高中数学人教A版实用资料附答案高三下学期周练二理0
新教材人教A版高中数学必修第二册全册课时练习(一课一练,含解析)
人教A版高中数学必修第二册全册课时练习6.1 平面向量的概念 .............................................................................................................. - 2 - 6.2.1 向量的加法运算........................................................................................................ - 5 - 6.2.2 向量的减法运算........................................................................................................ - 8 - 6.2.3 向量的数乘运算...................................................................................................... - 11 - 6.2.4 向量的数量积............................................................................................................ - 14 - 6.3.1 平面向量基本定理.................................................................................................... - 18 - 6.3.2 平面向量的正交分解及坐标表示............................................................................ - 21 - 6.3.3 平面向量加、减运算的坐标表示............................................................................ - 21 - 6.3.4 平面向量数乘运算的坐标表示.............................................................................. - 24 - 6.3.5 平面向量数量积的坐标表示.................................................................................. - 27 - 6.4 平面向量的应用........................................................................................................ - 30 -7.1.1 数系的扩充和复数的概念...................................................................................... - 34 - 7.1.2 复数的几何意义...................................................................................................... - 37 - 7.2.1 复数的加、减运算及其几何意义.......................................................................... - 39 -7.2.2 复数的乘、除运算.................................................................................................. - 43 -8.1.1 棱柱、棱锥、棱台的结构特征................................................................................ - 46 - 8.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征................................................ - 49 - 8.2 立体图形的直观图........................................................................................................ - 51 - 8.3.1 棱柱、棱锥、棱台的表面积和体积...................................................................... - 55 - 8.3.2 圆柱、圆锥、圆台、球的表面积和体积.............................................................. - 59 - 8.4.1 平面 ......................................................................................................................... - 62 - 8.4.2 空间点、直线、平面之间的位置关系.................................................................. - 66 - 8.5.1 直线与直线平行...................................................................................................... - 69 - 8.5.2 直线与平面平行...................................................................................................... - 73 - 8.5.3 平面与平面平行...................................................................................................... - 76 - 8.6.1 直线与直线垂直...................................................................................................... - 80 - 8.6.2 直线与平面垂直...................................................................................................... - 85 -8.6.3平面与平面垂直 ....................................................................................................... - 89 -9.1.1简单随机抽样 ........................................................................................................... - 94 - 9.1.2 分层随机抽样 ............................................................................................................. - 96 - 9.1.3 获取数据的途径 ......................................................................................................... - 96 - 9.2.1总体取值规律的估计 ............................................................................................. - 100 - 9.2.2 总体百分位数的估计 ............................................................................................... - 105 - 9.2.3 总体集中趋势的估计 ............................................................................................... - 105 -9.2.4 总体离散程度的估计 ............................................................................................... - 105 -10.1.1有限样本空间与随机事件.................................................................................... - 110 - 10.1.2事件的关系和运算 ............................................................................................... - 112 - 10.1.3古典概型 ............................................................................................................... - 115 - 10.1.4概率的基本性质 ................................................................................................... - 118 - 10.2事件的相互独立性 .................................................................................................. - 121 - 10.3频率与概率 .............................................................................................................. - 126 -6.1 平面向量的概念一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( )A .1个B .2个C .3个D .4个【解析】一个量是不是向量,就是看它是否同时具备向量的两个要素:大小和方向.由于速度、位移、力、加速度都是由大小和方向确定的,所以是向量;而质量、路程、密度、功只有大小而没有方向,所以不是向量. 【答案】D2.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a |.A .3B .2C .1D .0【解析】根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a |或-a|a |,故④也是错误的.【答案】D3.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →【解析】由平面几何知识知,AD →与BC →方向不同, 故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →; PE →与PF →的模相等而方向相反,故PE →≠PF →. EP →与PF →的模相等且方向相同,∴EP →=PF →.【答案】D4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形 B .矩形 C .菱形 D .等腰梯形【解析】由BA →=CD →,知AB =CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB →|=|AD →|,所以四边形ABCD 为菱形. 【答案】C 二、填空题5.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.【解析】因为正方形的对角线长为22,所以|OA →|= 2. 【答案】 2 6.如图,四边形ABCD 是平行四边形,E ,F 分别是AD 与BC 的中点,则在以A 、B 、C 、D 四点中的任意两点为始点和终点的所有向量中,与向量EF →方向相反的向量为________.【解析】因为AB ∥EF ,CD ∥EF ,所以与EF →平行的向量为DC →,CD →,AB →,BA →,其中方向相反的向量为BA →,CD →. 【答案】BA →,CD →7.给出下列命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c .其中所有正确命题的序号为________.【解析】AB →=DC →,A 、B 、C 、D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 方向相同;b =c ,则|b |=|c |,且b 与c 方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确;对于④,当b =0时,a 与c 不一定平行,故④不正确. 【答案】②③ 三、解答题8.在如图的方格纸(每个小方格的边长为1)上,已知向量a . (1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么.【解析】(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如下图所示. (2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如下图所示.9.一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变了方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点. (1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解析】(1)如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).10.如图,在△ABC 中,已知向量AD →=DB →,DF →=EC →,求证:AE →=DF →.证明:由DF →=EC →,可得DF =EC 且DF ∥EC , 故四边形CEDF 是平行四边形,从而DE ∥FC . ∵AD →=DB →,∴D 为AB 的中点. ∴AE →=EC →,∴AE →=DF →.6.2.1 向量的加法运算一、选择题1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于( )A.AB →B.BC →C.CD →D.DA →【解析】因为点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →=AC →+CB →=AB →.故选A. 【答案】A2.设a 表示“向东走5 km”,b 表示“向南走5 km”,则a +b 表示( ) A .向东走10 km B .向南走10 km C .向东南走10 km D .向东南走5 2 km 【解析】如图所示,AC →=a +b ,|AB →|=5,|BC →|=5,且AB ⊥BC ,则|AC →|=52,∠BAC =45°. 【答案】D3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ) A .与向量a 方向相同 B .与向量a 方向相反 C .与向量b 方向相同 D .不确定【解析】如果a 和b 方向相同,则它们的和的方向应该与a (或b )的方向相同;如果它们的方向相反,而a 的模大于b 的模,则它们的和的方向与a 的方向相同. 【答案】A4.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO →【解析】设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则OP 与OQ 之间的对角线对应的向量即向量a =OP →+OQ →,由a 和FO →长度相等,方向相同,得a =FO →,即OP →+OQ →=FO →. 【答案】C 二、填空题5.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.【解析】由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 【答案】06.化简(AB →+MB →)+(BO →+BC →)+OM →=________.【解析】原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →. 【答案】AC →7.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________. 【解析】在菱形ABCD 中,连接BD , ∵∠DAB =60°,∴△BAD 为等边三角形, 又∵|AB →|=1,∴|BD →|=1,|BC →+CD →|=|BD →|=1. 【答案】1 三、解答题8.如图,已知向量a 、b ,求作向量a +b .【解析】(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1); (2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2); (3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).9.如图所示,设O 为正六边形ABCDEF 的中心,作出下列向量: (1)OA →+OC →; (2)BC →+FE →.【解析】(1)由图可知,四边形OABC 为平行四边形,所以由向量加法的平行四边形法则,得OA →+OC →=OB →.(2)由图可知,BC →=FE →=OD →=AO →,所以BC →+FE →=AO →+OD →=AD →.10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.【解析】如图,作▱OACB ,使∠AOC =30°,∠BOC =60°, 则∠ACO =∠BOC =60°,∠OAC =90°.设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体所受的重力,且|OC →|=300 N. 所以|OA →|=|OC →|cos 30°=1503(N), |OB →|=|OC →|cos 60°=150 (N).所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.6.2.2 向量的减法运算一、选择题1.下列运算中正确的是( ) A.OA →-OB →=AB → B.AB →-CD →=DB → C.OA →-OB →=BA → D.AB →-AB →=0【解析】根据向量减法的几何意义,知OA →-OB →=BA →,所以C 正确,A 错误;B 显然错误;对于D ,AB →-AB →应该等于0,而不是0.【答案】C2.下列四式中不能化简为PQ →的是( ) A.AB →+(PA →+BQ →) B .(AB →+PC →)+(BA →-QC →) C.QC →-QP →+CQ → D.PA →+AB →-BQ →【解析】D 中,PA →+AB →-BQ →=PB →-BQ →=PB →+QB →不能化简为PQ →,其余选项皆可. 【答案】D3.在△ABC 中,D 是BC 边上的一点,则AD →-AC →等于( ) A.CB → B.BC → C.CD → D.DC →【解析】在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC →=CD →. 【答案】C4.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=( ) A .a -b +c B .b -(a +c ) C .a +b +c D .b -a +c【解析】DC →=DA →+AB →+BC →=a -b +c . 【答案】A 二、填空题5.EF →+DE →-DB →=________.【解析】EF →+DE →-DB →=EF →+BE →=BF →. 【答案】BF →6.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=________,|a -b |=________.【解析】若a ,b 为相反向量,则a +b =0,所以|a +b |=0,又a =-b ,所以|a |=|-b |=1,因为a 与-b 共线同向,所以|a -b |=2. 【答案】0 27.设点M 是线段BC 的中点,点A 在直线BC 外,且|BC →|=4,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.【解析】以AB ,AC 为邻边作平行四边形ACDB ,由向量加减法几何意义可知,AD →=AB →+AC →,CB →=AB →-AC →,∵|AB →+AC →|=|AB →-AC →|,平行四边形ABCD 为矩形,∴|AD →|=|CB →|,又|BC →|=4,M 是线段BC 的中点, ∴|AM →|=12|AD →|=12|BC →|=2.【答案】2 三、解答题8.如图,已知向量a ,b ,c 不共线,求作向量a +b -c .【解析】方法一:如图①,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .方法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .9.化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.【解析】(1)方法一 原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →. 方法二 原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →. (2)方法一 原式=DB →-DC →=CB →.方法二 原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 10.如图,解答下列各题:(1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用d ,c 表示EC →.【解析】由题意知,AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,则 (1)DB →=DE →+EA →+AB →=a +d +e . (2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=a +b +e . (4)EC →=-CE →=-(CD →+DE →)=-c -d .6.2.3 向量的数乘运算一、选择题1.4(a -b )-3(a +b )-b 等于( ) A .a -2b B .a C .a -6b D .a -8b【解析】原式=4a -4b -3a -3b -b =a -8b .2.点C 在直线AB 上,且AC →=3AB →,则BC →等于( ) A .-2AB → B.13AB →C .-13AB →D .2AB →【解析】如图,AC →=3AB →,所以BC →=2AB →. 【答案】D3.已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为( )A .-1或3 B. 3 C .-1或4 D .3或4【解析】因为向量m a -3b 与a +(2-m )b 共线,且向量a ,b 是两个不共线的向量,所以m =-32-m ,解得m =-1或m =3. 【答案】A 4.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=( ) A .a +34bB.34a +14bC.14a +14bD.14a +34b 【解析】AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .【答案】D5.已知|a |=4,|b |=8,若两向量方向同向,则向量a 与向量b 的关系为b =________a . 【解析】由于|a |=4,b =8,则|b |=2|a |,又两向量同向,故b =2a . 【答案】26.点C 在线段AB 上,且AC CB =32,则AC →=________AB →,BC →=________AB →.【解析】因为C 在线段AB 上,且AC CB =32,所以AC →与AB →方向相同,BC →与AB →方向相反,且AC AB =35,BC AB =25,所以AC →=35AB →,BC →=-25AB →. 【答案】35 -257.已知向量a ,b 满足|a |=3,|b |=5,且a =λb ,则实数λ的值是________. 【解析】由a =λb ,得|a |=|λb |=|λ||b |.∵|a |=3,|b |=5, ∴|λ|=35,即λ=±35.【答案】±35三、解答题 8.计算(1)13(a +2b )+14(3a -2b )-12(a -b ); (2)12⎣⎢⎡⎦⎥⎤3a +2b-23a -b -76⎣⎢⎡⎦⎥⎤12a +37⎝ ⎛⎭⎪⎫b +76a . 【解析】(1)原式=⎝ ⎛⎭⎪⎫13+34-12a +⎝ ⎛⎭⎪⎫23-12+12b =712a +23b . (2)原式=12⎝ ⎛⎭⎪⎫73a +b -76⎝ ⎛⎭⎪⎫a +37b =76a +12b -76a -12b =0. 9.已知E ,F 分别为四边形ABCD 的对角线AC ,BD 的中点,设BC →=a ,DA →=b ,试用a ,b 表示EF →.【解析】如图所示,取AB 的中点P ,连接EP ,FP .在△ABC 中,EP 是中位线, 所以PE →=12BC →=12a .在△ABD 中,FP 是中位线,所以PF →=12AD →=-12DA →=-12b .在△EFP 中,EF →=EP →+PF →=-PE →+PF →=-12a -12b =-12(a +b ).10.已知e ,f 为两个不共线的向量,若四边形ABCD 满足AB →=e +2f ,BC →=-4e -f ,CD →=-5e -3f .(1)用e 、f 表示AD →;(2)证明:四边形ABCD 为梯形.【解析】(1)AD →=AB →+BC →+CD →=(e +2f )+(-4e -f )+(-5e -3f )=(1-4-5)e +(2-1-3)f =-8e -2f .(2)证明:因为AD →=-8e -2f =2(-4e -f )=2BC →, 所以AD →与BC →方向相同,且AD →的长度为BC →的长度的2倍, 即在四边形ABCD 中,AD ∥BC ,且AD ≠BC , 所以四边形ABCD 是梯形.6.2.4 向量的数量积一、选择题1.若|m |=4,|n |=6,m 与n 的夹角为45°,则m ·n =( ) A .12 B .12 2 C .-12 2 D .-12【解析】m ·n =|m ||n |cos θ=4×6×cos 45°=24×22=12 2. 【答案】B2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |=( ) A .12 B .3 C .6 D .3 3【解析】a ·b =|a ||b |cos 135°=-122,又|a |=4,解得|b |=6. 【答案】C3.已知向量a ,b 满足|a |=2,|b |=3,a ·(b -a )=-1,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2【解析】因为|a |=2,a ·(b -a )=-1, 所以a ·(b -a )=a ·b -a 2=a ·b -22=-1, 所以a ·b =3.又因为|b |=3,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=32×3=12.又θ∈[0,π],所以θ=π3. 【答案】C4.若a ·b >0,则a 与b 的夹角θ的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎣⎢⎡⎭⎪⎫π2,πC.⎝⎛⎦⎥⎤π2,π D.⎝ ⎛⎭⎪⎫π2,π 【解析】因为a ·b >0,所以cos θ>0,所以θ∈⎣⎢⎡⎭⎪⎫0,π2.【答案】A 二、填空题5.如图所示,在Rt△ABC 中,∠A =90°,AB =1,则AB →·BC →的值是________.【解析】方法一 AB →·BC →=|AB →||BC →|cos(180°-∠B )=-|AB →||BC →|cos∠B =-|AB →||BC→|·|AB →||BC →|=-|AB →|2=-1.方法二 |BA →|=1,即BA →为单位向量,AB →·BC →=-BA →·BC →=-|BA →||BC →|cos∠B ,而|BC →|·cos∠B =|BA →|,所以AB →·BC →=-|BA →|2=-1. 【答案】-16.已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为________.【解析】设a 与b 的夹角为θ,cos θ=a ·b |a |·|b |=21×4=12,又因为θ∈[0,π],所以θ=π3. 【答案】π37.已知|a |=3,向量a 与b 的夹角为π3,则a 在b 方向上的投影为________.【解析】向量a 在b 方向上的投影为|a |cos θ=3×cos π3=32.【答案】32三、解答题8.已知|a |=3,|b |=4,a 与b 的夹角为120°,求: (1)a 2-b 2;(2)(2a -b )·(a +3b ).【解析】(1)a 2-b 2=|a |2-|b |2=32-42=-7.(2)(2a -b )·(a +3b )=2a 2+5a ·b -3b 2=2|a |2+5|a ||b |·cos 120°-3|b |2=2×32+5×3×4×⎝ ⎛⎭⎪⎫-12-3×42=-60. 9.(1)已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |,|3a +b |;(2)已知|a |=|b |=5,且|3a -2b |=5,求|3a +b |的值;(3)如图,已知在▱ABCD 中,AB =3,AD =1,∠DAB =π3,求对角线AC 和BD 的长.【解析】(1)a ·b =|a ||b |cos π3=5×5×12=252,∴|a +b |=a +b 2=|a |2+2a ·b +|b |2=25+2×252+25=53,|a -b |=a -b2=|a |2+|b |2-2a ·b =25=5, |3a +b |=3a +b2=9a 2+b 2+6a ·b =325=513.(2)∵|3a -2b |2=9|a |2-12a ·b +4|b |2=9×25-12a ·b +4×25=325-12a ·b ,又|3a -2b |=5,∴325-12a ·b =25,则a ·b =25.∴|3a +b |2=(3a +b )2=9a 2+6a ·b +b 2=9×25+6×25+25=400.故|3a +b |=20. (3)设AB →=a ,AD →=b ,则|a |=3,|b |=1,a 与b 的夹角θ=π3.∴a ·b =|a ||b |cos θ=32.又∵AC →=a +b ,DB →=a -b , ∴|AC →|=AC →2=a +b 2=a 2+2a ·b +b 2=13,|DB →|=DB →2=a -b2=a 2-2a ·b +b 2=7.∴AC =13,BD =7.10.已知|a |=2|b |=2,且向量a 在向量b 方向上的投影为-1. (1)求a 与b 的夹角θ; (2)求(a -2b )·b ;(3)当λ为何值时,向量λa +b 与向量a -3b 互相垂直? 【解析】(1)由题意知|a |=2,|b |=1. 又a 在b 方向上的投影为|a |cos θ=-1, ∴cos θ=-12,∴θ=2π3.(2)易知a ·b =-1,则(a -2b )·b =a ·b -2b 2=-1-2=-3. (3)∵λa +b 与a -3b 互相垂直,∴(λa +b )·(a -3b )=λa 2-3λa ·b +b ·a -3b 2 =4λ+3λ-1-3=7λ-4=0, ∴λ=47.6.3.1 平面向量基本定理一、选择题1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( ) A .不共线 B .共线 C .相等 D .不确定 【解析】∵a +b =3e 1-e 2, ∴c =2(a +b ).∴a +b 与c 共线. 【答案】B2.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a【解析】如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD→-AB →=2b -a . 【答案】B3.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 【解析】如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 【答案】D4.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( ) A.165 B.125 C.85 D.45【解析】∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.【答案】C 二、填空题5.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.【解析】因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【答案】36.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.【解析】AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b . 【答案】2a -b7.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.【解析】BE →=BC →+CE →=AD →-12AB →=b -12a .【答案】b -12a三、解答题8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .【解析】因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC→=b ,试用a ,b 将MN →、NP →、PM →表示出来. 【解析】NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足:AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 【解析】(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1 4. (2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN ,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎪⎨⎪⎧ x +y2=1,x4+y =1⇒⎩⎪⎨⎪⎧x =47,y =67.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示一、选择题1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( ) A .(1,-2) B .(7,6) C .(5,0) D .(11,8)【解析】因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8). 【答案】D2.已知向量a =(-1,2),b =(1,0),那么向量3b -a 的坐标是( ) A .(-4,2) B .(-4,-2) C .(4,2) D .(4,-2)【解析】3b -a =3(1,0)-(-1,2)=(4,-2).【答案】D3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6) D .(2,0)【解析】b =(3,2)-2a =(3,2)-(2,4)=(1,-2). 【答案】A4.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3 D .4【解析】由平面向量基本定理知①正确;若a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.【答案】A 二、填空题5.在平面直角坐标系内,已知i 、j 是两个互相垂直的单位向量,若a =i -2j ,则向量用坐标表示a =________.【解析】由于i ,j 是两个互相垂直的单位向量,所以a =(1,-2). 【答案】(1,-2)6.如右图所示,已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,则向量OA →的坐标为________.【解析】设点A (x ,y ),则x =|OA →|·cos 60°=43cos 60°=23,y =|OA →|·sin 60°=43sin 60°=6,即A (23,6),所以OA →=(23,6). 【答案】(23,6)7.已知向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.【解析】易得AB →=(2,0),由a =(x +3,x 2-3x -4)与AB →相等得⎩⎪⎨⎪⎧x +3=2,x 2-3x -4=0,解得x =-1.【答案】-1 三、解答题8.如图,取与x 轴、y 轴同向的两个单位向量i ,j 作为基底,分别用i ,j 表示OA →,OB →,AB →,并求出它们的坐标.【解析】由图形可知,OA →=6i +2j ,OB →=2i +4j ,AB →=-4i +2j ,它们的坐标表示为OA →=(6,2),OB →=(2,4),AB →=(-4,2).9.已知a =(2,-4),b =(-1,3),c =(6,5),p =a +2b -c . (1)求p 的坐标 ;(2)若以a ,b 为基底,求p 的表达式.【解析】(1)p =(2,-4)+2(-1,3)-(6,5)=(-6,-3). (2)设p =λa +μb (λ,μ∈R ),则(-6,-3)=λ(2,-4)+μ(-1,3)=(2λ-μ,-4λ+3μ),所以⎩⎪⎨⎪⎧2λ-μ=-6,-4λ+3μ=-3,所以⎩⎪⎨⎪⎧λ=-212,μ=-15,所以p =-212a -15b .10.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →a ,OB →=b ,OC →=c ,且|a |=2,|b|=1,|c |=3,试用a ,b 表示c .【解析】如图,以O 为原点,OA →为x 轴的非负半轴建立平面直角坐标系,由三角函数的定义,得B (cos 150°,sin 150°),C (3cos 240°,3sin 240°). 即B ⎝ ⎛⎭⎪⎫-32,12,C ⎝ ⎛⎭⎪⎫-32,-332,又∵A (2,0), 故a =(2,0),b =⎝ ⎛⎭⎪⎫-32,12,c =⎝ ⎛⎭⎪⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),∴⎝ ⎛⎭⎪⎫-32,-332=λ1(2,0)+λ2⎝ ⎛⎭⎪⎫-32,12=⎝⎛⎭⎪⎫2λ1-32λ2,12λ2,∴⎩⎪⎨⎪⎧2λ1-32λ2=-32,12λ2=-332,∴⎩⎨⎧λ1=-3,λ2=-33,∴c =-3a -33b .6.3.4 平面向量数乘运算的坐标表示一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)【解析】由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),解得m =-4,所以b =(-2,-4),所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 【答案】C2.已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13 C .1 D .2【解析】a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b ),可得2(1+2λ)-4(2-2λ)=0,解得λ=12,故选A.【答案】A3.已知A (1,-3),B ⎝ ⎛⎭⎪⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1) D .(-9,-1) 【解析】设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线, 所以AB →∥AC →.因为AB →=⎝ ⎛⎭⎪⎫8,12-(1,-3)=⎝ ⎛⎭⎪⎫7,72,AC →=(x ,y )-(1,-3)=(x -1,y +3),所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C. 【答案】C4.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(2m ,m +1),若AB →∥OC →,则实数m 的值为( ) A.35 B .-35 C .3 D .-3【解析】向量OA →=(3,-4),OB →=(6,-3), ∴AB →=(3,1),∵OC →=(2m ,m +1),AB →∥OC →, ∴3m +3=2m ,解得m =-3,故选D.【答案】D 二、填空题5.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.【解析】因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 【答案】16.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.【解析】①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确. 【答案】①③④7.已知向量a =(1,2),b =(1,λ),c =(3,4).若a +b 与c 共线,则实数λ=________. 【解析】因为a +b =(1,2)+(1,λ)=(2,2+λ),所以根据a +b 与c 共线得2×4-3×(2+λ)=0,解得λ=23.【答案】23三、解答题8.已知a =(x,1),b =(4,x ),a 与b 共线且方向相同,求x . 【解析】∵a =(x,1),b =(4,x ),a ∥b . ∴x 2-4=0,解得x 1=2,x 2=-2.当x =2时,a =(2,1),b =(4,2),a 与b 共线且方向相同; 当x =-2时,a =(-2,1),b =(4,-2),a 与b 共线且方向相反. ∴x =2.9.已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →.证明:设E (x 1,y 1),F (x 2,y 2),依题意有AC →=(2,2),BC →=(-2,3),AB →=(4,-1). ∵AE →=13AC →,∴AE →=⎝ ⎛⎭⎪⎫23,23,∵BF →=13BC →,∴BF →=⎝ ⎛⎭⎪⎫-23,1.∵AE →=(x 1+1,y 1)=⎝ ⎛⎭⎪⎫23,23,∴E ⎝ ⎛⎭⎪⎫-13,23,∵BF →=(x 2-3,y 2+1)=⎝ ⎛⎭⎪⎫-23,1,∴F ⎝ ⎛⎭⎪⎫73,0, ∴EF →=⎝ ⎛⎭⎪⎫83,-23.又∵4×⎝ ⎛⎭⎪⎫-23-83×(-1)=0,∴EF →∥AB →. 10.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 【解析】(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.6.3.5 平面向量数量积的坐标表示一、选择题1.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为( )A .-32 B.32C .2D .6【解析】依题意得6-m =0,m =6,选D. 【答案】D2.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2【解析】a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1. 【答案】C3.已知a ,b 为平面向量,且a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665【解析】∵a =(4,3),∴2a =(8,6).又2a +b =(3,18), ∴b =(-5,12),∴a ·b =-20+36=16. 又|a |=5,|b |=13, ∴cos〈a ,b 〉=165×13=1665.【答案】C4.已知向量a =(-1,2),b =(3,1),c =(k,4),且(a -b )⊥c ,则k =( ) A .-6 B .-1 C .1 D .6【解析】∵a =(-1,2),b =(3,1),∴a -b =(-4,1),∵(a -b )⊥c ,∴-4k +4=0,解得k =1. 【答案】C 二、填空题5.a =(-4,3),b =(1,2),则2|a |2-3a ·b =________. 【解析】因为a =(-4,3),所以2|a |2=2×(-42+32)2=50.a ·b =-4×1+3×2=2.所以2|a |2-3a ·b =50-3×2=44. 【答案】446.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________.【解析】由题意得,m a -b =(m +1,-m ),根据向量垂直的充要条件可得1×(m +1)+0×(-m )=0,所以m =-1.【答案】-17.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.【解析】c =(m +4,2m +2),|a |=5,|b |=25, 设c ,a 的夹角为α,c ,b 的夹角为θ,又因为cos α=c ·a |c ||a |,cos θ=c ·b |c ||b |,由题意知c ·a |a |=c ·b |b |,即5m +85=8m +2025. 解得m =2. 【答案】2 三、解答题8.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.【解析】(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0,即x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), |a -b |=|(1,0)-(3,0)|=|(-2,0)|=2. 当x =-2时,a =(1,-2),b =(-1,2), |a -b |=|(1,-2)-(-1,2)|=|(2,-4)|=2 5.9.已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1). (1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.【解析】(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3,故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,∴a ·b =1,故cos θ=a ·b |a |·|b |=22,∵θ∈[0,π], ∴θ=π4.10.在△PQR 中,PQ →=(2,3),PR →=(1,k ),且△PQR 的一个内角为直角,求k 的值. 【解析】(1)当∠P 为直角时,PQ ⊥PR , ∴PQ →·PR →=0,即2+3k =0,∴k =-23.(2)当∠Q 为直角时,QP ⊥QR ,易知QP →=(-2,-3),QR →=PR →-PQ →=(-1,k -3). 由QP →·QR →=0,得2-3(k -3)=0,∴k =113.(3)当∠R 为直角时,RP ⊥RQ ,易知RP →=(-1,-k ),RQ →=PQ →-PR →=(1,3-k ). 由RP →·RQ →=0,得-1-k (3-k )=0,∴k =3±132.综上所述,k 的值为-23或113或3+132或3-132.6.4 平面向量的应用一、选择题1.已知三个力F 1=(-2,-1),F 2=(-3,2),F 3=(4,-3)同时作用于某物体上的一点,为使物体保持平衡,现加上一个力F 4,则F 4等于( ) A .(-1,-2) B .(1,-2) C .(-1,2) D .(1,2)【解析】F 4=-(F 1+F 2+F 3)=-[(-2,-1)+(-3,2)+(4,-3)]=(1,2). 【答案】D2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24 B .-24C.34 D .-34【解析】由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.【答案】B3.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( ) A .10 m/s B .226 m/s C .4 6 m/s D .12 m/s【解析】由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如右图. ∴小船在静水中的速度大小|v |=102+22=104=226 (m/s). 【答案】B4.在△ABC 中,AB =3,AC 边上的中线BD =5,AC →·AB →=5,则AC 的长为( ) A .1 B .2 C .3 D .4【解析】因为BD →=AD →-AB →=12AC →-AB →,所以BD →2=⎝ ⎛⎭⎪⎫12AC →-AB →2=14AC →2-AC →·AB →+AB →2,即14AC →2=1,所以|AC →|=2,即AC =2. 【答案】B 二、填空题5.如图所示,一力作用在小车上,其中力F 的大小为10牛,方向与水平面成60°角,当小车向前运动10米时,力F 做的功为________焦耳. 【解析】设小车位移为s ,则|s |=10米,W F =F ·s =|F ||s |·cos 60°=10×10×12=50(焦耳).【答案】506.若AB →=3e ,DC →=5e ,且|AD →|=|BC →|,则四边形ABCD 的形状为________. 【解析】由AB →=3e ,DC →=5e ,得AB →∥DC →,AB →≠DC →,又因为ABCD 为四边形,所以AB ∥DC ,AB ≠DC . 又|AD →|=|BC →|,得AD =BC , 所以四边形ABCD 为等腰梯形. 【答案】等腰梯形7.某同学骑电动车以24 km/h 的速度沿正北方向的公路行驶,在点A 处测得电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处,测得电视塔S 在电动车的北偏东75°方向上,则点B 与电视塔的距离是________ km.【解析】如题图,由题意知AB =24×1560=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,∴∠ASB =45°,由正弦定理知BS sin 30°=AB sin 45°,∴BS =AB ·sin 30°sin 45°=32(km). 【答案】3 2 三、解答题 8.如图所示,在正方形ABCD 中,P 为对角线AC 上任一点,PE ⊥AB ,PF ⊥BC ,垂足分别为E ,F ,连接DP ,EF ,求证:DP ⊥EF .证明:方法一 设正方形ABCD 的边长为1,。
第二高级中学高三数学下学期周练(二)理(2021年整理)
河南省正阳县第二高级中学2018届高三数学下学期周练(二)理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河南省正阳县第二高级中学2018届高三数学下学期周练(二)理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河南省正阳县第二高级中学2018届高三数学下学期周练(二)理的全部内容。
河南省正阳县第二高级中学 2017-2018学年下期高三理科周练(二)一.选择题:1。
设集合A={x |x 〉1},B={a+2}.若A B =∅,则实数a 的取值范围是( )A.(,1]-∞-B.(,1]-∞C.[1,)-+∞ D 。
[1,)+∞ 2. 复数z 满足34iz i+=,若复数z 对应的点为M ,则点M 到直线310x y -+=的距离为 (A )4105 (B )7105(C )810(D )103。
身高从矮到高的甲、乙、丙、丁、戊5人排成高矮相间的一个队形,则不同的排法 共有( )种A .12B .16C .24D .324。
平面直角坐标系中,在直线x=1,y=1与坐标轴围成的正方形内任取一点,则此点落在曲线2y x =下方区域的概率为( ).A .13B .23C .49D .595。
若中心在原点,焦点在y 轴上的双曲线离心率为3,则此双曲线的渐近线方程为( ) A .y=±x B .2y x=±C .2y x =±D .12y x =± 6. 已知函数f (x )=3sin 2x +cos 2x -m 在错误!上有两个零点x 1,x 2,则tan 错误!的值为( ).A . 3 B .错误! C .错误! D .错误! 7。
2022-2023学年全国高中高二下数学人教A版同步练习(含解析)
2022-2023学年全国高二下数学同步练习考试总分:95 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1. 设,是两条不同的直线,,是两个不同的平面( )A.若,,则B.若, ,则C.若,,则D.若,,则2. 等于( )A.B.C.D.3. 某校成立了舞蹈、机器人和无人机三个兴趣小组,甲、乙、丙名同学均报名参加,三人在不同的小组,且每人只参加一个兴趣小组,对于他们参加兴趣小组的情况,有如下三种猜测,每种猜测都只猜对了一半.第一种:甲参加了舞蹈组,乙参加了机器人组;第二种:丙没参加机器人组,乙参加了舞蹈组;第三种:甲没参加舞蹈组,乙参加了无人机组.则甲、乙、丙三名同学分别参加的是( )A.机器人组、舞蹈组和无人机组B.无人机组、机器人组和舞蹈组C.舞蹈组、无人机组和机器人组D.机器人组、无人机组和舞蹈组4. 若,是两条不同的直线,,是三个不同的平面,则下列判断中正确的是( ).m n αβm//αn//αm//nm//αm//βα//βm//n m ⊥αn ⊥αm//αα⊥βm ⊥β+C 512C 612C 513C 613C 1113A 712m n α,βγm ⊂βα⊥βA.若,,则B.若 , ,则C.若,,则D.若,,则5. 如图,正方体 的棱长为,,分别是线段上两个动点且,则下列结论中正确的是( )A. 存在某个位置,使 B. 存在某个位置,,使面C. 三棱锥的体积为定值D. 的面积与的面积相等6. 在正方体中,为的中点,为的中点,平面过顶点,且平面,平面,平面平面,则直线与所成角的余弦值为( )A.B.C.D.7. “干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅,…,癸酉,甲戌,乙亥,丙子,…,癸未,甲申,乙酉,丙戌,…,癸巳,…,共得到个组成,周而复始,循环记录,年是“干支纪年法”中的甲午年,那么年是“干支纪年法”中的( )A.乙亥年m ⊂βα⊥βm ⊥αm ⊥βm//αα⊥βα⊥γα⊥ββ//γm//αα//βm//βABCD −A 1B 1C 1D 11E F C A 1B 1C 1EF =32E ,F BE ⊥DFE F EF//BC A 1D 1−BEF B 1△AEF △BEF ABCD −A 1B 1C 1D 1P BC Q CC 1αC α//APQ α∩ABCD =m APQ∩AD =n D 1A 1m n −10−−√1010−−√103–√10−3–√1060201420208. 现有份不同的礼物,若将其全部分给甲、乙两人,要求每人至少分得一份,则不同的分法共有( )A.种B.种C.种D.种9. 一个正方形花圃,被分为份、、、、,种植红、黄、蓝、绿种颜色不同的花,要求相邻两部分种植不同颜色的花,则不同的种植方法有( )A. 种B. 种C.种D.种10. 现有个红球、个黄球、个白球,个黑球,同色球不加区分,将这个球排成一列,有多少种不同的方法( )A.B.C.D.11. 高三()班某天安排节课,其中语文、数学、英语、物理、生物、地理各一节.若要求物理课比生物课先上,语文课与数学课相邻,则编排方案共有( )A.种4101420285A B C D E 42448849622331024000252002560026540264212. “学习强国”学习平台是由中宣部主管,以深入学习宣传习近平新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门.该款软件主要设有“阅读文章”“视听学习”两个学习板块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题板块.某人在学习过程中,“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有 A.种B.种C.种D.种卷II (非选择题)二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13. 计算的值为________.14. 有个座位连成一排,人就坐,要求恰有两个空位相邻且甲乙两人不坐在相邻座位,则不同的坐法有________种(用数字作答).15. 为庆祝中国共产党成立周年,某校以班级为单位组织开展“走进革命老区,学习党史文化”研学游活动.该校高一年级部个班级分别去个革命老区开展研学游,每个班级只去个革命老区,每个革命老区至少安排个班级,则不同的安排方法共有________种(用数字作答).16. 张,王两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这六人的入园顺序排法种数为________.(数字作答)三、 解答题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )17. 从名男生和名女生中选人担任个不同学科的课代表,分别求符合下列条件的方法数.女生必须少于男生;女生甲担任语文课代表.18. 在三棱锥中,平面为的中点.APP ()192240432528+C 36C 2674100103135355(1)(2)P 一ABC PA ⊥ABC,AB =AC,M ,N BC ,AB求证:平面;求证:平面平面 19. 如图,在斜三棱柱中,侧面与侧面都是菱形,,.求证:;若,求二面角的余弦值.(1)MN//PAC (2)PBC ⊥PAM.ABC −A 1B 1C 1ACC 1A 1CBB 1C 1∠AC =∠C =C 1C 1B 160∘AC =2(1)A ⊥C B 1C 1(2)A =B 16–√C −A −B 1A 1参考答案与试题解析2022-2023学年全国高二下数学同步练习一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1.【答案】C【考点】空间中直线与平面之间的位置关系【解析】.根据线面平行的性质进行判断..根据线面平行的性质和面面平行的判定定理进行判断..利用线面垂直和直线平行的性质进行判断..利用线面垂直和面面垂直的性质进行判断.【解答】解:,同时平行于同一平面的两条直线不一定平行,可能相交,也可能是异面直线,故错误;,同时平行于同条直线的两个平面,不一定平行,可能相交,故错误;,若,,则根据直线平行的性质可知,成立,故正确;,当,,则不一定成立,可能相交,可能平行,故错误.故选.2.【答案】B【考点】组合及组合数公式【解析】由组合数的性质可得答案.【解答】解:由组合数的性质可得,故选:.3.【答案】BA B C D A A B B C m//n m ⊥αn ⊥αC D m//αα⊥βm ⊥βD C +=C 512C 612C 613B进行简单的合情推理【解析】按第一种猜测,若甲参加了舞蹈组,则可以得到乙参加了无人机组,丙参加了机器人组,不满足第二种假设,若甲参加了无人机组,乙参加了机器人组,丙参加了舞蹈组,则三种假设全满足,问题得以解决.【解答】若甲参加了舞蹈组,乙参加了无人机组,丙参加了机器人组,则不满足第二种猜想,若甲参加了无人机组,乙参加了机器人组,丙参加了舞蹈组,则三种假设全满足,4.【答案】B【考点】命题的真假判断与应用空间中直线与直线之间的位置关系空间中直线与平面之间的位置关系空间中平面与平面之间的位置关系【解析】对选项,,举出反例,得到结论不成立,对于选项,通过面面垂直的判断定理即可论证【解答】解:,,,则与的关系有三种,即,或与相交,故选项错误;,,,则内存在与平行的直线与垂直,则 ,故选项正确;,若 ,,则与相交或平行,故选项错误;,若,,则有可能,故选项 错误;故选.5.【答案】B【考点】空间中直线与直线之间的位置关系异面直线及其所成的角A C DB A m ⊂βα⊥βm αm//αm ⊂αm αA B m ⊥βm//ααm βα⊥βBC α⊥γα⊥ββγCD m//αα//βm ⊂βD B此题暂无解析【解答】此题暂无解答6.【答案】B【考点】异面直线及其所成的角余弦定理【解析】由线面平行及面面平行可知,直线与所成角即为与所成角(或其补角).不妨设正方体的棱长为,利用余弦定理求解即可.【解答】解:由线面平行及面面平行可知,直线与所成角即为与所成角(或其补角).不妨设正方体的棱长为,则,,,在中,,即直线与所成角的余弦值为.故选.7.【答案】C【考点】进行简单的合情推理【解析】根据天干地支的纪年方法,经过了年,可以推算出年是庚子年.【解答】从年到年,总共经过了年,所以天干中的甲变为子,地支中的午变为子,即年是“干支纪年法”中的庚子年.8.m n AP PQ 2m n AP PQ 2AP =5–√PQ =2–√AQ =3△APQ cos ∠APQ ==−5+2−92××5–√2–√10−−√10m n 10−−√10B 620202014202062020B【考点】排列、组合及简单计数问题【解析】此题暂无解析【解答】解:解:根据题意,假设个人为甲和乙,分种情况讨论:①、甲份而乙份,有种安排方法;②、甲乙各份,有种安排方法;③、甲份而乙份,有种安排方法;则一共有种分配方案;9.【答案】D【考点】排列、组合及简单计数问题【解析】区域、、两两相邻,共有种不同的种植方法,讨论区域与区域种植的花的颜色相同与不同,即可得到结果【解答】解:区域、、两两相邻,共有种不同的种植方法,当区域与区域种植相同颜色的花时,种植、有种不同的种植方法,当区域与区域种植不同颜色的花时,种植、有种不同的种植方法,∴不同的种植方法有种,故选.10.【答案】B【考点】2313=4C 142=6C 2431=4C 344+6+4=14A C D =24A 34E A A C D =24A 34E A B E 1×2=2E A B E 2×1=2×(2+2)=96A 34D排列、组合及简单计数问题【解析】10.第一步,从个位置中选出个位置,分给相同的红球,有种选法;第二步,从剩余的个位置中选出个位置,分给相同的黄球,有种选法;第三步,从剩下的个位置选出个分给个白球,有种选法,余下个位置给黑球.根据分步乘法计数原理可得,排列方法共有(种)【解答】B 11.【答案】C【考点】排列、组合及简单计数问题【解析】此题暂无解析【解答】若要求物理课比生物课先上,语文课与数学课相邻,则课程编排方案共有种.故选.12.【答案】C【考点】排列、组合的应用【解析】此题暂无解析【解答】解:若“阅读文章”与“视听学习”相邻,则有种可能;若“阅读文章”与“视听学习”相隔一个答题板块,则有种可能,故共有种可能.故选.B 102C 21082C 28633C 363=25200C 210C 28C 36C =12012A 25A 25C ×=240A 22A 55××=192A 22C 14A 44432C二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【答案】【考点】组合及组合数公式【解析】直接展开组合数公式计算.【解答】解:.故答案为.14.【答案】【考点】分步乘法计数原理【解析】先将个人排好,将个空位看成一组与另一个空位插入前个人形成的个空位中,共有种方法.再减去其中甲乙相邻的排法,共计种,即得所求.【解答】解:先将个人排好,有种,将个空位看成一组与另一个空位插入前个人形成的个空位中,共有种方法.再除去甲乙相邻的情况:把甲乙看成一组,与另外个人排列,再把空位插入,方法有种.故满足条件的排法有种,故答案为:.15.【答案】【考点】35+=+=+=35C 36C 266!3!⋅3!6!2!⋅4!6×5×43×26×523533642455×4×A 44⋅×4×3A 22A 334A 442455×4×A 442⋅×4×3A 22A 335×4×−⋅×4×3=336A 44A 22A 3333612600排列、组合及简单计数问题计数原理的应用【解析】无【解答】解:由题意,个班级分别去个革命老区,每个革命老区至少安排个班级,分成组有,再把组分到三个革命老区有种,所以共有种.故答案为:.16.【答案】【考点】排列、组合的应用计数原理的应用【解析】根据题意,分步进行分析,①、先分派两位爸爸,必须一首一尾,由排列数公式可得其排法数目,②、两个小孩一定要排在一起,用捆绑法将其看成一个元素,③、将两个小孩与两位妈妈进行全排列,由排列数公式可得其排法数目,由分步计数原理计算可得答案.【解答】解:分步进行分析:①,先分派两位爸爸,必须一首一尾,有种排法,②,两个小孩一定要排在一起,将其看成一个元素,考虑其顺序有种排法,③,将两个小孩与两位妈妈进行全排列,有种排法,则共有种排法.故答案为:.三、 解答题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )17.【答案】解:先从名学生中任选名,共有种选法,其中女生比男生多的情况有:选名男生和名女生,共有种选法,10333==2100C 310C 37C 44A 22×10×9×83×2×17×6×53×2×12×13=3×2×1=6A 332100×6=12600126002433=2A 22=2A 22=6A 332×2×6=2424(1)85C 5823⋅C 25C 33(−⋅)523所以女生少于男生的选法为,再让选出的名学生分别担任门不同学科的课代表,有种,由分步乘法计数原理和,共有种不同的方法.从剩余人中选出人分别担任另门不同学科的课代表,共有种不同的方法.【考点】排列、组合及简单计数问题计数原理的应用【解析】此题暂无解析【解答】解:先从名学生中任选名,共有种选法,其中女生比男生多的情况有:选名男生和名女生,共有种选法,所以女生少于男生的选法为,再让选出的名学生分别担任门不同学科的课代表,有种,由分步乘法计数原理得,共有种不同的方法.从剩余人中选出人分别担任另门不同学科的课代表,共有种不同的方法.18.【答案】证明:因为分别为的中点,所以,因为平面,平面平面因为平面,平面,所以.因为,为的中点,所以因为,所以平面.因为平面,所以平面平面【考点】平面与平面垂直的判定直线与平面平行的判定【解析】(−⋅)C 58C 25C 3355A 55(−⋅)⋅=5520C 58C 25C 33A 55(2)744⋅=840C 47A 44(1)85C 5823⋅C 25C 33(−⋅)C 58C 25C 3355A 55(−⋅)⋅=5520C 58C 25C 33A 55(2)744⋅=840C 47A 44(1)M ,N BC ,AB MN//AC MN ⊂PAC AC ⊂PAC ,∴MN//PAC.(2)PA ⊥ABC BC ⊂ABC PA ⊥BC AB =AC M BC AM ⊥BC.AM ∩PA =A BC ⊥PAM BC ⊂PBC PBC ⊥PAM.此题暂无解析【解答】证明:因为分别为的中点,所以,因为平面,平面平面因为平面,平面,所以.因为,为的中点,所以因为,所以平面.因为平面,所以平面平面19.【答案】证明:连接,,则和皆为正三角形.取中点,连,,则,,则平面,则;解:由知,,又,所以.以,,为正方向建立空间直角坐标系,则,,,设平面的法向量为,因为,,所以取,设平面的法向量为,因为,,所以取,则,因为二面角为钝角,所以二面角的余弦值为.(1)M ,N BC ,AB MN//AC MN ⊂PAC AC ⊂PAC ,∴MN//PAC.(2)PA ⊥ABC BC ⊂ABC PA ⊥BC AB =AC M BC AM ⊥BC.AM ∩PA =A BC ⊥PAM BC ⊂PBC PBC ⊥PAM.(1)AC1CB1△ACC 1△C B 1C 1CC 1O OA OB1C ⊥OA C 1C ⊥O C 1B 1C ⊥C 1OAB 1C ⊥A C1B 1(2)(1)OA =O =B 13–√A =B 16–√OA ⊥OB 1OB 1OC 1OA C(0,−1,0)(,0,0)B 13–√A(0,0,)3–√CAB 1=(,,)m →x 1y 1z 1=(,0,−)AB 1−→−3–√3–√=(0,−1,−)AC −→−3–√{+0×−=0,3–√x 1y 13–√z 10×−1×−=0,x 1y 13–√z 1=(1,−,1)m →3–√A A 1B 1=(,,)n →x 2y 2z 2=(,0,−)AB 1−→−3–√3–√=(0,2,0)AA 1−→−{+0×−=0,3–√x 2y 23–√z 20×−1×−0×=0,x 2y 2z 2=(1,0,1)n →cos <,>===m →n →⋅m →n →||||m →n →2×5–√2–√10−−√5C −A −B 1A 1C −A −B 1A 1−10−−√5【考点】用空间向量求平面间的夹角两条直线垂直的判定【解析】(1)证明:连,,证明,,得到平面,即可证明.(2)以,,为正方向建立空间直角坐标系,求出,,,求出平面的法向量,平面的法向量,通过向量的数量积求解二面角的余弦值.【解答】证明:连接,,则和皆为正三角形.取中点,连,,则,,则平面,则;解:由知,,又,所以.以,,为正方向建立空间直角坐标系,则,,,设平面的法向量为,因为,,所以取,设平面的法向量为,因为,,所以取,则,因为二面角为钝角,所以二面角的余弦值为.AC 1CB 1C ⊥OA C 1C ⊥O C 1B 1C ⊥C 1OAB 1C ⊥A C 1B 1OB 1OC 1OA C B 1A CAB 1m →A A 1B 1n →C −A −B 1A 1(1)AC 1CB 1△ACC 1△C B 1C 1CC 1O OA OB 1C ⊥OA C 1C ⊥O C 1B 1C ⊥C 1OAB 1C ⊥A C 1B 1(2)(1)OA =O =B 13–√A =B 16–√OA ⊥OB 1OB 1OC 1OA C(0,−1,0)(,0,0)B 13–√A(0,0,)3–√CAB 1=(,,)m →x 1y 1z 1=(,0,−)AB 1−→−3–√3–√=(0,−1,−)AC −→−3–√{+0×−=0,3–√x 1y 13–√z 10×−1×−=0,x 1y 13–√z 1=(1,−,1)m →3–√A A 1B 1=(,,)n →x 2y 2z 2=(,0,−)AB 1−→−3–√3–√=(0,2,0)AA 1−→−{+0×−=0,3–√x 2y 23–√z 20×−1×−0×=0,x 2y 2z 2=(1,0,1)n →cos <,>===m →n →⋅m →n →||||m →n →2×5–√2–√10−−√5C −A −B 1A 1C −A −B 1A 1−10−−√5。
2018年新人教A版高中数学必修2全册同步检测含答案解析
2018年新人教A版高中数学必修二全册同步检测目录第1章1.1.1棱柱、棱锥、棱台的结构特征第1章1.1.2圆柱、圆锥、圆台、球、简单组合体的结构特征第1章1.2.2空间几何体的三视图第1章1.2.3空间几何体的直观图第1章1.3-1.3.2球的体积和表面积第1章1.3.1柱体、锥体、台体的表面积与体积第1章章末复习课第1章评估验收卷(一)第2章2.1.1平面第2章2.1.2空间中直线与直线之间的位置关系第2章2.1.3平面与平面之间的位置关系第2章2.2.1-2.2.2平面与平面平行的判定第2章2.2.3直线与平面平行的性质第2章2.2.4平面与平面平行的性质第2章2.3.1直线与平面垂直的判定第2章2.3.2平面与平面垂直的判定第2章2.3.3平面与平面垂直的性质第2章章末复习课第2章评估验收卷(二)第3章3.1.1倾斜角与斜率第3章3.1.2两条直线平行与垂直的判定第3章3.2.1直线的点斜式方程第3章3.2.2-3.2.3直线的一般式方程第3章3.3.2第1课时两直线的交点坐标、两点间的距离第3章3.3.2第2课时两直线的交点坐标、两点间的距离(习题课)第3章3.3.3-3.3.4两条平行直线间的距离第3章章末复习课第3章评估验收卷(三)第4章4.1.1圆的标准方程第4章4.1.2圆的一般方程第4章4.2.1直线与圆的位置关系第4章4.2.2-4.4.2.3直线与圆的方程的应用第4章4.3.1-4.3.2空间两点间的距离公式第4章章末复习课第4章评估验收卷(四)模块综合评价第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是() A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCDA1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是() A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A =2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.答案:C2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.答案:D5.一个四棱锥SABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥VABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥VABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为() A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB =BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC 为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章 空间几何体 1.3 空间几何体的表面积与体积 1.3.1 柱体、锥体、台体的表面积与体积A 级 基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( ) A .4倍 B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( ) A .3π B .33π C .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S 圆锥表=πr 2+πrl =π+2π=3π.故选A. 答案:A4.(2015·课标全国Ⅰ卷 )《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有( )A .14斛B .22斛C .36斛D .66斛解析:由l =14×2πr =8得圆锥底面的半径r =16π≈163,所以米堆的体积V =14×13πr 2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛). 答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为( )A .1∶ 2B .1∶3C .2∶ 2D .3∶6解析:棱锥B ′ ACD ′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B ′C =2,S △B ′AC =32.三棱锥的表面积S 锥=4×32=23, 又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2, 所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π. 答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r=7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( ) A .3倍 B .3 3 倍 C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( ) A .R B .2R C .3R D .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18 解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V =43π⎝ ⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 2解析:设该球的半径为R , 所以(2R )2=(2a )2+a 2+a 2=6a 2, 即4R 2=6a 2.所以球的表面积为S =4πR 2=6πa 2. 答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是( )A .4π+24B .4π+32C .22πD .12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B 二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3. 答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3.答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π, 又两个半球的体积2V 半球=43πr 3=43π,因此组合体的体积V =3π+43π=133π.10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5,解得:R =1.5 (cm), 所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.8π3 B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2, 所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5,所以球心O 到平面ABCD 的距离d =R 2-r 2=3, 所以V O ABCD =13×(42)3×3=32.答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r , 则S 1=6a 2,S 2=4πR 2,S 3=6πr 2. 由题意知,43πR 3=a 3=πr 2·2r ,所以R =334πa ,r =312πa ,所以S 2=4π⎝ ⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3.所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B归纳升华1.第(1)题中易把23误认为是正三棱锥底面等边三角形的边长.注意“长对正、高平齐、宽相等”.2.(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确。
人教A版数学课本优质习题总结训练-必修二参考答案-2025届高三数学一轮复习
人教A 版数学课本优质习题总结训练——必修二参考答案:1.A【分析】设AB 中点为D ,确定AO AD =,ABO 为正三角形,再计算向量的投影得到答案.【详解】设AB 中点为D ,则22AO AB AC AD =+= ,即AO AD =,故BC 边为圆O 的直径,则AO OB =,又AO AB = ,则ABO 为正三角形,则有12BA BC = ,向量BA 在向量BC 上的投影向量1cos604BC BA BC BC ︒⨯=,故选:A2.OD OA OB OC=-+ 【解析】由OD OA AD =+ ,AD BC = ,BC OC OB =-,即可得到结论.【详解】OD OA AD OA BC OA OC OB OA OB OC =+=+=+-=-+.【点睛】本题考查向量加法,向量减法,属于基础题.3.(1(2)合理【分析】(1)结合图形作辅助线在直角三角形中求解;(2)根据平面向量基本定理,12,e e作为一组基底,则平面内任意向量都有唯一有序数对(),x y 使得12OP xe ye =+.【详解】解:(1)建立如图所示的直角坐标系,将OP分解到Ox '轴和Oy '轴可求得|||4PM OM ==,所以||OP ==.(2)12,e e 作为一组基底,对于任意向量12,,OP xe ye x y =+都是唯一确定的,所以本题中对向量坐标的规定合理.【点睛】此题考查平面向量基本运算,涉及数形结合处理模长问题,对平面向量基本定理辨析4.2【分析】利用平面向量基本定理表示出AO,列方程组即可求解.【详解】因为点O 是BC 的中点,所以1111=2222AO AB AC mAM nAN =++ .而M 、N 、O 三点共线,所以()1AO t AM t AN =+-,则有122112m t m n n t ⎧=⎪⎪⇒+=⎨⎪=-⎪⎩5.()()sin sin -sin -h ααγβγα=【详解】主要考查正弦定理的应用.解:在ABP 中,180+ABP γβ∠=- ,()()()180- 180-180+ =-BPA ABP αβαβγβγα∠=--∠=--- .在ABP 中,根据正弦定理,()()()()sin sin sin -sin 180+αsin -sin -AP ABABP APBAP AP αγαγβγβγα=∠∠=-⨯=所以山高为()()sin sin -sin sin -h AP ααγβαγα==.6.D 【分析】由0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭可得AB AC =,再由12AB AC AB AC ⋅=可求出A ∠,即得三角形形状.【详解】因为||AB AB 和AC ACuuu r uuu r 分别表示向量AB 和向量AC 方向上的单位向量,由0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭,可得A ∠的角平分线与BC 垂直,所以ABC 为等腰三角形,且AB AC =,22||||cos AB AC AB AC A ⋅=⋅⋅12AC AC = ,所以1cos 2A Ð=,又()0,πA ∠∈,所以π3A ∠=,所以π3B C A ∠=∠=∠=,所以三角形为等边三角形.故选:D .7.C【详解】试题分析:因为OA OB OC ==,所以O 到定点,,A B C 的距离相等,所以O 为ABC ∆的外心,由0NA NB NC ++= ,则NA NB NC +=- ,取AB 的中点E ,则2N A N B N E C N +=-= ,所以2NE CN = ,所以N 是ABC ∆的重心;由•••PA PB PB PC PC PA ==,得()0PA PC PB -⋅= ,即0AC PB ⋅= ,所以AC PB ⊥,同理AB PC ⊥,所以点P 为ABC ∆的垂心,故选C.考点:向量在几何中的应用.8.tan sin sin()s θβαβ⋅+【详解】在△BCD 中,CBD παβ∠=--.由正弦定理得,sin sin BC CDBDC CBD=∠∠所以sin sin CD BDC BC CBD∠=∠sin .sin()s βαβ⋅=+在Rt △ABC 中,tan AB BC ACB=∠tan sin .sin()s θβαβ⋅=+塔高AB 为tan sin sin()s θβαβ⋅+.9【解析】MPN ∠即为AM 与AN 的夹角,先用,AB AC 将AM 与AN表示出来,求出AM BN ⋅ 以及AM ,AN ,代入公式cos ||||AM BNMPN AM BN ⋅∠=即可.【详解】解:∵M ,N 分别是BC ,AC 的中点,11(),22AM AB AC BN AN AB AC AB ∴=+=-=- .AM 与BN 的夹角等于,cos ||||AM BNMPN MPN AM BN ⋅∠∴∠=.11()22AM BN AB AC AC AB ⎛⎫⋅=+⋅- ⎪⎝⎭211114242AB AC AB AC AB AC =⋅-+-⋅ 2211125cos 60253424︒=-⨯⨯⨯-⨯+⨯=,||2AM ===,||2BN =,cos 91MPN ∴∠=.【点睛】本题考查平面向量基本定理以及向量的夹角公式,考查计算能力,是中档题.10.证明见解析【分析】利用余弦定理的推理将左边的余弦式进行角化边,化简整理即可得到右边.【详解】根据余弦定理的推论222222cos ,cos 22b c a c a b A B bc ca +-+-==,得左边222222222222(cos cos )()(2222a c b b c a a c b b c a c a B b A c a b c ac bc c c+-+-+-+-=-=⋅-⋅=-22221(22)2a b a b =-=-=右边,故等式成立.【点睛】本题考查了余弦定理的推理的应用,考查了证明等式的方法及推理论证能力,属于基础题.11.(1)见解析(2)见解析(3)见解析【解析】(1)设三角形的三边a ,c 的对角分别为A ,B ,C ,则由余弦定理可得222cos 2a b c C ab+-=,求出sin C 并代入三角形面积公式in 12s S ab C =,设1()2p a b c =++,则111(),(),()222b c a p a c a b p b a b c p c +-=-+-=-+-=-,即可化简得证;(2)由(1)可得S =.而又因为2l a b c p =++=,12S lr =,结合上述两式即可得证;(3)由三角形面积公式可得111222a b c S ah bh ch ====,即可得解.【详解】证明:(1)根据余弦定理的推论得222cos 2a b c C ab+-=,则sin C ==in 12s S ab C =,得12S ===又1()2p a b c =++,所以111(),(),()222b c a p a c a b p b a b c p c +-=-+-=-+-=-,代入可得S =;(2)因为1()2p a b c =++,所以三角形的周长2l a b c p =++=,又三角形的面积11222S lr p r pr ==⋅⋅=,其中r 为内切圆半径,所以S r p ==(3)根据三角形的面积公式111222a b c S ah bh ch ===,得2a S h a ==同理可证b h =c h =【点睛】本题主要考查了余弦定理、三角形面积公式,平方差公式的应用,计算量较大,属于中档题.12.(1)π3A =(2)2b c ==【分析】(1)在ABC 中,由cos sin 0a C C b c --=及正弦定理得到π1sin 62A ⎛⎫-= ⎪⎝⎭,得出角A ;(2)由三角形面积公式结合余弦定理可得2b c ==.【详解】(1)根据正弦定理,cos sin 0a C Cbc +--=变为sin cos sin sin sin 0A C A C B C --=,即sin cos sin sin sin A C A C B C =+,也即()sin cos sin sin sin A C A C A C C =++,所以sin cos sin sin cos cos sin sin A C A C A C A C C =++.cos 1A A -=,即11cos 222A A -=,所以()π1sin ,0,π62A A ⎛⎫-=∈ ⎪⎝⎭,所以ππ66A -=,则π3A =.(2)由π3A =,1sin 2ABC S bc A == ,得4bc =.由余弦定理,得()22222cos 22cos a b c bc A b c bc bc A =+-=+--,则()223=4+12=16b c a bc +=+,所以4b c +=.则2b c ==.13.D【详解】试题分析:由已知得,而,,CA AC DB BD =-=- 所以4OA OB OC OD OM +++=,选D.考点:平面向量的线性运算,相反向量.14.B【分析】利用向量减法和向量相等的定义即可求得,,,a b c d之间的关系,进而得到正确选项.【详解】OB OA AB OC OD DC -=-=,,而在平行四边形ABCD 中,AB DC = ,所以OB OA OC OD -=-,又OA a = ,OB b = ,OC c = ,OD d = ,则b a c d -=-,也即0a b c d -+-= .故选:B .15.B【分析】先求得12e e ⋅ 的值,根据数量积的运算法则求得a b ⋅以及,a b 的模,再根据向量的夹角公式,即可求得答案.【详解】因为1e ,2e是夹角为60︒的两个单位向量,所以12111cos602e e ⋅=⨯⨯︒= ,故2212121122(2)(32)62a b e e e e e e e e ⋅=+⋅-+=-+⋅+ 176222=-++=-,||a == ,||b=故712cos,2||||a ba ba b-⋅〈〉==-⋅,由于0,180a b︒≤〈〉≤︒,故,120a b〈〉=︒.故选:B.16.C【分析】根据给定条件,利用向量运算律计算即得.【详解】由向量a,b,c两两的夹角相等,得,,,0a b b c a c〈〉=〈〉=〈〉=或2π,,,3a b b c a c〈〉=〈〉=〈〉=,当,,,0a b b c a c〈〉=〈〉=〈〉=时,||5a b c++=,当2π,,,3a b b c a c〈〉=〈〉=〈〉=时,||a b c++=2==.故选:C17.cos()cos()cosa Bb A cθθθ⋅-+⋅+=⋅【分析】由BA BC CA=+,结合数量积可得DE BA DE BC DE CA⋅=⋅+⋅,再运用数量积定义可分别求出DE BA⋅、DE BC⋅、DE CA⋅,代入整理即可.【详解】如图所示,因为BA BC CA=+,所以()DE BA DE BC CA⋅=⋅+,即DE BA DE BC DE CA⋅=⋅+⋅,又因为||||cos||cosDE BA DE BA EDA c DEθ⋅=∠=,||||cos()||cos()DE BC DE BC B a DE Bθθ⋅=-=-,||||cos()||cos()DE CA DE CA A b DE Aθθ⋅=+=+,所以||cos ||cos()||cos()c DE a DE B b DE A θθθ=-++,即cos cos()cos()c a B b A θθθ=-++.18.(1)4i3x =±(2)12x =-±【分析】根据题意,由一元二次方程的解法结合复数的运算,即可得到结果.【详解】(1)将方程29160x +=的二次项系数化为1,得2160.9x +=得2169x =-,即4i.3x =±所以原方程的根为4i3x =±(2)方程210x x ++=的二次项系数为1,配方,得21324x ⎫-⎛+= ⎪⎝⎭,由Δ0<,知()30.4-->可得12x +=所以原方程的根为122x =-±.19.(1)24(2)(2)x x i x i +=+-;(2)44()()()()a b a b a b a bi a bi -=+-+-.【解析】(1)运用平方差公式进行因式分解即可;(2)运用平方差公式进行因式分解即可.【详解】(1)22224(4)(2)(2)(2)x x x i x i x i +=--=-=+-;(2)442222()()()()()()a b a b a b a b a b a bi a bi -=-+=+-+-.【点睛】本题考查了在复数范围内因式分解,考查了平方差公式的应用,属于基础题.20.9716λ-≤≤.【详解】试题分析:当12z z =时,复数的实部和虚部分别相等,求得24sin 3sin =-λθθ,根据[]sin 1,1θ∈-,求函数的值域.试题解析:∵12z z =,∴()()242cos 3sin m m i i θλθ+-=++,∴22{43m cos m sin θλθ=-=+,消去m 得:24cos 3sin θλθ-=+,∴22394sin 3sin 4sin 816λθθθ⎛⎫=-=-- ⎪⎝⎭,∵1sin 1θ-≤≤,∴当3sin 8θ=时,min 916λ=-.当sin 1θ=-时,max 7λ=.所以λ的取值范围为:9716λ-≤≤.21【解析】设圆锥的底面半径为r ,母线长为l ,根据圆锥的表面积公式和半圆的面积公式列方程组,解出即可.【详解】解:设圆锥的底面半径为r ,母线长为l ,则由题意得2a r rl ππ=+.又圆锥的侧面展开图为半圆,2r l ππ∴=,即2l r =.将②式代入①式得23a r π=,23a r π∴=,即r =.【点睛】本题考查圆锥的表面积公式,是基础题.22.6【分析】按侧面11ABB A 放置时,液面以上部分为三棱柱,其体积为原来棱柱的14,故可得水的体积为棱柱的34,由此可得按底面ABC 放置时液面的高.【详解】设三棱锥的体积为V ,按侧面11ABB A 水平放置时液面以上部分的体积为14V ,故水的体积为34V ,设按底面ABC 放置时液面的高为h ,则33484h V ==,故6h =.【点睛】一定形状的几何体容器,按不同位置放置时容器内的液体的体积计算方法不一致,可根据同一体积的不同计算方法得到关键几何量之间的相互关系.23.222123111V V V +=【解析】直角三角形ABC 的两条直角边分别为a ,b ,斜边为c ,依照题意,得到三个几何体的体积.【详解】解:设直角三角形ABC 的两条直角边分别为a ,b ,斜边为c ,以a 为轴,进行旋转,形成底面半径为b ,高为a 的圆锥,其体积221133V b a ab ππ=⨯⨯⨯=;以b 为轴,进行旋转,形成底面半径为a ,高为b 的圆锥,其体积222133V a b a b ππ=⨯⨯⨯=,以c 为轴,进行旋转,形成底面半径为abc,高的和为c 的两个圆锥的组合体,其体积22231(33ab a b V c c cππ=⨯⨯⨯=.()222222242422442442291199933b a c a b a b a b a b ab a b ππππππ++=+=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭所以222123111V V V +=.【点睛】本题考查几何体的体积公式.较易.解题时要认真审题,仔细解答.24.27个部分【分析】根据题意画出图形即可得出答案.【详解】如图,图中画出了正方体最上层把空间分成9个部分,同理中层、下层也分别把空间分成9个部分,因此共将空间分成27个部分.【点睛】本题主要考查的是平面基本性质,正确理解确定平面的几个公理及由题意画出图形且有较强的空间想象能力是解题的关键,是中档题.25.证明见解析【分析】推导出P ,Q ,R 都在平面ABC 与平面α的交线上,即可证明.【详解】证明:法一:∵AB ∩α=P ,∴P ∈AB ,P ∈平面α.又AB ⊂平面ABC ,∴P ∈平面ABC .∴由基本事实3可知:点P 在平面ABC 与平面α的交线上,同理可证Q ,R 也在平面ABC与平面α的交线上.∴P,Q,R三点共线.法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈平面APR,C∈平面APR,∴BC⊂平面APR.∵Q∈BC,∴Q∈平面APR,又Q∈α,∴Q∈PR,∴P,Q,R三点共线.26.画线见解析.【详解】试题分析:利用线面平行的判定定理去确定.试题解析:过平面内一点作直线,交于,交于;过平面内一点作直线,交于,则,所确定的截面为所求.考点:棱锥的结构特征,线面平行的判定和实际应用.27.(1)(2)(4)(5)【分析】根据题意,结合棱柱的特征进行判断,观察即可得到答案.【详解】根据棱柱的定义知,有两个面是互相平行且是全等的多边形,其余每相邻两个面的交线也互相平行,而这些面都是平行四边形,所以(1)和(2)正确;因为水面EFGH所在四边形,从图2,图3可以看出,有两条对边边长不变而另外两条对边边长随倾斜度变化而变化,所以水面四边形EFGH的面积是变化的,(3)错误;因为棱11A D始终与BC平行,BC与水面始终平行,所以(4)正确;因为水的体积是不变的,高始终是BC 也不变,所以底面积也不会变,即BE BF ⋅是定值,所以(5)正确;综上知(1)(2)(4)(5)正确,故答案为:(1)(2)(4)(5).28.外中点垂【分析】(1)由PO α⊥可得PO AO ⊥,PO BO ⊥,根据题意可得POA POB ∆≅∆,可得OA OB =,从而可得OA OB OC ==,从而得到结果;(2)由(1)得到OA OB OC ==,根据在直角三角形中,斜边的中线是斜边的一半可得,点O 为斜边AB 的中点;(3)由PA PB ⊥,PB PC ⊥可得PB ⊥平面PAC ,进而可得PB AC ⊥,又PO AC ⊥,可得AC ⊥平面PBO ,进而可得BO AC ⊥,同理可得CO AB ⊥,AO BC ⊥,从而得出答案。
2021-2022年高三下学期第二次周练数学(理)试题 含答案
2021年高三下学期第二次周练数学(理)试题含答案考生注意:1、 本试卷共150分,考试时间120分钟。
2、 请将各题答案填在试卷后面的答题卷上。
3、 本试卷注意考试内容:高考全部内容。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、复数的虚部是( )A .1B .-1C .D .2、已知集合2{|lg },{|1}M x R y x N y R y x =∈==∈=+,集合等于( )A .B .C .D .3、已知,并且是第三象限角,那么的值等于( ) A . B . C . D .4、是定义在R 上的偶函数,且对任意,总有成立,则等于( ) A .0 B .1 C .18 D .195、已知点在抛物线上,则点P 到抛物线焦点F 的距离为( ) A .1 B .2 C .3 D .46、已知向量(4,1),(,5),,(0,)a x b y x x y =-=+∈+∞,且,则取最小值时的值为( ) A .3 B .1 C .2 D .7、某多面体的三视图如图所示,则此多面体的体积为( ) A .6 B .9 C .12 D .188、将函数的图象向左平移个单位,平移后的图象如图所示,则平移后的图象所对应的函数的解析式是( ) A . B . C . D .9、在如图所示的撑血框图中,如果输入的,那么输出的等于( ) A .3 B .4 C .5 D .610、将甲乙两人在内的7名医生分成三个医疗小组,一组3人, 令两组在同一组的分法有( )A .80种B .90种C .25种D .120种11、已知分别是双曲线的左右焦点,A 和B 是以为坐标原点为圆心,为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率( ) A . B . C . D .12、设函数在R 上的导函数为,且,则下面的不等式在R 内恒成立的是( ) A . B . C . D .第Ⅱ卷本卷包括必考题和选考题两部分,第(13题)-第(21)题为表题,每个题目考生必须作答,第(22)题-第(24)题为选考题,考生根据要求作答二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
2021年高三周练 数学理(11.3) 含答案
2021年高三周练 数学理(11.3) 含答案命题:张小波 尹震霞 审核:徐瑢班级 姓名 学号一、填空题(本大题共14小题,每小题5分,计70分) 1.若2{|13},{|log 1}A x R x B x R x =∈≤≤=∈>,则= . 2.如果复数是实数,则实数 . 3.已知则的值为 . 4.在等差数列则公差 .5.已知向量若,则= .6.从内任意取两个实数,这两个数的平方和小于1的概率为 . 7.已知变量满足,则的最大值是 . 8.在中,,,为斜边的中点,则的值为 . 9.已知数列满足,则数列的前项的和是 .10.已知正项等比数列满足:,若存在两项使得,则的最小值为 . 11.已知函数,若,则实数的取值范围是 .12.设,若对于任意的,都有满足方程,这时所有取值构成的集合为 .13.点是椭圆上的点,以为圆心的圆与轴相切于椭圆的焦点,圆与轴相交于,若是钝角三角形,则椭圆离心率的取值范围是 . 14.已知等差数列的前n 项和为,若,,则下列四个命题中真命题的序号为 . ①; ②; ③; ④ 二、解答题15.(本小题满分14分) 已知函数.(1)设,且,求的值;(2)在中,,,且的面积为,求的值.16.(本小题满分14分)如图,在四棱锥中,四边形为平行四边形,,,为上一点,且平面.(1)求证:;(2)如果点为线段的中点,求证:∥平面.17.(本小题满分14分)如图,在半径为的圆形(O为圆心)铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A、C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为.(1)写出体积V关于的函数关系式;(2)当为何值时,才能使做出的圆柱形罐子体积V最大?18.(本小题满分16分)已知抛物线与椭圆有公共焦点F,且椭圆过点D.(1)求椭圆方程;(2)点A、B是椭圆的上下顶点,点C为右顶点,记过点A、B、C的圆为⊙M,过点D作⊙M的切线l,求直线l的方程;(3)过点A作互相垂直的两条直线分别交椭圆于点P、Q,则直线PQ是否经过定点,若是,求出该点坐标,若不经过,说明理由.19.(本小题满分 16分)设,已知函数的图象与轴交于两点. (1)求函数的单调区间;(2)设函数在点处的切线的斜率为,当时,恒成立,求的最大值;(3)有一条平行于轴的直线恰好..与函数的图象有两个不同的交点,若四边形为菱形,求的值.20.(本小题满分 16分) 设函数,数列满足. (1)求数列的通项公式;(2)设()11223344511n n n n T a a a a a a a a a a -+=-+-+⋅⋅⋅+-,若对恒成立,求实数的取值范围;(3)是否存在以为首项,公比为的数列,,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由.数学附加题部分班级 姓名 学号21.[选做题] 在A 、B 、C 、D 四小题中只能选做2题,A .选修4—1:如图,CP 是圆O 的切线,P 为切点,直线CO 交圆O 于A ,B 两点,AD ⊥CP ,垂足为D .求证:∠DAP =∠BAP .B .选修4—2: 设a >0,b >0,若矩阵A =⎣⎢⎡⎦⎥⎤a 00 b 把圆C :x 2+y 2=1变换为椭圆E :x 24+y 23=1.(1)求a ,b 的值;(2)求矩阵A 的逆矩阵A -1.C .选修4—4:在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin(θ-π6)=a 截得的弦长为23,求实数a 的值.D .选修4—5:已知a ,b 是正数,求证:a 2+4b 2+1—ab ≥4.【必做题】第22题、第23题22.如图,PA ⊥平面ABCD ,AD//BC ,∠ABC =90°,AB =BC =PA =1,AD =3,E 是PB 的中点. (1)求证:AE ⊥平面PBC ; (2)求二面角B -PC -D 的余弦值.ABD CPO· (第21A 题)PABC DE23.在一个盒子中有大小一样的7个球,球上分别标有数字1,1, 2,2,2,3,3.现从盒子中同时摸出3个球,设随机变量X 为摸出的3个球上的数字和. (1)求概率P (X ≥7);(2)求X 的概率分布列,并求其数学期望E (X ).A .选修4—1:几何证明选讲证明:因为CP 与圆O 相切,所以∠DPA =∠PBA . 因为AB 为圆O 直径,所以∠APB =90°,所以∠BAP =90°-∠PBA . 因为AD ⊥CP ,所以∠DAP =90°-∠DPA ,所以∠DAP =∠BAP . B .选修4—2:矩阵与变换 解(1):设点P (x ,y )为圆C :x 2+y 2=1上任意一点,经过矩阵A 变换后对应点为P ′(x ′,y ′)则⎣⎢⎡⎦⎥⎤a 00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax by =⎣⎢⎡⎦⎥⎤x ′y ′,所以⎩⎨⎧x ′=ax ,y ′=by ..因为点P ′(x ′,y ′)在椭圆E :x 24+y 23=1上,所以a 2x 24+b 2y 23=1,这个方程即为圆C 方程.所以⎩⎨⎧a 2=4,b 2=3.,因为a >0,b >0,所以a =2,b =3.ABD CP O·(第21A 题)(2)由(1)得A =⎣⎢⎡⎦⎥⎤2 00 3,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤12 00 33. C .选修4—4:坐标系与参数方程解:因为圆C 的直角坐标方程为(x -2) 2+y 2=4,直线l 的直角坐标方程为x -3y +2a =0.所以圆心C 到直线l 的距离d =|2+2a |2 =|1+a |. 因为圆C 被直线l 截得的弦长为23,所以r 2-d 2=3.即4-(1+a )2=3.解得a =0,或a =-2.D .选修4—5:不等式选讲已知a ,b 是正数,求证:a 2+4b 2+1—ab≥4.证明:因为a ,b 是正数,所以a 2+4b 2≥4ab .所以a 2+4b 2+1—ab ≥4ab +1—ab ≥24ab ×1—ab =4.即a 2+4b 2+1—ab≥4.22.(1)根据题意,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,3,0),P (0,0,1),E (12,0,12),→AE =(12,0,12),→BC =(0,1,0),→BP =(-1,因为→AE ·→BC =0,→AE ·→BP =0,所以→AE ⊥→BC ,→AE ⊥→BP .所以AE ⊥BC ,AE ⊥因为BC ,BP ⊂平面PBC ,且BC ∩BP =B , (2)设平面PCD 的法向量为n =(x ,y ,z ),则n ·→CD =0,n ·→PD =0.因为→CD =(-1,2,0),→PD =(0,3,-1),所以-x +2y =0,3y -z =0. 令x =2,则y =1,z =3.所以n =(2,1,3)是平面PCD 的一个法向量.因为AE ⊥平面PBC ,所以→AE 是平面PBC 的法向量.所以cos<→AE ,n >=→AE ·n |→AE |·|n |=5714.由此可知,→AE 与n 的夹角的余弦值为5714.根据图形可知,二面角B -PC -D 的余弦值为-5714. 23.解(1)P (X =7)=C 23C 12 + C 22C 12C 37=835,P (X =8)=C 22C 13C 37=335.所以P (X ≥7)=1135. ………………………4分 (2)P (X =6)=C 12C 13C 12 + C 33C 37=1335,P (X =5)=C 22C 12 + C 23C 12C 37=835,P (X =4)=C 22C 13C 37=335. 所以随机变量X 的概率分布列为X 4 5 6 7 8 P3358351335835335所以E (X )=4×335+5×835+6×1335+7×835+8×335=6.高三数学周末练习(理科)(xx .11.3)命题:张小波 尹震霞 审核:徐瑢班级 姓名 学号一、填空题(本大题共14小题,每小题5分,计70分)1. 若2{|13},{|log 1}A x R x B x R x =∈≤≤=∈>,则= . 2.如果复数是实数,则实数 . 3.已知则的值为 . 4.在等差数列则公差 . 5.已知向量若,则= .6.从内任意取两个实数,这两个数的平方和小于1的概率为 . 7.已知变量满足,则的最大值是 9 . 8.在中,,,为斜边的中点,则的值为 18 . 9.已知数列满足,则数列的前项的和是 .10.已知正项等比数列满足:,若存在两项使得,则的最小值为 . 11.已知函数,若,则实数的取值范围是 .12.设,若对于任意的,都有满足方程,这时所有取值构成的集合为 .13.点是椭圆上的点,以为圆心的圆与轴相切于椭圆的焦点,圆与轴相交于,若是钝角三角形,则椭圆离心率的取值范围是 . 14.已知等差数列的前n 项和为,若,,则下列四个命题中真命题的序号为 . ①; ②; ③; ④二、解答题15.(本小题满分14分)已知函数.(1)设,且,求的值;(2)在中,,,且的面积为,求的值.1)==,得,于是,因为,所以.(2)因为,由(1)知.因为△ABC的面积为,所以,于是. ①在△ABC中,设内角A、B的对边分别是a,b.由余弦定理得,所以.②由①②可得或于是.由正弦定理得,所以.16.(本小题满分14分)如图,在四棱锥中,四边形为平行四边形,,,为上一点,且平面.(1)求证:;(2)如果点为线段的中点,求证:∥平面.17.(本小题满分14分)如图,在半径为的圆形(O为圆心)铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A、C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为.(1)写出体积V关于的函数关系式;(2)当为何值时,才能使做出的圆柱形罐子体积V最大?解:(1)连结OB,∵,∴,设圆柱底面半径为,则,即,所以其中(2)由,得因此在(0,)上是增函数,在(,30)上是减函数。
2021年高中数学周练2 理 新人教A版必修5
2021年高中数学周练2 理新人教A版必修5一、选择题1.在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a=( ).5A.33 B.72 C.84 D.1892.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|等于( ).A.1 B.C.D.3.已知-7,,,-1四个实数成等差数列,-4,,,,-1五个实数成等比数列,则= ( )A.1 B.-1 C.2 D.±14.设记不超过的最大整数为令则()是等差数列但不是等比数列是等比数列但不是等差数列既是等差数列又是等比数列既不是等差数列也不是等比数列5.已知成等差数列,成等比数列,且,则的取值范围是()实用文档(A)(B)(C)(D)或6.如果等比数列的首项,公比,前n项和为,那么与的大小为()A.B.C.D.7.设数列是以2为首项,1为公差的等差数列,是以1为首项,2为公比的等比数列,则等于()A.1033 B.1034 C.2057 D.20588.定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an },{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”。
现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x²;②f(x)=2x;③;④f(x)=ln|x |。
则其中是“保等比数列函数”的f(x)的序号为( )A.①②B.③④C.①③D.②④9.已知数列满足,且,则数列的通项公式.10.已知等比数列中,,且有,则.实用文档二.解答题11.知数列满足,且(n2且n∈N*).求数列的通项公式;12.数列中,(n∈N*).证明数列为等比数列;实用文档试卷答案CC BBB CA C11.且n∈N*),,即(,且N*),所以,数列是等差数列,公差,首项,于是.12.因为,所以,两式相减得,所以,因此,数列从第二项起,是以2为首项,以3为公比的等比数列.26437 6745 杅/a21525 5415 吕S30817 7861 硡20717 50ED 僭 37153 9121 鄡21887 557F 啿.24566 5FF6 忶21610 546A 呪28307 6E93 溓31433 7AC9 竉实用文档。
人教A版数学课本优质习题总结训练-必修二题目+参考答案-2025届高三数学一轮复习
人教A 版数学课本优质习题总结训练——必修二P241.已知ABC 的外接圆圆心为O ,且2AO AB AC =+ ,AO AB = ,则向量BA在向量BC 上的投影向量为()A .14BC BC .14BC - D. 2.如图,O 是平行四边形ABCD 外一点,用,,OA OB OC 表示OD.P373.如图,设,Ox Oy 是平面内相交成60°角的两条数轴,12,e e分别是与x 轴、y 轴正方向同向的单位向量,若向量12OP xe ye =+ ,则把有序数对(x ,y )叫做向量OP在坐标系xOy 中的坐标,设1232OP e e =+.(1)计算||OP的大小;(2)根据平面向量基本定理判断,本题中对向量坐标的规定是否合理.P394.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N .设AB mAM AC nAN =,=,求m n +的值4题图5题图P515.如图,在山脚A 测得出山顶P 的仰角为a ,沿倾斜角为β的斜坡向上走a 米到B ,在B 处测得山顶P 的仰角为γ,求证:山高()()sin sin sin -a a h a γβγ-=.P526.已知非零向量AB、AC 满足0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC 的形状是()A .三边均不相等的三角形B .直角三角形C .等腰(非等边)三角形D .等边三角形7.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的()(注:三角形的三条高线交于一点,此点为三角型的垂心)A .重心外心垂心B .重心外心内心C .外心重心垂心D .外心重心内心P538.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .9.如下左图,在ABC 中,已知2,5,60AB AC BAC ︒==∠=,BC ,AC 边上的两条中线AM ,BM 相交于点P ,求MPN ∠的余弦值.P5410.如上右图,在ABC ∆中,求证:22(cos cos )c a B b A a b -=-.11.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,设1()2p a b c =++,求证:(1)三角形的面积S =;(2)若r 为三角形的内切圈半径,则r =;(3)把边BC ,AC ,AB 上的高分别记为,,a b c h h h ,则a h =,b h =c h =12.已知a 、b 、c 分别为ABC 三个内角A 、B 、C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若a =2,ΔABC 的面积为3,求b 、c .P6013.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD+++等于A .OMB .2OMC .3OMD .4OMP6114.已知OA a = ,OB b = ,OC c = ,OD d =,且四边形ABCD 为平行四边形,则()A .0a b c d +++= B .0a b c d -+-= C .0a b c d +--= D .0a b c d --+= 15.若1e ,2e 是夹角为60︒的两个单位向量,且122a e e =+ 与1232b e e =-+的夹角为()A .60︒B .120︒C .30︒D .150︒16.若平面向量a ,b ,c两两的夹角相等,且1==a b r r ,3c = ,则a b c ++= ()A .2B .5C .2或5D或5P6217.如图,直线l 与ABC 的边AB ,AC 分别相交于点D ,E .设AB c =,BC a =,=CA b ,ADE θ∠=,请用向量方法探究θ与ΔABC 的边和角之间的等量关系.P8018.在复数范围内解下列方程:(1)29160x +=(2)210x x ++=P8119.利用公式a 2+b 2=(a +bi )(a -bi ),把下列各式分解成一次因式的积:(1)x 2+4;(2)a 4-b 4.P9520.已知复数z 1=m +(4-m 2)i (m ∈R)和z 2=2cos θ+(λ+3sin θ)i (λ∈R),若z 1=z 2,试求λ的取值范围.P11921.已知圆锥的表面积为2am ,且它的侧面展开图是一个半圆,求这个圆锥的底面直径.P12022.如图,一个三棱柱形容器中盛有水,且侧棱AA 1=8,若侧面AA 1B 1B 水平放置时,液面恰好过AC ,BC ,A 1C 1,B 1C 1的中点,当底面ABC 水平放置时,液面高为多少?23.分别以一个直角三角形的斜边、两条直角边所在直线为轴,其余各边旋转一周形成的曲面围成3个几何体,这3个几何体的体积之间有什么关系?P13224.正方体各面所在平面将空间分成几部分?25.已知△ABC 在平面α外,其三边所在的直线满足AB ∩α=P ,BC ∩α=Q ,AC ∩α=R ,如图所示,求证:P ,Q ,R 三点共线.P14426.一木块如图所示,点P 在平面VAC 内,过点P 将木块锯开,使截面平行于直线VB 和AC ,应该怎样画线?4题图5题图6题图P14527.如图,透明塑料制成的长方体容器ABCD-A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜.随着倾斜度的不同,有下面五个命题:(1)有水的部分始终呈棱柱形;(2)没有水的部分始终呈棱柱形;(3)水面EFGH 所在四边形的面积为定值;(4)棱A 1D 1始终与水面所在平面平行;(5)当容器倾斜如图(3)所示时,BE·BF 是定值.其中所有正确命题的序号是______,为什么?P15228.过ABC 所在平面α外一点P ,作PO α⊥,垂足为O ,连接PA PB PC ,,.(1)若PA PB PC ==,则点O 是ABC 的心.(2)若PA PB PC ==,90︒∠=C ,则点O 是AB 边的.(3)若PA PB ⊥,PB PC ⊥,PC PA ⊥,垂足都为P ,则点O 是ABC 的心.P16229.若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是()A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定30.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1)过平面外一点,有且只有一条直线与这个平面垂直.()(2)过平面外一点,有且只有一条直线与这个平面平行.()(3)过直线外一点,有且只有一个平面与这条直线垂直.()(4)过直线外一点,有且只有一个平面与这条直线平行.()(5)过直线外一点,有且只有一条直线与这条直线平行.()P16431.如图,在正方形123SG G G 中,E ,F 分别是1223G G G G ,的中点,D 是EF 的中点,若沿SE ,SF 及EF 把这个正方形折成一个四面体,使123,,G G G 三点重合,重合后的点记为G ,则在四面体S -EFG 中,哪些棱与面互相垂直?32.如图,AB 是O 的直径,点C 是O 上的动点,过动点C 的直线VC 垂直于O 所在平面,D ,E 分别是VA ,VC 的中点,判断直线DE 与平面VBC 的位置关系,并说明理由.P16933.如图,一块边长为10cm 的正方形铁片上有四块阴影部分,将这些阴影部分裁下来,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,把容器的容积V (单位:3cm )表示为x (单位:cm )的函数.11题图12题图34.三个平面可将空间分成几部分?请分情况说明.P17035.如图,一块正方体形木料的上底面有一点E .若经过点E 在上底面上画一条直线与CE 垂直,则应该怎样画?35题图36题图36.如图所示,边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将,AED DCF △△分别沿,DE DF 折起,使,A C 两点重合于点A '.(1)求证:A D EF '⊥;(2)求三棱锥A EFD '-的体积.P17137.如图,在正方体1111ABCD A B C D -中,求证:(1)B 1D ⊥平面A 1BC 1;(2)B 1D 与平面A 1BC 1的交点H 是ΔA 1C 1B 的重心.38.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,,l α⊄,l β⊄则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于lP18439.高二年级有男生490人,女生510人,张华按男生、女生进行分层,通过分层随机抽样的方法,得到男生、女生的平均身高分别为170.2cm和160.8cm.(1)如果张华在各层中按比例分配样本,总样本量为100,那么在男生、女生中分别抽取了多少名?在这种情况下,请估计高二年级全体学生的平均身高.(2)如果张华从男生、女生中抽取的样本量分别为30和70,那么在这种情况下,如何估计高二年级全体学生的平均身高更合理?P21440.某学校有高中学生500人,其中男生320人,女生180人.有人为了获得该校全体高中学生的身高信息,采用分层抽样的方法抽取样本,并观测样本的指标值(单位:cm),计算得男生样本的均值为173.5,方差为17,女生样本的均值为163.83,方差为30.03.(1)根据以上信息,能够计算出总样本的均值和方差吗?为什么?(2)如果已知男、女样本量按比例分配,你能计算出总样本的均值和方差各为多少吗?(3)如果已知男、女的样本量都是25,你能计算出总样本的均值和方差各为多少吗?它们分别作为总体均值和方差的估计合适吗?为什么?P22241.四名同学各掷骰子5次,并各自记录每次骰子出现的点数,分别统计四名同学的记录结果,可以判断出一定没有出现点数6的是()A.平均数为3,中位数为2B.中位数为3,众数为2C.中位数为3,方差为2.8D.平均数为2,方差为2.4P22342.为了解某市家庭用电量的情况,该市统计局调查了200户居民去年一年的月均用电量(单位:kWh),数据从小到大排序如下:8182231424849505156575760616161626263636566676970707172727476777778788080828282 8384848888899091939394959696969798989899100100100101101101105106106106107107107107 108108109109110110110111112113113114115116118120120120121123124127127127130130130131 131132132132133133134134134135135135135136137137138139139140141142144146146147148149 151152154156159160162163163164165167169170170172174174177178178180182182187189191191 192194194200201201202203203206208212213214216223224237247250250251253254258260265274 274283288289304319320324339462498530542626为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯电价,使75%的居民缴费在第一档,20%的居民缴费在第二档,其余5%的居民缴费在第三档,请确定各档的范围.P22443.某人有4把钥匙,其中2把能打开门,如果随机地取一把钥匙试着开门,把不能开门的钥匙扔掉,那么第二次才能打开门的概率有多大?如果试过的钥匙又混进去,第二次能打开门的概率又有多大?P24944.分别抛掷两枚质地均匀的硬币,设事件A =“第1枚正面朝上”,事件B =“第2枚正面朝上”,事件C =“2枚硬币朝上的面相同”,A B C ,,中哪两个相互独立?45.设样本空间{},,,a b c d Ω=含有等可能的样本点,且{}{}{},,,,,A a b B a c C a d ===,请验证A ,B ,C 三个事件两两独立,但()()()()P ABC P A P B P C ≠.P25046.假设()0.7P A =,()0.8P B =,且A ,B 相互独立,则()P AB =;()P A B =.47.若()0P A >,()0P B >,证明:事件A ,B 相互独立与A ,B 互斥不能同时成立.P26448.一个袋子中有4个红球,6个绿球,采用不放回方式从中依次随机地取出2个球.(1)求第二次取到红球的概率;(2)求两次取到的球颜色相同的概率;(3)如果是4个红球,n 个绿球,已知取出的2个球都是红球的概率为16,那么n 是多少?-必修二结束-人教A 版数学课本优质习题总结训练——必修二参考答案:1.A【分析】设AB 中点为D ,确定AO AD =,ABO 为正三角形,再计算向量的投影得到答案.【详解】设AB 中点为D ,则22AO AB AC AD =+= ,即AO AD =,故BC 边为圆O 的直径,则AO OB =,又AO AB = ,则ABO 为正三角形,则有12BA BC = ,向量BA在向量BC 上的投影向量1cos604BC BA BC BC ︒⨯=,故选:A2.OD OA OB OC=-+ 【解析】由OD OA AD =+ ,AD BC = ,BC OC OB =-,即可得到结论.【详解】OD OA AD OA BC OA OC OB OA OB OC =+=+=+-=-+.【点睛】本题考查向量加法,向量减法,属于基础题.3.(1(2)合理【分析】(1)结合图形作辅助线在直角三角形中求解;(2)根据平面向量基本定理,12,e e 作为一组基底,则平面内任意向量都有唯一有序数对(),x y 使得12OP xe ye =+ .【详解】解:(1)建立如图所示的直角坐标系,将OP分解到Ox '轴和Oy '轴可求得|||4PM OM ==,所以||OP ==.(2)12,e e 作为一组基底,对于任意向量12,,OP xe ye x y =+都是唯一确定的,所以本题中对向量坐标的规定合理.【点睛】此题考查平面向量基本运算,涉及数形结合处理模长问题,对平面向量基本定理辨析4.2【分析】利用平面向量基本定理表示出AO,列方程组即可求解.【详解】因为点O 是BC 的中点,所以1111=2222AO AB AC mAM nAN =++ .而M 、N 、O 三点共线,所以()1AO t AM t AN =+-,则有122112m t m n n t ⎧=⎪⎪⇒+=⎨⎪=-⎪⎩5.()()sin sin -sin -h ααγβγα=解:在ABP 中,180+ABP γβ∠=- ,()()()180- 180-180+ =-BPA ABP αβαβγβγα∠=--∠=--- .在ABP 中,根据正弦定理,()()()()sin sin sin -sin 180+αsin -sin -AP ABABP APBAP AP αγαγβγβγα=∠∠=-⨯=所以山高为()()sin sin -sin sin -h AP ααγβαγα==.6.D【分析】由0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭ 可得AB AC =,再由12AB AC AB AC ⋅=可求出A ∠,即得三角形形状.【详解】因为||AB AB和AC AC uuu r uuu r 分别表示向量AB 和向量AC 方向上的单位向量,由0AB AC BC AB AC⎛⎫ ⎪+⋅= ⎪⎝⎭,可得A ∠的角平分线与BC 垂直,所以ABC 为等腰三角形,且AB AC =,22||||cos AB AC AB AC A ⋅=⋅⋅且12AB AC ABAC ⋅= ,所以1cos 2A Ð=,又()0,πA ∠∈,所以π3A ∠=,所以π3B C A ∠=∠=∠=,所以三角形为等边三角形.故选:D .7.C【详解】试题分析:因为OA OB OC ==,所以O 到定点,,A B C 的距离相等,所以O 为ABC ∆的外心,由0NA NB NC ++= ,则NA NB NC +=-,取AB 的中点E ,则2N A N B N E C N +=-= ,所以2NE CN = ,所以N 是ABC ∆的重心;由•••PA PB PB PC PC PA ==,得()0PA PC PB -⋅= ,即0AC PB ⋅= ,所以AC PB ⊥,同理AB PC ⊥,所以点P 为ABC ∆的垂心,故选C.考点:向量在几何中的应用.8.tan sin sin()s θβαβ⋅+【详解】在△BCD 中,CBD παβ∠=--.由正弦定理得,sin sin BC CD BDC CBD=∠∠所以sin sin CD BDCBC CBD∠=∠sin .sin()s βαβ⋅=+在Rt △ABC 中,tan AB BC ACB=∠tan sin .sin()s θβαβ⋅=+塔高AB 为tan sin sin()s θβαβ⋅+.9【解析】MPN ∠即为AM 与AN 的夹角,先用,AB AC 将AM 与AN 表示出来,求出AM BN ⋅ 以及AM ,AN ,代入公式cos ||||AM BN MPN AM BN ⋅∠= 即可.【详解】解:∵M ,N 分别是BC ,AC 的中点,11(),22AM AB AC BN AN AB AC AB ∴=+=-=- .AM 与BN 的夹角等于,cos ||||AM BN MPN MPN AM BN ⋅∠∴∠= .11()22AM BN AB AC AC AB ⎛⎫⋅=+⋅- ⎪⎝⎭211114242AB AC AB AC AB AC =⋅-+-⋅ 2211125cos 60253424︒=-⨯⨯⨯-⨯+⨯=,||2AM ===,||2BN =,cos 91MPN ∴∠=.【点睛】本题考查平面向量基本定理以及向量的夹角公式,考查计算能力,是中档题.10.证明见解析【分析】利用余弦定理的推理将左边的余弦式进行角化边,化简整理即可得到右边.【详解】根据余弦定理的推论222222cos ,cos 22b c a c a b A B bc ca+-+-==,得左边222222222222(cos cos )()(2222a c b b c a a c b b c a c a B b A c a b c ac bc c c+-+-+-+-=-=⋅-⋅=-22221(22)2a b a b =-=-=右边,故等式成立.【点睛】本题考查了余弦定理的推理的应用,考查了证明等式的方法及推理论证能力,属于基础题.11.(1)见解析(2)见解析(3)见解析【解析】(1)设三角形的三边a ,b ,c 的对角分别为A ,B ,C ,则由余弦定理可得222cos 2a b c C ab+-=,求出sin C 并代入三角形面积公式in 12s S ab C =,设1()2p a b c =++,则111(),(),()222b c a p a c a b p b a b c p c +-=-+-=-+-=-,即可化简得证;(2)由(1)可得S =.而又因为2l a b c p =++=,12S lr =,结合上述两式即可得证;(3)由三角形面积公式可得111222a b c S ah bh ch ====,即可得解.【详解】证明:(1)根据余弦定理的推论得222cos 2a b c C ab+-=,则sin C ==in 12s S ab C =,得12S ===又1()2p a b c =++,所以111(),(,()222b c a p a c a b p b a b c p c +-=-+-=-+-=-,代入可得S =;(2)因为1()2p a b c =++,所以三角形的周长2l a b c p =++=,又三角形的面积11222S lr p r pr ==⋅⋅=,其中r 为内切圆半径,所以S r p ==(3)根据三角形的面积公式111222a b c S ah bh ch ===,得2a S h a ==同理可证b h =c h =【点睛】本题主要考查了余弦定理、三角形面积公式,平方差公式的应用,计算量较大,属于中档题.12.(1)π3A =(2)2b c ==【分析】(1)在ABC 中,由cos sin 0a C C b c --=及正弦定理得到π1sin 62A ⎛⎫-= ⎪⎝⎭,得出角A ;(2)由三角形面积公式结合余弦定理可得2b c ==.【详解】(1)根据正弦定理,cos sin 0a C Cbc +--=变为sin cos sin sin sin 0A C A C B C --=,即sin cos sin sin sin A C A C B C =+,也即()sin cos sin sin sin A C A C A C C =++,所以sin cos sin sin cos cos sin sin A C A C A C A C C =++.cos 1A A -=,即11cos 222A A -=,所以()π1sin ,0,π62A A ⎛⎫-=∈ ⎪⎝⎭,所以ππ66A -=,则π3A =.(2)由π3A =,1sin 2ABC S bc A == ,得4bc =.由余弦定理,得()22222cos 22cos a b c bc A b c bc bc A =+-=+--,则()223=4+12=16b c a bc +=+,所以4b c +=.则2b c ==.13.D【详解】试题分析:由已知得,而,,CA AC DB BD =-=- 所以4OA OB OC OD OM +++= ,选D.考点:平面向量的线性运算,相反向量.14.B【分析】利用向量减法和向量相等的定义即可求得,,,a b c d 之间的关系,进而得到正确选项.【详解】OB OA AB OC OD DC -=-= ,,而在平行四边形ABCD 中,AB DC = ,所以OB OA OC OD -=- ,又OA a = ,OB b = ,OC c = ,OD d = ,则b a c d -=- ,也即0a b c d -+-= .故选:B .15.B【分析】先求得12e e ⋅ 的值,根据数量积的运算法则求得a b ⋅ 以及,a b 的模,再根据向量的夹角公式,即可求得答案.【详解】因为1e ,2e 是夹角为60︒的两个单位向量,所以12111cos602e e ⋅=⨯⨯︒= ,故2212121122(2)(32)62a b e e e e e e e e ⋅=+⋅-+=-+⋅+ 176222=-++=-,||a ==,||b = 故712cos ,2||||a b a b a b -⋅〈〉==-⋅ ,由于0,180a b ︒≤〈〉≤︒ ,故,120a b 〈〉=︒ .故选:B.16.C【分析】根据给定条件,利用向量运算律计算即得.【详解】由向量a ,b ,c 两两的夹角相等,得,,,0a b b c a c 〈〉=〈〉=〈〉= 或2π,,,3a b b c a c 〈〉=〈〉=〈〉= ,当,,,0a b b c a c 〈〉=〈〉=〈〉= 时,||5a b c ++= ,当2π,,,3a b b c a c 〈〉=〈〉=〈〉=时,||a b c ++=2==.故选:C17.cos()cos()cos a B b A c θθθ⋅-+⋅+=⋅【分析】由BA BC CA =+ ,结合数量积可得DE BA DE BC DE CA ⋅=⋅+⋅ ,再运用数量积定义可分别求出DE BA ⋅ 、DE BC ⋅ 、DE CA ⋅ ,代入整理即可.【详解】如图所示,因为BA BC CA =+ ,所以()DE BA DE BC CA ⋅=⋅+ ,即DE BA DE BC DE CA ⋅=⋅+⋅ ,又因为||||cos ||cos DE BA DE BA EDA c DE θ⋅=∠= ,||||cos()||cos()DE BC DE BC B a DE B θθ⋅=-=- ,||||cos()||cos()DE CA DE CA A b DE A θθ⋅=+=+ ,所以||cos ||cos()||cos()c DE a DE B b DE A θθθ=-++ ,即cos cos()cos()c a B b A θθθ=-++.18.(1)4i 3x =±(2)1i 22x =-±【分析】根据题意,由一元二次方程的解法结合复数的运算,即可得到结果.【详解】(1)将方程29160x +=的二次项系数化为1,得2160.9x +=得2169x =-,即4i.3x =±所以原方程的根为4i 3x =±(2)方程210x x ++=的二次项系数为1,配方,得21324x ⎫-⎛+= ⎪⎝⎭,由Δ0<,知()30.4-->可得1i.22x +=所以原方程的根为122x =-±.19.(1)24(2)(2)x x i x i +=+-;(2)44()()()()a b a b a b a bi a bi -=+-+-.【解析】(1)运用平方差公式进行因式分解即可;(2)运用平方差公式进行因式分解即可.【详解】(1)22224(4)(2)(2)(2)x x x i x i x i +=--=-=+-;(2)442222()()()()()()a b a b a b a b a b a bi a bi -=-+=+-+-.【点睛】本题考查了在复数范围内因式分解,考查了平方差公式的应用,属于基础题.20.9716λ-≤≤.【详解】试题分析:当12z z =时,复数的实部和虚部分别相等,求得24sin 3sin =-λθθ,根据[]sin 1,1θ∈-,求函数的值域.试题解析:∵12z z =,∴()()242cos 3sin m m i i θλθ+-=++,∴22{43m cos m sin θλθ=-=+,消去m 得:24cos 3sin θλθ-=+,∴22394sin 3sin 4sin 816λθθθ⎛⎫=-=-- ⎪⎝⎭,∵1sin 1θ-≤≤,∴当3sin 8θ=时,min 916λ=-.当sin 1θ=-时,max 7λ=.所以λ的取值范围为:9716λ-≤≤.21【解析】设圆锥的底面半径为r ,母线长为l ,根据圆锥的表面积公式和半圆的面积公式列方程组,解出即可.【详解】解:设圆锥的底面半径为r ,母线长为l ,则由题意得2a r rl ππ=+.又圆锥的侧面展开图为半圆,2r l ππ∴=,即2l r =.将②式代入①式得23a r π=,23a r π∴=,即r =.【点睛】本题考查圆锥的表面积公式,是基础题.22.6【分析】按侧面11ABB A 放置时,液面以上部分为三棱柱,其体积为原来棱柱的14,故可得水的体积为棱柱的34,由此可得按底面ABC 放置时液面的高.【详解】设三棱锥的体积为V ,按侧面11ABB A 水平放置时液面以上部分的体积为14V ,故水的体积为34V ,设按底面ABC 放置时液面的高为h ,则33484V h V ==,故6h =.【点睛】一定形状的几何体容器,按不同位置放置时容器内的液体的体积计算方法不一致,可根据同一体积的不同计算方法得到关键几何量之间的相互关系.23.222123111V V V +=【解析】直角三角形ABC 的两条直角边分别为a ,b ,斜边为c ,依照题意,得到三个几何体的体积.【详解】解:设直角三角形ABC 的两条直角边分别为a ,b ,斜边为c ,以a 为轴,进行旋转,形成底面半径为b ,高为a 的圆锥,其体积221133V b a ab ππ=⨯⨯⨯=;以b 为轴,进行旋转,形成底面半径为a ,高为b 的圆锥,其体积222133V a b a b ππ=⨯⨯⨯=,以c 为轴,进行旋转,形成底面半径为ab c,高的和为c 的两个圆锥的组合体,其体积22231(33ab a b V c c c ππ=⨯⨯⨯=.()222222242422442442291199933b a c a b a b a b a b ab a b ππππππ++=+=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 所以222123111V V V +=.【点睛】本题考查几何体的体积公式.较易.解题时要认真审题,仔细解答.24.27个部分【分析】根据题意画出图形即可得出答案.【详解】如图,图中画出了正方体最上层把空间分成9个部分,个部分,因此共将空间分成27个部分.【点睛】本题主要考查的是平面基本性质,正确理解确定平面的几个公理及由题意画出图形且有较强的空间想象能力是解题的关键,是中档题.25.证明见解析【分析】推导出P ,Q ,R 都在平面ABC 与平面α的交线上,即可证明.【详解】证明:法一:∵AB ∩α=P ,∴P ∈AB ,P ∈平面α.又AB ⊂平面ABC ,∴P ∈平面ABC .∴由基本事实3可知:点P 在平面ABC 与平面α的交线上,同理可证Q ,R 也在平面ABC 与平面α的交线上.∴P ,Q ,R 三点共线.法二:∵AP ∩AR =A ,∴直线AP 与直线AR 确定平面APR .又∵AB ∩α=P ,AC ∩α=R ,∴平面APR ∩平面α=PR .∵B ∈平面APR ,C ∈平面APR ,∴BC ⊂平面APR .∵Q ∈BC ,∴Q ∈平面APR ,又Q ∈α,∴Q ∈PR ,∴P ,Q ,R 三点共线.26.画线见解析.【详解】试题分析:利用线面平行的判定定理去确定.试题解析:过平面内一点作直线,交于,交于;过平面内一点作直线,交于,则,所确定的截面为所求.考点:棱锥的结构特征,线面平行的判定和实际应用.27.(1)(2)(4)(5)【分析】根据题意,结合棱柱的特征进行判断,观察即可得到答案.【详解】根据棱柱的定义知,有两个面是互相平行且是全等的多边形,其余每相邻两个面的交线也互相平行,而这些面都是平行四边形,所以(1)和(2)正确;因为水面EFGH 所在四边形,从图2,图3可以看出,有两条对边边长不变而另外两条对边边长随倾斜度变化而变化,所以水面四边形EFGH 的面积是变化的,(3)错误;因为棱11A D 始终与BC 平行,BC 与水面始终平行,所以(4)正确;因为水的体积是不变的,高始终是BC 也不变,所以底面积也不会变,即BE BF ⋅是定值,所以(5)正确;综上知(1)(2)(4)(5)正确,故答案为:(1)(2)(4)(5).28.外中点垂【分析】(1)由PO α⊥可得PO AO ⊥,PO BO ⊥,根据题意可得POA POB ∆≅∆,可得OA OB =,从而可得OA OB OC ==,从而得到结果;(2)由(1)得到OA OB OC ==,根据在直角三角形中,斜边的中线是斜边的一半可得,点O 为斜边AB 的中点;(3)由PA PB ⊥,PB PC ⊥可得PB ⊥平面PAC ,进而可得PB AC ⊥,又PO AC ⊥,可得AC ⊥平面PBO ,进而可得BO AC ⊥,同理可得CO AB ⊥,AO BC ⊥,从而得出答案。
高中数学第四章数列等比数列的性质及应用课后习题新人教A版选择性必修第二册
第2课时等比数列的性质及应用必备知识基础练1.在等比数列{a n}中,a2=27,公比q=-13,则a5=()A.-3B.3C.-1D.12.已知等比数列{a n}中,a3=4,a7=9,则a5=()A.6B.-6C.6.5D.±63.已知公比不为1的等比数列{a n}满足a15a5+a14a6=20,若a m2=10,则m=()A.9B.10C.11D.124.(2021天津滨海高二期末)在等比数列{a n}中,a1=7,a4=a3a5,则a7=()A.19B.17C.13D.75.在等比数列{a n}中,若a7=-2,则该数列的前13项的乘积等于()A.-213B.213C.26D.-266.(多选题)已知数列{a n}是等比数列,且a3+a5=18,a9+a11=144,则a6+a8的值可能为()A.-36B.36C.-36√2D.36√27.(2021河南名校联盟高二月联考)已知等比数列{a n}的各项均为正数,若a2a9a16=64,则log2a1+log2a2+…+log2a17=.8.在《九章算术》中,“衰分”是按比例递减分配的意思.今共有粮98石,甲、乙、丙按序衰分,乙分得28石,则衰分比例为.9.等比数列{a n}同时满足下列三个条件:①a1+a6=11;②a3a4=329;③三个数23a2,a32,a4+49依次成等差数列.试求数列{a n}的通项公式.10.设{a n}是各项均为正数的等比数列,b n=log2a n,b1+b2+b3=3,b1b2b3=-3,求a n.关键能力提升练11.已知数列{a n}满足log3a n+1=log3a n+1(n∈N*),且a2+a4+a6=9,则lo g13(a5+a7+a9)的值为()A.-5B.-15C.5 D.1512.某工厂去年产值为a,计划10年内每年比上一年产值增长10%,那么从今年起第()年这个工厂的产值将超过2a.A.6B.7C.8D.913.在正项等比数列{a n}中,a3=2,16a52=a2a6,则数列{a n}的前n项积T n中最大的值是()A.T3B.T4C.T5D.T614.(2021河南郑州高二期末)已知数列{a n}是等比数列,满足a5a11=4a8,数列{b n}是等差数列,且b8=a8,则b7+b9=()A.24B.16C.8D.415.(2021陕西西安八校高二联考)两个公比均不为1的等比数列{a n},{b n},其前n项的乘积分别为A n,B n,若a5b5=2,则A9B9=()A.512B.32C.8D.216.(2021辽宁辽西协作体高二联考)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等比数列,上面3节的容积之积为3升,下面3节的容积之积为9升,则第5节的容积为()A.2升B.6766升 C.3升 D.√3升17.在流行病学中,基本传染数R0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.R0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定,假定某种传染病的基本传染数R0=3,那么感染人数由1个初始感染者增加到2 000人大约需要的传染轮数为()注:初始感染者传染R0个人为第一轮传染,这R0+1个人每个人再传染R0个人为第二轮感染.A.5B.6C.7D.818.在各项均为正数的等比数列{a n}中,已知a1a2a3=4,a4a5a6=12,若a n-1a n a n+1=324,则n=.19.已知各项都为正数的等比数列{a n}中,a2a4=4,a1+a2+a3=14,则满足a n a n+1a n+2>19的最大正整数n的值为.20.在等比数列{a n}中,公比q∈(0,1),且满足a3=2,a1a3+2a2a4+a3a5=25.(1)求数列{a n}的通项公式;(2)设b n=log2a n,数列{b n}的前n项和为S n,当S11+S22+…+S nn取最大值时,求n的值.学科素养创新练21.某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药片预防,规定每人每天上午8时和晚上8时各服一片.现知该药片每片含药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%,该药物在人体内的残留量超过380毫克,就将产生副作用.(1)某人上午8时第一次服药,问到第二天上午8时服完药后,这种药在他体内还残留多少?(2)若人长期服用这种药,这种药会不会对人体产生副作用?说明理由.参考答案第2课时 等比数列的性质及应用1.C 在等比数列{a n }中,a 2=27,q=-13, 则a 5=a 2q 3=-1.2.A 由等比数列的性质可得,奇数项的符号相同, 则a 5=√a 3a 7=√4×9=6.3.B 依题意,数列{a n }是等比数列,且a 15a 5+a 14a 6=2a 102=20,所以a 102=10,所以m=10. 4.B 在等比数列{a n }中,a 1=7,由a 4=a 3a 5=a 42,得a 4=1或a 4=0(舍去). 由a 1a 7=a 42,得a 7=17.5.A 因为{a n }是等比数列,所以a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 72,于是该数列的前13项的乘积为a 1a 2…a 13=a 713=(-2)13=-213.6.CD 设{a n }的公比为q ,则a 9+a 11=q 6(a 3+a 5),于是q 6=a 9+a11a 3+a 5=14418=8,因此q 3=±2√2,所以a 6+a 8=q 3(a 3+a 5)=±36√2.故选CD .7.34 由a 2a 9a 16=64得a 93=64,即a 9=4.则log 2a 1+log 2a 2+…+log 2a 17=log 2(a 1a 2…a 17)=log 2a 917=log 2417=34.8.12 设衰分比例为q ,则甲、乙、丙各分得28q 石、28石、28q 石,∴28q +28+28q=98,∴q=2或12. 又0<q<1,∴q=12.9.解由等比数列的性质知a 1a 6=a 3a 4=329,所以{a 1+a 6=11,a 1a 6=329,解得{a 1=13,a 6=323或{a 1=323,a 6=13. 当{a 1=13,a 6=323时,q=2,所以a n =13·2n-1,这时23a 2+a 4+49=329,2a 32=329,所以23a 2,a 32,a 4+49成等差数列,故a n =13·2n-1.当{a 1=323,a 6=13时,q=12,a n =13·26-n ,23a 2+a 4+49≠2a 32,不符合题意.故通项公式a n =13·2n-1. 10.解设数列{a n }的公比为q ,则a 1>0,q>0,∵b 1+b 2+b 3=3,∴log 2a 1+log 2a 2+log 2a 3=3, ∴log 2(a 1a 2a 3)=3,∴a 1a 2a 3=8,∴a 2=2. ∵b 1b 2b 3=-3,∴log 2a 1·log 2a 2·log 2a 3=-3, ∴log 2a 1·log 2a 3=-3,∴log 2a2q ·log 2a 2q=-3, 即(log 2a 2-log 2q )·(log 2a 2+log 2q )=-3, 即(1-log 2q )·(1+log 2q )=-3,解得log 2q=±2. 当log 2q=2时,q=4,a 1=a 2q=12,∴a n =12×4n-1=22n-3;当log 2q=-2时,q=14,a 1=a2q=8,∴a n =8×(14)n -1=25-2n .11.A ∵log 3a n +1=log 3a n+1,∴a n+1a n=3,∴数列{a n }是等比数列,公比q=3,∴lo g 13(a 5+a 7+a 9)=lo g 13(a 2q 3+a 4q 3+a 6q 3)=lo g 13[(a 2+a 4+a 6)q 3]=lo g 13(9×33)=-5.12.C 设从今年起第n 年这个工厂的产值为a n ,则a 1=1.1a ,a 2=1.12a ,…,a n =1.1na.依题意,得1.1n a>2a ,即1.1n>2,解得n ≥8.13.A 依题意,数列{a n }是等比数列,所以16a 52=a 2a 6=a 42,所以q 2=116.又因为数列{a n }为正项等比数列,所以q=14,所以a n =a 3q n-3=2·43-n =27-2n,令a n >1,即27-2n>1,得n<72,因为n ∈N *,所以n ≤3,数列{a n }的前n 项积T n 中T 3最大,故选A .14.C ∵数列{a n }是等比数列,∴a 5a 11=a 82=4a 8,又a 8≠0,∴a 8=4.又{b n }是等差数列,b 8=a 8,∴b 7+b 9=2b 8=2a 8=8.15.A 因为A 9=a 1a 2a 3…a 9=a 59,B 9=b 1b 2b 3…b 9=b 59,所以A9B 9=a 5b 59=512.16.D (方法1)依题意,竹子自上而下各节的容积成等比数列{a n }, 则{a 1·a 1q ·a 1q 2=3,a 1q 6·a 1q 7·a 1q 8=9,解得a 1q=√33,q 3=√36, ∴第5节的容积为a 1q 4=a 1q ·q 3=√33·√36=√3.(方法2)依题意,竹子自上而下各节的容积成等比数列{a n },a 1a 2a 3=3,a 7a 8a 9=9,由等比数列的性质可知a 1a 2a 3a 7a 8a 9=(a 1a 9)(a 2a 8)(a 3a 7)=a 56=27.所以a 5=√3.17.B 设经过第n 轮传染,感染人数为a n ,经过第一轮感染后,a 1=1+3=4,经过第二轮感染后,a 2=4+4×3=16,于是可以得知经过传染,每一轮感染总人数构成等比数列,所以经过第n 轮传染,感染人数为a n =4n,所以a 5=1024,a 6=4096,因此感染人数由1个初始感染者增加到2000人大约需要的传染轮数为6轮.18.14 设数列{a n }的公比为q ,由a 1a 2a 3=a 23=4与a 4a 5a 6=a 53=12,可得a 53a 23=(q 3)3,q 9=3.又a n-1a n a n+1=a n 3=(a 2q n-2)3=324,因此q3n-6=81=34=q 36,所以n=14.19.4 ∵a 2a 4=4=a 32,且a 3>0,∴a 3=2.设公比为q ,则a 1+a 2+a 3=2q 2+2q +2=14, ∴1q =-3(舍去)或1q =2,即q=12,∴a 1=a3q 2=8. ∴a n =a 1q n-1=8×12n-1=12n-4,∴a n a n+1a n+2=123n-9>19,即23n-9<9,∴n 的最大值为4.20.解(1)∵a 1a 3+2a 2a 4+a 3a 5=25,由等比数列的基本性质可得a 22+2a 2a 4+a 42=25,∴(a 2+a 4)2=25.∵a 3=2,q ∈(0,1),则对任意的n ∈N *,可得出a n >0, ∴a 2+a 4=5.∴{a 3=a 1q 2=2,a 2+a 4=a 1q(1+q 2)=5,0<q <1,解得{a 1=8,q =12,因此,a n=a1q n-1=8×12n-1=24-n.(2)b n=log2a n=log224-n=4-n,则数列{b n}为等差数列,可得S n=n(b1+b n)2=n(3+4-n)2=7n-n22,∴S nn =7n-n22n=7-n2,则S n+1n+1−S nn=7-(n+1)2−7-n2=-12,∴数列S nn 为等差数列,则S11+S22+…+S nn=n(S11+S nn)2=n(3+7-n2)2=13n-n24=-14n-1322+16916,由n∈N*,可得n=6或n=7时,S11+S22+…+S nn取得最大值.21.解(1)设人第n次服药后,药在体内的残留量为a n毫克,则a1=220,a2=220+a1×(1-60%)=220×1.4=308,a3=220+a2×(1-60%)=343.2,即到第二天上午8时服完药后,这种药在他体内还残留343.2毫克.(2)由题意,得a n+1=220+25a n,∴a n+1-11003=25(a n-11003),∴{a n-11003}是以a1-11003=-4403为首项,25为公比的等比数列,∴a n-11003=-4403(25)n-1,∵-4403(25)n-1<0,∴a n<11003=36623,∴a n<380.故若人长期服用这种药,这种药不会对人体产生副作用.。
新人教A版必修4高中数学第二章平面向量周练(二)
高中数学《第二章平面向量》周练2 新人教A版必修4(时间:80分钟满分:100分)一、选择题(每小题5分,共40分)1.如果e1、e2是平面α内两个不共线的向量,那么在下列各说法中错误的有( ).①λe1+μe2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内的任一向量a,使a=λe1+μe2成立的λ,μ有无数多对;③若向量λ1e1+μ1e2与λ2e1+μ2e2共线,则有且只有一个实数k,使λ2e1+μ2e2=k(λ1e1+μ1e2);④若实数λ,μ使λe1+μe2=0,则λ=μ=0.A.①② B.②③C.③④ D.②解析②λ,μ只有一对;③λ1e1+μ1e2可能为0,则k 可能不存在或有无数个.答案 B2.下列向量中,能作为表示它们所在平面内所有向量的基底的是( ).A.e1=(0,0),e2=(1,-2)B.e1=(-1,2),e2=(5,7)12C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎫12,-34解析 在选项A 中,e 1=0,它与平面内任意向量共线,不能作为基底,在选项C 中,e 2=2e 1,它们共线,不能作为基底;在选项D 中,e 1=4e 2,它们共线,不能作为基底.故选B. 答案 B3.已知三点A (-1,1),B (0,2),C (2,0),若AB →和CD →是相反向量,则D 点坐标是( ).A .(1,0) B.(-1,0) C .(1,-1) D.(-1,1)解析 设D (x ,y ),AB →=(0,2)-(-1,1)=(1,1), CD →=(x ,y )-(2,0)=(x -2,y ). ∵AB →+CD →=0,∴(1,1)+(x -2,y )=(0,0),3∴⎩⎪⎨⎪⎧x -1=0,y +1=0,∴⎩⎪⎨⎪⎧x =1,y =-1,即D (1,-1).答案 C4.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为( ). A.12 B.2 C .-12D.-2解析 m a +4b =(2m -4,3m +8),a -2b =(4,-1), 由-(2m -4)-4(3m +8)=0,得m =-2. 答案D6.已知a =(3,4),b =(sin α,cos α),且a∥b ,则tan α=( ).4A.34B.-34C.43D.-43解析 由已知得,3cos α-4sin α=0,所以tan α=34,故选A. 答案 A7.(2012·厦门高一检测)若OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→(λ≠-1),则OP →等于( ).A .a +λb B.λa +(1-λ)b C .λa +bD.11+λa +λ1+λb 解析 ∵OP →=OP 1→+P 1P →=OP 1→+λPP 2→=OP 1→+λ(OP 2→-OP →)=OP 1→+λOP 2→-λOP →, ∴(1+λ)OP →=OP 1→+λOP 2→,∴OP →=11+λOP 1→+λ1+λOP 2→=11+λa +λ1+λb .5答案 D8.已知OA →=a ,OB →=b ,∠AOB 的平分线OM 交AB 于点M ,则向量OM →可表示为( ).A.a |a |+b |b |B.λ⎝⎛⎭⎪⎫a |a |+b |b | C.a +b |a +b |D.|b |a +|a |b |a |+|b |解析 由向量加法的平行四边形法则知,向量OM →和分别与OA →、OB →同向的单位向量之和共线,∴OM →可表示成λ⎝⎛⎭⎪⎫a |a |+b |b |.(与OA →同向的单位向量即a|a |,与OB →同向的单位向量即b |b |)答案 B二、填空题(每小题5分,共20分)9.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=________.6解析 设AB →=a ,AD →=b , 则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.答案 4310.已知向量a =(x,1),b =(1,x )方向相反,则x =________. 解析 由题意知a 与b 共线,则x 2=1, ∴x =±1,又∵a 与b 反向, ∴x =-1. 答案 -111.在△ABC 中,AE →=15AB →,EF ∥BC ,EF 交AC 于F .设AB →=a ,AC →=b ,则BF →可以用a 、b 表示的形式是BF →=________. 解析 由题意,得AF →=15AC →=15b ,BF →=BA →+AF →=-a +15b .7答案 -a +15b三、解答题(每小题10分,共40分)13.(2012·保定高一检测)设e 1,e 2为两个不共线的向量,a =-e 1+3e 2,b =4e 1+2e 2,c =-3e 1+12e 2,试用b ,c 为基底表示向量a .解 设a =λ1b +λ2c ,λ1,λ2∈R ,则-e 1+3e 2=λ1(4e 1+2e 2)+λ2(-3e 1+12e 2),即-e 1+3e 2=(4λ1-3λ2)e 1+(2λ1+12λ2)e 2,8∴⎩⎪⎨⎪⎧4λ1-3λ2=-1,2λ1+12λ2=3,∴⎩⎪⎨⎪⎧λ1=-118,λ2=727,∴a =-118b +727c .14.设a =(6,3a ),b =(2,x 2-2x ),且满足a ∥b 的实数x 存在, 求实数a 的取值范围. 解 由a ∥b 得6(x 2-2x )-3a ×2=0, 即x 2-2x -a =0.根据题意,上述方程有实数解,故有Δ=4+4a ≥0. 即a ≥-1.15.已知点O (0,0),A (1,2),B (4,5),且OP →=OA →+tAB →,试问: (1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限? (2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由.解 OA →=(1,2),AB →=(3,3),OP →=(1,2)+t (3,3)=(1+3t,2+3t ). (1)若P 在x 轴上,则有2+3t =0,t =-23;9若P 在y 轴上,则有1+3t =0,t =-13;若P 在第二象限,则有⎩⎪⎨⎪⎧1+3t <0,2+3t >0,解得-23<t <-13.(2)PB →=(3-3t,3-3t ),若四边形OABP 是平行四边形,则有OA →=PB →,即有3-3t =1,且3-3t =2,这显然是不可能的,因此,四边形OABP 不可能是平行四边形. 16.已知A (-1,-1),B (1,3),C (4,9). (1)求证:A ,B ,C 三点共线;(2)若AC →=λ1CB →,BA →=λ2AC →,求λ1、λ2的值,并解释λ1,λ2的几何意义.(1)证明 ∵AB →=(2,4),AC →=(5,10),∴AC →=52AB →.又AC →、AB →有公共点A ,∴A ,B ,C 三点共线. (2)解 ∵CB →=(-3,-6),∴AC →=-53CB →,∴λ1=-53.同理,λ2=-25.10其几何意义分别为:λ1=-53表示|AC →|=53|CB →|,AC →与CB →反向;λ2=-25表示|BA →|=25|AC →|,且BA →与AC →反向.。
高中数学人教A版实用资料附答案高三下学期周练一理04
高中数学人教A 版实用资料附答案下期高三理科数学周练一一.选择题:1. 设a 为实数,i 为虚数单位,且11aii+-对应的点在虚轴上,则x=( ) A.-1 B. 1 C.-2 D. 02. 设集合2{|8}A x x x =>,{|(25)(219)0}B x x x =--≤,则A B 中整数元素的个数为( )A. 3 B. 5 C. 4 D. 63. 已知向量(,9)a x =,(,4)b x =-a b ⊥,则“x=6”是“a b ⊥”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 4. 中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人应偿还升,升,升,1斗为10升;则下列判断正确的是( )A.a,b,c 依次成公比为2的等比数列,且507a =B. a,b,c 依次成公比为2的等比数列,且507c =C. a,b,c 依次成公比为的等比数列,且507a =D. a,b,c 依次成公比为的等比数列,且507c =5. 若函数2()1xf x e =+,过原点做曲线22(21)()4a h x x ax -=---的切线y=g(x),若()k a ϕ=为增函数,()()()F x f x g x =-在(0,1)上递减,则实数a 的取值范围是( )A.2(21,)e ++∞ B. 2[21,)e ++∞ C. 2(1,)e ++∞ D. 2[1,)e ++∞6. 某几何体的三视图如图所示,其中主视图和左视图均为直角三角形,的等边三角形,则该几何体的外接球的表面积等于( )A. 3πB. 4πC. 5πD. 6π7. 定义在R 上的函数f(x)=8sin x x a e e x --⨯++的图象关于原点对称,则实数a 的值等于( )A.0B.1C.-1D. e8. 设变量x,y 满足约束条件1212x y x y y +≥⎧⎪-≤⎨⎪≤⎩,则2x+3y 的取值范围为( )A.[2,4]B.[4,16]C.[2,10]D. [2,16]9.命题p :在△ABC 中,∠C>∠B 是sinC >sinB 的充要条件;命题q :a >b 是ac 2>bc 2的充分不必要条件,则( )A .“p∨q”为假B .“p∧q”为真C .¬p 为假D .¬q 为假10. 双曲线222210,0x y a b a b 的左焦点1F ,作圆222x y a 的切线交双曲线右支于点P ,切点为T ,1PF 的中点M 在第一象限,则以下结论正确的是( ) A .b a MO MT B .b a MO MT C.b aMOMT D .b aMOMT11. 26(1)x ax +-的展开式中2x 的系数为54,则实数a 为( ) A .-2 B .-3或3 C.-2或2 D .-3或-212. 已知n S 是数列{}n a 的前n 项之和,12a =,124n n S S +=+*()n N ∈,则函数()n f n S =的值域是( )A .(0,2]B .[2,4) C.[2,)+∞ D .[2,3] 二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若直线2y x b =+为曲线xy e x =+的一条切线,则实数b 的值为 . 14. 函数222()(log )4log 5f x x x =-+[1,32]上的的值域为_________. 15. 已知函数()3,3,x x a f x x x x a≥⎧=⎨-<⎩,若函数()()2g x f x ax =-恰有2个不同的零点,则实数a 的取值范围为 .16.在四棱锥E-ABCD 中,EC ⊥底面ABCD ,FD ∥BC ,底面ABCD 为矩形,G 为线段AB 的中点,CG ⊥DG ,CD=2,DF=CE ,BE 与底面ABCD 所成角为45°,则四棱锥E-ABCD 与三棱锥F-CDG 的公共部分的体积为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭图象的两条对称轴之间的距离为π,且经过点.32π⎛⎫⎪ ⎪⎝⎭(1)求函数()f x 解析式;(2)若角α满足()()1,0,2f παααπ⎛⎫+-=∈ ⎪⎝⎭,求α值.18.设数列{n a }的前n 项和为n S ,且n a 与2n S 的等差中项为1. (1)求数列{n a }的通项; (2)对任意的n ∈N *,不等式212231111...n n na a a a a a a λ++++≥恒成立,求实数λ的取值范围.19.某商场计划销售某种产品,现邀请生产该产品的甲、乙两个厂家进场试销10天.两个厂家提供的返利方案如下:甲厂家每天固定返利70元,且每卖出一件产品厂家再返利2元;乙厂家无固定返利,卖出40件以内(含40件)的产品,每件产品厂家返利4元,超出40件的部分每件返利6元.经统计,两个厂家的试销情况茎叶图如下:甲乙8 9 9 8 9 9 3 8 9 92 0 1 0 4 2 1 1 1 0 1 0(Ⅰ)现从甲厂家试销的10天中抽取两天,求这两天的销售量都大于40的概率; (Ⅱ)若将频率视作概率,回答以下问题:(ⅰ)记乙厂家的日返利额为X (单位:元),求X 的分布列和数学期望;(ⅱ)商场拟在甲、乙两个厂家中选择一家长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.20. 如图,在三棱锥P-ACD 中,3AB BD =,PB ⊥平面,BC ⊥AD ,10,5AC PC ==,,且2cos 10ACP ∠=. (1)若为AC 上一点,且BE ⊥AC ,证明:平面PBE ⊥平面PAC ;(2)求二面角A-PC-D 的余弦值.21. 在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b+=(1)a b>的离心率e =,且椭圆1C 上一点M 到点(03)Q ,的距离的最大值为4.(Ⅰ)求椭圆1C 的方程;(Ⅱ)设1(0)16A ,,N 为抛物线2C :2y x =上一动点,过点N 作抛物线2C 的切线交椭圆1C 于B C ,两点,求ABC △面积的最大值.22. 已知函数3()3f x x x a =-+的图象与轴相切,且切点在x 轴的正半轴上. (1)求曲线y=f(x)与y 轴,直线x=1及x 轴围成图形的面积;(2)若函数g(x)=f(x)+mx 在(-3,a)上的极小值不大于m-1,求m 的取值范围.参考答案:1-6.BBADBC 7-12.BDCBCB 13.1 14. 15.3(,2)2-16.2917.(1)()sin()3f x x π=+(2)6π或56π18.(1)23n n a =(2)(,3]-∞ 19.(1)145(2)(ⅰ)X 的分布列为:E (X )=162(ⅱ)推荐该商场选择乙厂家长期供货 20.(1)略(2)1121-21. (Ⅰ) 椭圆1C 的方程是2214x y +=.(Ⅱ)ABC △.22. 【答案】(1)3:4;(2)15(9,]4--.。
高中数学周周回馈练二(含解析)新人教A版必修2
高中数学周周回馈练二(含解析)新人教A 版必修2对应学生用书P19 一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( ) A .4倍 B .3倍 C .2倍 D .2倍 答案 D解析 设等边圆锥的母线长为l ,底面半径为r ,由已知得l =2r ,所以S 侧S 底=πrl πr 2=lr =2.2.若体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.32π3 C .8π D.4π答案 A解析 由正方体的体积为8可知,正方体的棱长a =2.又正方体的体对角线是其外接球的一条直径,即2R =3a(R 为正方体外接球的半径),所以R =3,故所求球的表面积S =4πR 2=12π.3.在三棱柱ABC -A 1B 1C 1中,∠BAC=90°,AB =AC =a ,∠AA 1B 1=∠AA 1C 1=60°,∠BB 1C 1=90°,侧棱长为b ,则其侧面积为( )A .33ab 4B .3+22abC .(3+2)abD .23+22ab答案 C解析 如图,由已知条件可知,侧面AA 1B 1B 和侧面AA 1C 1C 为一般的平行四边形,侧面BB 1C 1C 为矩形.在△ABC 中,∠BAC=90°,AB =AC =a ,∴BC=2a . ∴S 矩形BCC 1B 1=2a·b=2ab . ∵∠AA 1B 1=∠AA 1C 1=60°,AB =AC =a , ∴点B 到直线AA 1的距离为asin60°=32a . ∴S 四边形AA 1C 1C =S 四边形AA 1B 1B =32ab .∴S 侧=2×32ab +2ab =(3+2)ab . 4.某几何体的三视图如图所示,则该几何体的体积为( )A .2π3B .π C.4π3 D .2π答案 A解析 由三视图可知该几何体的直观图为一个圆柱内挖去两个与圆柱同底的半球,所以该几何体的体积V =V 圆柱-2V 半球=π×12×2-2×12×43π×13=2π3.故选A .5.如图所示,从左到右分别是一个多面体的直观图、正视图、侧视图.按照给出的尺寸,则该多面体的体积为( )A .23B .6C .223 D .8 答案 C解析 依题意,把题中多面体补成如图所示的正方体ABCD -A 1B 1C 1D 1,则所求的体积是由正方体ABCD -A 1B 1C 1D 1的体积减去三棱锥E -A 1B 1D 1的体积而得到的.∵VE-A 1B 1D 1=13×S△A 1B 1D 1×A 1E =13×12×2×2×1=23,V 正方体AC 1=23=8,∴所求多面体的体积V =8-23=223.6.已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是( )A .9+4(2+5) cm 2B .10+2(2+3) cm 2C .11+2(2+5) cm 2D .11+2(2+3) cm 2答案 C解析 如图所示,该几何体是棱长为2的正方体截去两个小三棱柱得到的四棱柱,其表面积为2×2+2×1+2×2+2×5+2×⎝ ⎛⎭⎪⎫4-12-1=11+2(2+5) cm 2.故选C .二、填空题7.已知一个圆锥的侧面展开图如图所示,其中扇形的圆心角为120°,底面圆的半径为1,则该圆锥的体积为________.答案22π3解析 因为扇形的弧长为2π,所以圆锥的母线长为3,高为22,所求体积V =13×π×12×22=22π3.8.已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,则该四棱台的表面积为________cm 2.答案 80+4815解析 如图,在四棱台ABCD -A 1B 1C 1D 1中,过B 1作B 1F⊥BC,垂足为F , 在Rt△B 1FB 中,BF =12×(8-4)=2,B 1B =8,故B 1F =82-22=215,所以S 梯形BB 1C 1C =12×(8+4)×215=1215,故四棱台的侧面积S 侧=4×1215=4815,所以四棱台的表面积S 表=4815+4×4+8×8=80+4815.9.正四棱锥(底面为正方形,顶点在底面的正投影为正方形的中心)的顶点都在同一球面上,若该四棱锥的高为4,底面边长为2,则该球的体积为________.答案243π16解析 如图,设底面ABCD 的中心为E ,则PE 为正四棱锥的高,PE =4,AB =2,AE =12AC=2,设球心为O ,则点O 一定在线段PE 上,连接OA ,设球的半径为R ,在Rt△AOE 中,OA 2=AE 2+OE 2,即R 2=(2)2+(4-R)2,解得R =94,所以球的体积为V =4π3×⎝ ⎛⎭⎪⎫943=243π16.三、解答题10.有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体的各条棱都相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.解 设正方体的棱长为a .(1)正方体内切球的球心是正方体的中心,切点是六个面(正方形)的中心,经过四个切点及球心作截面,如图①,所以有2r 1=a ,r 1=a 2,所以S 1=4πr 21=πa 2.(2)球与正方体各棱的切点在每条棱的中点,过球心作正方体的对角面得截面,如图②,所以有2r 2=2a ,r 2=22a ,所以S 2=4πr 22=2πa 2. (3)正方体的各个顶点在球面上,过球心作正方体的对角面得截面,如图③,所以有2r 3=3a ,r 3=32a , 所以S 3=4πr 23=3πa 2. 由上知:S 1∶S 2∶S 3=1∶2∶3.11.已知半径为10的球的两个平行截面圆的周长分别是12π和16π,试求这两个截面圆间的距离.解 如图(1)(2),设球的大圆为圆O ,C ,D 分别为两截面圆的圆心,AB 为经过点C ,O ,D 的直径,由题中条件可得两截面圆的半径分别为6和8.当两截面在球心同侧时,CD =OC -OD =102-62-102-82=2; 当两截面在球心两侧时,CD =OC +OD =102-62+102-82=14. 综上可知,两截面圆间的距离为2或14.12.已知一个三棱台的上、下底面分别是边长为20 cm 和30 cm 的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.解 如图所示,在三棱台ABC -A′B′C′中,O′,O 分别为上、下底面的中心,D ,D′分别是BC ,B′C′的中点,连接OO′,A′D′,AD ,DD′,则DD′是等腰梯形B CC′B′的高,设为h 0,所以S 侧=3×12×(20+30)h 0=75h 0.上、下底面面积之和为S 上+S 下=34×(202+302)=325 3 (cm 2). 由S 侧=S 上+S 下,得75h 0=3253, 所以h 0=1333(cm).又O′D′=13×32×20=1033(cm),OD =13×32×30=53(cm),设棱台的高为h ,则 h =O′O=h 20-OD -O′D′2=13332-53-10332=43(cm),由棱台的体积公式,可得棱台的体积 V =h3(S 上+S 下+S 上S 下) =433×3253+34×20×30 =1900(cm 3).。
江苏省昆山震川高级中学高中数学 周练试题11 新人教A版必修2
江苏省昆山震川高级中学高中数学必修二周练试题:111.在平面直角坐标系xoy 中,双曲线8822=-ky kx 的渐近线方程为________.2.抛物线)0(42≠-=a ax y 的准线方程为 .3.与椭圆1244922=+y x 有相同的焦点,且以x y 34±=为渐近线的双曲线方程为 .4.设21,F F 分别是双曲线1922=-y x 的左、右焦点,若点P 在双曲线上,且021=⋅PF PF ,则=+21PF PF ________.5.已知21,F F 是椭圆2213620x y +=的左右两个焦点,P 点是椭圆上的一点,2F 关于21PF F ∠的外角平分线的对称点为Q ,则点Q 所在的曲线方程为 .6.已知21,F F 为双曲线)0,0(12222>>=-b a bx a y 的两个焦点,过2F 作垂直于y 轴的直线交双曲线于点P ,且 3021=∠F PF ,双曲线的渐近线方程为 .7.已知双曲线11222=--ny n x 的离心率是3,则=n ________. 8.设M 是抛物线x y =2上的任一点,d 是M 到y 轴的距离,点)21(,A ,则MA d +的最小值为 .9.经过点)32(,A 的抛物线的标准方程为 . 10.已知动点),(y x P 在椭圆2212516x y +=上,若A 点坐标为)(0,3,||1,0AM PM AM =⋅=,则||PM 的最小值是11.已知椭圆)0(12222>>=+b a by a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点,且直线PN PM ,的斜率分别为21,k k ,且4121=⋅k k ,则椭圆的离心率为 . 12.已知椭圆22:12x C y +=的两焦点为12,F F ,点P (00,x y )满足2200012x y <+<,则12PF PF +的取值范围为 .13.已知椭圆的焦点为)0,3(),0,3(21F F -,且椭圆与直线09=+-y x 有公共点,求其中长轴最短的椭圆的方程.14.如图,从椭圆)0(12222>>=+b a by a x 上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,且它的长轴端点A 及短轴端点B 的连线OM AB //.(1)求椭圆的离心率e ;(2)设Q 是椭圆上一点,当AB QF ⊥2,延长2QF 与椭圆交于另一点P ,若PQ F 1∆的面积为320,求此时椭圆的方程.15.已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为3,若准线方程为33x =. (1)求双曲线方程;(2)设直线l 是圆O :222x y +=上动点00(,)P x y 其中00(0)x y ≠处的切线,l 与双曲线C 交于不同的两点A ,B ,求证OA OB ⊥.xy A B O 1F MQ 2F P。
2020学年高中数学周周回馈练八(含解析)新人教A版必修2(2021-2022学年)
周周回馈练对应学生用书P91一、选择题1.圆(x-3)2+(y+2)2=13的周长是()A.错误!未定义书签。
π B.2错误!π C.2π D.2错误!π答案B解析由圆的标准方程知,圆的半径为错误!,所以周长为2错误!π.2.如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于y=x对称,则必有( )A.D=E B.D=F C.E=F D.D=E=F答案A解析由D2+E2-4F>0,可知方程x2+y2+Dx+Ey+F=0表示的曲线为圆.若圆关于y=x对称,则该圆的圆心在直线y=x上,则必有D=E.3.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为()A.1 B.2错误! C.错误!D.3答案 C解析因为切线长的最小值是当直线y=x+1上的点与圆心距离最小时取得,圆心(3,0)到直线y=x+1的距离为d=错误!=2错误!,圆的半径为1,那么切线长的最小值为错误!=错误!=错误!,故选C.4.两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是()A.错误!B.错误!∪(1,+∞)C.错误!D.错误!未定义书签。
∪[1,+∞)答案Aﻬ解析联立错误!解得P(a,3a).∵点P在圆(x-1)2+(y-1)2=4的内部,∴(a-1)2+(3a-1)2<4,解得-\f(1,5)<a<1.5.动点P与定点A(-1,0),B(1,0)的连线的斜率之积为-1,则点P的轨迹方程是( )A.x2+y2=1 B.x2+y2=1(x≠0)C.x2+y2=1(x≠±1)D.y=错误!未定义书签。
答案C解析设P(x,y),则k PA=错误!未定义书签。
,kPB=错误!未定义书签。
.∵动点P与定点A(-1,0),B(1,0)的连线的斜率之积为-1,∴k PA·k PB=-1,∴错误!未定义书签。
高中数学周周回馈练二含解析新人教A版必修
周周回馈练(二)对应学生用书P23一、选择题1.下列各对函数中,图象完全相同的是( )A .y =x 与y =x 2B .y =x x 与y =x 0C .y =(x )2与y =|x |D .y =x +1·x -1与y =x +x -答案 B解析 对于A ,y =x 2=|x |与y =x 值域不同,不是同一个函数,故它们的图象不同;对于C ,函数y =(x )2的定义域为[0,+∞),函数y =|x |的定义域为R ,故它们的图象不同;对于D ,函数y =x +1·x -1的定义域为[1,+∞),而y =x +x -的定义域为(-∞,-1]∪[1,+∞),故它们的图象不同.故选B.2.函数f (x )=1x +1+4-2x 的定义域为( )A .[-1,2]B .(-1,2]C .[2,+∞) D.[1,+∞)答案 B解析 要使函数有意义,则⎩⎪⎨⎪⎧ x +1>0,4-2x ≥0,解得⎩⎪⎨⎪⎧ x >-1,x ≤2,∴-1<x ≤2,故选B.3.若函数f (x )=⎩⎪⎨⎪⎧ 2,x >0,x 2,x ≤0,则满足f (a )=1的实数a 的值为( )A .-1B .1C .-2D .2答案 A解析 当a >0时,f (a )=2不符合,当a ≤0时,a 2=1,∴a =-1,故选A.4.函数f (x )=x -1x -2的定义域为( ) A .(1,+∞) B.[1,+∞)C .[1,2)D .[1,2)∪(2,+∞)答案 D解析 若使函数有意义,则⎩⎪⎨⎪⎧ x -1≥0,x -2≠0,解得x ≥1且x ≠2.∴函数的定义域为[1,2)∪(2,+∞),选D.5.已知函数f (2x +1)的定义域为[1,2],则函数f (4x +1)的定义域为( )A .[3,5] B.⎣⎢⎡⎦⎥⎤12,1 C .[5,9] D.⎣⎢⎡⎦⎥⎤0,12 答案 B解析 ∵1≤x ≤2,∴3≤2x +1≤5,∴3≤4x +1≤5.解得12≤x ≤1. ∴f (4x +1)的定义域为⎣⎢⎡⎦⎥⎤12,1,选B. 6.已知符号函数sgn x =⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,则方程x +1=(2x -1)sgn x 的所有解之和是( )A .0B .2C .-1+174 D.7-174答案 D解析 分情况:当x >0时,sgn x =1,方程为x +1=2x -1,解得x =2;当x =0时,sgn x =0,方程为x +1=1,解得x =0;当x <0时,sgn x =-1,方程为x +1=12x -1,解得x =-1±174. 其中x =-1+174舍去. 所以原方程所有解之和是2+0+-1-174=7-174,选D. 二、填空题 7.已知f (x +1)=x 2-3x +2,则f ⎝ ⎛⎭⎪⎫1x 的解析式为____________________. 答案 f ⎝ ⎛⎭⎪⎫1x =1x 2-5x+6(x ≠0)解析 令x +1=t ,则x =t -1,∴f (t )=(t -1)2-3(t -1)+2=t 2-5t +6,∴f ⎝ ⎛⎭⎪⎫1x =⎝ ⎛⎭⎪⎫1x 2-5⎝ ⎛⎭⎪⎫1x +6=1x 2-5x+6(x ≠0). 8.函数y =f (x )[f (x )≠0]的图象与直线x =1的交点个数是________.答案 0或1解析 根据函数y =f (x )的定义,当x 在定义域内任意取一个值,都有唯一的一个函数值f (x )与之对应,函数y =f (x )的图象与直线x =1有唯一交点,当x 不在定义域内时,函数值f (x )不存在,函数y =f (x )的图象与直线x =1无交点,所以函数y =f (x )的图象与直线x =1交点个数为0个或1个.9.若定义运算a ⊙b =⎩⎪⎨⎪⎧ b ,a ≥b ,a ,a <b ,则函数f (x )=x ⊙(2-x )的值域为________. 答案 (-∞,1]解析 由题意得f (x )=⎩⎪⎨⎪⎧ 2-x ,x ≥1,x ,x <1,画出函数f (x )的图象得值域是(-∞,1].三、解答题10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧ x -1,x <0,2-x ,x >0,求f [g (x )]与g [f (x )].解 ①当x >0时,g (x )=2-x ,f [g (x )]=(2-x )2-1=x 2-4x +3.当x <0时,g (x )=x -1,f [g (x )]=(x -1)2-1=x 2-2x ,故f [g (x )]=⎩⎪⎨⎪⎧ x 2-2x ,x <0,x 2-4x +3,x >0. ②当x 2-1<0时,即-1<x <1时,f (x )<0,所以g [f (x )]=f (x )-1=x 2-2.当x 2-1>0时,即x >1或x <-1时,f (x )>0,所以g [f (x )]=2-f (x )=3-x 2.故g [f (x )]=⎩⎪⎨⎪⎧ 3-x 2,x >1或x <-1,x 2-2,-1<x <1.11.(1)已知一次函数f (x )满足f [f (x )]=4x +6,求f (x )的解析式;(2)已知函数f (x )满足2f (x )-f 1x=mx ,求函数f (x )的解析式. 解 (1)设f (x )=ax +b (a ≠0),则f [f (x )]=f (ax +b )=a (ax +b )+b =a 2x +ab +b =4x+6,于是有⎩⎪⎨⎪⎧ a 2=4,ab +b =6,解得⎩⎪⎨⎪⎧ a =2,b =2或⎩⎪⎨⎪⎧ a =-2,b =-6,所以f (x )=2x +2或f (x )=-2x-6.(2)以1x 替换等式2f (x )-f 1x =mx 中的x ,得2f 1x -f (x )=m x ,与2f (x )-f 1x=mx 联立成方程组,解得f (x )=2mx 3+m 3x. 故函数f (x )的解析式为f (x )=2mx 3+m 3x. 12.当m 为何值时,方程x 2-4|x |+5=m 有四个互不相等的实数根?并讨论m 为何值时,方程有三个实数根,两个实数根,没有实数根.解 直接解方程会比较麻烦,借助于图象较容易找到答案.先作出y =x 2-4|x |+5的图象,如下图所示,从图中可以直接看出:当1<m <5时,方程有四个互不相等的实数根;当m =5时,方程有3个不相等的实数根;当m >5或m =1时,方程有2个不相等的实数根;当m <1时,方程没有实数根.。
2020-2021学年人教A版数学必修2习题:周练卷4
周练卷(4)一、选择题(每小题5分,共35分)1.圆台的底面内的任意一条直径与另一个底面的位置关系是(A) A.平行B.相交C.在平面内D.不确定解析:圆台底面内的任意一条直径与另一个底面无公共点,所以它们平行.2.已知a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,则下列五个命题中正确的命题有(A)①a∥c,b∥c⇒a∥b;②a∥γ,b∥γ⇒a∥b;③c∥α,c∥β⇒α∥β;④c∥α,a∥c⇒a∥α;⑤a∥γ,α∥γ⇒a∥α.A.1个B.2个C.3个D.5个解析:由公理4知①正确;②错误,a与b可能相交;③错误,α与β可能相交;④错误,可能有a⊂α;⑤错误,可能有a⊂α.3.下列选项中能得到平面α∥平面β的是(D)A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:根据两个平面平行的判定定理进行判定,将两条异面直线a,b 平移到一个平面,则此平面与α和β都平行,于是α和β平行.4.点E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA 的中点,则空间四边形的六条棱中与平面EFGH平行的直线的条数是(C)A.0 B.1C.2 D.3解析:由线面平行的判定定理知:BD∥平面EFGH,AC∥平面EFGH.5.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,O为AC的中点,M为PD的中点,则直线PB与平面ACM的位置关系为(B)A.相交但不垂直B.平行C.垂直D.不能确定解析:连接BD,MO.在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点.又M为PD的中点,所以PB∥MO.因为PB⊄平面ACM,MO⊂平面ACM,所以PB∥平面ACM,故选B.6.下列四个正方体图形中,A,B,C为正方体所在棱的中点,则能得出平面ABC∥平面DEF的是(B)解析:B中,可证AB∥DE,BC∥DF,又AB∩BC=B,DE∩DF=D,所以平面ABC∥平面DEF.故选B.7.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,点E,F 分别在侧棱PC,PB上,且PE=3EC,PF=λFB,若AF∥平面BDE,则λ的值为(C)A.1 B.3C.2 D.4解析:过点F作FH∥BE,交PC于点H,连接AH,则FH∥平面BDE,又AF∥平面BDE,故平面AFH∥平面BDE,则AH∥平面BDE,连接AC,交BD于点O,连接OE,则易知OE∥AH,又O为AC的中点,故E为HC的中点,所以PH=2HE,在△PBE中,又FH∥BE,故PF=2FB,即λ=2.二、填空题(每小题5分,共20分)8.若直线a与直线b异面,且a∥α,则b与α的位置关系是b⊂α,或b∥α,或b与α相交.9.已知a,b表示两条不同直线,α,β,γ表示三个不重合的平面,给出下列命题:①若α∩γ=a,β∩γ=b,且a∥b,则α∥β;②若a,b相交且都在α,β外,a∥α,b∥α,a∥β,b∥β,则α∥β;③若a⊂α,a∥β,α∩β=b,则a∥b.其中正确命题的序号是②③.解析:①错,α与β也可能相交;②对,依题意,由a,b确定的平面γ,满足γ∥α,γ∥β故α∥β;③对,由线面平行的性质定理可知.10.设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且①(或③),则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.解析:对于①,由题意知β∩γ=n,又α∩β=m,α∥γ,所以根据面面平行的性质定理得m∥n;对于②,当平面γ与平面α相交且与平面β平行时,符合题意,但这时直线m,n可能异面;对于③,由n∥β,α∩β=m知,m,n无公共点,再由m⊂γ,n⊂γ,可得两直线平行.11.如图,四边形ABCD是空间四边形,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD =n,则当四边形EFGH是菱形时,AE∶EB=m∶n.解析:因为AC∥平面EFGH,所以EF∥AC,HG∥AC.所以EF =HG =BE BA ·m .同理,EH =FG =AE AB ·n .因为四边形EFGH 是菱形,所以BE AB ·m =AE AB ·n ,所以AE ∶EB =m ∶n .三、解答题(共45分)12.(本小题15分)如图,在三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.求证:BD ∥平面FGH .证明:方法1:连接DG ,CD ,设CD ∩GF =M ,连接MH . 在三棱台DEF -ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形,则M 为CD 的中点,又H 为BC 的中点,所以HM ∥BD .又HM ⊂平面FGH ,BD ⊄平面FGH ,所以BD ∥平面FGH .方法2:在三棱台DEF -ABC 中,由BC =2EF ,H 为BC 的中点,可得BH ∥EF ,BH =EF , 所以四边形HBEF 为平行四边形,可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点,所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED .因为BD⊂平面ABED,所以BD∥平面FGH.13.(本小题15分)在正四棱柱ABCD-A1B1C1D1中,E为CC1的中点.求证:AC1∥平面BDE;证明:如图,连接AC交BD于点O,连接EO.因为四边形ABCD为正方形,所以O为AC中点.又E为CC1中点,所以OE为△AC1C的中位线,所以OE∥AC1.又OE⊂平面BDE,AC1⊄平面BDE,所以AC1∥平面BDE.14.(本小题15分)如图所示,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.解:(1)证明:由题意知,BB1綊DD1,∴四边形BB1D1D是平行四边形,∴BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,∴BD∥平面CD1B1.∵A1D1綊BC,∴四边形A1BCD1是平行四边形,∴A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,∴A1B∥平面CD1B1.又∵BD∩A1B=B,∴平面A1BD∥平面CD1B1. (2)∵A1O⊥平面ABCD,∴A1O是三棱柱ABD-A1B1D1的高.∵四边形ABCD为正方形,且AB=2,∴AC=2,∴AO=12AC=1,又AA1=2,∴A1O=AA21-OA2=1.又∵S△ABD=12×2×2=1,∴V ABD-A1B1D1=S△ABD·A1O=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学人教A 版实用资料附答案
下期高三理科周练(二)
一.选择题:
1.设集合A={x|x>1},B={a+2}.若A
B =∅,则实数a 的取值范围是( )
A.(,1]-∞-
B.(,1]-∞
C.[1,)-+∞
D.[1,)+∞ 2. 复数z 满足34i
z i
+=
,若复数z 对应的点为M ,则点M 到直线310x y -+=的距离为 (A )
410 (B )710 (C )810
(D )10 3. 身高从矮到高的甲、乙、丙、丁、戊5人排成高矮相间的一个队形,则不同的排法
共有( )种
A .12
B .16
C .24
D .32
4. 平面直角坐标系中,在直线x=1,y=1与坐标轴围成的正方形内任取一点,则此点落在曲线2
y x =下方区域的概率为( ). A .
13 B .23 C .49 D .5
9
5.若中心在原点,焦点在y 轴上的双曲线离心率为3,则此双曲线的渐近线方程为( )
A .y=±x
B .2
y x =±
C .2y x =±
D .12
y x =±
6. 已知函数f(x)=3sin 2x +cos 2x -m 在⎣⎢⎡⎦⎥⎤0,π2上有两个零点x 1,x 2,则tan x 1+x 22的值
为( ).A . 3 B .
33 C .32 D .2
2
7. 已知实数x ,y 满足240220340x y x y x y -+⎧⎪
+-⎨⎪--⎩
≥≥≤,则22z x y =+的的最小值为( ).
A . 1
B .25
C .4
5
D . 4 8. 在ABCD 中,24,60,AB AD BAD
E ==∠=为BC 的中点, 则BD AE ⋅= A .6 B .12 C .6- D .12- 9. 某几何体三视图如图所示,则该几何体的外接球
的表面积为( )
主视图
2
2
A.
414148π B .12π C. 254π D. 414
π
10. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法—“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入6102,2016a b ==时,输出的a =( )
A .54
B .9
C .12
D .18
11. 已知*1log (2)()n n a n n N +=+∈,若称使乘积
123n a a a a ⨯⨯⨯⋅⋅⋅⋅⨯为整数的数n 为劣数,则在区间
(1,2002)内所有的劣数的和为 ( )
A. 2026
B. 2046
C. 1024
D. 1022
12. 若过点P(a,a)与曲线f(x)=xlnx 相切的直线有两条,则实数a 的取值范围是 A 、(,)e -∞ B 、(,)e +∞ C 、 1
(0,)e
D 、(1,)+∞
二.填空题:
13. 已知曲线C :24x y =--,直线l:x=6。
若对于点A(m,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 。
14. 等比数列{}n a 中,123440,60,a a a a +=+=则78a a += ----------.
15. 已知函数x
e x x
f 2
)(=,若)(x f 在]1,[+t t 上不单调...,则实数t 的取值范围是_________ 16.已知数列{}n a 与{}n b 满足*1
2()3
n n a b n N =
+∈,若{}n b 的前n 项和为3(21)n n T =-且8(3)2n n a b n λλ-≥-+对一切*n N ∈恒成立,则实数λ的取值范围是 .
三.解答题:
17. 在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,b(1﹣2cosA) = 2acosB .
(1)证明:b=2c ;
(2)若a=1,tanA = 22,求△ABC 的面积.
18. 如图,三角形ABC 和梯形ACEF 所在的平面互相垂直,AB ⊥BC ,AF ⊥AC ,AF ∥CE ,且AF=2CE ,G 是线段BF 上一点 ,AB=AF=BC=2. (Ⅰ)当GB=GF 时,求证:EG ‖ABC ; (Ⅱ)求二面角E —BF —A 的余弦值;
(Ⅲ)是否存在点G,满足BF ⊥平面AEG ?并说明理由。
19、(本小题满分12分)
一个盒子装有六张卡片,上面分别写着如下六个函数:
31()f x x =,2()5x f x = ,3()2f x =41()f x x =
,5()sin()2
f x x π
=-,6()cos f x x x =. (Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数。
在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;
(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数X 的分布列和数学期望.
20. 设P 为椭圆22
221x y a b
+=()0a b >>上任一点,F 1,F 2为椭圆的左右两焦点,短轴的两个
顶点与右焦点的连线构成等边三角形,
(Ⅰ)求椭圆的离心率;(Ⅱ)直线l :2
b
y kx =+
与椭圆交于P 、Q 两点,直线OP ,PQ ,OQ 的斜率依次成等比数列,且OPQ ∆的面积等于7,求椭圆的标准方程.
21.(本小题满分12分)已知函数x x a x f -+=)1ln(2)( (Ⅰ)求)(x f 的单调区间 (Ⅱ)求证:201611120174...ln 2017()2320162016
++++>+
22.在直角坐标系xOy 中,直线l 的参数方程为23x t
y t
=-+⎧⎪⎨=⎪⎩(t 为参数),若以该直角坐标
系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为
2sin 4cos 0ρθθ+=.
(Ⅰ)求直线l 与曲线C 的普通方程;
(Ⅱ)已知直线l 与曲线C 交于,A B 两点,设(2,0)M -,求11
MA MB
-
的值.
23.设函数()|21|34f x x x =-+-,记不等式()3f x <-的解集为M . (Ⅰ)求M ;(Ⅱ)当x M ∈时,证明:2
2
[()]|()|0x f x x f x -<.
参考答案:
1-6.ADDABB 7-12.CDDDAB 13.[2,3] 14.135 15.(3,2)
(1,0)--- 16.[4,)+∞
17.(1)略(2)11 18.(1)略(2)1
3
-(3)不存在 19.(1)1(2)E (X )=7
20.(1(2)
221164
x y += 21.(1)当0a ≤,f(x)在(1,)-+∞上递减;当a>0时,(-1,2a-1)上递增,在(21,)a -+∞递减
(2)略
22.(1)22),4y x y x =
-=-
23.(1)(,0)-∞(2)略。