销售了11件衬衫,其领口尺寸统计如下表: 领口尺寸(单位:cm ) 38 39 40 41 42 件数14312则这11件衬衫领口尺寸的中位数是________cm .14.某市某一周的PM 2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数)如表,则该周PM 2.5指数的众数为________.15.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③16.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______. 17.如图,直线a 过正方形ABCD 的顶点A ,点B 、D 到直线a 的距离分别为1、3,则正方形的边长为_______.18.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.19.23()a -=______(a≠0),2(3)-=______,132)-=______. 20.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,5AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.三、解答题21.嘉淇同学利用业余时间进行射击训练,一共射击 7 次,经过统计,制成如图所示的折线统计图.(1)这组成绩的众数是;中位数是;(2)求这组成绩的方差;22.学校为了让同学们走向操场、积极参加体育锻炼,启动了“学生阳光体育运动”,张明和李亮在体育运动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:平均数中位数方差张明13.30.004李亮13.30.02(1)张明第2次的成绩为:秒;(2)张明成绩的平均数为:;李亮成绩的中位数为:;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.23.己知,如图,在平面直角坐标系中,直线y kx b =+经过点(3-,4-),(6,2),且分别交x 轴、y 轴于A 、B 两点. (1)确定直线y kx b =+的表达式: (2)求A 、B 两点的坐标; (3)求AOB 的面积;(4)过AOB 的顶点B 的一条直线把AOB 分成面积相等的两部分,求这条直线表达式.24.已知:如图所示,在平行四边形ABCD 中,DE 、BF 分别是∠ADC 和∠ABC 的角平分线,交AB 、CD 于点E 、F ,连接BD 、EF . (1)求证:BD 、EF 互相平分;(2)若∠A =60°,AE =2EB ,AD =4,求线段BD 的长.25.(1)计算:))2323251-.(2)先化简,再求值:221193x x x +⎛⎫÷- ⎪-+⎝⎭,其中32x =+. 26.如图,ABC ∆三个顶点的坐标分别是(1,1)A ,(4,2)B ,(3,4)C .(1)画出ABC ∆关于y 轴对称的111A B C ∆. (2)ABC ∆的面积是___________.(3)在x 轴上求作一点P ,使PAB ∆的周长最小,并求出PAB ∆周长的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据平均数的计算公式列出算式,再进行计算即可得出x 的值. 【详解】解:∵5,7,6,x ,7的平均数是6,∴15(5+7+6+x +7)=6, 解得:x =5; 故选:C . 【点睛】本题考查了算术平均数的知识,解题的关键是根据算术平均数求出数据总和.2.A解析:A 【解析】∵5791113,,,,的平均数是9,方差是8,一组数据2,4,6,8,x 的方差比数据5791113,,,,的方差大,∴这组数据可能是x (x<0),2,4,6,8或2,4,6,8,x (x>10), 观察只有A 选项符合, 故选A .3.C解析:C 【分析】根据平均数、中位数、众数以及极差的定义、计算公式对各选项进行判断. 【详解】解:A .这组数据的平均分15×(85+90+92+92+96)=91分,所以A 选项错误; B 、这组数据按从小到大排列为:85、90、92、92、96,所以这组数据的中位数为92(分),所以B 选项错误;C 、这组数据的众数为92(分),所以C 选项正确;D .这组数据极差是96﹣85=11,所以D 选项错误; 故选C . 【点睛】本题查平均数,中位数,众数以及极差,解题关键是正确熟练运用公式.4.A解析:A 【分析】先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案. 【详解】解:∵甲箱98−49=49(颗), ∵乙箱中位数40,∴小于、大于40各有(49−1)÷2=24(颗),∴甲箱中小于40的球有39−24=15(颗),大于40的有49−15=34(颗),即a=15,b=34. 故选:A 【点睛】本题考查了中位数,正确进行分析,掌握中位数的概念是解题的关键.5.A解析:A 【分析】根据正比例函数的增减性,确定k 的正负,再依据一次函数图象与系数的关系判断即可. 【详解】解:∵函数(0)y kx k =≠中y 随x 的增大而减小, ∴k<0, ∴3k<0,k 2>0,一次函数23y kx k =+的图象经过第二、一、四象限, 故选:A . 【点睛】本题考查了正比例函数图象和一次函数图象的性质,解题关键是判断一次函数的系数的符号,并根据系数的正负判断图象所经过的象限.6.C解析:C 【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a 的取值范围,再根据一次函数的性质,即可得到答案. 【详解】解:42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩ 解方程组,得:521322x a y a ⎧=+⎪⎪⎨⎪=-+⎪⎩,∵方程的解是非负数,∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩,解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限, ∴1030a a +>⎧⎨-≥⎩,∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个; 故选:C . 【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.7.D解析:D 【分析】根据题意和函数图象可以判断题目中的各个选项是否正确,从而可以解答本题; 【详解】 解:由图象可得,甲车的速度为:400580/km h ÷=,故A 正确;乙车休息前行驶的速度为:2002100/km h ÷=,故B 正确;甲车与乙车相遇时,甲车行驶的时间为:(400200)80 2.5h -÷=,故C 正确; 乙车休息的时间为2.520.5h -=,故D 错误. 故选:D . 【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答;8.C解析:C 【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论. 【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-, 则关于x 的不等式mx b kx +<的解集为1x >-. 故选:C . 【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.9.C解析:C 【分析】根据二次根式的加减乘除运算法则分别计算出各项的结果,再进行判断得出结论即可. 【详解】解:A ≠B 、8-≠C =D =,原式计算错误,故不符合题意;故选:C . 【点睛】此题主要考查了二次根式的加减乘除运算,熟练掌握二次根式的运算法则是解答此题的关键.10.A【分析】延长GE 交AB 于点R ,连接AE ,设AG 交DE 于点M ,过点E 作EN ⊥AG 于N ,先计算出RG=6,∠ARG=90︒,AR=2,根据勾股定理求出210AG =,得到HG=10,利用1122AEG S EG AR AG EN =⋅⋅=⋅⋅,求出210EN =,即可利用勾股定理求出NG 、EH .【详解】如图,延长GE 交AB 于点R ,连接AE ,设AG 交DE 于点M ,过点E 作EN ⊥AG 于N , ∵矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,∴RG=BF=BC+CF=2+4=6,∠ARG=90︒,AR=AR-CE=4-2=2,∴222222061AG AR RG =+==+,∵H 是AG 中点,∴HG=10,∵1122AEG S EG AR AG EN =⋅⋅=⋅⋅, ∴21204EN ⨯=,∴210EN =, 在Rt △ENG 中,22610EG EN NG =-= , ∴10NH NG HG =-=, ∴222NH EH EN +==,故选:A .【点睛】此题考查矩形的性质,勾股定理,线段中点的性质,三角形面积法求线段长度,熟记矩形的性质及熟练运用勾股定理是解题的关键.11.D解析:D只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE 最小23=,BEF ∴∆的周长最小值为423+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.12.A解析:A【分析】①利用全等三角形的判定得AFB ≌AEC ,再利用全等三角形的性质得结论;②利用全等三角形的判定和全等三角形的性质得FD DE =,再利用勾股定理得结论;③利用等腰三角形的性质得AD EF EF 2EG ⊥=,,再利用三角形的面积计算 结论;④利用勾股定理和等腰直角三角形的性质计算得结论.【详解】解:如图:对于①,因为BAC 90FA AE DAE 45∠∠=︒⊥=︒,,,所以CAE 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,FAB 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,因此CAE FAB ∠∠=.又因为BAC 90AB AC ∠=︒=,,所以ABC ACB 45∠∠==︒.又因为FB BC ⊥,所以FBA ACB 45∠∠==︒.因此AFB ≌()AEC ASA △,所以CE BF =.故①正确.对于②,由①知AFB ≌AEC ,所以AF AE =.又因为DAE 45FA AE ∠=︒⊥,,所以FAD DAE 45∠∠==︒,连接FD , 因此AFD ≌()AED SAS △.所以FD DE =.在Rt FBD △中,因为CE BF =,所以222222BD CE BD BF FD DE +=+==.故②正确.对于③,设EF 与AD 交于G .因为FAD DAE 45AF AE ∠∠==︒=,,所以AD EF EF 2EG ⊥=,. 因此ΔADE 11S AD EG AD EF 24=⨯⨯=⨯⨯. 故③正确.对于④,因为CE BF =, 又在Rt FBE △中,22222CE BE BF BE FE +=+= 又AEF △是以EF 为斜边的等腰直角三角形,所以22EF 2AE =因此,222CE BE 2AE +=.故④正确.故选A .【点睛】本题考查了全等三角形的判定,全等三角形的性质,勾股定理,等腰三角形的性质和三角形的面积. 二、填空题13.40【分析】根据中位数的概念中位数是指将数据按大小顺序排列起来形成一个数列居于数列中间位置的那个数据再根据题中所给表格找出中位数【详解】将所卖衬衫按照领口尺寸从小到大排列后处于中间的衬衫领口尺寸为4 解析:40【分析】根据中位数的概念,中位数,是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,再根据题中所给表格,找出中位数.【详解】将所卖衬衫按照领口尺寸从小到大排列后,处于中间的衬衫领口尺寸为40cm ,此中位数是40cm故答案:40【点睛】本题首先要掌握中位数的概念,能看懂题中所给表格,根据中位数的概念来解答的. 14.150【分析】先求出PM25指数为150的天数再根据众数的定义以及性质求出众数即可【详解】∵PM25指数为150的天数∴该周PM25指数的众数为150故答案为:150【点睛】本题考查了众数的问题掌握解析:150【分析】先求出PM 2.5指数为150的天数,再根据众数的定义以及性质求出众数即可.【详解】∵PM 2.5指数为150的天数72113=---=∴该周PM 2.5指数的众数为150故答案为:150.【点睛】本题考查了众数的问题,掌握众数的定义以及性质是解题的关键.15.乙【分析】由题意可知三角形没全进入正方形之前重叠部分为直角三角形当三角形即将出正方形之后重叠部分为直角梯形利用面积公式求出两个图形的面积即可判断其图象【详解】设直角三角形的底为a 高为b 运行速度为v 由 解析:乙【分析】由题意可知三角形没全进入正方形之前,重叠部分为直角三角形.当三角形即将出正方形之后,重叠部分为直角梯形.利用面积公式求出两个图形的面积即可判断其图象.【详解】设直角三角形的底为a ,高为b ,运行速度为v .由题意可知当三角形没全进入正方形之前,重叠部分为与原三角形相似的直角三角形. ∵重叠部分的直角三角形的底为vx ,∴根据三角形相似,可知:vx a b =重叠直角三角形的高 , 即重叠直角三角形的高=bvx a, ∴22122bvx bv y vx x a a==, ∵a , b , v 都为常数且大于0,∴222bv y x a=是一个开口向上的曲线. 当三角形即将出正方形之后,重叠部分为去掉与原三角形相似的直角三角形的直角梯形. 设正方形边长为l ,则该梯形的高为()l vx a --,下底为b , 根据三角形相似可知:vx l b a -=梯形上底, 即梯形上底()b vx l a -=, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦. ∵a , b , v ,l 都为常数且大于0,∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦中2x 项的系数为202bv a-<, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦是一个开口向下的曲线. ∴只有乙符合.故答案为:乙.【点睛】本题考查动点问题的函数图象.理解三角形运动过程中的分界点,利用三角形和梯形的面积公式列出关于x 的方程来判断其图象是解题关键.16.或【分析】分当时和当时两种情况讨论根据函数的增减性以及y >4即可求得a 的取值范围【详解】解:当时一次函数y =ax +6y 随x 增大而减小在x=3时取得最小值此时解得此时;当时一次函数y =ax +6y 随x 增解析:01a <<或203a <<-【分析】 分当0a <时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当0a <时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值, 此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键. 17.【分析】先由正方形的性质可知再证明Rt △AFD ≌Rt △BEA 再由全等三角形的性质可得;最后在在Rt △BEA 中由勾股定理得:即得本题答案【详解】解:在正方形中;∵∴;∵∴;在Rt △AFD 和Rt △BEA【分析】先由正方形的性质可知DA AB =,再证明Rt △AFD ≌Rt △BEA ,再由全等三角形的性质可得3DF AE ==,1AF BE ==;最后在在Rt △BEA中,由勾股定理得:AB ==【详解】解:在正方形ABCD 中,AD AB =;∵DF AF ⊥,BE AE ⊥,∴90AFD AEB ∠=∠=︒,90ADF DAF ∠+∠=︒;∵90DAF BAE ∠+∠=︒,∴ADF BAE =∠∠;在Rt △AFD 和Rt △BEA 中,AFD AEB ADF BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt △AFD ≌Rt △BEA (AAS ),∴3DF AE ==,1AF BE ==;在Rt △BEA 中,由勾股定理得:AB ===.【点睛】本题主要考查正方形的性质,三角形全等的性质与判定以及勾股定理的知识.18.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF 是等边三角形,∵EF=8,∴△GEF 的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.19.【分析】根据负整数指数幂的运算法则计算即可【详解】=;;【点睛】此题考查了负整数指数幂:a-n=也考查了分母有理化解析:61a 13+ 【分析】 根据负整数指数幂的运算法则计算即可.【详解】23()a -=661a a -==;2(3)-=2(3)=13; 132(32)3232(32)(32)-+-===+--+. 【点睛】 此题考查了负整数指数幂:a -n =1(0)n a a ≠.也考查了分母有理化. 20.【分析】根据中点的含义先求解作点C 关于AB 对称点则连接交AB 于P 连接此时的值最小由对称性可知于是得到再证明然后根据勾股定理即可得到结论【详解】解:为的中点作点C 关于AB 对称点交于则连接交AB 于P 连接 解析:25【分析】根据中点的含义先求解,BD 作点C 关于AB 对称点C ',则OC OC '=,连接DC ',交AB 于P ,连接BC ',此时PD PC PD PC DC ''+=+=的值最小,由对称性可知45C BA CBA '∠=∠=︒,,AB CC '⊥于是得到90C BC '∠=︒,再证明4BC BC '==,然后根据勾股定理即可得到结论.【详解】解:4AC BC D ==,为BC 的中点,90ACB ∠=︒,2CD BD ∴==, 45CBA ∠=︒,作点C 关于AB 对称点C ',CC '交AB 于O ,则OC OC '=,连接DC ',交AB 于P ,连接BC '.此时PD PC PD PC DC ''+=+=的值最小.由对称性可知45C BA CBA '∠=∠=︒,,AB CC '⊥ ∴90C BC '∠=︒,∴BC BC '⊥,点C 关于AB 对称点C ',∴AB 垂直平分CC ',∴4BC BC '==,根据勾股定理可得22422 5.DC '+=故答案为:5【点睛】此题考查了轴对称-线路最短的问题,等腰直角三角形的性质与判定,勾股定理的应用,确定动点P 何位置时,使PC+PD 的值最小是解题的关键.三、解答题21.(1)10,9(2)87 【分析】(1)根据众数的定义:一组数据中出现次数最多的数和中位数的定义:按照顺序排列的一组数据中居于中间位置的数,结合统计图得到答案;(2)先求出这组数的平均数,再求出这组成绩的方差.【详解】解:(1)由折线统计图可知第1次:10环;第2次:7环;第3次:10环;第4次:10环;第5次:9环;第6次:8环;第7次:9环10出现的次数最多,所以众数为10;这7次成绩从小到大排列为:7,8,9,9,10,10,10,故中位数为9.(2)这组成绩的平均数为:()1107101098997++++++=, 这组成绩的方差为:()()()()2222181093992897977⎡⎤-⨯+-⨯+-+-=⎣⎦ 【点睛】本题考查了折线统计图,中位数,众数及方差.掌握中位数,众数及方差的定义是解题的关键.22.(1)13.4;(2)13.3秒,13.3秒;(3)选择张明,理由见解析.【分析】(1)根据统计图给出的数据可直接得出答案;(2)利用平均数的计算公式可得出张明成绩的平均数;先将李亮的成绩按照从小到大排列,然后即可得到这组数据的中位数;(3)在平均数、中位数相同的情况下,再根据方差越小数据越稳定,即可得出答案.【详解】解:(1)根据统计图可知,张明第2次的成绩为13.4秒,故答案为:13.4; (2)张明成绩的平均数为:13.313.413.313.213.35++++=13.3(秒); 李亮的成绩是:13.2,13.4,13.1,13.5,13.3,把这些数从小到大排列为:13.1,13.2,13.3,13.4,13.5,则李亮成绩的中位数是:13.3秒;故答案为:13.3秒,13.3秒;(3)选择张明参加比赛,因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明成绩比李亮成绩稳定.【点睛】本题考查了平均数,中位数,方差的意义.平均数表示一组数据的平均程度;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.23.(1)223y x =-;(2)(3,0)A ,(0,2)B -;(3)3;(4)423y x =-. 【分析】(1)利用待定系数法即可得;(2)求出0y =时,x 的值即可得点A 的坐标,求出0x =时,y 的值即可得点B 的坐标; (3)先根据点A 、B 的坐标可得OA 、OB 的长,再利用直角三角形的面积公式即可得; (4)先根据三角形的中线与面积关系可得这条直线一定经过OA 的中点,再根据点A 的坐标求出中点的坐标,然后利用待定系数法即可得.【详解】 (1)由题意,将点(3,4),(6,2)--代入y kx b =+得:3462k b k b -+=-⎧⎨+=⎩, 解得232k b ⎧=⎪⎨⎪=-⎩,则直线y kx b =+的表达式为223y x =-; (2)对于一次函数223y x =-, 当0y =时,2203x -=,解得3x =,即(3,0)A , 当0x =时,2y =-,即(0,2)B -;(3)(3,0),(0,2)A B -,3,2OA OB ∴==,又x 轴y ⊥轴,AOB ∴是直角三角形,则AOB 的面积为1132322OA OB ⋅=⨯⨯=; (4)设这条直线的表达式为y mx n =+,这条直线过AOB 的顶点B ,且把AOB 分成面积相等的两部分,∴这条直线一定经过OA 的中点,(0,0),(3,0)O A ,∴OA的中点的坐标为3(,0) 2,将点3(,0)2和点(0,2)B-代入y mx n=+得:322m nn⎧+=⎪⎨⎪=-⎩,解得432 mn⎧=⎪⎨⎪=-⎩,则这条直线的表达式为423y x=-.【点睛】本题考查了利用待定系数法求一次函数的表达式、求一次函数与坐标轴的交点坐标等知识点,熟练掌握待定系数法是解题关键.24.(1)证明见解析;(2)【分析】(1)证明EF、BD互相平分,只要证DEBF是平行四边形,利用两组对边分别平行来证明;(2)过D点作DG⊥AB于点G,通过已知可证△ADE是等边三角形,所以CE=2,DE=4,由勾股定理可求DG,继而可求得BD.【详解】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB-AE=CD-CF,即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形,∴BD、EF互相平分;(2)如图,过D点作DG⊥AB于点G,∵∠A=60︒,AE=AD ,∴△ADE 是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB ,∴BE=2,在Rt △ADG 中,AD=4,∠A=60︒, ∴122AG AD ==, ∴2223AD AG -= ∴()222242327BD DG BG =+=+= 【点睛】本题考查平行四边形的判定和性质、等边三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题.25.(1)725-+;(2)13x -2 【分析】(1)利用平方差公式和完全平方式展开,再进行根式的加减运算即可求出答案. (2)先将进行因式分解和括号内的通分运算,再将除法变为乘法即可化简,将32x =【详解】(1)原式()22(32)5251=---. 345251=--+.725=-+ (2)原式()()2313333x x x x x x ++⎛⎫=÷- ⎪+-++⎝⎭. ()()22333x x x x x ++=÷+-+. ()()23332x x x x x ++=⋅+-+.13x =-. 当32x =+时,原式223232===+-. 【点睛】 本题考查二次根式的混合运算和分式的化简求值,掌握各运算的运算顺序和方法是解答本题的关键.26.(1)△A 1B 1C 1见详解 ;(2)72;(3)点P 见详解, 10+32. 【分析】(1)先在坐标系中分别画出点A ,B ,C 关于y 轴的对称点,再连线,得到111A B C ∆即可 ;(2)利用割补法,将三角形ABC 补成正方形ADEF ,减去△AFC 、△BEC 、△ADB 三个三角形的面积计算即可(3)先画出点B 关于x 轴的对称点B′,再连接B′A 交x 轴于点P ,即为所求.求出B′点坐标,利用勾股定理求两点距离AB 与AB′,再求和即可【详解】(1)如图所示:△A 1B 1C 1即为所求;(2)将图形补成如图所示四边形ADEF 是正方形∵ABC ∆的面积=正方形ADEF 的面积-△AFC 的面积-△BEC 的面积-△ADB 的面积 ∴S △ABC =2111373-32-12-31=9-3-1-=22222(3)如图所示,画出点B 关于x 轴的对称点B′,连接B′A 交x 轴于点P ,∴PB=PB′,∴AB′=AP+PB′=PA PB +,两点之间线段最短,+的值最小,即△PAB的周长最小,此时PA PBB′(4,-2),∴PAB∆的周长=AB+AP+∴∆+PAB【点睛】本题主要考查平面直角坐标系中,图形的轴对称变换,割补法求三角形面积,通过点的轴对称,利用勾股定理求两线段和的最小值是解题的关键.。