Performance characterization of Ti substrate lead dioxide electrode with different solid
材料参数英文
材料参数英文Material ParameterMaterials are fundamental components in various industries, from construction to electronics, and their properties play a crucial role in determining the performance and functionality of the products they are used in. Understanding the parameters that define a material's characteristics is essential for engineers, scientists, and manufacturers to make informed decisions during the design, development, and production stages. In this essay, we will explore the key material parameters and their significance in the world of materials science and engineering.One of the primary material parameters is the chemical composition, which refers to the specific elements and their relative proportions that make up a material. The chemical composition of a material can have a significant impact on its physical, mechanical, and thermal properties. For example, the addition of certain alloying elements to steel can enhance its strength, corrosion resistance, or hardenability. Likewise, the composition of ceramics, polymers, and composites can be tailored to meet specific requirements, such as high-temperature resistance, electrical insulation, or lightweight properties.Another critical parameter is the microstructure, which describes the internal structure of a material at the microscopic level. The microstructure is influenced by the material's composition, as well as the manufacturing processes it undergoes, such as heat treatment, mechanical processing, or solidification. The arrangement and distribution of the material's constituent phases, grains, and defects can have a profound impact on its mechanical properties, corrosion behavior, and even its electrical and magnetic characteristics.The physical properties of a material, such as density, melting point, thermal conductivity, and coefficient of thermal expansion, are also important parameters that need to be considered. These properties can affect the material's performance in various applications, such as heat transfer systems, thermal insulation, or structural integrity under temperature variations.Mechanical properties, including strength, toughness, hardness, and fatigue resistance, are crucial parameters that determine a material's ability to withstand various stresses and deformations. These properties are often the primary drivers in the selection of materials for structural, aerospace, and automotive applications, where the material's ability to bear loads and resist failure is of utmost importance.Electrical and magnetic properties are also significant material parameters, particularly in the electronics and telecommunications industries. Parameters such as electrical conductivity, dielectric constant, and permeability can influence the performance of electronic components, circuits, and devices. The ability to control and manipulate these properties is crucial for the development of advanced electronic and electromagnetic technologies.In addition to the physical, mechanical, and electrical/magnetic properties, materials can also exhibit unique surface and interfacial characteristics, such as wettability, adhesion, and corrosion resistance. These parameters are particularly important in applications where the material's interaction with its environment, or with other materials, plays a critical role, such as in coatings, thin films, and biomedical implants.The characterization and measurement of material parameters are essential for understanding the behavior and performance of materials. A wide range of analytical techniques, including microscopy, spectroscopy, thermal analysis, and mechanical testing, are employed to quantify and evaluate the various material parameters. These techniques provide valuable data that can be used to optimize material selection, improve manufacturing processes, and develop new materials with enhanced properties.In the modern era of advanced materials and rapid technological progress, the understanding and control of material parameters have become increasingly crucial. Materials scientists and engineers are constantly pushing the boundaries of what is possible, developing new materials with tailored properties to meet the ever-evolving demands of industry and society. From lightweight and high-strength composites for aerospace applications to smart materials with programmable responses, the ability to precisely engineer and manipulate material parameters is the key to unlocking the full potential of materials and driving innovation across a wide range of fields.In conclusion, material parameters are the fundamental building blocks that define the characteristics and behavior of materials. By understanding and controlling these parameters, we can design, develop, and optimize materials to meet the demanding requirements of modern applications, ultimately paving the way for technological advancements and a more sustainable future.。
糠醛渣基木质素
第62卷 第1期吉林大学学报(理学版)V o l .62 N o .12024年1月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )J a n 2024d o i :10.13413/j .c n k i .jd x b l x b .2023064糠醛渣基木质素/纤维素复合材料的表征及氧还原电催化性能曲 霞1,2,任素霞1,李 政1,2,冯宇伟1,2,杨延涛1,雷廷宙1(1.常州大学城乡矿山研究院,江苏常州213164;2.常州大学石油化工学院,江苏常州213164)摘要:为解决糠醛渣堆放导致的环境污染问题,并拓展废弃物资源的高值化利用途径,通过超微研磨和高压均质等预处理过程制备糠醛渣基木质素/纤维素复合材料.采用扫描电子显微镜(S E M )和原子力显微镜(A F M )表征样品形貌,用范式洗涤法和元素分析对复合材料的组分以及元素含量进行分析,通过F o u r i e r 变换红外光谱(F T I R )和紫外光谱(U V )对复合材料的表面官能团进行分析,采用非等温条件下的多重升温速率热重法(T G )进行热动力学分析.结果表明,糠醛渣基木质素/纤维素复合材料中C 的质量分数较高(55.95%),可作为一种理想碳源,且该材料含有丰富的木质素(53.18%)和纤维素(39.48%),可利用价值较高,整体表观活化能较低(30k J /m o l ),其在0.1m o l /L 的K O H 碱性电解质中半波电位(E 1/2=0.83V )达到商业P t /C (E 1/2=0.86V )的96.5%,因此以糠醛渣基木质素/纤维素复合材料为生物质前驱体制备的碳材料可作为理想的燃料电池氧还原催化剂.关键词:糠醛渣;生物质;木质素/纤维素;动力学分析;氧还原活性中图分类号:O 469 文献标志码:A 文章编号:1671-5489(2024)01-0156-09C h a r a c t e r i z a t i o no f F u r f u r a lR e s i d u eB a s e dL i gn i n /C e l l u l o s e C o m p o s i t e a n dO x y g e nR e d u c t i o nE l e c t r o c a t a l yt i cP e r f o r m a n c e Q U X i a 1,2,R E NS u x i a 1,L I Z h e n g 1,2,F E N G Y u w e i 1,2,Y A N G Y a n t a o 1,L E IT i n gz h o u 1(1.U r b a na n dR u r a lM i n i n g R e s e a r c h I n s t i t u t e ,C h a n g z h o uU n i v e r s i t y ,C h a n g z h o u 213164,J i a n gs uP r o v i n c e ,C h i n a ;2.S c h o o l o f P e t r o c h e m i c a lE n g i n e e r i n g ,C h a n g z h o uU n i v e r s i t y ,C h a n g z h o u 213164,J i a n gs uP r o v i n c e ,C h i n a )收稿日期:2023-02-23.第一作者简介:曲 霞(1998 ),女,汉族,硕士研究生,从事生物质功能材料的研究,E -m a i l :2621903540@q q.c o m.通信作者简介:杨延涛(1980 ),男,汉族,博士,副研究员,从事生物质资源化利用的研究,E -m a i l :y y t @c c z u .e d u .c n ;雷廷宙(1963 ),男,汉族,博士,研究员,从事生物质能源技术开发利用的研究,E -m a i l :l e i t i n gz h o u @163.c o m.基金项目:国家重点研发计划项目(批准号:2021Y F C 2101604).A b s t r a c t :I no r d e r t o s o l v e t h e e n v i r o n m e n t a l p o l l u t i o n c a u s e db y t h e s t a c k i n g of f u r f u r a l r e s i d u e a n d e x p a n dt h e h igh -v a l u e u t i l i z a t i o n o f w a s t er e s o u r c e s ,t h ef u r f u r a lr e s i d u e b a s e dl i g n i n /c e l l u l o s e c o m p o s i t ew a s p r e p a r e dt h r o u g ht h e p r e t r e a t m e n t p r o c e s s e ss u c ha su l t r a -f i n e g r i n d i n g a n dh i g h -p r e s s u r eh o m o g e n i z a t i o n .T h es a m p l e m o r p h o l o g y w a sc h a r a c t e r i z e d b y u s i n g s c a n n i n g e l e c t r o n m i c r o s c o p y (S E M )a n da t o m i c f o r c e m i c r o s c o p y (A F M ),t h ec o m po s i t i o na n de l e m e n t a l c o n t e n to f t h ec o m p o s i t e w e r ea n a l y z e d b y u s i n g n o r m a lf o r m w a s h i n g m e t h o da n de l e m e n t a la n a l ys i s ,t h e s u r f a c ef u n c t i o n a l g r o u p s o ft h e c o m p o s i t e w e r e a n a l y z e d b y u s i n g Fo u r i e rt r a n s f o r m i n f r a r e d s p e c t r o s c o p y (F T I R )a n d u l t r a v i o l e ts p e c t r o s c o p y (U V ),a n d t h et h e r m o k i n e t i c a n a l ys i s w a s p e r f o r m e db y u s i n g m u l t i p l eh e a t i n g r a t e t h e r m o g r a v i m e t r y (T G )u n d e rn o n -i s o t h e r m a l c o n d i t i o n s .T h e r e s u l t s s h o wt h a t t h e m a s s f r a c t i o no fCi nf u r f u r a l r e s i d u eb a s e dl i g n i n /c e l l u l o s ec o m po s i t e i s h i g h (55.95%),w h i c hc a nb eu s e d a s a n i d e a l c a r b o ns o u r c e .T h em a t e r i a l c o n t a i n s a b u n d a n t l i gn i n (53.18%)a n dc e l l u l o s e (39.48%),a n dh a sh i g hu t i l i z a t i o nv a l u e .T h eo v e r a l l a p pa r e n ta c t i v a t i o n e n e r g y i s l o w (30k J /m o l ),a n d t h eh a l f -w a v e p o t e n t i a l (E 1/2=0.83V )i n0.1m o l /L K O Ha l k a l i n e e l e c t r o l y t e r e a c h e s 96.5%o f c o mm e r c i a l P t /C (E 1/2=0.86V ).T h e r e f o r e ,c a r b o nm a t e r i a l s p r e p a r e d b y u s i n g f u r f u r a l r e s i d u eb a s e d l i g n i n /c e l l u l o s e c o m po s i t e s a s b i o m a s s p r e c u r s o r s c a nb eu s e d a s i d e a l o x y g e n r e d u c t i o n c a t a l ys t s f o r f u e l c e l l s .K e yw o r d s :f u r f u r a l r e s i d u e ;b i o m a s s ;l i g n i n /c e l l u l o s e ;k i n e t i c a n a l y s i s ;o x y g e n r e d u c i n g a c t i v i t y 糠醛是一种多用途的工业化学品,是一种可再生㊁不可或缺的平台化合物,用于有机合成㊁溶剂㊁炼油和制药.通常糠醛由玉米芯㊁甘蔗渣㊁稻壳和其他农业废物中戊糖(半纤维素)脱水制备[1],大多数糠醛的转化率只有50%~60%[2-3],由于糠醛生产的主要催化剂为硫酸,因此糠醛渣呈高酸性以及富含盐类物质的特征[4],大量堆积易污染土壤和空气,导致严重的环境问题[5].在糠醛生产过程中,除生物质中的半纤维素大部分转化为糠醛外,木质素和纤维素大部分被保留,导致糠醛渣富含木质素和纤维素,具有较高的再利用价值.在生产糠醛过程中,生物质原料中的半纤维素发生水解,导致糠醛渣形成丰富的孔结构,具有相对较高的比表面积,成为制备生物质碳材料的良好前驱体.Y i n 等[6]以糠醛渣为原料,研究了通过回收热解气体自活化制备具有可控比表面积和中孔比的生物炭样品,活化后生物炭的比表面积为567m 2/g ,比孔体积为0.380c m 3/g;Z h o u 等[7]将经磷酸处理的糠醛渣进行了快速热解,制备了介孔率超高(93.90%)㊁孔径分布窄㊁比表面积大(1769.40m 2/g)的P 掺杂糠醛渣基碳材料,其对亚甲基蓝具有良好的吸附性能,平衡吸附容量为486m g /g,去除率为97.2%;C h e n 等[8]用碱性过氧化氢在不同温度和时间下提取糠醛渣中的木质素,结果表明,木质素的产率随反应时间和温度的增加而增大,在80ħ反应3h ,木质素的产率最大为41.40%,提取的木质素平均相对分子质量约为糠醛残渣磨碎木质素的1/4,表明糠醛残渣木质素在处理过程中发生严重降解;L i 等[9]用碱煮技术从工业糠醛渣中提取木质素,研究了不同碱处理条件对提取木质素的影响,结果表明,提取的木质素含有丰富愈创木酰㊁丁香酰和对羟基苯基结构单元,并且富含羟基;L i u 等[10]以漂白玉米芯残渣(C C R )为前驱体,采用4种不同方法(硫酸水解㊁甲酸水解㊁2,2,6,6-四甲基哌啶氧化物介导氧化和纸浆精制)制备纳米纤维素,并对纳米纤维素产品进行比较,结果表明,糠醛渣可作为制备纳米纤维素的原料.目前对糠醛渣提取纤维素和木质素或利用糠醛渣制备多孔碳的研究较多,但对糠醛渣的化学组成㊁表面化学性质及热动力学的研究文献报道较少.基于此,本文以糠醛渣为原料制备的糠醛渣基木质素/纤维素复合材料为研究对象,对其化学组成㊁表面化学性质㊁热动力学和电化学性能进行研究.1 实 验1.1 材料与仪器糠醛渣购自河南宏业控股集团有限公司;三聚氰胺(C 3H 6N 6)㊁硫脲(C H 4N 2S )和氢氧化钾(K O H )均为分析纯,购自上海麦克林生化科技有限公司;无水乙醇(C 2H 6O )为分析纯,购自江苏强盛功能化学股份有限公司;N a f i o n (质量分数为5%)分析纯,购自美国杜邦公司;氮气(N 2)和氧气(O 2)购自常州市华阳气体有限公司.MK Z A 10-15J 型超微研磨机(日本M a s u k o 公司);M -110P 型高压微射流均质机(美国M F I C公司);D H G -9030A 型鼓风干燥箱(上海一恒科学仪器有限公司);O T F -1200X 型真空管式炉(合肥科晶技术有限公司);C H I 760E 型电化学工作站(上海辰华设备有限公司).1.2 实验步骤1.2.1 糠醛渣基木质素/纤维素复合材料的制备称取200g 糠醛渣,加入200g 去离子水,搅拌均匀后抽滤并反复洗涤至中性,将糠醛渣分散成751 第1期 曲 霞,等:糠醛渣基木质素/纤维素复合材料的表征及氧还原电催化性能851吉林大学学报(理学版)第62卷质量分数为8%的悬浮液.用MK Z A10-15J型超微研磨机对悬浮液进行超微研磨,在研磨间隙加入约1000g去离子水用以稀释悬浮液,得到质量分数约为3%含木质素的纤维素粗产物悬浮液,向悬浮液中倒入适量去离子水并用M-110P型高压均质机对其进行高压均质,最终得到质量分数为1%的糠醛渣木质素/纤维素复合材料.糠醛渣基木质素/纤维素复合材料的制备流程如图1所示.图1糠醛渣基木质素/纤维素复合材料的制备流程F i g.1P r e p a r a t i o n p r o c e s s o f f u r f u r a l r e s i d u e b a s e d l i g n i n/c e l l u l o s e c o m p o s i t e s1.2.2糠醛渣基木质素/纤维素碳材料的制备将200m L糠醛渣基木质素/纤维素复合材料置于鼓风干燥箱(80ħ)中干燥24h,得到固体产物,将产物转移到石英舟中,在N2气氛下,以5ħ/m i n升温至特定温度,保持2h,自然冷却至室温.将碳化后的样品用1m o l/L H C l酸洗后水洗至中性,最终得到糠醛渣基木质素/纤维素碳材料(F R/C).1.2.3糠醛渣基木质素/纤维素氮硫共掺杂碳材料的制备将8g三聚氰胺和8g硫脲溶解在200m L糠醛渣基木质素/纤维素复合材料中,加热搅拌至均匀,将混合物置于鼓风干燥箱(80ħ)中干燥24h,得到固体产物,将产物转移到石英舟中,在N2气氛下,以5ħ/m i n升温至特定温度,保持2h,自然冷却至室温.将碳化后的样品用1m o l/L H C l酸洗后水洗至中性,最终得到糠醛渣基木质素/纤维素氮硫共掺杂碳材料(F R/C-N-S).1.3样品表征与分析利用场发射电子显微镜(S i g m a300型,德国Z e i s s公司)㊁元素分析仪(V a r i oE Lc u b e型,德国U N I C U B E公司)㊁F o u r i e r红外变换光谱仪(T e n s o r27型,德国B r u k e r公司)和紫外可见分光光度计(U V-2450型,日本S h i m a d z u公司)对糠醛渣基木质素/纤维素复合材料进行结构表征;使用S D T Q600型差热热重联用仪(美国T A仪器公司)对糠醛渣基木质素/纤维素复合材料进行热性能分析测试;参考G B/T20806 2006,D B37/T2969 2017和G B/T20805 2006对糠醛渣基木质素/纤维素复合材料中三大元素的质量分数进行测量;参考G B/T28731 2012对糠醛渣基木质素/纤维素复合材料进行工业分析和元素分析.采用C o a t s-R e d f e r n法和F l y n n-W a l l-O z a w a(F WO)法对糠醛渣基木质素/纤维素复合材料进行动力学分析,由于聚合物的热解反应可视为一级动力学反应,因此糠醛渣基木质素/纤维素复合材料的热解反应方程可表示为A(s)ңB(s)+C(g),(1)dαd t=k(1-α),(2)由于k =A e x p-E {}R T,(3)因此,式(2)可转化为d αd t=A e x p -E {}R T (1-α),(4)其中α=W 0-W W 0-W ɕ,W 0为初始样品质量(m g ),W 为t 时刻样品质量(m g),W ɕ为反应结束时的样品质量(m g),T 为反应温度(K ),A 为指前因子(s -1),E 为活化能(J /m o l ),R =8.314J /(m o l ㊃K )为气体常数[11-12].将升温速率常数β=d T d t(K /m i n )代入式(4)可得d αd T =Aβe x p -E {}R T (1-α).(5)用C o a t s -R e d f e r n 法对式(5)进行处理可得l n -l n (1-α)T éëêêùûúú2=l n A R βE 1-2R T æèçöø÷éëêêùûúúE -E R T.(6) 对多数的裂解反应[13],R T /E ≫1,1-2R T /E ʈ1,由于式(6)右端第一项几乎均为常数,因此式(6)可表示为l n -l n (1-α)T éëêêùûúú2=l n A R βE -E R T ,(7)由l n -l n (1-α)T éëêêùûúú2对T -1做图可得到一条直线,令Y =l n -l n (1-α)T éëêêùûúú2,α=-E R ,X =1T ,b =l n A R βE ,则有Y =αX +b ,由式(7)做图可直接得到该直线的斜率-E R 和截距l n A R βE [14],进而求出E 和A .当用F WO 法求E 时,不涉及反应机理函数,避免了相对误差,由于温度积分采用近似方法,因此引入了近似误差.对温度积分后可得G (a )=A E βR P (u )=A E βR e -u u 21u 0-2!u 1+3!u 2-4!u 3+æèçöø÷ ,(8)对式(8)两边取对数可得l n P (u )=-u +l n (u -2)-3l n u ,(9)若20≪u ≪60,则用T a yl o r 级数展开对数项并取一阶近似,可得l g P (u )=-2.315-0.4567E R T,(10)l g β与1/T 呈线性相关,通过曲线斜率可求出转化率对应的表观活化能[15].用辰华C H I 760E 型电化学工作站进行电化学测试,将2m g 糠醛渣基木质素/纤维素碳材料与乙醇(50μL )㊁去离子水(50μL )和N a f i o n (50μL )混合制备浆液,超声均匀后将12μL 的浆液滴到打磨抛光后的玻碳上,自然干燥.采用三电极体系(玻碳电极作为工作电极,铂片作为对电极,H g /H g 2C l 2作为参比电极)测试样品氧还原(O R R )性能,电解质溶液为0.1m o l /LK O H ,电位均已校正为可逆氢电极(R H E )的电位.2 结果与讨论2.1 木质素㊁纤维素和半纤维素的质量分数分析糠醛渣基木质素/纤维素复合材料的化学组成分析列于表1.由表1可见,木质素和纤维素的质量分数较高,木质素和纤维素的质量分数分别为53.18%和39.48%,远高于其他普通植物,因此用糠醛渣可提取木质素和纤维素.在制备糠醛过程中生物质中的半纤维素大部分被水解成戊糖,因此半纤维素的质量分数较低,仅占4.16%,由于糠醛渣中存在一定量的灰分等其他物质,不利于糠醛渣的高值951 第1期 曲 霞,等:糠醛渣基木质素/纤维素复合材料的表征及氧还原电催化性能化利用,因此可采取合适的方法去除.表1 糠醛渣基木质素/纤维素复合材料的化学组成分析T a b l e 1 C h e m i c a l c o mo s i t i o na n a l s i s o f f u r f u r a l r e s i d u e b a s e d l i n i n /c e l l u l o s e c o m o s i t e s 2.2 元素分析糠醛渣基木质素/纤维素复合材料与未处理糠醛渣的元素分析列于表2.由表2可见,糠醛渣基木质素/纤维素复合材料主要由C ,H ,O 三种元素组成,并含有微量的N 和S 元素.其中C 元素为主要成分,其质量分数为55.98%,糠醛渣基木质素/纤维素复合材料与未经处理糠醛渣元素中C 元素的质量分数相差较小,均可作为一种良好的可再生碳源加以利用.表2 糠醛渣基木质素/纤维素复合材料的元素分析T a b l e 2 E l e m e n t a l a n a l y s i s o f f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m po s i t e s %样品工业分析M a dA dV d a f元素分析C d a fH d a fN d a fS t ,dO d a f糠醛渣基木质素/纤维素复合材料5.993.1964.6255.985.110.500.1338.28糠醛渣4.4617.1576.1656.805.870.740.2036.392.3 微观结构分析糠醛渣及糠醛渣基木质素/纤维素复合材料的扫描电子显微镜(S E M )照片和原子力显微镜(A F M )照片分别如图2和图3所示.图2 糠醛渣(A )及糠醛渣基木质素/纤维素复合材料(B )的S E M 照片F i g .2 S E Mi m a g e s o f f u r f u r a l r e s i d u e (A )a n d f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m po s i t e s (B )图3 糠醛渣基木质素/纤维素复合材料的A F M 照片F i g .3 A F Mi m a ge of f u r f u r a l r e s i d u e b a s e d l ig n i n /c e l l u l o s e c o m po s i t e s 由图2(A )可见,糠醛渣表面较粗糙㊁致密,呈不规则的块状结构.由图2(B )可见,糠醛渣基木质素/纤维素复合材料呈明显的纤维状结构,其周围分散较多颗粒.由图3可见,糠醛渣基木质素/纤维素复合材料为粗细不同㊁长短不一的纤维素纤维,其周围分散大小不一的木质素颗粒.根据A F M 照片统计出糠醛渣基木质素/纤维素复合材料中木质素粒径和纤维素粒径分布,如图4所示.由图4(A )可见,木质素直径为20~300n m ,直径集中在(100ʃ15)n m 处;由图4(B )可见,纤维素长度为0~1200n m ,长度集中在(250ʃ150)n m 处;由图4(C )可见,纤维素直径为0~100n m ,直径集中在(35ʃ15)n m 处.2.4 红外光谱分析糠醛渣基木质素/纤维素复合材料的红外光谱如图5所示.由图5可见:糠醛渣宽频吸收带在3340~3460c m -1处,对应纤维素和木质素中061 吉林大学学报(理学版) 第62卷图4 糠醛渣基木质素/纤维素复合材料中木质素和纤维素的粒径分布F i g .4 P a r t i c l e s i z e d i s t r i b u t i o no f l i g n i na n d c e l l u l o s e i n f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m po s i t e s O H 的伸缩振动[16],表明糠醛渣中存在大量属于苯酚类和脂肪族结构的羟基;在2934c m -1附近出现的吸收峰主要是由于侧链的甲基和亚甲基中C H 拉伸振动[17]所致;在1703c m -1附近出现了木质素中非共轭酮和羧基中C O 伸缩振动的特征[16,18];在1621c m -1附近纤维素㊁半纤维素和木质素中出现了芳香环骨架C C 伸缩振动的特征;在1463c m -1附近出现了纤维素和木质素中甲基和亚甲基的C H 弯曲振动;在1325c m -1附近的特征峰为木质素中苯环骨架振动吸附所致[19];在1265,1064c m -1附近的强吸收峰可能为木质素中苯环甲氧基的C O 键伸缩振动导致[9].2.5 紫外光谱分析糠醛渣基木质素/纤维素复合材料的紫外光谱如图6所示.根据元素分析可知糠醛渣基木质素/纤维素复合材料中含有大量的木质素,木质素作为芳香族化合物含有丰富的苯环结构,可强烈吸收紫外光,因此通过紫外光谱可进一步了解复合材料的表面官能团.由图6可见,糠醛渣基木质素/纤维素复合材料在300n m 处出现一个明显的紫外光谱特征吸收峰,表明糠醛渣基木质素/纤维素复合材料的侧链结构中存在较多共轭烯键[20].图5 糠醛渣基木质素/纤维素复合材料的红外光谱F i g .5 I n f r a r e d s pe c t r u mof f u r f u r a l r e s i d u e b a s e d l ig n i n /c e l l u l o s e c o m po s i t es 图6 糠醛渣基木质素/纤维素复合材料的紫外光谱F i g .6 U Vs pe c t r u mof f u r f u r a l r e s i d u e b a s e d l ig n i n /c e l l u l o s e c o m po s i t e s 2.6 热解过程及热解动力学分析不同升温速率下糠醛渣基木质素/纤维素复合材料的热重(T G )曲线和热重微分(D T G )曲线如图7所示.由图7可见,不同升温速率下的T G 和D T G 曲线趋势大致相同,主要分为3个阶段[21].第一阶段发生在室温~190ħ,总质量损失为3.95%,主要是水分的去除.第二阶段发生在190~460ħ,总质量损失为47.60%,这是由于糠醛渣基木质素/纤维素复合材料中纤维素㊁半纤维素和木质素在该阶段产生分解所致.随着升温速率从5ħ/m i n 增加到30ħ/m i n ,D T G 曲线的峰值温度从341ħ增加到378ħ,这是由于生物质的热导率较低,糠醛渣作为一种生物质,若升温速率太快则受热时存在时间延迟,从而出现热滞后现象.第三阶段(>460ħ)对应炭化过程,随着加热速率从5ħ/m i n 增加到30ħ/m i n,固体残渣的质量占比变大,这是由于温度相同时,样品升温越慢,物料传热和传质过程越充分所致[22].为进一步验证第二阶段(190~460ħ)的活化能,用C o a t s -R e d f e r n 法对糠醛渣基木质素/纤维素161 第1期 曲 霞,等:糠醛渣基木质素/纤维素复合材料的表征及氧还原电催化性能复合材料进行动力学分析,结果列于表3.图7 糠醛渣基木质素/纤维素复合材料在不同升温速率下的T G (A )和D T G (B )曲线F i g .7 T G (A )a n dD T G (B )c u r v e s o f f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m p o s i t e s a t d i f f e r e n t h e a t i n g ra t e s 表3 用C o a t s -R e d f e r n 法对糠醛渣基木质素/纤维素复合材料进行热解反应动力学分析T a b l e3 P y r o l y s i s r e a c t i o nk i n e t i c s a n a l y s i s o f f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m p o s i t e s b y u s i n g Co a t s -R e d f e r nm e t h o d β/(ħ㊃m i n -1)θ/ħnE /(k J ㊃m o l-1)A /m i n-1R 25205~465132.21903.160.9510224~484134.121935.850.9415210~490131.541933.450.9420220~500129.811782.450.9425220~500134.185049.110.9530220~500133.525132.430.94由表3可见,实验条件下升温速率对表观活化能的影响较小,但热解开始和结束的温度随升温图8 糠醛渣基木质素/纤维素复合材料在不同升温速率下l n β和1000/T 的关系F i g .8 R e l a t i o n s h i p be t w e e n l n βa n d1000/T of f u r f u r a l r e s i d u eb a s e dl ig n i n /c e l l u l o s ec o m p o s i t e sa td i f f e r e n th e a ti n g ra t e s 速率的增加而增加,主要失质量区间随升温速率的增加向高温区移动.整体表观活化能较低(30k J /m o l ),与文献[23]的结果一致,表明糠醛渣基木质素/纤维素复合材料的热解反应较易进行.糠醛渣基木质素/纤维素复合材料在不同升温速率下l n β和1000/T 的关系如图8所示.由图8可见,线性拟合较好.用F WO 法对糠醛渣基木质素/纤维素复合材料进行热解反应动力学分析,结果列于表4.由表4可见,通过F WO 法计算出的活化能为22.30~40.17k J /m o l ,其整体上随转化率的升高而增大,最大值为40.17k J /m o l .采用两种方法拟合的曲线线性相关系数R 2均较大(>0.93),因此糠醛渣基木质素/纤维素复合材料的主要热解阶段可视为一级动力学反应,表明单段一级动力学模型可靠.表4 用F W O 法对糠醛渣基木质素/纤维素复合材料进行热解反应动力学分析T a b l e 4 P y r o l y s i s r e a c t i o nk i n e t i c s a n a l y s i s o f f u r f u r a l r e s i d u e b a s e d l i g n i n /c e l l u l o s e c o m p o s i t e s b y u s i n g FW O m e t h o d2.7 糠醛渣基木质素/纤维素氮硫共掺杂碳材料电催化氧还原性能纯糠醛渣基木质素/纤维素复合碳材料(F R /C )与糠醛渣基木质素/纤维素氮硫共掺杂多孔碳材料(F R /C -N -S )的循环伏安(C V )曲线和1600r /m i n 下的线性扫描伏安(L S V )曲线如图9所示.由261 吉林大学学报(理学版) 第62卷图9(A )可见,碳材料在O 2饱和的0.1m o l /LK O H 电解液中出现明显还原峰,表明两种碳材料均具有电催化氧还原(O R R )活性.由图9(B )可见,F R /C -N -S 的起始电位(E o n s e t )为0.93V ,半波电位(E 1/2)为0.83V ,极限电流密度为1.75m A /c m 2,与商业P t /C (E o n s e t =1.04V 和E 1/2=0.86V )相近,远高于F R /C 的氧还原催化活性(起始电位为0.74V ,半波电位为0.6V ,极限电流密度为1.14m A /c m 2),可见掺杂杂原子增强了糠醛渣基木质素/纤维素复合碳材料的电催化氧还原性能,表明以糠醛渣基木质素/纤维素复合材料为生物质前驱制备的碳材料可作为理想的燃料电池氧还原催化剂.图9 碳材料的C V 曲线(A )和1600r /m i n 下的L S V 曲线(B )F i g.9 C Vc u r v e s (A )o f c a r b o nm a t e r i a l a n dL S Vc u r v e s (B )a t 1600r /m i n 综上,本文通过超微研磨和高压均质预处理过程制备了糠醛渣基木质素/纤维素复合材料,并研究了其化学组成㊁表面化学性质及热动力学性质等.结果表明:糠醛渣基木质素/纤维素复合材料含有丰富的纤维素和木质素,木质素和纤维素的质量分数分别为53.18%和39.48%;糠醛渣基木质素/纤维素复合材料主要由C ,H ,O 三种元素组成,并含有少量的N 和S 元素;糠醛渣基木质素/纤维素复合材料中含有O H ,CO ,C C 和C H 等官能团;升温速率对糠醛渣基木质素/纤维素复合材料的热解特性影响较大,其表观活化能较低,相关系数R 2>0.93;以糠醛渣基木质素/纤维素复合材料为生物质前驱体制备的碳材料起始电位为0.93V ,半波电位为0.83V ,极限电流密度为1.75m A /c m 2,氧还原催化活性较高.因此,以糠醛渣基木质素/纤维素复合材料为生物质前驱体制备的碳材料在电催化氧还原性能方面具有较好的应用前景.参考文献[1] R A C HAMO N T R E EP ,D O U Z O U T ,C H E E N K A C HO R N K ,e t a l .F u r f u r a l :AS u s t a i n a b l eP l a t f o r m C h e m i c a l a n dF u e l [J ].A p p l i e dS c i e n c e a n dE n g i n e e r i n g P r o gr e s s ,2020,13(1):3-10.[2] B I SX ,L I U W Y ,WA N GC H ,e t a l .A V e r s a t i l eA p p r o a c h t o t h eS y n t h e s i s o f B i o m a s sD e r i v e d f r o m F u r f u r a l R e s i d u e s a s aP o t e n t i a lA d s o r b e n t [J ].J o u r n a l o fE n v i r o n m e n t a l C h e m i c a l E n g i n e e r i n g,2018,6(4):5049-5052.[3] MA O L Y ,Z HA N G L ,G A O N B ,e ta l .F e C l 3a n d A c e t i c A c i d C o -c a t a l y z e d H y d r o l y s i so fC o r n c o bf o r I m p r o v i n g F u r f u r a lP r o d u c t i o na n d L i g n i n R e m o v a lf r o m R e s i d u e [J ].B i o r e s o u r c e T e c h n o l o g y,2012,123:324-331.[4] WA N G Q ,L I U Y Y ,L I U S N ,e ta l .C o m p r e h e n s i v eT h e r m o c h e m i c a lU t i l i z a t i o no fB i o m a s sR e s i d u e sf r o m F u r f u r a l P l a n t s a n dE L W T e c h n o l o g y [J ].F u e l ,2019,252:116-124.[5] A O W Y ,F U J ,MA O X ,e ta l .C h a r a c t e r i z a t i o na n d A n a l y s i so fA c t i v a t e dC a r b o n sP r e pa r e df r o m F u r f u r a l R e s i d u e sb y M ic r o w a v e -A s s i s t e dP y r o l y s i sa nd A c t i v a t i o n [J ].F ue lP r o c e s s i n g T e c h n o l o g y ,2021,213:106640-1-106640-13.[6] Y I N YL ,G A O Y ,L IA M.S e l f -a c t i v a t i o no fB i o c h a r f r o m F u r f u r a lR e s i d u e sb y R e c y c l e dP y r o l y s i sG a s [J ].W a s t eM a n a ge m e n t ,2018,77:312-321.[7] Z HO U X ,L I U X H ,Q IFL ,e t a l .Ef f i c i e n tP r e p a r a t i o no fP -D o p e dC a r b o nw i t hU l t r a -h igh M e s o p o r o u sR a ti o f r o m F u r f u r a lR e s i d u ef o rD y e R e m o v a l [J ].S e p a r a t i o na n d P u r i f i c a t i o n T e c h n o l o g y,2022,292:120954-1-120954-9.361 第1期 曲 霞,等:糠醛渣基木质素/纤维素复合材料的表征及氧还原电催化性能461吉林大学学报(理学版)第62卷[8] C H E NCZ,L IM F,WU Y Y,e t a l.S t r u c t u r a lC h a r a c t e r i z a t i o no fL i g n i nE x t r a c t e dw i t h A l k a l i n e H y d r o g e nP e r o x i d e f r o m F u r f u r a lR e s i d u e[J].C e l l u l o s eC h e m i s t r y a n dT e c h n o l o g y,2015,49(2):153-163.[9] L IR,WA N G X H,L I N Q X,e t a l.S t r u c t u r a l F e a t u r e s o fL i g n i nF r a c t i o n a t e d f r o mI n d u s t r i a l F u r f u r a lR e s i d u eU s i n g A l k a l i n eC o o k i n g T e c h n o l o g y a n d I t sA n t i o x i d a n t P e r f o r m a n c e[J].F r o n t i e r s i nE n e r g y R e s e a r c h,2020,8: 83-1-83-10.[10] L I U C,L IB,D U H S,e t a l.P r o p e r t i e so fN a n o c e l l u l o s e I s o l a t e df r o m C o r n c o bR e s i d u eU s i n g S u l f u r i cA c i d,F o r m i cA c i d,O x i d a t i v e a n d M e c h a n i c a lM e t h o d s[J].C a r b o h y d r a t eP o l y m e r s,2016,151:716-724.[11]肖瑞瑞,杨伟,陈雪莉,等.三种常见生物质热解动力学特性的研究[J].化学世界,2012,53(11):663-694.(X I A O R R,Y A N G W,C H E N X L,e ta l.R e s e a r c ho n P y r o l y s i s K i n e t i c sC h a r a c t e r i s t i c so fT h r e e T y p e sB i o m a s s[J].C h e m i s t r y W o r l d,2012,53(11):663-694.)[12]袁聪聪,王宇栋,张丁川,等.木屑颗粒热解过程动力学计算及热解气体分析[J].过程工程学报,2017,17(5):1102-1108.(Y U A NCC,WA N G Y D,Z HA N G D C,e t a l.P y r o l y s i sD y n a m i c sC a l c u l a t i o na n dP y r o l y s i sG a sA n a l y s i s o fW o o dP a r t i c l e s[J].T h eC h i n e s e J o u r n a l o fP r o c e s sE n g i n e e r i n g,2017,17(5):1102-1108.)[13]杨兴卫,杨茂立,安海,等.玉米芯炭质燃料的理化性能及热解过程分析[J].过程工程学报,2018,18(4):851-857.(Y A N G X W,Y A N G M L,A N H,e t a l.A n a l y s i s o f P h y s i c o c h e m i c a l P r o p e r t i e s a n dP y r o l y s i sP r o c e s s o fC o r n c o bC a r b o nF u e l[J].T h eC h i n e s e J o u r n a l o fP r o c e s sE n g i n e e r i n g,2018,18(4):851-857.) [14]王承志,李法社,张帅,等.生物质燃油热重特性分析[J].昆明理工大学学报(自然科学版),2016,41(2):15-19.(WA N GCZ,L IFS,Z HA N GS,e t a l.A n a l y s i so fT h e r m o g r a v i m e t r i cC h a r a c t e r i s t i c so fB i o m a s sF u e l [J].J o u r n a l o fK u n m i n g U n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y(N a t u r a l S c i e n c e),2016,41(2):15-19.) [15]蒋荣亮,魏刚,徐洪耀.N H-P O S S基耐高温环氧树脂的制备及动力学分析[J].当代化工,2019,48(9):1959-1963.(J I A N G R L,W E I G,X U H Y.P r e p a r a t i o na n d K i n e t i c s A n a l y s i so f N H-P O S S B a s e d H i g h T e m p e r a t u r eR e s i s t a n tE p o x y R e s i n[J].C o n t e m p o r a r y C h e m i c a l I n d u s t r y,2019,48(9):1959-1963.) [16] C H E N X Y,L IH P,L I U W Y,e t a l.E f f e c t i v eR e m o v a l o f M e t h y lO r a n g ea n dR h o d a m i n eBf r o m A q u e o u sS o l u t i o nU s i n g F u r f u r a l I n d u s t r i a l P r o c e s s i n g W a s t e:F u r f u r a l R e s i d u e a s a nE c o-F r i e n d l y B i o s o r b e n t[J].C o l l o i d sa n dS u r f a c e sA:P h y s i c o c h e m i c a l a n dE n g i n e e r i n g A s p e c t s,2019,583(C):123976-1-123976-9.[17] L I U Y,S O N G Y M,R A NC M,e t a l.C h a r a c t e r i z a t i o n a n dA n a l y s i s o f C o n d e n s a t e s a n dN o n-c o n d e n s a b l eG a s e sf r o m F u r f u r a lR e s i d u ev i aF a s tP y r o l y s i s i naB u b b l i ng F l u i d i z e dB e d R e a c t o r[J].W a s t e M a n a g e m e n t,2021,125:77-86.[18] WA N G Y,X UZY,S O N GX,e t a l.T h eP r e p a r a t i o n o f L o w-C o s tA d s o r b e n t f o rH e a v y M e t a l B a s e d o nF u r f u r a lR e s i d u e[J].M a t e r i a l s a n d M a n u f a c t u r i n g P r o c e s s e s,2017,32(1):87-92.[19]张晓君,赵明珠,赵志海,等.稻草制浆黑液中木质素/二氧化硅复合材料的制备[J].吉林大学学报(理学版),2015,53(2):340-343.(Z HA N GXJ,Z HA O MZ,Z HA OZH,e t a l.P r e p a r a t i o n o f L i g n i n/S i l i c aH y b r i d f r o mB l a c kL i q u o r o fR i c eS t r a wP u l p i n g[J].J o u r n a l o f J i l i nU n i v e r s i t y(S c i e n c eE d i t i o n),2015,53(2):340-343.)[20] X I O N GFQ,HA N Y M,WA N GS Q,e t a l.P r e p a r a t i o na n dF o r m a t i o n M e c h a n i s m o fS i z e-C o n t r o l l e dL i g n i nN a n o s p h e r e sb y S e l f-a s s e m b l y[J].I n d u s t r i a l C r o p s a n dP r o d u c t s,2017,100:146-152.[21]郭平,王观竹,许梦,等.不同热解温度下生物质废弃物制备的生物质炭组成及结构特征[J].吉林大学学报(理学版),2014,52(4):855-860.(G U O P,WA N G G Z,X U M,e t a l.S t r u c t u r e a n d C o m p o s i t i o nC h a r a c t e r i s t i c s o f B i o c h a r sD e r i v e d f r o mB i o m a s sW a s t e s a tD i f f e r e n t P y r o l y s i sT e m p e r a t u r e s[J].J o u r n a l o f J i l i nU n i v e r s i t y(S c i e n c eE d i t i o n),2014,52(4):855-860.)[22]徐期勇,章佳文,刘虎,等.市政污泥与木屑共热解特性及动力学分析[J].可再生能源,2021,39(9):1150-1156.(X U Q Y,Z HA N G J W,L I U H,e ta l.C o-p y r o l y s i s C h a r a c t e r i s t i c sa n d K i n e t i c s A n a l y s i so f M u n i c i p a l S l u d g e a n d W o o dC h i p s[J].R e n e w a b l eE n e r g y R e s o u r c e s,2021,39(9):1150-1156.) [23]杜海清.木质类生物质催化热解动力学研究[D].哈尔滨:黑龙江大学,2008.(D U H Q.S t u d y o nC a t a l y t i cP y r o l y s i sK i n e t i c s o fW o o d y B i o m a s s[D].H a r b i n:H e i l o n g j i a n g U n i v e r s i t y,2008.)(责任编辑:王健)。
Materials Characterization
Materials Characterization Materials characterization is a crucial aspect of scientific research and development. It involves the study of the properties and behavior of different materials, and plays a significant role in various fields such as materials science, engineering, and manufacturing. By understanding the characteristics of materials, scientists and engineers can make informed decisions about their suitability for specific applications, design new materials with desired properties, and ensure the quality and reliability of products. One perspectiveon materials characterization is from the viewpoint of a materials scientist. For them, the process of characterization begins with the selection of appropriate techniques and instruments to analyze the material of interest. This could involve using techniques such as microscopy, spectroscopy, or diffraction to examine the structure, composition, and physical properties of the material. The scientist may also need to perform various tests, such as mechanical, thermal, or electrical tests, to assess the material's performance under different conditions. This comprehensive understanding of the material's properties is crucial for designing and optimizing materials for specific applications. From an engineer's perspective, materials characterization is essential for ensuring the reliability and performance of products. Engineers need to know how materials will behaveunder different operating conditions, such as temperature, pressure, or stress. By characterizing materials, engineers can make informed decisions about material selection, design components with appropriate dimensions and properties, andpredict the lifespan of products. For example, in the aerospace industry,materials characterization is critical for designing lightweight yet strong materials for aircraft structures, as well as understanding how these materialswill perform in extreme conditions. Another perspective on materials characterization comes from the manufacturing industry. Manufacturers rely on materials characterization to ensure the quality and consistency of their products. By characterizing raw materials and finished products, manufacturers can identify any variations or defects that may affect product performance or safety. For instance, in the pharmaceutical industry, materials characterization is used to analyze the composition and purity of drug substances and ensure that they meetregulatory standards. By doing so, manufacturers can guarantee the effectiveness and safety of their products. From a consumer's perspective, materials characterization may not be directly visible or apparent, but it greatly impacts the quality and performance of the products they use. For example, imagine buying a smartphone that claims to have a scratch-resistant screen. This claim is only possible because materials scientists and engineers have characterized the mechanical properties of the screen material and optimized it to resist scratches. Without materials characterization, consumers would not have access to products with the same level of performance and reliability. In conclusion, materials characterization is a vital aspect of scientific research, engineering, and manufacturing. It provides valuable insights into the properties and behavior of materials, enabling scientists, engineers, and manufacturers to make informed decisions about material selection, design, and quality control. From the perspective of a materials scientist, engineer, manufacturer, or consumer, materials characterization plays a crucial role in ensuring the performance, reliability, and quality of products.。
发动机开发试验中英文名词对照
发动机开发试验中英文名词对照1 热力学开发试验 Thermodynamics Test1.1 性能试验 Performance Test1.1.1 全负荷试验 Full Load Test1.1.2 部分负荷试验 Part Load Test1.1.3 排放试验 Emission Test1.1.4 油耗开发试验 Fuel Consumption Test1.2 冷却系统性能试验 Cooling Functional Test对整个发动机冷却系统的功能及特性(如,冷却液及机油的温度、压力和流量等)进行检验,试验在不同的冷却液及机油温度下进行,发动机需装配上面向批产的散热器、加热器及机油冷却器等。
V erification of the function and characteristic of the complete engine cooling system (e.g. coolant and oil temperatures / pressure / flow). Measurement with different coolant temperatures in the complete map shall be carried out production intend radiator, heater, oil cooler shall be installed on the engine.1.2.1 关键零件温度的测量(缸盖、活塞、气门、缸孔)Measurement of critical component temperatures (Cyl. Head, Pistons, Valves, Cyl. Bore) 1.2.2 节温器功能检查(静态/动态的控制特征)Check of thermostat function (Stat.& Dym. Control characteristics)1.2.3 热平衡分析Heat Balance analysis1.2.4 水泵气穴特性的确定Determination of water pump cavitation characteristing1.2.5 冷却系统的压力建立Cooling system pressure build-up1.2.6 开锅后的影响Check of after boiling effects1.3 润滑系统性能试验 Lubrication Function System对整个发动机润滑系统的功能及特性(如冷却液及机油温度、压力和流量等)进行检验,试验在不同的冷却液及机油温度下进行。
高稳定性钛系聚酯催化剂TiOC@SiO2的制备及应用
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 3 期高稳定性钛系聚酯催化剂TiOC@SiO 2的制备及应用刘斌,王勇军,吕汪洋,陈文兴(浙江理工大学纺织纤维材料与加工技术国家地方联合工程实验室,浙江 杭州 310018)摘要:钛系聚酯催化剂因催化活性高、环境友好等优点,是传统锑系聚酯催化剂的理想替代品。
为了制备出耐水解性好、分散性好、催化性能稳定的钛系聚酯催化剂,采用反相微乳液法,制备得到核壳结构催化剂TiOC@SiO 2。
在钛有机化合物的表面包覆一层硅氧烷,以此稳定钛有机化合物的催化活性。
利用多种现代表征方法对TiOC@SiO 2的形貌、结构和性能进行了表征分析,并探究其在合成聚对苯二甲酸乙二醇酯(PET )中的催化性能。
研究结果表明,TiOC@SiO 2催化剂为粒径约200nm 的核壳球形结构,无Ti —O —Si 键,钛含量为6.95%。
TiOC@SiO 2催化剂在90℃下水浴2h 后,其结构和催化活性保持不变,复合结构显著提高了钛有机化合物的耐水解性和分散性。
在聚酯合成实验中,仅添加5μg/g TiOC@SiO 2,在270℃下缩聚反应92min ,即可制备出特性黏度为0.677dL/g 、端羧基含量为14.4mol/t 、b 值为2.16的PET 。
关键词:催化剂;聚合;纳米粒子;聚酯;催化性能中图分类号:TS15;TQ426 文献标志码:A 文章编号:1000-6613(2024)03-1395-08Preparation and application of high stability titanium polyester catalystTiOC@SiO 2LIU Bin ,WANG Yongjun ,LYU Wangyang ,CHEN Wenxing(National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University,Hangzhou 310018, Zhejiang, China)Abstract: Titanium-based polyester catalysts are ideal substitutes for traditional antimony-based catalysts due to their high catalytic activity and environmental friendliness. In order to prepare titanium polyester catalyst with hydrolysis resistance, good dispersibility and stable catalytic performance, TiOC@SiO 2 catalyst was prepared by reverse microemulsion method. A layer of siloxane was coated on the surface of titanium containing organic compound to stabilize the catalytic activity. The morphology, structure and properties of TiOC@SiO 2 were characterized by various modern characterization methods, and its catalytic performance in the synthesis of polyethylene terephthalate (PET) was evaluated. The results showed that the TiOC@SiO 2 catalyst had a core-shell spherical structure with a particle size of about 200nm, but no Ti —O —Si bond, and a Ti content of 6.95%. The structure and catalytic activity of TiOC@SiO 2 catalyst remained unchanged at 90℃ for 2h. The composite structure significantly improved the hydrolysis resistance of the titanium organic compounds and dispersibility. In the polyethylene terephthalate synthesis experiment, with only 5μg/g TiOC@SiO 2 added and polycondensation at 270℃ for研究开发DOI :10.16085/j.issn.1000-6613.2023-0349收稿日期:2023-03-07;修改稿日期:2023-06-01。
电致变色材料综述
电致变色材料制备技术综述电致变色材料概述电致变色是在电流或电场的作用下,材料发生可逆的变色现象。
早在本世纪30年代就有关于电致变色的初步报道。
60年代,Pkat在研究有机染料时,发现了电致变色现象并进行了研究。
1969年,Deb发现在施加电压的情况下,MoO3和WO3具有电致变色效应,Deb 在此基础上进行了深入的研究并研制出了第一个薄膜电致变色器件。
电致变色材料因为在智能窗(smart window)、汽车防炫后视镜、电致变色显示器等方向具有巨大的潜在应用价值,正受到越来越多的关注。
波音公司最新的波音787梦想客机上就使用了电致变色旋窗设计,电致变色也正在走向产业化,具有广阔的市场前景。
目前电致变色材料主要包括两种,即无机电致变色材料和有机电致变色材料。
许多过渡金属氧化物具有电致变色效应。
普遍认为无机电致变色材料由于电子和离子的双注入和双抽出发生氧化还原反应而具有电致变色效应。
根据材料是在氧化态或者还原态着色可分为还原态着色电致变色材料如W、Mo、V、Nb和Ti的氧化物和氧化态着色电致变色材料如Ir、Rh、Ni和Co等的氧化物。
有些材料如V、Co和Rh的氧化物在氧化态和还原态均会呈现不同的颜色。
普鲁士蓝也是一种具有多种变色特性的电致变色材料,能在暗蓝色、透明无色(还原时)、淡绿色(氧化时)等颜色之间转变。
有机电致变色材料包括氧化还原型化合物如紫罗精,导电聚合物如聚苯胺、聚噻吩和金属有机螯合物如酞花菁等。
无机电致变色材料由于化学稳定性好,制备工艺简单等优点,是人们研究的重点,WO3作为最早发现的一种电致变色材料,由于性能优越,价格低廉等优点,是研究最为详细的一种电致变色材料。
目前对电致变色材料性能的研究主要集中在四点:1.颜色和对比度的提高,包括变色对比度的提高和变色光谱的展宽,例如将铌氧化物和ITO纳米晶复合,使材料同时具备对可见光和近红外光电致变色的效应。
2.变色效率,电致变色薄膜的吸光度的变化值与所注入的电荷直接相关,变色效率即电致变色薄膜的吸光度的变化值与单位面积所注入的电荷的比值。
歧化和异构化的反应数据
△,G:=△,职一TA,s:
(3)
1n∥=一簪
(4)
则3.0 MPa时气相反应的平衡转化率可由各物 质平衡组成),i表示,采用公式(5)计算(设此体系为 真实气体的理想混合物),结果见表1。
n(yj叻)巧=(5)以叶∥
(5)
式(5)中逸度系数妒,利用普遍化的Vifial系数法求取。
Table 1
表1歧化反应的△,醒。△,s:,△,G:。∥以及平衡转化率数值
唯一成功用于工业装置的歧化反应催化剂。该技术 丁烯的单程转化率可以在60%以上,丙烯的选择性 在90%以上Mj。由于w基催化剂具有抗毒性能好 的优点隋】,采用该类催化剂进行歧化制丙烯的研究 备受关注,到目前为止,催化性能最好的W基催化 剂载体依然是由氧化硅材料制备的载体。虽然 OCT技术已工业化十余套,但是以WO,/SiP:为催 化剂,专门针对c。烯烃歧化生产丙烯这一目标,进 行相关催化剂的详细研究以及相关工艺条件的考 察,这方面的报道并不多见。
1. 任务书 Assignment.docx
第一部分:毕业设计(论文)任务书(Part I:Senior Project Assignment)2015年(Year)1月(Month)10日(Day)1.Background and ObjectivesWith the development of highway in our country,more and more asphalt was used.Besides,less petroleum was existed.Therefore,the renewable energy were searched. In a variety of renewable energy sources,renewable biomass has huge reserves,widely distributed in features.Biomass resources are:crop straw,cereal grass shell,bark branches, bamboo bagasse,waste food oil,all kinds of livestock feces.Among them,crop stalks Leftover stalks left after harvest seeds containing high fiber content of crop residues, including cereals,beans,potatoes,oil type,ing the biomass to produce bio-oil and put the oil into application is very important.One of the thermochemical processes used to produce bio-oil is fast pyrolysis.Fast pyrolysis is the rapid decomposition of organic matter(biomass)in the absence of oxygen to produce solids such as,char, pyrolysis liquid or oil(bio-oils),and gas.In order to use the bio-oil to produce the suitable bio-binder.The performance of bio-binder need to be studied.Besides,some additives may be need to put into the bio-binder.So the performance of modified bio-binder also need to be studied.2.Design Specification(Research Scopes)The study should be based on the wide range of research and application of bio-asphalt at home and abroad to further study the content of bio-oil,the preparation temperature,mixing time,test temperature,the aging and other factors on the properties of the bio-oil modified asphalt.Preparation,penetration,and softening point are the most important test tools.With the growing global energy crisis and environmental degradation,finding renewable resources and protecting the natural environment are the major problems to be solved.In the field of road engineering,petroleum asphalt is a major road building material, according to statistics,China's annual consumption of asphalt is about20million tons. Because of non-renewable petroleum resources,the price of petroleum asphalt began to soar in recent years.Meanwhile,the process of preparation and use of asphalt is also accompanied by significant carbon emissions.Our country is a large agricultural country with a large population,a huge amount of plant stalks and waste oil residues in everyday life put a huge pressure on the ecosystem.A reasonable treatment and utilization of energy to alleviate tensions would promote sustainable social and economic development and the improvement of the ecological environment has important significance.In the process of biodiesel and gasoline production,because the required quality of bio-diesel automotive engines and gasoline are higher,in the preparation process,mainly by distillation or cracking of the heavy fraction is the residual biomass,heavy oil.The efficient use of biomass cannot only reduce the heavy road construction costs but also improve the performance of asphalt pavement,which is the significance of this thesis lies.3.Main TasksThrough this senior project,the following tasks should be fulfilled:Task1:The important reason of the application of bio-binder should be understood.Task2:The high performance of bio-binder and modified bio-binder should be studied.Task3:The low performance of bio-binder modified bio-binder should be studied.Task4:The aging properties of bio-binder should be explored.4.Main Deliverables1.Senior project proposal.2.Bi-week memo.3.Graduation thesis.5.Time TableThe senior project advisor should help students plan ahead through a list of time slots as shown in table below.It should be noted however,the time table shown below is the basic or overall requirements of senior project committee.Advisors should have their6.Main References[1]Y.Xu,Z.You,Performance Evaluation of Asphalt Binder Modified by Bio-oil Generated from Waste Wood Resources[J].International Journal of Pavement Research and Technology,Jul.2013.6(4):431-439[2]Bridgewater,A.V.,“An Introduction to Fast Pyrolysis of Biomass for Fuels and Chemicals”in Fast Pyrolysis of Biomass:A Handbook,edited by Bridgewater,A.et.al. CPL Scientific Publishing Services Limited,Newbury,1999,pp.1-13.[3]Raouf,M.A.,and Williams,R.C.(2009)Determination of Pre-Treatment Procedure Required for Developing Bio-Binders from Bio-Oils.Proceedings of the2009Mid-Continent Transportation Research Symposium[J].Ames,Iowa State University, Iowa,USA[4]胡兴涛,生物质快速热解制生物质油的实验研究[D],山东:山东科技大学,2010[5]Julian Mills-Beale,and Z.You,Aging Influence on Rheology Properties of Petroleum-based Asphalt Modified with Biobinder[J],Journal of Materials in Civil Engineering,accepted manuscript,October11,2012.doi:10.1061[6]Fini,E.H.,Kalberer,E.W.,Shahbazi,A.,Basti,M.,You,Z.,Ozer,H.,and Aurangzeb, Q.(2011).Chemical characterization of biobinder from swine manure:Sustainable modifier for asphalt binder[J].Journal of Materials in Civil Engineering,23(11),1506-1513.[7]郑典模,屈海宁,孙云.地沟油催化裂解制备生物燃油[J],南昌大学学报(工学版),2010,32(3),242-245[8]万益琴,王应宽,林向阳.微波裂解海藻快速制取生物燃油的试验[J],农业工程学报,2010,26(1):295-300[9]Ellie H.Fini,Synthesis and Characterization of Bio-modified Rubber(BMR)Asphalt:A Sustainable Waste Management Solution for Scrap Tire and Swine Manure[J],Journalof Environmental Engineering,accepted manuscript,July13,2013.doi:10.1061[10]Onochie,A.,Fini,E.,Yang,X.,Mills-Beale,J.,and You,Z.(2013)Rheological Characterization of Nano-particle based Bio-modified Binder[J].Transportation Research Board,TRB2013CD-ROM,Washington D.C.,Paper ID:13-4895.[11]Hill,B.,Oldham,D.,Behnia,B.,Fini,E.H.,Buttlar,W.G.,and Reis,H.(2013)Low Temperature Performance Characterization of Bio-Modified Asphalt Mixtures Containing Reclaimed Asphalt Pavement[J].Transportation Research Board,TRB2013CD-ROM, Washington D.C.,Paper ID:13-3773.[12]Tang,S.,and Williams,R.C.(2009)Antioxidant Effect of Bio-Oil Additive ESP on Asphalt Binder[J].Proceedings of the2009Mid-Continent Transportation Research Symposium,Ames,Iowa State University,Iowa,USA[13]Raouf,M.A.,and Williams,R.C.Temperature and Shear Susceptibility of aNon-petroleum Binder as a Pavement Material[J].Transportation Research Board,2010 TRB CD-ROM,Washington D.C.,Paper ID:10-0812.[14]Fini,E.H.,Yang,S.-H.,and Xiu,S.(2010).Characterization and Application of Manure-Based Bio-binder in Asphalt Industry[J].Transportation Research Board,TRB 2010CD-ROM,Washington D.C.Paper ID:10-2871[15]Fini,E.H.,Al-Qadi,I.L.,You,Z.,Zada,B.,and Mills-Beale,J.(2012).Partial replacement of asphalt binder with bio-binder:Characterisation and modification[J]. International Journal of Pavement Engineering,13(6),515-522.[16]SEIDEL,J.C.,and HADDOCK,J.E.(2012)Soy Fatty Acids as Sustainable Modifier for Asphalt Binders[J].Workshop of"Alternative Binders for Sustainable Asphalt Pavements",E-C165,Transportation Research Board,Washington D.C.pp:15-22[17]WEN,H.,BHUSAL,S.,and WEN,B.(2012)Laboratory Evaluation of Waste Cooking Oil Based Bioasphalt as Sustainable Binder for Hot-Mix Asphalt[J].Workshop of "Alternative Binders for Sustainable Asphalt Pavements",E-C165,Transportation Research Board,Washington D.C.pp:49-60.[18]Yang,S.-H.,Suciptan,T.,and Chang,Y.-H.(2013)Investigation of Rheological Behavior of Japanese Cedar Based Bio-Binder As Partial Replacement For Bituminous Binder[J].Transportation Research Board,TRB2013CD-ROM,Washington D.C.,Paper ID:13-3801.[19]Peralta,J.,Raouf,M.A.,Tang,S.,and Williams,R.C.(2012).Bio-Renewable Asphalt Modifiers and Asphalt Substitutes[J].Sustainable Bioenergy and Bioproducts, Green Energy and Technology,Springer,89-115.[20]Mohammad,L.N.,Elseifi,M.A.,Cooper,S.B.,Challa,H.,and Naidoo,P.(2013) Laboratory Evaluation of Asphalt Mixtures Containing Bio-Binder Technologies[J]. Transportation Research Board,TRB2013CD-ROM,Washington D.C.,Paper ID:13-3784.[21]Hajj,E.Y.,Souliman,M.I.,Alavi,M.Z.,and Salazar,L.G.(2013)Influence of Hydrogreen Bio-asphalt on Viscoelastic Properties of Reclaimed AsphaltMixtures[J],Transportation Research Board,TRB2013CD-ROM,Washington D.C.,Paper ID:13-2253.[22]Williams,R.C.,Satrio,J.,Rover,M.,Brown,R.C.,and Teng,S.(2009)Utilization of Fractionated Bio Oil in Asphalt[J].Transportation Research Board,TRB2009CD-ROM,Washington D.C.Paper ID:09-3187[23]Abdel,M.,Metwally,R.M.,and Williams,R.C.(2010).Development ofNon-Petroleum Based Binders for Use in Flexible Pavements[J].TR-594,Iowa State University,Ames,IA.[24]Hill,D.R.(2012).Bioasphalt and Biochar from Pyrolysis of Urban Yard Waste[D], Master of Science,Case Western Reserve University.[25]AUDO,E.C.,QUEFFELEC,B.B.,LEGRAND,J.,and L.PINE,O.(2012) Alternative Binder from Microalgae Algoroute Project[J].Workshop of“Alternative Binders for Sustainable Asphalt Pavements”,E-C165,Transportation Research Board, Washington D.C.pp:7-14.。
NI PXI定时与同步模块说明书
CONTENTSPXI Timing and Synchronization Modules Detailed View of PXIe-6674TKey FeaturesNI-Sync Application Programming Interface (API) Platform-Based Approach to Test and Measurement PXI InstrumentationHardware ServicesPXI Timing and Synchronization Modules PXIe-6674T, PXIe-6672, PXI-6683 and PXI-6683H•Generate high-stability PXI system reference clocks and high-resolution sample clocks •Minimize skew through access to PXI-star and PXIe-Dstar chassis trigger lines •Import and export system reference clocks for synchronization between multiple chassis orexternal devices •Achieve synchronization over large distance through GPS, IEEE 1588,IRIG-B or PPS•Develop advanced timing and sync applications with NI-Sync and NI-TClk softwarePowerful, Reliable Timing and SynchronizationNI’s PXI timing and synchronization modules enable a higher level of synchronization on the PXI platform through high-stability clocks, high-precision triggering and advanced signal routing. Implementing timing and synchronization hardware can vastly improve the accuracy of measurements, provide advanced triggering schemes, and allow synchronization of multiple devices for extremely high-channel-count applications. NI’s portfolio includes both signal-based and time-based solutions to deliver the advantages of synchronization to numerous applications.Table 1. NI offers various PXI modules to meet a range of timing and synchronization requirements.*Accuracy within one year of calibration adjustment within 0 ºC and 55 ºC operating temperature rangeDetailed View of PXIe-6674TSlot Compatibility PXI Timing or Peripheral Slot PXI or PXIe Hybrid Peripheral Slot PXIe System TimingSlot PXIe System TimingSlot Oscillator Accuracy*TCXO / 3.5 ppm TCXO / 3.5 ppm TCXO / 3.5 ppm OCXO / 80 ppb DDS Clock Generation Range Not available Not available DC to 105 MHz 0.3 Hz to 1 GHzDDS Clock Generation Resolution Not availableNot available0.075 Hz2.84 µHzPXI 10MHz Backplane Clock Override ● ● ● Clock Import Capability ● ● ● Clock Export Capability● ● ● ● Time-Based Synchronization (GPS, IEEE 1588, IRIG-B, PPS)● ● PXI Trigger Access (PXI_TRIG) ● ● ● ● PXI-Star Trigger Access (PXI_STAR) ●● ● PXIe-Dstar Trigger Access (PXI_DSTARA/B/C)● Front Panel Physical Connectors SMB, RJ45SMB, RJ45SMB SMA PFI Lines on Front Panel3366Key FeaturesHigh-Stability, High-Accuracy Onboard ClockApplications requiring highly reliable and consistent clock signals require a highly stable oscillator to avoid clock inaccuracies. For an NI PXI Express chassis, the oscillator is accurate to 25 parts per million (ppm). Inserting an NI PXI timing and synchronization module into the system timing slot of the chassis enables the user to replace this backplane system reference clock using the higher accuracy oscillator of the module. The PXIe-6672 and PXI-6683 modules contain a temperature-compensated crystal oscillator (TCXO) which can achieve accuracies better than 4 ppm. The PXIe-6674T features an oven-controlled crystal oscillator (OCXO) with an accuracy of 80 parts-per-billion (ppb). Note that the PXI-6683H contains the same oscillator as the PXI-6683, but due to its hybrid connectivity is not able to override the backplane clock.Figure 1.By referencing the OCXO on the PXIe-6674T, the 10 MHz backplane clock of a PXI chassis achieves muchlower phase noise and thus more clock stability.PXI modular instruments with phased-lock loop circuits, such as high-speed digitizers and waveform generators, can take advantage of the high-precision clock of timing and synchronization modules. When locking to a high-accuracy reference clock, the instrument inherits the accuracy of the clock, achieving sample clock resolutions as low as 0.5 Hz with an OCXO-based module.Skew Reduction with Star and Differential Star LinesDue to the variation in signal path lengths between slots in a PXI chassis, skew may be introduced when sending clocks or triggers to multiple slot destinations over the PXI trigger bus. To address this, all NI PXI chassis also include trace-length-matched star trigger lines accessible from a timing and synchronization module in the system timing slot. Star trigger lines can reduce skew to a maximum of 1 ns. Additionally, PXI Express chassis include differential star trigger lines capable of minimizing slot-to-slot skew to under 150 ps.Figure 2.While every slot of the PXI backplane may access the PXI trigger bus, the star trigger lines and differential star trigger lines are only accessible through the system timing slot.Time-Based Synchronization with GPS, IEEE 1588, IRIG-B or PPSThe NI PXI-6683 and PXI-6683H timing and synchronization modules synchronize PXI and PXI Express systems through time-based technology or protocols. Time-based modules can generate triggers and clock signals at programmable future times and timestamp input events with the synchronized system time including that of real-time systems. For PXI Express systems requiring time-based synchronization with backplane clock discipline or star trigger access, the PXI-6683H can be combined with the PXIe- 6674T or PXIe-6672 to provide a full-featured synchronization solution.Advanced Routing of Clocks and TriggersUsing a PXI timing and synchronization module provides the capability of advanced routing of clock and trigger signals. Through the combination of system timing slot access and FPGA-based routing, many more source-to-destination routes become possible, allowing more flexible designs and efficient use of system resources.Table 2. The PXIe-6674T timing and synchronization module features a wide vaiety of source-to-destination routes bycombining the power of the PXI Express architecture with the signal-routing capabilities of the onboard FPGA.● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●NI-Sync Application Programming Interface (API)The NI-Sync driver allows configuration of system timing and synchronization through LabVIEW, C, or .NET. This includes signal-based synchronization, such as sharing triggers and clocks to be used directly, or time-based synchronization, using time protocols such as IEEE-1588, IRIG, or GPS for non-tethered systems. NI-Sync is designed for use with other NI drivers, such as NI-DAQmx, for advanced timing, high channel count, distributed or multiple-instrument applications.DestinationS o u r c ePlatform-Based Approach to Test and MeasurementWhat Is PXI?Powered by software, PXI is a rugged PC-based platform for measurement and automation systems. PXI combines PCI electrical-bus features with the modular, Eurocard packaging of CompactPCI and then adds specialized synchronization buses and key software features. PXI is both a high-performance and low-cost deployment platform for applications such as manufacturing test, military and aerospace, machine monitoring, automotive, and industrial test. Developed in 1997 and launched in 1998, PXI is an open industry standard governed by the PXI Systems Alliance (PXISA), a group of more than 70 companies chartered to promote the PXI standard, ensure interoperability, and maintain the PXI specification.Integrating the Latest Commercial TechnologyBy leveraging the latest commercial technology for our products, we can continually deliver high-performance and high-quality products to our users at a competitive price. The latest PCI Express Gen 3 switches deliver higher data throughput, the latest Intel multicore processors facilitate faster and more efficient parallel (multisite) testing, the latest FPGAs from Xilinx help to push signal processing algorithms to the edge to accelerate measurements, and the latest data converters from TI and ADI continuallyincrease the measurement range and performance of our instrumentation.PXI InstrumentationNI offers more than 600 different PXI modules ranging from DC to mmWave. Because PXI is an open industry standard, nearly 1,500 products are available from more than 70 different instrument vendors. With standard processing and control functions designated to a controller, PXI instruments need to contain only the actual instrumentation circuitry, which provides effective performance in a small footprint. Combined with a chassis and controller, PXI systems feature high-throughput data movement using PCI Express bus interfaces and sub-nanosecond synchronization with integrated timing and triggering.OscilloscopesSample at speeds up to 12.5 GS/s with 5 GHz of analog bandwidth, featuring numerous triggering modes and deep onboard memoryDigital InstrumentsPerform characterization and production test of semiconductor devices with timing sets and per channel pin parametric measurement unit (PPMU)Frequency Counters Perform counter timer tasks such as event counting and encoder position, period, pulse, and frequency measurementsPower Supplies & Loads Supply programmable DC power, with some modules including isolated channels, output disconnect functionality, and remote senseSwitches (Matrix & MUX) Feature a variety of relay types and row/column configurations to simplify wiring in automated test systemsGPIB, Serial, & Ethernet Integrate non-PXI instruments into a PXI system through various instrument control interfaces Digital MultimetersPerform voltage (up to 1000 V), current (up to 3A), resistance, inductance, capacitance, and frequency/period measurements, as well as diode testsWaveform Generators Generate standard functions including sine, square, triangle, and ramp as well as user-defined, arbitrary waveformsSource Measure Units Combine high-precision source and measure capability with high channel density, deterministic hardware sequencing, and SourceAdapt transient optimizationFlexRIO Custom Instruments & Processing Provide high-performance I/O and powerful FPGAs for applications that require more than standard instruments can offerVector Signal Transceivers Combine a vector signal generator and vector signal analyzer with FPGA-based, real-time signal processing and controlData Acquisition Modules Provide a mix of analog I/O, digital I/O, counter/timer, and trigger functionality for measuring electricalor physical phenomena©2019 National Instruments. All rights reserved. LabVIEW, National Instruments, NI, NI TestStand, and are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their respective companies. The contents of this Site could contain technical inaccuracies, typographical errors or out-of-date information. Information may be updated or changed at any time, without notice. Visit /manuals for the latest information. Hardware ServicesAll NI hardware includes a one-year warranty for basic repair coverage, and calibration in adherence to NI specifications prior to shipment. PXI Systems also include basic assembly and a functional test. NI offers additional entitlements to improve uptime and lower maintenance costs with service programs for hardware. Learn more at /services/hardware .Program Duration 3 or 5 years3 or 5 years Length of service programExtended Repair Coverage●●NI restores your device’s functionality and includes firmware updates and factory calibration.SystemConfiguration,Assembly, and Test 1 ● ●NI technicians assemble, install software in, and test your system per your custom configuration prior to shipment.Advanced Replacement 2 ●NI stocks replacement hardware that can be shipped immediately if a repair is needed.System Return MaterialAuthorization (RMA)1 ●NI accepts the delivery of fully assembled systems when performing repair services.Calibration Plan (Optional) Standard Expedited 3NI performs the requested level of calibration at the specified calibration interval for the duration of the service program.1This option is only available for PXI, CompactRIO, and CompactDAQ systems.2This option is not available for all products in all countries. Contact your local NI sales engineer to confirm availability. 3Expedited calibration only includes traceable levels.PremiumPlus Service ProgramNI can customize the offerings listed above, or offer additional entitlements such as on-site calibration, custom sparing, and life-cycle services through a PremiumPlus Service Program. Contact your NI sales representative to learn more.Technical SupportEvery NI system includes a 30-day trial for phone and e-mail support from NI engineers, which can be extended through a Software Service Program (SSP) membership. NI has more than 400 support engineers available around the globe to provide local support in more than 30 languages. Additionally, take advantage of NI’s award winning online resources and communities .。
光催化剂论文参考文献
[1] Abbas Afkhami, Hasan Bagheri, Tayyebeh Madrakian, Alumina nanoparticles grafted with functional groups as a new adsorbent in efficient removal of formaldehyde from water samples, Desalination 281 (2011) 151–158.[2] Haibao Huang,Dennis Y. C. Leung and Daiqi Ye,Effect of reduction treatment on structural properties of TiO2supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation, Journal of Materials Chemistry J. Mater. Chem. 2011 /21/ 9647.[3] YOSHIO NAKANOM, KENJI TAKESHITA and TOSHIRO TSUTSUMI,ADSORPTION MECHANISMOF HEXA V ALENT CHROMIUMBY REDOX WITHIN CONDENSED-TANNIN GEL,Wat. Res. V ol. 35, No. 2, pp. 496±500, 2001.[3] A. Hayashi ,Y. Fujimoto, Y. Ogawa, H. Nakayama, M. Tsuhako,Adsorption of gaseous formaldehyde and carboxylic acids by ammonium-ion-exchanged α-zirconium phosphate , Journal of Colloid and Interface Science 283 (2005) 57–63.[4]Kyung Jin Lee a, Nanako Shiratorib, Gang Ho Lee b, Jin Miyawakib, Isao Mochida b,Seong-Ho Yoon b, Jyongsik Jang a,Activated carbon nanofib er produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent, CARBON 48 (2010) 4248 – 4255.[5] Wang Xiaoyan, Wang Huixiang*, Wang Shaoli,Ambient formaldehyde and its contr and OH radical in a rural area, Atmospheric Environment 44 (2010) 2074e2078.[6] Adrian M. T. Silvaa Isabel M. Castelo-Brancoa, Rosa M. Quinta-Ferreiraa, Janez Levec,Catalytic studies in wet oxidation of e%uents from formaldehyde industry, Chemical Engineering Science 58 (2003) 963 – 970.[7] Haiqin Rong , Zhenyu Ryu , Jingtang Zheng , Yuanli Zhang,Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde, Carbon 40 (2002) 2291–2300.[8] A. Karantonis , D. Koutsaftis, N. Kouloumbi, Bistability, oscillations and bifurcations of the electrocatalytic oxidation of HCHO on Pt, Chemical Physics Letters 422 (2006) 78–82.[9]LI Jing , LI Zhong , LIU Bing , XIA Qibin and XI Hongxia, Effect of Relative Humidity on Adsorption of Formaldehyde on Modified Activated Carbons, Chinese Journal of Chemical Engineering, 16(6) 871ü875 (2008).[10] R.B. de Lima, M.P. Massafera, E.A. Batista, T. Iwasita, Catalysis of formaldehyde oxidation by electrodeposits of PtRu, Journal of Electroanalytical Chemistry 603 (2007) 142–148.[11] Afsaneh Safavi , Norouz Maleki, Fatemeh Farjami, Elaheh Farjami, Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode, Journal of Electroanalytical Chemistry 626 (2009) 75–79.[12] Zhe Wang , Zan-Zan Zhu, Jin Shi, Hu-Lin Li, Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyaniline composite film, Applied Surface Science 253 (2007) 8811–8817.[13] Xiao-Gang Zhang, Yasushi Murakami, Kiyochika Yahikozawa and Yoshio Takasu, Electrocatalytic oxidation of formaldehyde on ultrafine palladium particles supported on a glassy carbon, Electrochimica Acta, V ol. 42, No. 2, 223-227, 1997.[14] V. Selvaraj,A.NirmalaGrace ,M.Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes, Journal of Colloid and Interface Science 333 (2009) 254–262.[15] Algirdas Vaškelis, Eugenijus Norkus, Irena Stalnionien˙ e, Giedrius Stalnionis, Effect of theCu electrode formation conditions and surface nano-scale roughness on formaldehyde anodic oxidation, Electrochimica Acta 49 (2004) 1613–1621.[16] Bingye Xu , Jing Shang , Tong Zhu , Xiaoyan Tang, Heterogeneous reaction of formaldehyde on the surface of -Al2O3 particles, Atmospheric Environment 45 (2011) 3569e3575.[17] Meichao Li, Wuyang Wang, Chun’an Ma , Wanxia Zhu, Enhanced electrocatalytic activity of Pt nanop articles modified with PPy-HEImTfa for electrooxidation of formaldehyde, Journal of Electroanalytical Chemistry 661 (2011) 317–321 .[18] Somjate Photong, Virote Boonamnuayvitaya,Enhancement of formaldehyde degradation by amine functionalized silica/titani a films,Journal of Environmental Sciences 21(2009) 1741–1746.[19]Hua Tian,Junhui He,Xiaodan Zhang,Li Zhou a,Donghui Wang,Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation,Microporous and Mesoporous Materials 138 (2011) 118–122.[20]Yang Xuzhuang Shen Yuenian Yuan zhangfu Zhu Huaiyong,Ferric ions doped 5A molecular sieves for the oxidation of HCHO with low concentration in the air at moderate temperatures,Journal of Molecular Catalysis A: Chemical 237 (2005) 224–231.[21]V.A. de la Pen O’Shea, M.C. A ´ lvarez-Galva , J.L.G. Fierro, P.L. Arias, Influence of feed composition on the activity of Mn and PdMn/Al2O3catalysts for combustion of formaldehyde/methanol, Applied Catalysis B: Environmental 57 (2005) 191–199.[22] XU BingYe, ZHU Tong, TANG XiaoYan& SHANG Jing, Heterogeneous reaction of formaldehyde on the surface of TiO2 particles, December 2010 V ol.53 No.12: 2644–2651. [23] Renhu Wang ,Junhua Li, OMS-2 Catalysts for Formaldehyde Oxidation: Effectsof Ce and Pt on Structure and Performance of the Catalysts, Catal Lett (2009) 131:500–505DOI 10.1007/s10562-009-9939-5.[24] Jiangli Geng , Yingpu Bi , Gongxuan Lu, Morphology-dependent activity of silver nanostructures towards the electro-oxidation of formaldehyde, Electrochemistry Communications 11 (2009) 1255–1258.[25] Mara Terumi Fukunaga , Jos´ e Roberto Guimar, Rodnei Bertazzoli, Kinetics of the oxidation of formaldehyde in a flow electrochemical reactor with TiO2/RuO2 anode, Chemical Engineering Journal 136 (2008) 236–241.[26] Virote Boonamnuayvitayaa,Srisuda Sae-ungb, Wiwut Tanthapanichakoonc, Preparation of activated carbons from coffee residue for the adsorption of formaldehyde, Separation and Purification Technology 42 (2005) 159–168.[27] Guohua Zhao, Yiting Tang, Rui Chen, Rong Geng, Dongming Li, Potential and current oscillations during formaldehyde oxidation on platinum particles dispersed in three-dimensional pore networks of TiOx/Ti, Electrochimica Acta 53 (2008) 5186–5194.[28] Chunming Jianga, Hui Chena, Cheng Yua, Song Zhanga, Baohong Liua, Jilie Kong, Preparation of the Pt nanoparticles decorated poly(N-acetylaniline)/MWNTs nanocomposite and its electrocatalytic oxidation toward formaldehyde, Electrochimica Acta 54 (2009) 1134–1140. [29] P. Glarborga, M.U. Alzuetab, K. Kjærgaarda, K. Dam-Johansena, Oxidation of formaldehyde and its interaction with nitric oxide in a flow reactor, Combustion and Flame 132 (2003) 629–638.[30] Jiaxi Peng , Shudong Wang, Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures, Applied Catalysis B: Environmental73 (2007) 282–291.[31] Yuejuan Zhang , Jianjun Yi, Qinghong Xu, Studies on adsorption of formaldehyde in zirconium phosphateeglyphosates, Solid State Sciences 13 (2011) 54e58.[32] P.OLrvr,t L.0.S.BULH~ES,J.-M.LI’ZGER,F.HAHN,B.BEDEN and C. LAMY, THE ELECTROOXIDA TION OF FORMALDEHYDE ON t(lOO) AND Pt(ll0) ELECTRODES IN PERCHLORIC ACID SOLUTIONS, 001~4686(%)00387-8.[33] Kinga Go ra-Marek , Jerzy Datka, The transformation of formaldehyde on CoZSM-5 zeolites, Catalysis Today 137 (2008) 466–470.[34] Haichao Liu, Patricia Cheung, and Enrique Iglesia, Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains, Journal of Catalysis 217 (2003) 222–232.[35] Jih-Mirn Jehng , Wan-Chen Tung , Chao-His Huang , Israel E. Wachs, Structural characteristics and reactivity properties of the tantalum modified mesoporous silicalite (MCM-41) catalysts, Microporous and Mesoporous Materials 99 (2007) 299–307.[36] 陆洪彬冯春霞李文丹杨凤玲焦宝祥, TiO2修饰空心玻璃微珠隔热涂料的制备及其性能表征, 化工新型材料第38卷第8期010年8月.[37] Galina Ya. Popova, Tamara V. Andrushkevich, Yurii A. Chesalov,Valentin N. Parmon, Transient response study of the formaldehyde oxidation to formic acid on V–Ti–O catalyst: FTIR and pulse study, Journal of Molecular Catalysis A: Chemical 268 (2007) 251–256.[38] 谢昌平,王曙光,周彩楼,雅菁,陈倩,TiO2 光触媒降解甲醛影响因素的分析, 天津城市建设学院学报第17卷第2期2011 年6月.[39] 徐敏, 何满潮, 王岩, 闵延琴, 武成杰, TiO2/ACF 复合材料吸附-光催化降解甲醛的实验研究, 中国安全生产科学技术第4卷第2 期2008 年4月.[40] Yang Li, Min Shao , Sihua Lu , Chih-Chung Chang , Purnendu K. Dasgupta , V ariations and sources of ambient formaldehyde for the 2008 Beijing Olympic games, Atmospheric Environment 44 (2010) 2632e2639.[41]李振海,徐梦洁,叶青,王育华, 掺氮TiO2- 活性炭复合吸附材料的制备与性能, 同济大学学报(自然科学出版) 第38 卷第12 期2010 年12 月.[42]李一诺,陶冶,王倞,杜鸿基,车载型纳米光催化空气净化器的研制,JIE NENG YU HUAN BAO 2005.NO.6.月刊.[43]卢敬霞,张彭义,何为军,臭氧光催化降解水中甲醛的研究,环境工程学报第4卷第一期2010年1月.[44] 饶荣水Rong-shui Rao 崔文勇Wen-yong Cui 李开元Kai-yuan Li周泽Ze Zhou肖建军Jian-jun Xiao刘凌Ling Liu, 不同基材对二氧化钛光催化降解甲醛影响的实验研究(Experimental Investigation on Influence of Different Substrateof TiO2 on Photocatalysis Degradation of Formaldehyde), 配件与材料.[45]赵胜强,李振海,俆梦洁,掺氮TiO2活性炭复合材料室内空气净化器,现场与发展制冷技术2010年第4期.[46]叶剑张瑞丰琳熙, 大尺寸大孔径TiO2 /SiO2 光催化剂的制备及甲醛去除研究,环境工程学报第5 卷第7 期2 0 1 1 年7 月.[47] 王文超, 王英, 王丽娜, 二氧化锰脱除甲醛机理的探讨,有色矿冶第24 卷第1 期2008 年2 月.[48] 董莹,寇江勇,陈芳, 光触媒喷液类产品光催化活性快速评价方法研究, 纳米科技第6 卷第5期2009年10月.[49] 王黎明,沈勇,张惠芳,丁,颖,蔡再生,改性纳TiO2光触媒织物整理剂多功能整理效果研究, 印染助剂第8 卷第 2 期2011 年 2 月.[50] 罗俊旋,曾伟华,徐游,汤皎宁,胡军辉, 光催化还原法制备铜基二氧化钛(Cu/TiO2), 广东化工2011年第6 期第38卷总第218期.[51] 齐虹,孙德智,迟国庆, 光催化降解甲醛的影响因素及动力学研究, 哈尔滨工业大学学报第38卷第7期2006年7月.[52]许涛,光催化净化室内空气技术的应用, 山西化工第23 卷第2期2003 年5月.[53] 孔德双谷昌军孔令仁, 光催化三维蜂窝陶瓷网净化室内空气的研究, 环境工程学报, 第2卷第6期2 0 0 8 年 6 月.[54] 丁云飞王高飞陈延东周毅, 光催化型过滤器分解有机化合物的实验研究, 建筑热能通风空调Building Energy&Environment, 第25 卷第 5 期2006 年10 月.[55] 古政荣, 陈爱平, 戴智铭,古宏晨,陶国忠, 活性炭-纳米二氧化钛复合光催化空气净化网的研制, 华东理工大学学报Journ al of East Chin a Universit y of Science an d T echnology Vol . 26 No. 42000- 08.[56] 胡军陈建华贾铭椿, 活性碳纤维负载TiO2去除低浓度甲醛气体的实验研究, 武汉理工大学学报JournalofWuhanUniversityofTechnology第35卷第4期2011年8月.[57] 何彦刚,黎钢, 甲醛分解的研究新进展.[58] 张淑霞王晓文高亚辉巩卫东杨蕊蕊孙亚真, 甲醛检测方法研究进展, 食品工程科学技术.[59] 张旭刘蔽蔽王代民, 净醛内墙乳胶漆的研制,广东嘉宝莉化工有限公司.[60]张运乾,刘震炎,高鹏,施建伟,上官文峰, 集中空调系统中光催化降解甲醛的实验研究,暖通空调2 0 0 6年第3 6卷第9期技术交流.[61] 张淑娟,黄耀棠, 利用植物净化室内甲醛污染的研究进展, 生态环境学报2010, 19(12): 3006-3013 Ecology and Environmental Sciences.[62] 贺洋郑水林沈红玲, 纳米TiO2/海泡石复合粉体的制备及光催化性能研究, 非金属矿Non-Metallic Mines第33卷第1期2010年1月.[63] 陈小泉, 沈文浩, 纳米TiO2晶体胶体在居室净化中的应用研究,环境科学与技术Environmental Science & Technology第31 卷第10 期2008 年10 月.[64] 陈雯雯,综述; 邵华,审校, 空气中甲醛快速简易检测方法的研究进展, 中国卫生检验杂志2008年4月第18卷第4期C h i nese Jou rnal ofH ea l th Laboratory Technol ogy , Apr 2008; V ol 18No 4.[65] 徐辉张淼, 居住环境空气中甲醛污染的控制与治理,科技风.[66] 李双妹韩红梅, 浅析室内甲醛的危害、预防及治理技术, 潍坊教育学学报第19卷第4期2006年第4期.[67] 何运兵,纪红兵,王乐夫, 室内甲醛催化氧化脱除的研究进展, 化工进展2007年第26卷第8期1104.[68] 张兴朱琨李丽, 室内甲醛检测方法及防治措施研究进展, 环境与健康.[69] 李巍朱永法, 气相色谱对气相甲醛的快速测定,研究报告2002年第五期.[70] 崔耀军王浩张国宣,纳米TiO2涂料光催化降解室内甲醛气体的研究,河南金丹乳酸科技有限公司.[71] 刘春丽章亚东,室内甲醛污染治理的研究进展, 江苏化工科技进展第35卷第1期2007年2月.[72]张俊敏,朱忠其,刘强,张瑾,柳清菊,室内甲醛污染治理技术的研究进展,材料导报2008年5月第22卷专辑X.[73] 李丽,朱琨,室内空气污染现状及防治措施, 内蒙古环境科学第20卷第2期2008年4月.[74] 李玉华, 王琨,孙丽欣, 张力为,室内空气甲醛污染控制研究, 哈尔滨工业大学市政环境工程学院,哈尔滨150090.[75] 刘杨灏,余倩,李聪,林鑫,张小庆,余林,武伦福, 室内甲醛净化处理的研究进展, 广东化工2011年第6期第38卷总第218期.[76] 范睿,室内空气中甲醛的检测及防治技术研究进展, 沧州师范专科学校学报第2 7卷第1期2 011年3月.[77]段云海, 王琨, 李玉华, 刘瑶瑶, 室内空气中甲醛和苯系物检测与净化, 第32卷第6期2007年6月环境科学与管理.[78] 唐幸福, 黄秀敏, 邵建军, 刘俊龙, 李永刚, 徐奕德, 申文杰, 氧化锰八面体分子筛纳米棒的合成及其催化甲醛低温氧化性能, 催化学报第27 卷第 2 期Vol . 27 No. 2.[79]贺世权,阳必飞,申伟杰,氧化模块除甲醛技术在空调上的应用,青岛海尔空调有限公司.[80] 范红玉, 李小松, 刘艳霞, 刘景林, 赵德志, 朱爱民,循环的存储-放电等离子体催化新过程脱除室内空气中甲苯, 第62 卷第7 期化工学报Vol 62 No 7 2011年7月.[81] 黄翔王与娟樊丽娟狄育慧吴志湘西安工程大学,新型功能性空气过滤材料研究进展,暖通空调HV &AC 2009 年第39 卷第1 期.[82] 张博, 王明连, 耿彦生, 张青, 王庆亮,我国空气净化消毒方法研究进展, 环境与健康杂志2007 年9 月第24 卷第9 期J Environ Health, September 2007, V ol.24, No.9. [83] 章骅, 周述琼, 但德忠,室内污染控制技术研究进展, 中国测试技术第31 卷第6期2005 年11月.[84]。
钛合金表面等离子喷涂Al2O3-40%TiO2_陶瓷涂层的高温摩擦磨损性能
第52卷第12期表面技术2023年12月SURFACE TECHNOLOGY·351·钛合金表面等离子喷涂Al2O3-40%TiO2陶瓷涂层的高温摩擦磨损性能周志强1,郝娇山1*,宋文文1,孙德恩2,李黎1,蒋永兵1,张健1(1.重庆川仪调节阀有限公司,重庆 400707;2.西南大学 材料与能源学院,重庆 400715)摘要:目的研究温度对钛合金表面Al2O3-40%TiO2陶瓷涂层摩擦磨损性能的影响,探讨涂层在高温下的摩擦磨损机理。
方法采用大气等离子喷涂技术(APS)在TC4钛合金表面制备Al2O3-40%TiO2(AT40)陶瓷涂层。
采用扫描电子显微镜(SEM)和能量分散谱仪(EDS),对AT40陶瓷涂层中的微观形貌和物相进行定性分析。
借助维氏显微硬度计,研究 AT40陶瓷涂层在常温下的截面显微硬度分布规律,以及高温下的显微硬度。
采用多功能摩擦磨损试验机,测试AT40陶瓷涂层在200、350、500 ℃下的摩擦磨损性能,并进行原位在线自动3D形貌表征。
结果 AT40陶瓷涂层呈典型的热喷涂层状结构,各相分布均匀,涂层结构致密,平均显微硬度相较于TC4钛合金基材提高了81%。
AT40陶瓷涂层在200、350、500 ℃下的高温硬度分别为513HV0.3、463HV0.3、448HV0.3。
在200、350 ℃时,AT40陶瓷涂层的平均摩擦系数分别为0.18±0.02和0.38±0.03,磨损率分别为(7.8±0.01)×10–5 mm3/(N·m)和(37.2±0.01)×10–5 mm3/(N·m),涂层具有优异的抗高温摩擦磨损性能。
500 ℃时,涂层的平均摩擦系数和磨损率分别为0.77±0.02和(134.4±0.01)×10–5 mm3/(N·m),磨痕深度和磨损体积大幅增加,耐磨性能降低。
GM 缩写术语解释(英文)
Acronym DefinitionP ParkP PendingP PhosphorusP&A Parts & AccessoriesP&P Policy & ProceduresP&W Policy & WarrantyP.K. Setup Checking the fit-up of detail parts by assembling a complete body-in-white with screws or rivets.P/E Price / Earnings (ratio to gage stock performance)P-CR Piezo-Actuated Common RailP/MI CI Production / Manufacturing Integration Continuous ImprovementP/N Part Number.P/PD Product/Process DevelopmentP/PDP Product/Process Development ProcessP/PDS Product/Process Definition StageP/T Powertrain.P/U Pick Up.P/UBX Pick Up Box.P4P Pay For PerformancePa pascal: A unit of pressure corresponding to a force of 1 newton acting uniformly upon an area of 1 square meter. Hence 1 Pa = 1N/M2PA Park Avenue.PA Passenger Automobiles.PA Product Assurance.PA Production Achievement.PA Production Approval.PA Program AuthorizationPA Project Authorization.PA Purchase Authorization.PA Purchasing Agent.PAA Production Action Authorization (An official document used to authorize a temporary substitution, try out new parts or materials, rework existing parts, or use up excess orobsolete-stock that will be good for a limited number of pieces or a specific time period.) PAA Programmable Analog ArrayPABX Private Automatic Branch ExchangePAC Perceptual Audio Coder (Lucent encode / decode method for broadcast transmission / reception)PAC Performance Assessment Committee.PACE Program Assessment & Control EnvironmentPACS Program Assurance Control System.PACX Private Automatic Communication eXchangePAD Packet Assembly – DisassemblyPAD Personnel Administration & DevelopmentPAD Product Assembly DrawingPAD Product Assembly Document. Provides assembly plants with a written set of instructions and graphic illustrations of production operations to be performed on a given GM platform. Thisincludes the production parts required, their specific usage by model, style and optionconditions. A graphic Illustration depicting the operations and those procedures, and stepsand instructions required to assemble, install or adjust parts. also PDM.PAD Public Announcement Date.PAFC Phosphoric Acid Fuel CellPAG Programmable Automatic GagePAI Product Assurance InitiativePAIC Part Assessment & Information ControlPAIR Pulse Air Injection Reactor.PAL Pedagogic (for teaching) Algorithmic LanguagePAL Phase Alternation LinePAL Programmable Array LogicPAM Pulse Amplitude ModulationPAN Project Authorization Notice. A document issued by a vehicle platform to advise the design / release engineers of approved changes to a vehicle program.PAP Performance Achievement PlanPAPIR Powertrain Architecture Process Integration Review.PAPIR Product and Process Integration ReviewPAR Pilot Action Request.PAR Product Allegation Resolution. Part of CARS.PAR Police Accident ReportPar Tech Parts Technical groups (for inquiries on engineering or parts specifications.)PARC Production Area Record CenterPARD Periodic And Random DeviationPARIS Planning & Release Information System.Parms Parameters (an abbreviation)PARR Product Allegation Resolution Report.PARTS Part Readiness Tracking System.PAS Parking Assistance System.PAS Performance Algorithm ShiftingPAS Peripheral Acceleration Sensor (Bosch)PASCOM Product Announcement Strategy Committee.PASDS Power & Signal Distribution SystemPASER Particle Stream Erosion.Pass Passenger (an abbreviation)PASS PDIS Augmented Specification System (Canada)PASS Personalized Automotive Security System.PASS Proposal Assessment Study System.PATAC Pan Asian Technical Automotive CenterPATH Program on Advanced Technology for the HighwayPATP Patents & Technical PublicityPATS Parts Approval Tracking SystemPAV Pyrotechnically Actuated VentingPb Lead (Plumbium)PB Power Brakes.PBCR Preliminary BOM Change Request (Report)PBGA Plastic Ball Grid ArrayPBL Pickup Box, LongPBOM Preliminary Bill of MaterialsPBPCI Passive Backplane PCIPBS Personal Benefit SummaryPBS Pickup Box, ShortPBV Purpose Built VehiclesPBX Private Branch's eXchangePC Personal Computer.PC Plant ConcernsPC PolycarbonatePC Pressure Control (solenoid valve).PC Printed CircuitPC Product Characteristic.PC Product CostPC Programmable Controls or Controller.PC Problem Communication. An electronic network for documenting and reporting an unacceptable product build condition. When an approved PC is entered at any location, it iselectronically transmitted to the specific area and individual responsible for providing thenecessary corrective action. When a solution has been developed and approved, it iscommunicated to the reporting location via the PC network.PC&L Production, Control and Logistics. The engineering group responsible for ensuring smooth flow of needed material (physical and information). (refer to EPC&L).PC&S Production Control & Scheduling.PC/CODE Part Classification Code.PC/TCP Personal Computer / Transmission Control ProtocolPCA Product(ion) Compliance Audit.PCB Polychlorinated Biphenyl (waste oil residue)PCB Printed Circuit Board.PCC Paper Color Code.PCC Pontiac Centerpoint Campus (formerly TPC, Truck Product Center)PCC Powertrain Controls Center.PCC-c Pontiac Centerpoint Campus - Central (building)PCC-e Pontiac Centerpoint Campus – East (building)PCC-w Pontiac Centerpoint Campus – West (building)PCD Product Content DocumentPCDR Performance & Cost Detail ReportPCE Preliminary Cost Estimate.PCG Product Content Group.PCI Peripheral Component Interconnect (or Interface). PC bus that normally runs at 33 MHz on a 32-bit bus, but the specification allows for 64-bit and 66MHz operation that provides up to532MB per second.PCI Process Control InstructionsPCICN Piece Cost & Investment Change NoticePCIF Printed Circuit Interconnection FederationPCIT Piece Cost and Investment TrackingPCL Printer Control LanguagePCLL Product Compliance Legal Liaison.PCM Part Change Management (Saturn Service Parts)PCM Power Control ModulePCM Powertrain Control Module.PCM Program Content Monitor.PCM Program Control Module.PCM Propulsion Control Module.PCM Pulse Code ModulationPCMCIA Personal Computer Memory Card International (or Industry) Association.PCME Powertrain Control Module, EnginePCMIA People Can't Memorize Computer Industry AcronymsPCMT Powertrain Control Module, TransmissionPCN Personal Communications NetworkPCN Product (or Program) Change Notice.PCO Program Content & Objectives.PCP Performance Characterization ParametersPCP Process Control Plan.PCPA process control plan auditPCP Production Control PlanPCP Product Certification ProcessPCP Product Change Proposal.PCP Product Compliance Program (of GM), a.k.a. GMPCP.PCR Plan Change RequestPCR Process Change Request.PCR Product Change RequestPCR Product Change Request. Document used to change or modify the Corporate Product Plan between annual product plan approvals.PCS Personal Communication SystemPCS Pressure Control Solenoid.PCS Problem Communication SystemPCS Process Capability StudyPCS Product Content Sheet (defines vehicle content which generates an MCS.)PCSD President’s Council On Sustainable DevelopmentPCSE Powertrain Controls Service Engineering.PCU Power Control Unit.PCV Passenger Car VehiclePCV Positive Crankcase Ventilation.PCV Pressure Control Valve.Pd PalladiumPD Passenger Distribution.PD Problem Documentation.PD Production DesignPDA Personal Digital Assistant. Generally, small, hand-held, battery-operated, microprocessor-based devices that perform operations such as: Store telephone numbers, addresses, andreminders, Send and receive email and faxes (wirelessly), Receive pages (just like analphanumeric pager) .PDA Port De-ActivationPDA Preliminary Design ApproachPDB Platform Database.PDC Parts Distribution Center (Warehouse for GM Parts distribution)PDC Portfolio Development Center. Part of the NAO Design and Engineering Centers charged with providing advanced vehicle engineering for product portfolio planning and vehiclearchitecture definition. Develops integrated vehicle proposals, rationalized with the portfolioto improve and accelerate the vehicle launch process.PDCA Plan, Do, Check, Act; the basic philosophy behind the Engineering Management Process as developed by Deming over the first few years of his career; PLAN defines the systemthrough a set of objectives, and a strategy. The DO portion is the actual design of the partsto execute the vehicle and the tools and processes required to build the parts and cars. TheCHECK element of the cycle is the VALIDATION of the paper car and process, the productand the process. The ACT relates to continuous improvement where improvements arebased on the results of needs identified in the CHECK.PDCR Product Design Compliance ReportsPDCS Pulsat Dealer Communication System.PDD Parametric Die DesignPDD Product Definition DocumentPDD Product Description Department.PDES Product Data Exchange System (or Specification).PDES Product Data Exchange using STEP. Industrial consortium formed to expedite development of standards to be used in the exchange of product data (See IPO).PDF Portable Document FormatPDF Problem Definition Form.PDF Problem Description Form.PDG Product Description Group.PDI Pre Delivery InspectionPDI Preliminary Data IndicatorPDIF Pressure DIFferential.PDIP Plastic Dual In-Line PinPDIS Product Description Information System.PDIS Product Description Information Standard. A corporate standard used to transmitengineering specification data to other departments and divisions within General Motors. PDIT Product Design Improvement Team.PDIT Product Development & Improvement TeamPDIT Product Development Information Team.PDIT Product Development Integration Team.PDIT Program Development Integration Team.PDL Park & Directional LampPDL Process Description LanguagePDL Program Description LanguagePDL Program Development Library (A collection of GRIP and UFUNC programs from many of the organizations within GM.)PDM Passenger Door ModulePDM Product Data Management (GM's customized version of IMAN supporting a common process for managing product data.)PDM Product Data ManagerPDM Product Description Manual.PDM Pulse Duration Modulation.PDMS Product Data Management SystemPDN Product Discrepancy Notice.PDP Personal Development Plan.PDP Plant Data ProcessorPDP Powertrain Development Process. The common process within GM Powertrain for work directed toward bringing a quality product to market. The current PDP process used withinPowertrain is called 4 PDP. Being replaced by GPDP.PDP Process Development ProcessPDP Product Development ProcessPDQ Portage Double Quick, Inc. (An electronic machine used to pick points from the clay model.) PDQ Pretty Darn QuickPDR Parts Determination and ReleasePDR Physician's Desk ReferencePDR Preliminary Design ReviewPDRE Process Design Responsible EngineerPDS Passenger Door SwitchPDS Pre-Delivery Survey.PDS Product Description System. The corporate engineering specification system for program content. (See GPDS)PDS Proximity Detection SystemPDS Purchase and Delivery Satisfaction. A survey provided to owners of a new GM product for evaluating their purchase experience.PDT Product Delivery Team (as defined by ATV). The team role is to deliver a product and production system with high quality, within budget and on time. Responsibilities of the PDTare to have a clear understanding and agreement on functional requirements from SSTS,MTS & MMTS. Assure requirements of SSTS, MTS & MMTS are covered in a CTS.Manage initial release of and subsequent changes to all components. Manage financialanalysis (piece price & investment) and changes to meet or exceed business casecommitments. Source all components with qualified suppliers. Meet program timingmilestones. Ensure validation of components to CTS. Understand and implement TotalQuality Plan. Execute detailed manufacturing process. Respond to needs of build teams tosupport concept, prototype, pilot and production builds. Benchmark competitors.Documentation and change control of CTS’s.PDT Product Design TeamPDT Product Development Team. Function: generate designs which achieve targets.Responsibilities: Achieve targets allocated from PMT, negotiate proposed targetchanges/requirements with PMT, report status of targets to PMT on a regular basis, developan activity schedule by SIM Council and report issues, provide cross-functional evaluation ofalternatives to meet requirements and imperatives, assist in early source definition andprovide required sourcing packages, track the status of imperatives and performanceobjectives, track and control design changes, promote use of common systems/processes,assure Quality/Cost/Warranty/HPV goals for Non-GMT and GMX programs are achieved,Assure plant build concerns are resolved, assure KCD’s/KPC’s DFM/DFA are executedappropriately, assure generation of Subsystem and Component Technical Specs, assurefunctional representation at meetings as appropriate, publish meeting minutes and maintainPDT closed-loop action item/concerns log.PDT Program Development Team.PDU Protocol Data UnitPDW Process Development WallPE Packard Electric. See PED.PE PolyethylenePE Power EnrichmentPE Power EquivalentPE Price to Earnings. (normally written as P/E).PE Process EngineerPE Product Engineer(ing)PE Professional EngineerPEA Pontiac East AssemblyPEA Production Engineering Activity.PEAM Portable Electronic Airflow MachinePEB Power Electronics Bay.PEC Portfolio Engineering Center.PEC Pontiac Engineering CenterPECL Positive Emitter Coupled LogicPECT Program Execution Core TeamPED Packard Electric Division. Part of ACG.PED Process Engineering DocumentPED Product Engineering DepartmentPED Production Engineering Department.PED Production Engineering Documents.PED Program Engineering Director. This position is/was known as TVIE. PET member.PEDD Production Engineering Die DesignPEFC Polymer Electrolyte Fuel CellPEM Production Engineering Manual.PEM Program Engineering Manager. This position is/was known as TVIE. PET member. PEMFC Proton Exchange Membrane Fuel CellsPEP Product Evaluation Program (vehicle).PEPE Product Engineering Program ExecutionPER PersonnelPER Personnel Evaluation ReportPER Planning Experimental Records.PER Procedure Execution RequestPerf Performance (an abbreviation)PERL Practical Extraction and Report Language. A computer language used for scanning text and creating reports.PERT Planning Evaluation & Review Technique (ala PERT chart)PERT Program Evaluation and Review Technique. A computer code to detail project planning and monitoring.PEST Propulsion & Electrical Systems Team.PET Powertrain/Engine/TransmissionPET Product Education & TrainingPET Product Evaluation Team.PET Product, Education and Training Committee. The PET Committee consists of the five Marketing Divisions (includes the Dealer Business Center) (voting members), Allied Divisions(i.e. GM of Canada, Delphi Automotive Systems, Delco Electronics, GM Powertrain, ACDelco-SPO), TCO, STD, and other GM groups with an interest in knowing about orinfluencing technician training (i.e. STG Product Engineering, STG International Service).The committee is chaired by the STD Manager. The PET Committee provides a singlesource of service training plans for General Motors. All groups with a service trainingmessage to convey to Dealers should notify the Committee. In this way, economies of scaleare realized and redundant efforts minimized.PET Program Evaluation Team.PET Program Execution Team. Responsibilities are to: develop “Contract”, act as a single point of entry for assessing all program content and change requests, balance new product andprocess feature content to meet “Contract” (cost, quality, and productivity), resolve programcontent issues, keep program imperatives on track, prepare gate reviews, provide programreadiness coordination, achieve “Contract”, monitor customer satisfaction, use commonprocesses. Deliverables are: the “Contract”, documentation for action items and contentdecisions, recommendations to VLT-problem resolution recommendation and mechanics.Typical attendees include: Program Planning Manager/Asst. VLE (Chair), Program Manager(Agenda/Logistics), Finance, Vehicle Integration Engineer, Manufacturing IntegrationEngineer, Purchasing/PC&L, Quality, Manufacturing, Assistant Brand Managers - Product,International Product Development Manager, Design Center (As Required). Typical meetingcontent involves: vehicle and process integration review issues, monitor program progressthrough rigorous tracking, performance to “Contract”, content changes.PET Program Executive Team.PETC Product, Education & Training CommitteePETCM Powertrain Engine Transmission Control ModulePEU Power Electronic UnitPF Polyurethane FoamPF Power FactorPF Program Function [keys]PFA Pedestrian Federation of AmericaPFC Programmable Function Control.PFD Process Flow Diagram.PFEP Plan For Every PartPFI Port Fuel Injection.PFM Product Focus ManagerPFMA Process Failure Mode Analysis.PFMEA Process Failure Mode & Effects Analysis.PFMS Performance Feedback Measurement System.PFP Pay For PerformancePFSE Product Focus Support EngineerPFSSA Plant Floor Systems Service Agreement (between GM and EDS regarding plant floor Intranet systems services)PFT Product Focus Team.PG Proving Ground.PGA Pin Grid ArrayPGA Professional Graphics AdapterPGA Programmable Gate ArrayPGM Program ManagementPGR Policy Group Review.PGS Prime Graphics SystemPhn Phone (an abbreviation)PHT Parallel Hybrid Truck; one type of an Advanced Technology Vehicle.PHUD Parallel Hybrid Ultra-low-noise DetectorPI Preliminary Information.PI Priority Indicator.PIA Parts in Assembly.PIA Performance Integration AreasPIA Peripheral Interface Adapter.PIA Purchasing in Assembly.PIAD Plastics in Automotive Division (Specification)PIC Peripheral Integrated Circuit (Bosch)PIC Powertrain Information Converter.PIC Product Information CenterPICD Product Interface Control DocumentPICOS Purchased Input Concept Optimization With Supplier. Term used to describe process improvement at supplier plant.PICOS Purchasing Input Cost Optimization for SuppliersPICS Partners in Customer SatisfactionPID Primary Identifier (C2C)PID Purchase Identifier (ALB/UNIT)PID Parameter Identifier (or Identification).PIG Product Information Group.PIM Performance Integration Manager.PIM Power Inverter ModulePIM Product(ion) Information Management. A term applied to the topic of managing product data in a computer environment.PIM Program Implementation Managers.PIM Propulsion Inverter Module.PIMREP Project Incident Monitoring and Resolution Process. GMNA’s common issue solving tool to support the Issue Solving Process, to promote a common review process, and to ease data. PIMS Product Information Management System.PIN Personal Identification Number.PING Packet Inter Net Gopher (Part of the standard TCP/IP suite of protocols that allows you to check your connectivity with other devices, or to check whether your own TCP/IP stack isworking properly. Normally, you type in something like "ping 206.119.148.38," and you eitherget a response from that IP address or not.)PIO Powertrain Computer Input/Output.PIP Performance Improvement PlanPIPS Product in Process SimulatorPIT Performance Integration Team. Functions to provide leadership to the PMTs and PDTs and integrate and achieve total vehicle performance goals.PIT Process Improvement Team.PIW Product/Process Integration Wall.Pixel Picture ElementPJJ Toyota J-car (vehicle name).PKT Packet Data (C2C)PL/1Programming Language / 1 (IBM)PLA Project Labor Agreement.PLA Product Life Assessment.PLA Programmable Logic ArrayPLB Process Leadership BoardPLC Programmable Logic ControllerPLCC Plastic Leaded Chip Carrier (External connections consist of "J" leads around all four sides of the surface mount package.)PLCP Pre-Launch Control PlanPLD Part Locating DimensionPLD Programmable Logic DevicePLE Product Line Executive (replaced by Program Manager)PLEB Preloaded Enclosed Bushing.PLL Phase Locked Loop.PLM Plant Liaison ManagerPLP Principal Locating Points (for assembly fixture).PLP Production Launch Process.PLS Process Level Suffix.PLS Product Level SuffixPLT Planning Leadership TeamPLT Program Leadership Team.PLYRAT Residual Alignment Torque (tire measurement).PLZT Lead (Plumbium) Lanthanum Zirconte TitantePm PromethiumPM Particulate Matter. Pollution substance from diesel engine/fuelPM Performance MeasurementPM Phase MarginPM Phase ModulationPM Photo MultiplierPM Post MeridiemPM Preventative MaintenancePM Program ManagementPMC Process Monitoring and CompliancePMC Purchasing Material Control.PMCS Production & Manufacturing Control SystemPMFS Performance Measurement and Feedback System. Seven measures of NAO’s health; i.e.people development, product initiation, operations, marketing, sales and service, employeesatisfaction, retail customer satisfaction and shareholder satisfaction.PMI Process Modeling & Integration. The GM PMI Tool provides computer generation on the Top Flow Down chart. PMI Turbo consists of a set of Macros for Microsoft Word Version 6.0 thatautomate the creation of PMI Models. PMI97 Turbo consists of a set of Macros forMicrosoft Word Version 7.0.PMI Product / Manufacturing Implementation.PML Product Manufacturing LocationPMM Power Mode MasterPMM Process Management Methodology.PMM Program Manufacturing Manager.PMM Power Mode Master.PMO Program Management Office.PMOS Positive channel Metal Oxide SemiconductorPMP Performance Management Program (or Process or Plan)PMP Process Monitoring Point.PMP Program Management Plan.PMP Project Management Process. The common process for setting objectives, will be the same for all executives worldwide and all classified employees in the GMNA region (excludingMexico).PMQH toyota J-car (vehicle name).PMR Product (or Program) Manufacturability Requirements.PMs Performance MeasuresPMS Powertrain Management SystemPMS Payment Modification SystemPMS Production Material Scheduling.PMT Program Management TeamPMT Prototype Management Team.PMT Product Management Team. (in some departments, replaced by PFT)PMV Pressure Modulator Valve.PN Part NumberPNA Part Name.PNA Parts 'N Accessories (New or manufactured automotive Parts and Accessories marketed by GM Parts. Also P&A)PNC Part Number Control.PNC Pontiac North Campus (consists of GM Powertrain Headquarters and Pontiac Metal Center) PNG Pinion & Ring Gear.PNGV Partnership for a New Generation of VehiclesPNNL Pacific Northwest National LaboratoryPNP Park/Neutral Position.PNP Positive – Negative – Positive (type of transistor)PNSI Part Number Stocking Incentive (This incentive is based on part numbers stocked. Qualified dealers receive their PNSI rebate on a monthly basis.PO Paint Operations.PO Purchase Order. A document issued in response to an approved purchase requisition.POA Part of AssemblyPOA Purchase Order Alteration.POC Price Of Conformance.POC Proof Of Concept.POD Proof of Design.PODS Passive Occupant Detection System (supports the production order management and scheduling functions for all GM North American produced passenger car and light dutytrucks. This system simplifies the counting of forecasted orders for tool and productionplanning. The output of this system is in model code volumes.)POF Physics of FailurePOGEN Purchase Order Generation System-DelcoPOM Pulse-width-modulated Output ModulePOMS Product Order Management & Scheduling (System found within TSO that is used to determine whether a vehicle is buildable, based on available engineering specifications.) POMS Production Order Management System.PONC Price Of Non-Conformance.POP Pay on Production. A system where suppliers are paid for production material based on the customer's usage records, rather than physical receipt of the material.POP Personal Operating Principles.POP Point of Purchase.POP Post Office Protocol (The way e-mail software such as Eudora gets mail from a mail server.) POP Promote Our Products.POP Point of Presence. POP is a service provider's location for connecting to users. Generally, POP refer to the location where people can dial into the provider's host computer. Mostproviders have several POPs to allow low-cost access via telephone lines. .POPA Part of Production Assembly. Used on component parts that will not be serviced individually, but will be serviced using a production assembly.POR Power-On Reset.Pos Position (an abbreviation)POS Physics of SuccessPOS Point of SalesPOSA Part of Service Assembly. Used on component parts that will not be serviced individually, but will be serviced using a service assembly.POST Point of Sale Terminal.POSU Part of Service Unit, Kit. Used on parts (usually components) that will not be serviced individually, but will be serviced using a service unit or kit.POTS Plain Old Telephone SystemPOV Privately Owned VehiclePOX Partial OxidationPP Percentage PointPP PolypropylenePP Ported Purge.PP Program PlansPP&E Property, Plant, and Equipment. Capital investment or capital expenditures.PP&T Production Planning & Tooling.PPA Property Pass Administrator.PPAA Pre-Production Action AuthorizationPPAH Parallel Power Assist HybridPPAP Production Part Approval Process (formerly GP3). PPAP is a general procedure for “Supplier Submission of Material for Production Approval” included in “Targets for Excellence”. The process used to determine if all customer requirements are met by a supplier and ifthe process has the potential to produce product meeting these requirements on aproduction basis.PPB Program Plan Book.PPC Prestressed Piezoelectric Composites (Devices with ability to provide inordinately large mechanical output displacements, as high as 40 to 50 times the thickness of the deviceitself.)PPC Product Policy Committee.PPC Product Program Content. (Formally Plan Book) .PPC Production Possibilities CurvePPC Public Policy CommitteePPCO Project Plan Change Order.PPD Passenger Presence DetectionPPD Pilot Process Document.PPD Portfolio Planning DirectorPPD Price & Production Deviation.PPD Program Planning Director. The Program Planning Director / Manager acts as the “Chief of Staff” and is responsible for managing the activities of the Vehicle Line Team. The PPD /PPM is supported by a staff consisting of: Vehicle Manager(s), Assistant VehicleManager(s), Assistant Vehicle Timing Manager(s), Vehicle Team Analyst(s).PPDP Performance Planning and Development Process (Personnel Department blue sheet). PPDP Personal Performance Development PlanPPDR Product Planning & Design ReviewPPEC Product and Process Engineering CenterPPEC Product Problem Evaluation Committee.PPEI Platform/Powertrain Electrical Interface.PPG Pittsburgh Plate Glass.PPG Product Policy Group. Corporate group containing the chairman of the board and other chief executives. This group reviews and provides concept approval and final approval for everyGM program.。
05物理化学系-郭玉鹏介绍
电化学方向招生信息
03应用电化学和电化学工程
林海波 04功能电极材料 黄为民 05电化学储能技术 陆海彦 09 光电功能材料的理论设计及性能计算 夏宝辉 李克昌
电化学 ◆项目(共167.5万)
1.在水溶液中添加有机溶剂和表面活性剂对有机物电氧化合 成的影响,国家自然科学基金,2009-2011,18万 2.三维多孔钛基掺硼金刚石薄膜电极及其对水中有毒难降解 有机污染物的电催化氧化作用,国家自然科学基金, 20132016,80万 教学内容和教学方法的改革 3.电化学重金属废水处理及资源回用技术开发,杭州回水科 技有限公司,2010,10万 4.电化学重金属废水处理及资源回用电解槽开发,杭州回水 科技有限公司,2010,4.5万 5. 新型铅酸蓄电池生产项目的可行性研究 ,宁波中凯绿能 源有限公司,2011,5万 6. 氯醇法环氧丙烷皂化废水资源化利用技术开发 ,方大锦 化化工股份有限公司,2011,50万
吉林大学
化学学院
物理化学系简介
介绍人 郭玉鹏
2014 年 7 月 22 日
简介内容
一 人员 情 况 简 介 二 研究方向
三 招生情况
一 人员情况简介
◆ 教授及博士生导师
林海波(教授,博导) 王子忱(教授,博导) 杨桦 (教授,博导) 郭玉鹏(教授) 赵旭(教授) 田玉美(教授)
◆ 副教授
刘艳华 朱万春(研究所) 夏宝辉 陆海彦
杨桦课题组文章发表情况
02纳米功能材料
杨桦
1. Deposition of luminescence Y2O3:Eu3+ on ferromagnetic mesoporous CoFe2O4@mSiO2 nanoparticles Phys. Chem. Chem. Phys., 2014, 16 (22), 10539
催化材料钛酸锶的制备及改善
催化材料钛酸锶的制备及改善兰州大学物理学院材料化学专业姓名:张伟学号:320090931031邮箱:zhangw09@摘要:近年来,宽带隙金属氧化物半导体(MOS)材料在很多研究领域都受到了广泛的关注,包括光催化,压敏电阻以及气体传感器等。
钛酸锶(SrTiO)是一类性能优异、应用广泛的新型半导体材料,具有稳定的晶体结构和特殊的物化性能。
人们对其化学反应的催化性能做了较为全面深入的研究。
然而,SrTi03的带隙约为3.2 eV,因此只能在波长小于387nm的紫外光下具有较强活性。
但是,紫外光的能量只占地表太阳光能量的一小部分,而可见光部分占到的比例更大,较宽的带隙制约了SrTi03对太阳光能量的利用率。
为了更加合理的利用太阳光的能量,提高光能转化率,使太阳光的可见部分的能量也得到充分的利用。
在光催化材料中掺入其它元素改变能带结构是提高光能利用率为重要的方法之一,也是本篇综述的主要内容。
关键词:钛酸锶、纳米结构、光催化引言:钛酸锶材料是一种非常吸引人的材料具有反应条件温和、环境友好、化学稳定性优异等优点。
SrTiO3的禁带宽度与TiO2相同均为3.2 eV,但与传统的TiO2相比SrTiO3的费米能级相对较高,有更高的光电势,在光催化裂解水、制备清洁氢能源、光催化降解有机污染物方面具有更大的优势。
但是由于SrTiO3的禁带宽度为3.2 eV,只能吸收紫外光,因此应用于光催化降解有机污染物时,太阳光的利用率很低。
不过SrTiO3结构在Sr位和Ti位具有广泛的离子取代性,使得可以利用过渡金属Cr、La、Ni、Ba、Au、Ag等离子掺杂取代Sr,形成适当的施主能级或受主能级,将半导体的光敏感性扩展到可见光范围内。
此外,关于SrTiO3缺陷的研究也发现,在SrTiO3结构中形成锶空位电子中心、钛离子-氧空位电子中心,将分别在禁带中产生一个靠近价带顶的受主能级和靠近导带底的施主能级,可显著提高其在可见光范围的光吸收。
金属学报参考文献格式
金属学报参考文献格式金属学报是中国最具有影响力的金属学科期刊之一,其在发表原创性研究成果方面拥有很高的声誉。
在撰写金属学报论文时,合理的参考文献格式是非常重要的一部分,它有助于表明论文研究的深度和广度,也可以帮助读者追溯相关信息的来源。
本文将介绍金属学报常用的参考文献格式。
一、著作类文献1. 中文著作格式:作者.书名[M].出版地:出版社,出版年份.例如:张三. 金属材料的微结构[M].北京:人民出版社,2008.2. 外文著作格式:作者.书名[M].出版地:出版社,出版年份.例如:Smith J. Materials Science[M]. New York: John Wiley & Sons Inc, 1995.二、期刊论文类文献1. 中文期刊论文格式:作者.文章名.期刊名,年份,卷号(期号):起止页码.例如:李四. 金属合金加工的热力学计算方法. 金属学报,2012,48(3):341-348.2. 外文期刊论文格式:作者.文章名.期刊名,年份,卷号(期号):起止页码.例如:Johnson R. The effect of heat treatment on themicrostructure and properties of Ti-6Al-4V. Materials Science and Engineering A, 2001, 316(1-2): 45-52.三、会议论文类文献1. 中文会议论文格式:作者.文章名.见:编辑.会议论文集名称[M].出版地:出版社,出版年份,起止页码.例如:王五. 铝合金的力学性能与加工. 见:李六,编辑. 2009年中国材料大会论文集[M].北京:科学出版社,2009,134-138.2. 外文会议论文格式:作者.文章名.见:编辑.会议论文集名称[M].出版地:出版社,出版年份,起止页码.例如:Johnson R. Microstructural characterization ofTi-6Al-4V after heat treatment. In: Proceedings of the International Conference on Materials Science and Engineering[M]. New York: Springer, 2000, 45-52.四、专利类文献格式:专利申请人.专利名称.专利国别和专利号,发布日期.例如:刘七. 一种新型铝合金. 中国专利,CN201210526820.5,2012年10月10日.总之,撰写金属学报论文时,正确使用参考文献格式是非常重要的。
《沈阳化工大学学报》2020年总目次
沈阳化工大学学报JOURNAL OF SHENYANG UNIVERSITY OF CHEMICAL TECHNOLOGY第34卷第4期2020.12Vol. 34 No. 4Dec. 20202020年总目次-化学与化学工程-CUO-WO 3纳米立方块的合成及气体传感特性研究司建朋,王明月,孟高耐碱表面活性剂的开发及在工业清洗中的应用张冬喜,李新钰,石磊,王Co/g - C 3N 4- CHIT/GCE 修饰电极的制备及其对H 2PO 4-的测定陈异构十三醇聚氧乙烯醚磷酸酯的合成及性能研究十六烷值改进剂的制备与性能研究离子液体分离乙酸甲酯-甲醇共沸物系的模拟研究离子液体-环己烷(乙醇)二元体系气液相平衡研究萃取精馏分离苯-甲醇共沸体系的模拟碳纳米管对 C u O - ZnO - Ga 2 O 3/HZSM - 5催化剂性能的影响低品位菱镁矿浮选剂实验研究均三乙苯的合成研究甲基丙烯酸混合醇酯-苯乙烯-醋酸乙烯酯三元聚合物的合成与降凝性能研究车用水蜡的研究新型银制品洗涤剂的研制间氨基乙酰苯胺的合成及分离研究岩,思,李文秀,王英文,丹,刘冬雨,赵 嘉,李玉娇,江寒峰1 (1)张志刚,郭禹含,李晓茜,许光文2 (97)刘坤,于丹舟,杨旺,姚慧2 (107)-魏田,张芮,王瑞灵,陈永杰 2 (115)宋明龙,龙小柱 2 (120)李继鹏,张羽,张志刚,张弢3 (193)-李宏辉,李文秀,张志刚,张弢3(198)-尹海鹰,李文秀,张志刚,张弢3 (205)王 开,于欣瑞,刘 楠,张雅静3 (210)康坤红,龙小柱3 (216)-马婉莹,张风雨,丁茯,王东平 4 (289)-徐妍,龙小柱,靳璐璐,于海洋4 (295)-高鹏飞,龙小柱,靳璐璐,高碌4 (301)-卢羲亚,于媛,韩英男,龙小柱 4 (306)-王瑞灵,陈永杰,曹爽,张芮4 (310)高效液相色谱法同时测定邻位香兰素、香兰素、甲基香兰素和乙基香兰素贾璇,王国胜4 (314)Pd/N 3 - SiO 2催化剂制备及其催化乙烘气相加氢性能研究王梦娇,王康军,李东楠4(319)2沈阳化工大学学报2020年-生物与环境工程-积雪草酸A环衍生物的合成及其抗肿瘤活性研究.........................李孝孝,佟贺,熊果酸衍生物的合成及体外抗肿瘤活性研究.......................................徐川东,N-金刚烷基-N,-芳杂基二酰肼类化合物的合成..............刘丹,关月月,张淑曼,齐墩果酸A环衍生物的合成与体外抗肿瘤活性研究...............................王强,模板剂对MnO”催化剂微观形貌的调控及其催化氧化甲苯性能.......................................项文杰,刘威,赵恒,齐墩果酸衍生物的合成及其与MEK靶点分子对接研究.............................张蓬勃,齐墩果酸硫脲类衍生物的合成及以VEGFR-2为靶点的分子对接研究........................................................李杰,2-(漠甲基)-3-取代丙烯酸酯的合成及生物活性研究.............................廖桥,WBS-RBS和AHP的方法在化工园区安全容量评价的应用.........................孟宇强,-材料科学与工程-以三(二乙胺基)环硼氮烷为前驱体制备六方氮化硼李宗鹏,王长松,石墨烯/二氧化锰复合材料的制备及其电化学性能的研究李静梅,不同分散剂对天然橡胶性能的影响孟唯,刘浩,武文斌,张舒雅,肉豆蔻酸/棕榈醇共晶物作为相变材料的热性能研究李蛟龙,任子真,Ni2P/Cu3P复合纳米材料的制备、表征及电催化性能研究鲍彤,祁佳音,赵国庆,g-C3N4/CeVO4/Ag纳米复合材料的制备及光催化性能的研究钱坤,邱永堃,高雨,丁茯,孙亚光,两相闭式热虹吸管的强化传热新能源集成厨用加热系统结构形式对挡板岀口截面流体力学性能的影响多孔板旋流静态混合器强化传热性能分析基于声发射技术的减速顶故障诊断三聚磷酸钠对镁合金阳极氧化膜性能的影响•机械工程•蔡长庸,'战洪仁,史胜,张倩倩,惠尧,惠尧,陈彤,翟雪发,战洪仁,张海春,周圆圆,龚斌,吴剑华,龚斌,刘海良,王巍,周圆圆,金志浩,迟展,孟艳秋1(9)孟艳秋1(18)王然1(22)孟艳秋2(125)张学军3(222)宋艳玲3(230)宋艳玲4(324)杨桂秋4(330)宫博4(334)梁兵1(25)张辉1(31)王重2(130)李贵强3(236)郭卓4(338)徐振和4(345)王立鹏1(41)曾祥福1(47)张静2(135)张静2(142)于宝刚2(147)付广艳,姜天琪,钱神华2(153)第4期《沈阳化工大学学报》2020年总目次3稳流器结构对消防直流水枪水力学性能的影响风载荷作用下倾斜塔板压降的数值模拟...... Mg-xZn合金的制备及腐蚀性能研究..........带有内螺纹的重力热管仿真模拟研究........带有开槽中性捏合块和反向螺纹双螺杆挤岀机的三维流场分析.........................张静,陈生国,张平,张丽,张平,王豪,付广艳,钱神华,许文兰,战洪仁,张倩倩,史胜,王立鹏,郭树国,于淼,王丽艳,汤霖森,陈科昊,网格类型对管内旋流特性数值计算的影响•信息与计算机工程-BP神经网络算法在“摇头”避障小车中的应用.....................................任帅男,基于GPRS DTU远程通讯技术在油气集输管线上的应用..................赵思渊,何戡,基于通信节点的WSN自主聚类非均匀分簇路由协议......................刘一珏,王军,基于冗余节点间歇性的WSN路由协议的设计..................马德朋,王军,田鹍,基于Python爬虫的电影数据可视化分析.................................高巍,孙盼盼,基于STM32的CAN总线数据采集卡设计..........................................李蛟龙,基于物联网的雾化降尘效果优化研究...................................安然然,路晨贺,基于SPA-SVDD方法对间歇过程的故障检测...........................谢彦红,薛志强,基于Labview的三容水箱液位控制系统设计.............................李凌,曹纪中,基于数据分片的WSN安全数据融合方案优化..................王军,陈羽,田鹍,基于加权优化树的WSN分簇路由算法............................................刘一珏,筛分车间矿料仓除尘优化策略.................................安然然,路晨贺,高文文,多路光功率监测系统的设计......................................................高淑芝,餐饮业液化气罐物联网智能管理系统...................................汪滢,于洋,布袋除尘器耗损件生命周期监控策略...........................路晨贺,安然然,孙晓鑫,仿海底洋流实验中水流动状况智能监控系统..........王金亮,安然然,路晨贺,孙晓鑫,基于潜隐变量自相关性子空间划分的故障检测策略......................张成,郭青秀,无混载校车路线分析模型优化实现方法.................................高巍,陈泽颖,-数理科学•非定常对流占优扩散方程的龙格库塔伽辽金有限元方法.............................冯立伟,龚斌3(239)秦然3(245)姜天琪3(250)惠尧4(352)韩彦林4(358)王宗勇4(363)王庆辉1(51)宗学军1(56)田鹍1(60)徐万一1(67)李大舟1(73)任子真1(79)张蔓蔓1(85)李元2(158)王璐2(165)赵子君2(171)王军2(178)张蔓蔓2(187)徐林涛3(255)张延华3(261)张语仙3(268)张语仙3(275)李元4(369)李大舟4(377)席伟1(91)外磁场下的双层类石墨烯系统的元激发能谱赵宇星,成泰民3(282)4沈阳化工大学学报2020年Comprehensive Table of Contents2020・Chemistry and Chemical Engineering・Synthesis and Gas Sensing Properties of CuO-WO3Nanocubes SI Jian-peng,et al1(i) Development of High Alkali-Resistant Surfactant and ItsApplication in Industrial Cleaning ZHANG Dong-xi,et al2(97) Preparation of Co/g-C;N4-CHIT/GCE Modified Electrode andDetermination of Dihydrogen Phosphate CHEN Si,et al2(i07) Study on the Synthesis and Properties of the Phosphate Ester ofIso-Tridecanol Polyoxyethylene WEI Tian,et al2(115) Preparation and Properties of Cetane Number Improver SONG Ming-long,et al2(120) Simulation Study on Separation of Methyl Acetate-MethanolAzeotrope System by Ionic Liquid LI Wen-xiu,et al3(193) Vapor-Liquid Equilibrium of Ionic Liquids with Cyclohexane orEthanol Binary System LI Hong-hui,et al3(198) Simulation of Azeotrope Separation of Benzene-Methanol byExtractive Distillation YIN Hai-ying,et al3(205) Effect of Carbon Nanotubes on the Performance ofCuO-ZnO-Ga2O3/HZSM-5Catalysts WANG Ying-wen,et al3(210) Experimental Study on Flotation Agentfor the Low Grade Magnesite KANG Kun-hong,et al3(216) The Synthesis of1,3,5-Triethylbenzene MA Wan-ying,et al4(289) Study on Synthesis and Pour Point Depressing Performance of Methyl AcrylicAcid Mixed Alcohol Ester-Styrene-Vinyl Acetate Terpolymer XU Yan,et al4(295) Study on Vehicle Water Wax GAO Peng-fei,et al4(301) Development of New Detergent for Silver Products LU Xi-ya,et al4(306) Synthesis and Separation of m-Acetamidoaniline WANG Rui-ling,et al4(310) Simultaneous Determination of o-Vanillin,Methyl Vanillin,Ethyl Vanillin andVanillin by High Performance Liquid Chromatography JIA Xuan,et al4(314) Synthesis of Pd/N s-SiO?Catalyst and its Catalytic Performance forAcetylene Hydrogenation to Ethylene WANG Meng-jiao,et al4(319)・Biological and Environmental Engineering・Synthesis and Antitumor Activity of A-Ring Derivatives of Asiatic Acid LI Xiao-xiao,et al1(9) Synthesis and Antitumor Activity in Vitro of Ursolic Acid Derivatives XU Chuan-dong,et al1(18) Synthesis of N-adamantyl-N'-arylheterodihydrazides LIU Dan,et al1(22) Synthesis and Anti-Tumor Activity of Oleanolic AcidA Ring Derivatives in Vitro WANG Qiang,et al2(125) Tunable Synthesis of Morphologies of MnO^Catalyst by Template andIts Catalytic Oxidation Performance for Toluene XIANG Wen-jie,et al3(222)第4期《沈阳化工大学学报》2020年总目次5Synthesis of Oleanolic Acid Derivatives and MolecularDocking Studies with MEK.............................................................................................ZHANG Peng-bo,et al3(230) Synthesis of Oleanolic Acid Thiourea Derivatives and MolecularDocking Study with VEGFR-2Kinase.............................................................................................LI Jie,et al4(324) Synthesis and Biological Activities of2-(bromomethyl)-3-substituted Acrylate.......................................................................................................................LIAO Qiao,et al4(330) Application of WBS-RBS and AHP in Safety Capacity Analysis ofChemical Industrial Park.................................................................................................MENG Y u-qiang,et al4(334)・Material Science and Engineering・Synthesis of the Hexagonal Boron Nitride Using Tris(diethylamino)borazine as Precursor...................................................................................................................LI Zong-peng,et al1(25) Preparation and Electrochemical Properties of Graphene/ManganeseDioxide Composites.......................................................................................................................LI Jing-mei,et al1(31) Effect of Different Dispersants on the Properties of Natural Rubber..............................................MENG Wei,et al2(130) Thermal Properties of Myristic Acid/1-hexadecanol EutecticMixture as Phase Change Material.........................................................................................LI Jiao-long,et al3(236) Hydrothermal Synthesis,Characterization and Electrocatalytic HydrogenEvolution of Nif/Cuf Nanomaterials.........................................................................................BAO Tong,et al4(338) Preparation of Photocatalytic Properties g-C3N4/CeVO q/Ag Nanocomposites........................QIAN Kun,et al4(345)・Mechanical Engineering・The Enhancement of Heat Transfer in Two-Phase Closed Thermosyphon....................ZHAN Hong-ren,et al1(41) New Energy Integrated Kitchen Heating System...................................................................CAI Chang-yong,et al1(47) Effect of the Baffle Structure on Hydrodynamic Performanceat the Outlet Section ZHANG Hai-chun,et al2(135) Analysis on Enhanced Heat Transfer Performance of Cyclone StaticMixer with the Porous PlateFault Diagnosis of Retarder in Railway Stations Based on Acoustic Emission TechnologyInfluence of Sodium Tripolyphosphate on the Properties of Anodizing Films of Magnesium AlloyEffect of the Stabilizer Structure on the Hydraulic Characteristics in the Fire Water GunGONG Bin,et al2(142) JIN Zhi-hao,et al2(147) FU Guang-yan,et al2(153) ZHANG Jing,et al3(239)Numerical Simulation of Pressure Drop of ObliqueTray under Wind Load ZHANG Ping,et al3(245)Preparation and Corrosion Properties of Mg-xZn Alloys.......... Numerical Simulation of Gravity Heat Pipe with Internal Threads Three Dimensional Flow Field Analysis of Twin Screw Extruder with Slotted Neutral Kneading Block and Reverse Thread.................■-FU Guang-yan,et al3(250) ZHAN Hong-ren,et al4(352)GUO Shu-guo,et al4(358)6沈阳化工大学学报2020年Influence of Grid Type on Numerical Calculation of SwirlCharacteristics in Tubes......................................................................................................CHEN Ke-hao,et al4(363)・I information and Computer Engineering・Application of BP Neural Network Algorithm in“Shaking Head”Vehicle forObstacle Avoidance..................................................................................................................REN Shuai-nan,et al1(51) The Application of GPRS DTU Remote Communication Technology inOil and Gas Gathering Pipeline.............................................................................................ZHAO Si-yuan,et al1(56) WSN Autonomous Cluster Heterogeneous Clustering Routing ProtocolBased on Communication Nodes.................................................................................................LIU Yi-jue,et al1(60) Design of WSN Routing Protocol Based on Redundancy Node Intermittent.............................MA De-peng,et al1(67) Visual Analysis of Film Data Based on Python Crawler...................................................................GAO Wei,et al1(73) Design of CAN Bus Data Acquisition Card Based on STM32..................................................LI Jiao-long,et al1(79) Study on Optimization of Atomization and Dust Reduction EffectBased on Internet of Things..........................................................................................................AN Ran-ran,et al1(85) Fault Detection Based on SPA-SVDD in Batch Process......................................................XIE Yan-hong,et al2(158) Design of Three Tank Level Control System Based on Labview...........................................................LI Ling,et al2(165) Optimization of WSN Secure Data Aggregation SchemeBased on Data Slice...................................................................................................................WANG Jun,et al2(171) A WSN Cluster Routing Algorithm Based on theOptimized-Weighting Tree......................................................................................................LIU Yi-jue,et al2(178) Optimization Strategy for Dust Removal of Mine MaterialWarehouse in Sieve Workshop.................................................................................................AN Ran-ran,et al2(187) Design of Multi-Channel Optical Power Monitoring System..................................................GAO Shu-zhi,et al3(255) The Internet of Things Intelligent Management System ofCatering Industry Liquefied Gas Tank.....................................................................................WANG Ying,et al3(261) Life Cycle Monitoring Strategy for Bag Filter Wearer...............................................................LU Chen-he,et al3(268) Intelligent Monitoring Scheme for Water Flow inImitation Ocean Current Experiment................................................................................WANG Jin-liang,et al3(275) Fault Detection Strategy Based on Dividing Autocorrelation ofLatent Variables.......................................................................................................................ZHANG Cheng,et al4(369) Optimization Implementation Method of No-Mixed SchoolBus Route Analysis Model..............................................................................................................GAO Wei,et al4(377)・Science of Mathematics and Physics・Rung-Kutta Galerkin FEM Method for Unsteady ConvectionDominated Diffusion Equation.................................................................................................FENG Li-wei,et al1(91) Elementary Excitation Energy Spectra of Double-Layer Graphene-LikeSystem Under External Magnetic Field ZHAO Yu-xing,et al3(282)。
PVD法制备(Ti,Al)N薄膜及其性能表征
P V D 法制备(Ti ,Al )N 薄膜及其性能表征冷长志(杭州云度新材料科技有限公司,浙江富阳311400)摘要:在PVD 阴极电弧系统中,本文镀膜条件分别采用基片偏压为100V 和电弧电流偏压为70a ,在氮气压力为1、1.5和2Pa的条件下,涂膜时间设定为1.30h 。
结果表明,不同氮气压下沉积的薄膜的相结构、薄膜厚度和附着力没有显著差异。
然而,显微照片 显示,用1.5Pa 的反应气体制备的薄膜比在另外两种压力下制备的薄膜表面光滑,液滴较少。
关键词:PVD 法;CTi,Al)N 薄膜;性能表征中图分类号:TB383文献标识码:A文章编号:1671-2064(2020)21-0053-02China Science & Technology Overview工艺设计改造及检测检修1. P V D 法在(T i ,A l )N 制备中的应用物理气相沉积(PVD )耐磨涂层在金属切削和金属板材 成形等领域得到了广泛的应用。
根据沉积参数,如偏置电 压、氮气压力、电弧电流和温度,可以预期涂层性能的范 围很广。
PVD 涂层含有较高的残余应力,可以有利于提 高耐磨性和硬度,但另一方面可能降低附着力,需要更好 地了解工艺参数对残余应力形成的重要性及其与涂层分层 的关系[1义2. (T i ,Al )N 薄膜制备(Ti ,Al )N 是一种表面改性材料,用于各种工程应用, 如刀具和模具。
在物理气相沉积(PVD )涂层技术中,阴 极电弧技术是一种附着力好、粒子能量高、等离子体密度 很高的涂层技术,在耐磨涂层工艺中起着重要作用。
有研 究学者研究了铝含量对Tipx Alx N 薄膜性能的影响。
结果 表明,随着铝含量从0增加到0.6,薄膜硬度从2000提高 到3200HV 。
当铝含量大于0.7时,硬度急剧下降。
结果表 明,叫气体压力越高,(Ti ,Al )N 的硬度越高。
以50at%Ti 和50at %A l 为靶材,在不同N 2压力下制备(Ti ,Al )N 薄 膜,并对薄膜的性能和形貌进行了研究。
种植体表面改性方案研究进展_李旭东
nal Of Prosthetic Dentistry,2009,101(3):193-199. [9] Yuan K,Sun X,Wang F,et al. In Vitro and in Vivo Evaluations of
[3] Meirelles L,Melin L,Peltola T,et al. Effect of hydroxyapatite and ti- tania nanostructures on early in vivo bone response [J]. J Clin Im- plant Dent Relat Res,2008,10(4):245-254.
种植体周围增强的骨形成与纳米级结构有关,而与处理表面的 nine-glycine-aspartic acid)多肽序列、I 型胶原、III 型胶原或硫酸
材料种类(CaP 或 TiO2)无关[2,3]。但是,目前所形成的纳米结构表 面形态不均一,尺寸变化较大,而具有均一化形态的纳米表面才
软骨素等,改性种植体表面可能会改善种植体的生物学功能并 易于被组织接纳。有研究表明,对成骨细胞功能的影响是细胞外
[11] Tung FF,Goldstein GR,Jang S,et al. The repeatability of all intrao- ral dental colorimete[r J]. Prosthet Dent,2002,88(6):585-590.
[12] Young L,Glaros,Moore DJ,et al. Assessing shade differences in acrylic resin denture and natural teeth [J]. Prosthet Dent,1994,71 (6):575-580. 收稿日期:2015-04-05
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Performance characterization of Ti substrate lead dioxide electrode with different solid solution interlayersHaishen Kong •Haiyan Lu •Wenli Zhang •Haibo Lin •Weimin HuangReceived:25March 2012/Accepted:23May 2012/Published online:16June 2012ÓSpringer Science+Business Media,LLC 2012Abstract In this study,Ti substrate was coated by three different mixed oxides (SnO 2–Sb 2O 5,RuO 2–TiO 2,IrO 2–Ta 2O 5),then PbO 2was electrodeposited on them to prepare PbO 2electrode.The microstructure of the solid solution interlayers and PbO 2coatings was characterized by scan-ning electronic microscopy and X-ray diffraction.The results indicated that the above oxides interlayer exited in the form of solid solution and the interlayer covered the Ti substrate largely.Accelerated life test proved that the presence of solid solution interlayer can increase the sta-bility of PbO 2electrodes in electrolysis.Cyclic voltam-mogram indicated that the PbO 2electrode with the solid solution interlayer have more active surface area in sulfuric acid solution.Linear scanning voltammograms showed that the over potentials of the oxygen evolution are decreased with the addition of the solid solution interlayer.Electro-chemical impedance spectroscopy showed that the pres-ence of interlayer can increase the electrochemical activity of oxygen evolution reaction and electrical conductivity.IntroductionTi substrate lead dioxide is a promising anode widely used in practice owing to its high excellent conductivity and chemical inertness [1,2].The PbO 2electrode shows high catalytic activity for contaminants abatement and organic mineralization [3,4].It is also employed as O 2evolution electrode in some practical applications,such as the elec-trowinning of metals [5].Nevertheless,the main problem of the Ti/PbO 2electrode is its poor stability.The known failure mechanisms of Ti/PbO 2electrode include flaking off of the fragile PbO 2coating to the electrolyte and generating TiO 2insulating layer between the substrate and coating [1,6].A lot of efforts have been made to improve the stability of the Ti/PbO 2electrode.The most useful method is introducing a transition layer between Ti substrate and PbO 2coating [7,8].Comn-inellis and Plattner [9]have shown that the presence of Au or Pt thin interlayer can effectively prevent the growth of TiO 2insulating layer between the substrate and the PbO 2coating.These attempts have shown that the successful interlayer should have high conductivity,excellent chemical stability,and corrosion resistance in electrolysis.And the interlayer should combine closely with the PbO 2layer to decrease the interface resistance and improve adhesive strength.The dimensionally stable anodes (DSA)invented by Beer in the late 1960s have become the most important electrodes in electrochemical engineering.These electrodes consist of Ti substrate and oxides coating,such as Ti/SnO 2–Sb 2O 5[10–12],Ti/RuO 2–TiO 2[13,14],and Ti/IrO 2–Ta 2O 5[15,16]electrodes,etc.All the three mixed oxides exist in the form of solid solution,they can cover the Ti substrate completely and combine with the substrate closely.The solid solution electrodes show several advantages of good electrical conductivity,excellent chemical stability andH.Kong ÁH.Lu (&)ÁW.Zhang ÁH.Lin (&)ÁW.Huang College of Chemistry,Jilin University,Changchun 130012,People’s Republic of China e-mail:luhy@ H.Line-mail:lhb910@H.LinState Key Laboratory of Theoretical and Computational Chemistry,Jilin University,Changchun 130012,People’s Republic of ChinaJ Mater Sci (2012)47:6709–6715DOI 10.1007/s10853-012-6613-xcorrosion resistance in electrolysis.Otherwise,the rough surface of the DSA provides more sites for deposition of PbO2crystallite,the adhesive strength between the inter-layer and the PbO2coating may be improved.In the study,we applied three different mixed oxides (SnO2–Sb2O5,RuO2–TiO2,and IrO2–Ta2O5)as interlayer between the Ti substrate and the PbO2coating.The objec-tives of this study are increasing the stability of Ti/PbO2 electrode and searching for the function of different solid solution interlayers on Ti/PbO2electrode.The electro-chemical behaviors of the PbO2electrode with the solid interlayer were characterized by electrochemical and phys-ical pared with the Ti/PbO2electrode without interlayer,Ti/solid solution interlayer/PbO2anode showed more superior in stability,electric conductivity,and elec-trochemical activity.And the Ti/IrO2–Ta2O5/PbO2electrode has the best stability and electrochemical activity of oxygen evolution.ExperimentalPreparation of interlayer onto Ti substratePrior to coating,the Ti substrate(geometric size:2.09 1.090.1cm3)underwent sandblasting,30min of etching in boiling10%hydrochloric acid and5min of ultrasonic cleaning in ultra pure water(18.25M X cm).Three kinds of thin interlayers(SnO2–Sb2O5,RuO2–TiO2,and IrO2–Ta2O5)were prepared by thermal decomposition tech-nique.The applied mole ratio of SnCl4Á5H2O to SbCl3, RuCl3Áx H2O to Ti(C4H9O)4and H2IrCl6Á6H2O to TaCl5is 9:1,1:5,and7:6in this paper,respectively[12,13,17,18]. The total mass of oxides loading are about1.5,4,and 0.8mg cm-2,respectively.Ti/solid solution interlayer/PbO2electrode preparation PbO2was deposited onto Ti/interlayer(geometric area: 1.091.0cm2)under the current density of20mA cm-2at 65°C for2h.The electrolyte was composed of0.5M Pb(NO3)2,0.04M NaF and0.1M HNO3.The resultant electrodes were called Ti/SnO2–Sb2O5/PbO2,Ti/RuO2–TiO2/PbO2,and Ti/IrO2–Ta2O5/PbO2electrode.PbO2 coating weights are about0.163,0.154,and0.150g, respectively.Ti/PbO2electrode without interlayer made in the same method was used as a reference,the coating weight is about0.140g.Microstructure characterizationThe morphology and particle size of solid solution inter-layer and PbO2coating were studied by JSM-6700F SEM (Japan Electron Co.,Japan).The crystalline phase was identified by XRD using a Ragaku diffractometer(Japan) with CuK a-radiation operating at40kV and200mA. Composition analysis was carried out by XPS(Thermo Scientific ESCALAB250,USA)with monochromatized radiations(Al,K a).Electrochemical measurementElectrochemical measurements were performed by a conventional three electrode glass cell and an electro-chemical workstation(PARSTAT2273,Princeton Applied Research,USA).Ti/PbO2,Ti/SnO2–Sb2O5/PbO2, Ti/RuO2–TiO2/PbO2,and Ti/IrO2–Ta2O5/PbO2electrodes were used as working electrode(geometric area: 1.091.0cm2),Ti/RuO2–TiO2–SnO2net(geometric area: 3.093.0cm2)was used as the counter-electrode because it was stable in the media and saturated calomel electrode (SCE)was used as the reference electrode in a separate compartment with a Luggin capillary.All the potentials were referred to SCE unless otherwise stated in this paper. Linear sweep voltammetry was performed to acquire their oxygen evolution potential in0.5M H2SO4solution.CV curves were recorded between0.8and1.95V in0.5M H2SO4solution.EIS were recorded at constant potential (1.95V vs.SCE)located in the oxygen evolution reaction (OER)domain.It was obtained in the frequency range of 100mHz–100kHz.The amplitude of the ac signal was 10mV.All electrochemical experiments were carried out at room temperature(25±2°C).All solutions were pre-pared with ultra pure water and all reagents used in the experiments were analytic grade.Accelerated life testThe accelerated life test was conducted under galvanostatic electrolysis at a current density of1A cm-2in1M H2SO4 solution with potentiostat–galvanostat(WYJ,Hangzhou Pingguo,China).The cell voltage between the working electrode and the counter-electrode(Ti net geometric area: 3.093.0cm2)was recorded.The cell voltage versus service time curve was recorded simultaneously.The ser-vice life of the electrodes was considered to be terminated when the cell voltage reaches up to10V.Results and discussionSurface morphologyFigure1a–c shows the SEM images of Ti/SnO2–Sb2O5, Ti/RuO2–TiO2,and Ti/IrO2–Ta2O5interlayers,respectively.It is observed that the surface of the solid solution prepared using the thermal decomposition method exhibits a ‘‘cracked-mud’’structure which is typical for DSA[10].The average size of the cracks of Ti/SnO2–Sb2O5,Ti/RuO2–TiO2,and Ti/IrO2–Ta2O5interlayers are about0.2,1,and 3l m,respectively.This structure can increase the contact area between the interlayer and the PbO2layer,which reduce the interface resistance and improve the adhesive strength.Figure2a–c and d shows the SEM images of Ti/PbO2, Ti/SnO2–Sb2O5/PbO2,Ti/RuO2–TiO2/PbO2and Ti/IrO2–Ta2O5/PbO2electrode surfaces,respectively.The SEM images show that the PbO2layer is compact,this structure can prevent free O2-from contacting the titanium substrate to generate an insulating TiO2layer[19].The average size of PbO2grain dimension is about3–4l m,and the average size of crack in IrO2–Ta2O5interlayer is also about3–4l m.Due to the existence of the crack,the PbO2could deposit in the crack of IrO2–Ta2O5interlayer to form an embedded structure with the IrO2–Ta2O5interlayer.The embedded structure can make the combination of surface coating and Ti substrate more compact andfirm[20,21].The IrO2–Ta2O5interlayer could increase the adhesive power between Ti substrate and PbO2coating with the embedded structure.The accelerate service life test demonstrated that the PbO2electrode with IrO2–Ta2O5interlayer has the longest service life for the studied four PbO2electrodes.The stability of Ti/IrO2–Ta2O5/PbO2electrode increase largely. Therefore,there could be the superior adhesive power over the other interlayer between Ti substrate and PbO2coating.XRD analysisTheoretically,whether or not a metal oxide mixture can form a solid solution is highly dependent on the ionic radius difference in the metal elements.The oxidation states of Sn,Sb,Ru,Ti,Ir,Ta,and Pb species are Sn(IV), Sb(V),Ru(IV),Ti(IV),Ir(IV),Ta(V),and Pb(IV),respec-tively.The ionic radii of Sn(IV),Sb(V),Ru(IV),Ti(IV), Ir(IV),Ta(V),and Pb(IV)are71,62,62,68,77,73,and 84nm,respectively(Table1).When the ratio of radii difference between two metal ions in oxides is less than 15%,the metal oxide mixture should be highly intermixed and exist in the form of solid solution[22].The different ratios of ionic radii among Sn4?and Sb5?,Ru4?and Ti4?, Ir4?,and Ta5?radii are13,9,and5%,respectively.These may explain why the oxide mixtures existed in the form of continuous solid solution.The differences ratio of ionic radii between Ti4?obtained for oxidation of Ti substrate and correlative ions in the interlayer also lie in the Hume-Rothery limit(15%),so combination of the substrate and interlayer is successful[22].The different ratios of ionic radii of Sn4?and Pb4?as well as Ir4?and Pb4?are15and Fig.1SEM images of the interlayer surface.a Ti/SnO2–Sb2O5,b Ti/RuO2–TiO2,c Ti/IrO2–Ta2O58.3%,respectively,which are also smaller than the limit.It can be inferred that SnO 2–PbO 2and IrO 2–PbO 2can form continuous solid solution.But TiO 2with PbO 2only form a limited solid solution due to the larger difference of their ion radii (19%)in Ti/RuO 2–TiO 2/PbO 2electrode.Figure 3a shows XRD patterns of different interlayers:Ti/SnO 2–Sb 2O 5,Ti/RuO 2–TiO 2,and Ti/IrO 2–Ta 2O 5.As shown in Fig.3a-1,the broad and symmetric peaks at 2h =26.6°(110),33.9°(101),52.0°(211)are attributed to diffraction peaks of SnO 2with tetragonal cassiterite structure.However,the peak positions are slightly different from the characteristic peaks of pure SnO 2crystal (PDF-21-1250)and no Sb 2O 5-rich peaks are detected.These facts reveal that various components in the Sb 2O 5–SnO 2have been highly intermixed.In other words,the SnO 2–Sb 2O 5mixture exists in the form of a solid solution.In addition,to the well-defined peaks of solid solution,the Ti metal peaks from the substrate are also observed.In Fig.3a-2,a series of broad and symmetric peaks were found at 2h =27.7°(110),36.0°(101),54.5°(211),56.9°(220),and 69.2°(301)corresponding to the rutile structure of TiO 2and no RuO2-rich peaks were detected.The facts also reveal that various components in the RuO 2–TiO 2interlayer have been highly intermixed in the form of a solid solution.In Fig.3a-3,a series of broad and symmetric peaks were found at 2h =27.7°(110),34.5°(101),and 53.3°(301)corresponding to the IrO 2–Ta 2O 5solid solution.The above results demonstrated that SnO 2–Sb 2O 5,RuO 2–TiO 2,and IrO 2–Ta 2O 5interlayers all exist in the form of solid solution.Figure 3b shows XRD patterns of Ti/PbO 2,Ti/SnO 2–Sb 2O 5/PbO 2,Ti/RuO 2–TiO 2/PbO 2,and Ti/IrO 2–Ta 2O 5/PbO 2electrodes.The diffractive peaks at 2h =25.4°,31.9°,49.0°,and 62.3°attribute to b -PbO 2structure (PDF-35-1222),they belong to (110),(011),(211),and (301)crystal face,respectively (Fig.3b-2).The results indicate that PbO 2electrode with and without solid solution inter-layer mostly contain b -PbO 2crystalline phases.The introduction of interlayer does not result in significant b -PbO 2phase changes.However,the corresponding diffractive peaks intensities are different among thefourFig.2SEM images of different PbO 2electrodes.a Ti/PbO 2surface,b Ti/SnO 2–Sb 2O 5/PbO 2surface,c Ti/RuO 2–TiO 2/PbO 2surface,d Ti/IrO 2–Ta 2O 5/PbO 2surfaceTable 1Radii of correlative ions in different solid solution Metal ions Ti 4?Sn 4?Sb 5?Ru 4?Ir 4?Ta 5?Pb 4?r (pm)68716262777384PbO 2electrodes.Moreover,the crystal orientations of the PbO 2with interlayer are richer than those without.The results suggest the better crystallinity of PbO 2at Ti/solid solution substrate.The solid solution interlayers affect the preferred orientation of PbO 2electrode.Accelerated life testFigure 4shows the accelerated life test of the Ti/PbO 2,Ti/SnO 2–Sb 2O 5/PbO 2,Ti/RuO 2–TiO 2/PbO 2,and Ti/IrO 2–Ta 2O 5/PbO 2electrode.The experiment is used to compare their electrochemical stabilities in electrolysis.When the cell voltage reaches up to 10V,the electrode service life is considered to be terminated.The service life of the Ti/PbO 2electrode is very short,which is about 11h.The presence of SnO 2–Sb 2O 5,RuO 2–TiO 2,and IrO 2–Ta 2O 5interlayers greatly prolong the service life of the PbO 2electrode.The service life of Ti/SnO 2–Sb 2O 5/PbO 2,Ti/RuO 2–TiO 2/PbO 2,and the Ti/IrO 2–Ta 2O 5/PbO 2elec-trode are about 58,207,and 672h,respectively.The above results show that the solid solution interlayers have greatlyincreased the service life of the PbO 2electrodes,especially IrO 2–Ta 2O 5interlayer.The rough surface of solid solution interlayers can increase the adhesive strength between Ti substrate and PbO 2coating.The presence of solid solution interlayers can inhibit inactivation of Ti substrate and avoid flaking of PbO 2layer.Thus,the stability of Ti/solid solution inter-layer/PbO 2electrodes is improved.Electrochemical activity of oxygen evolutionFigure 5shows the relationship of q*against the reciprocal of square root of scan rate.The charge q*was obtained by integration of the voltammetric curves over the whole potential range from 0.8to 1.95V.q*is considered as proportional to the active surface area of oxide electrodes [23].The results show that the introduction of solid solu-tion interlayer could enhance voltammetric charge quantity q*.The q *values increase in the order of Ti/PbO 2,Ti/SnO 2–Sb 2O 5/PbO 2,Ti/RuO 2–TiO 2/PbO 2,and Ti/IrO 2–Ta 2O 5/PbO 2.A possible explanation for the phenomenon is that there are richer crystalline orientations for the PbO 2electrodes with the solid solution interlayers than that without.Con-sequently,there is more activity surface area in Ti/solid solution interlayer/PbO 2electrode.Figure 6shows the liner scanning voltammograms of Ti/PbO 2,Ti/SnO 2–Sb 2O 5/PbO 2,Ti/RuO 2–TiO 2/PbO 2,and Ti/IrO 2–Ta 2O 5/PbO 2electrodes in 0.5M H 2SO 4solution.The oxygen evolution potential decreased as the following order of Ti/PbO 2,Ti/SnO 2–Sb 2O 5/PbO 2,Ti/RuO 2–TiO 2/PbO 2,and Ti/IrO 2–Ta 2O 5/PbO 2.The presence of solid solu-tion interlayer can increase the activity of oxygen evolution.For evaluating the oxygen evolution activity of different PbO 2electrode,EIS measurements were performed at constant potential (1.95V)located in the OER domain.Figure 7shows the Nyquist diagrams of different electrode in 0.5M H 2SO 4solution.The equivalent circuit which best fits the experimental EIS data is a R s (R ct Q dl )(R f Q f )com-bination (Fig.8).In the previous literature [19,24],itwasFig.3XRD patterns ofdifferent interlayers and PbO 2electrodes.a-1Ti/SnO 2–Sb 2O 5,a-2Ti/RuO 2–TiO 2,a-3Ti/IrO 2–Ta 2O 5interlayers,b-1Ti/PbO 2,b-2Ti/SnO 2–Sb 2O 5/PbO 2,b-3Ti/RuO 2–TiO 2/PbO 2,b-4Ti/IrO 2–Ta 2O 5/PbO 2electrodeFig.4Accelerated life test of different interlayers and PbO 2electrodes in 1M H 2SO 4under 1A cm -2.1Ti/PbO 2,2Ti/SnO 2–Sb 2O 5/PbO 2,3Ti/RuO 2–TiO 2/PbO 2,4Ti/IrO 2–Ta 2O 5/PbO 2electrodeoften used to simulate the impedance data for OER on metal oxide anodes.In this circuit,R s represents the uncompensated solution resistance,first capacitive loop (R f Q f )at high frequency region reflects electron transfer information through the oxide film,the R f and Q f stands for resistance through the oxide layer and the pseudo-capacitance of the oxide layer,respectively.The second capacitive loop (R ct Q dl )at low frequency region reflects the charge transfer information at the interface PbO 2/electro-lyte,R ct and Q dl indicate the charge transportation resis-tance at the interface and the double layer capacitance,respectively.In this experiment,R ct stands for the activity of oxygen evolution.The fitted electrical parameters are listed in Table 2.As shown in the table,the R f of the Ti/PbO 2,Ti/SnO 2–Sb 2O 5/PbO 2,Ti/RuO 2–TiO 2/PbO 2,and Ti/IrO 2–Ta 2O 5/PbO 2elec-trode are 0.0328,0.0172,0.0201,and 0.0187X cm 2,while the R ct are 2.021,1.749,1.512,and 1.15X cm 2,respectively.From above experimental data,it can be concluded that the presence of the solid solution interlayer can reduce the R f and R ct ,which indicates the conductivity and electrochemical activity of oxygen evolution for the Ti/solid solution inter-layer/PbO 2electrodes are higher than those for the Ti/PbO 2electrode.The reason of high conductivity could be explained as follows:first,the metal oxide formed by thermal decom-position is non-stoichiometric,there are more free electron and oxygen vacancies in the solid solution interlayer.The free electron and oxygen vacancies can enhance the elec-trical conductivity of the electrode.Second,the solid solution interlayer can prevent from forming an insulating TiO 2layer on Ti surface [25,26].Third,the solid solution interlayer can closely combine with the Ti substrate and the electrodeposited PbO 2coating,this structure can reduce interface resistance and increase the electrical conductivity of the whole Ti substrate PbO 2electrode.An explanation for high electrochemical activity of oxygen evolution is that there is more activity surface area on the Ti/solid solution interlayer/PbO 2electrodes.The mechanism for oxygen evolution on oxide electrode in acid solution might be proposed as follows [27]:Fig.5Relationship of voltammetric charge quantity (q *)versus the reciprocal of square root of scan rate in 0.5M H 2SO 4solution.a Ti/PbO 2,b Ti/SnO 2–Sb 2O 5/PbO 2,c Ti/RuO 2–TiO 2/PbO 2,and d Ti/IrO 2–Ta 2O 5/PbO 2electrodeFig.6Linear scanning voltammograms at different PbO 2electrode in 0.5M H 2SO 4:scan rate at 1mV s -1.1Ti/PbO 2,2Ti/SnO 2–Sb 2O 5/PbO 2,3Ti/RuO 2–TiO 2/PbO 2,4Ti/IrO 2–Ta 2O 5/PbO 2electrodeFig.7Nyqusit diagrams of different PbO 2electrodes in 0.5M H 2SO 4.a Ti/PbO 2electrode,b Ti/SnO 2–Sb 2O 5/PbO 2electrode,c Ti/RuO 2–TiO 2/PbO 2electrode,d Ti/IrO 2–Ta 2O 5/PbO 2electrode.E =1.95V (vs.SCE)Fig.8Equivalent circuit used in the analysis of the experimental EIS dataSþH2O¼SÁÁÁOHþHþþeÀð1ÞSÁÁÁOH¼SÁÁÁOþHþþeÀð2ÞSÁÁÁOHþSÁÁÁOH¼SÁÁÁOþSþH2Oð3ÞSÁÁÁOþSÁÁÁO¼2SþO2ð4ÞS is an active surface area on the oxide surface.SÁÁÁO and SÁÁÁOH denote the adsorption state.For the same PbO2 electrode,the number of S is contributive to the high electrochemical activity of oxygen evolution.When the S is large,there may be high electrochemical activity in the electrode surface.The results of q*is consistent with R ct. Therefore,Ti/solid solution interlayer/PbO2electrodes with low R ct have high oxygen evolution activity.Because the q* value of Ti/IrO2–Ta2O5/PbO2is the highest compared the other three electrodes,it has the highest electrochemical activity of oxygen evolution.Summary and conclusionsThe SnO2–Sb2O5,RuO2–TiO2,and IrO2–Ta2O5mixture oxides coated on Ti substrate exist in the form of a solid solution.The solid solution interlayers can completely cover the titanium substrate and improve the bond with the Ti substrate and PbO2coating.The PbO2electrodes with solid solution interlayers greatly increased the service life of the PbO2electrode.In particular,Ti/IrO2–Ta2O5/PbO2 electrode greatly prolongs the service life of the PbO2 electrode to672h,which is61times longer than that of the PbO2electrode without interlayer.The overpotential of the oxygen evolution decreases with the addition of the solid solution interlayer.The presence of interlayer can increase the electrochemical activity of oxygen evolution and electrical conductivity.The oxygen evolution activity increases in the order of Ti/PbO2,Ti/SnO2–Sb2O5/PbO2, Ti/RuO2–TiO2/PbO2,and Ti/IrO2–Ta2O5/PbO2electrodes.Acknowledgements The authors would like to acknowledge the support provided by the National Natural Science Foundation of China(No.20873051),key project in Jilin Province(No.20080306). References1.Feng J,Johnson DC(1991)J Electrochem Soc138:33282.Mohd J,Pletcher D(2006)Electrochim Acta52:7863.Velichenko AB,Girenko DV,Kovalyov SV(1998)J ElectroanalChem454:2034.Cong Y,Wu Z(2007)J Phys Chem C111:34425.Amadelli R,Maldotti A,Molinari A,Danilov FI,Velichenko AB(2002)J Electroanal Chem534:16.Matsumoto Y,Noguchi M,Matsunaga T(1999)J Phys Chem B103:71907.Ciriaco L,Anjo C,Correia J(2009)Electrochim Acta54:14648.Han W,Chen Y,Wang L(2011)Desalination276:82ninellis C,Plattner E(1982)J Appl Electrochem12:39910.Adams B,Tian M,Chen A(2009)Electrochim Acta54:149111.Chen X,Chen G,Yue PL(2001)J Phys Chem B105:462312.Wang YQ,Tong HY,Xu WL(2004)Chin J Appl Chem21:43713.Hine F,Yasuda M,Lida T(1984)Electrochim Acta29:144714.Zhitomirsky I(1999)J Mater Sci34:2441.doi:10.1023/A:100457091834715.Hu JM,Zhang JQ,Cao CN(2002)Corros Sci44:165516.Hu JM,Zhang JQ(2003)J Mater Sci38:705.doi:10.1023/A:1021840426997ninellis C,Vercesi GP(1991)J Appl Electrochem21:33518.Xu LK,Xin YL,Wang JT(2009)Electrochem Acta54:182019.Devilliers D,Mahe´E(2010)Electrochim Acta55:820720.Cui X,Zhao GH,Lei YZ(2009)Mater Chem Phys113:31421.Zhao GH,Cui X,Liu MC(2009)Environ Sci Technol43:148022.Chen X,Chen G(2005)Electrochim Acta50:415523.Trasatti S(1991)Electrochim Acta36:165924.Alves VA,Da Silva LA,Boodts JFC(1998)Electrochim Acta44:1525ssali TAF,Boodts JFC,Bulhoes LOS(2000)J Appl Electro-chem30:62526.Da Silva LM,De Faria LA,Boodts JFC(2002)J ElectroanalChem532:14127.Lodi G,Sivieri E,De Battisti A,Trasatti S(1978)J ApplElectrochem8:135Table2Impedance information for the four electrodesElectrode R s(X cm2)R ct(X cm2)Q dl(X-1cm-2s n)n R f(X cm2)Q f(X-1cm-2s n)n Chi-square(v2)a0.05845 2.0210.0226510.0328 1.07910-50.858.82910-3b0.05243 1.7490.0233210.0172 1.31 5.84910-3c0.05132 1.5120.030930.97820.02010.31621 2.79910-4d0.04578 1.150.024130.99990.01870.21311 3.21910-3a Ti/PbO2,b Ti/SnO2–Sb2O5/PbO2,c Ti/RuO2–TiO2/PbO2,d Ti/IrO2–Ta2O5/PbO2electrodeChi-square v2test,the smaller the better。