Bayesian Hierarchical Clustering
bcc的句法树
bcc的句法树Bayesian Coordinated Clustering (BCC) is a powerful tool in natural language processing that helps extract meaningful information from texts. By employing the technique of generating syntactic trees, BCC allows for a deeper understanding of the relationships and structures within a sentence. In this article, we will explore the importance andapplications of BCC's syntactic trees.Syntactic trees, also known as parse trees, are visual representations of the grammatical structure of a sentence. They provide a hierarchical depiction of how words and phrases are organized andrelate to each other. BCC utilizes these trees to analyze and extract information from texts, enabling more accurate and efficient language processing.One significant application of BCC's syntactic trees is in sentiment analysis. By parsing a sentence into its constituent parts, BCC can identify the subject, verb, and object, allowing for a more precise analysis of the sentiment expressed. For example, in the sentence "Ilove this movie," BCC can identify "I" as the subject, "love" as the verb, and "this movie" as the object, enabling sentiment analysis algorithms to accurately detect positive sentiment.Another area where BCC's syntactic trees prove invaluable is in information extraction. By breaking down a sentence into its syntactic components, BCC can identify and extract specific information, such as names, locations, or dates. For instance, in the sentence "John went toParis last Tuesday," BCC can identify "John" as the subject, "went to" as the verb phrase, and "Paris" and "last Tuesday" as the objects, allowing for efficient extraction of relevant information.Furthermore, BCC's syntactic trees play a crucial role in machine translation. By understanding the grammatical structure of a sentence, BCC can generate accurate translations by preserving the syntactic relationships between words and phrases. This ensures that thetranslated sentence maintains the intended meaning and coherence. BCC's syntactic trees enable more precise and context-aware translations, improving the overall quality of machine translation systems.In addition to its applications in sentiment analysis, information extraction, and machine translation, BCC's syntactic trees also enhance text summarization and question-answering systems. By analyzing the syntactic structure of a text, BCC can identify key sentences or phrases that capture the essence of the content, facilitating the generation of concise and informative summaries. Similarly, BCC's syntactic trees aid in understanding and answering complex questions by providing a structured representation of the question, making it easier to identify relevant information and generate accurate responses.In conclusion, BCC's syntactic trees are a powerful tool in natural language processing. They enable more accurate sentiment analysis, information extraction, machine translation, text summarization, and question-answering. By understanding the grammatical structure of a sentence, BCC enhances the processing and understanding of texts, leading to improved performance in various language-related tasks. Aslanguage processing continues to evolve, BCC's syntactic trees remain an essential component for extracting meaningful information from texts.。
hclust 细胞聚类
细胞聚类(Cell Clustering)是生物学和生物信息学领域中的一项重要技术,用于研究不同细胞类型或组织中细胞的相似性和差异性。
通过细胞聚类可以帮助我们了解细胞的功能和相互关系,从而深入理解生物系统的运作机制。
Hclust是一种常用的细胞聚类方法,本文将对其原理和应用进行介绍。
什么是Hclust细胞聚类法?Hclust(Hierarchical Clustering)是一种层级聚类方法,通过计算不同细胞或样本之间的相似性或距离,将它们分组成一个层级树状结构。
基于细胞之间的相似度,Hclust可以将细胞分为不同的簇(Cluster),每个簇内的细胞相似度较高,而不同簇之间的细胞相似度较低。
Hclust的工作流程如下: 1. 计算样本之间的相似性或距离。
常用的相似性度量方法有欧氏距离、曼哈顿距离等,而非欧氏距离度量方法如Pearson相关系数、Spearman相关系数等也常用于基因表达数据聚类中。
2. 根据相似性矩阵或距离矩阵构建层级树。
Hclust采用自底向上的策略,首先将每个样本视为一个簇,然后根据相似性将相邻的簇合并,最终构建出完整的层级树。
3. 根据树状图确定聚类结果。
树状图可以通过不同的截断方式(Cutting)或相似性阈值(Threshold)来确定最终的聚类结果,将细胞分为不同的簇。
Hclust细胞聚类的应用Hclust细胞聚类在生物学和生物信息学研究中有着广泛的应用。
下面我们将介绍其中的几个典型应用领域。
1. 基因表达数据聚类基因表达数据聚类是Hclust最常见的应用之一。
研究人员通常将基因的表达量作为特征,利用Hclust方法将基因和样本进行聚类分析,以揭示基因在细胞类型和生物过程中的共表达模式和相互作用关系。
这些聚类结果可以帮助科学家理解基因功能、寻找新的生物标记物和确定基因调控网络等。
2. 单细胞RNA测序数据聚类随着单细胞RNA测序技术的快速发展,越来越多的研究开始关注单个细胞水平的基因表达模式。
人工智能领域中英文专有名词汇总
名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。
hierarchical clustering结果解读 -回复
hierarchical clustering结果解读-回复Hierarchical clustering, also known as hierarchical cluster analysis, is a widely used technique in data mining and exploratory data analysis. It aims to organize data objects into a hierarchy of clusters based on their similarity or dissimilarity measures. In this article, we will discuss how to interpret the results of hierarchical clustering and provide step-by-step guidance for understanding the analysis.1. Understanding the hierarchical clustering algorithm: Hierarchical clustering can be performed using two main approaches: agglomerative and divisive. Agglomerative clustering starts with each data point as an individual cluster and then merges the most similar clusters iteratively until one cluster remains. Divisive clustering, on the other hand, begins with all data points in a single cluster and then splits the cluster into smaller clusters based on dissimilarity measures.2. Interpreting dendrograms:One of the key outputs of hierarchical clustering is a dendrogram, which is a tree-like structure depicting the clustering process. The x-axis of the dendrogram represents the data objects, and they-axis represents the dissimilarity between clusters or data points.By analyzing the dendrogram, one can gain insights into the hierarchical relationships between data points and clusters.3. Determining the number of clusters:One of the challenges in hierarchical clustering is deciding on the optimal number of clusters to use. This decision can be made by inspecting the dendrogram and identifying the distinct branches or clusters. The height at which the dendrogram is cut determines the number of clusters. In general, a cut at a higher height results in fewer clusters, while a cut at a lower height produces more clusters.4. Understanding cluster assignments:Once the number of clusters is determined, each data point is assigned to a specific cluster. These assignments are based on the hierarchical relationships identified in the dendrogram. Each cluster represents a group of data points that are similar to each other and dissimilar to data points in other clusters. Understanding the characteristics of each cluster can provide valuable insights into the underlying patterns in the data.5. Analyzing cluster characteristics:After the data points are assigned to clusters, it is essential toanalyze the characteristics of each cluster. This can be done by examining the mean, median, or mode values of variables within each cluster. Additionally, statistical tests or data visualization techniques can be used to compare cluster characteristics across different clusters. An in-depth analysis of cluster characteristics can help identify meaningful patterns or relationships within the data.6. Evaluating cluster quality:Assessing the quality of the clusters obtained from hierarchical clustering is crucial to determine the reliability of the results. Several techniques can be employed to evaluate cluster quality, such as silhouette analysis, internal validation metrics (e.g., the Dunn index or Calinski-Harabasz index), or external validation metrics (e.g., the Fowlkes-Mallows index or Rand index). These evaluation measures help determine the consistency and separability of the clusters.7. Iterating and refining the analysis:Hierarchical clustering is an iterative process that may require refining and optimizing to achieve meaningful results. This can involve adjusting distance metrics, linkage criteria, or data preprocessing techniques to improve cluster quality. It is importantto fine-tune the analysis iteratively to obtain the most accurate and informative clustering results.In conclusion, hierarchical clustering is a powerful analysis technique that can reveal valuable insights from complex datasets. By interpreting the dendrogram, determining the number of clusters, understanding cluster assignments, analyzing cluster characteristics, evaluating cluster quality, and iteratively refining the analysis, researchers can gain a deeper understanding of the underlying patterns and structures in the data. This information can be used for various applications in fields such as marketing segmentation, customer behavior analysis, genomics, and social network analysis.。
AI术语
人工智能专业重要词汇表1、A开头的词汇:Artificial General Intelligence/AGI通用人工智能Artificial Intelligence/AI人工智能Association analysis关联分析Attention mechanism注意力机制Attribute conditional independence assumption属性条件独立性假设Attribute space属性空间Attribute value属性值Autoencoder自编码器Automatic speech recognition自动语音识别Automatic summarization自动摘要Average gradient平均梯度Average-Pooling平均池化Accumulated error backpropagation累积误差逆传播Activation Function激活函数Adaptive Resonance Theory/ART自适应谐振理论Addictive model加性学习Adversarial Networks对抗网络Affine Layer仿射层Affinity matrix亲和矩阵Agent代理/ 智能体Algorithm算法Alpha-beta pruningα-β剪枝Anomaly detection异常检测Approximation近似Area Under ROC Curve/AUC R oc 曲线下面积2、B开头的词汇Backpropagation Through Time通过时间的反向传播Backpropagation/BP反向传播Base learner基学习器Base learning algorithm基学习算法Batch Normalization/BN批量归一化Bayes decision rule贝叶斯判定准则Bayes Model Averaging/BMA贝叶斯模型平均Bayes optimal classifier贝叶斯最优分类器Bayesian decision theory贝叶斯决策论Bayesian network贝叶斯网络Between-class scatter matrix类间散度矩阵Bias偏置/ 偏差Bias-variance decomposition偏差-方差分解Bias-Variance Dilemma偏差–方差困境Bi-directional Long-Short Term Memory/Bi-LSTM双向长短期记忆Binary classification二分类Binomial test二项检验Bi-partition二分法Boltzmann machine玻尔兹曼机Bootstrap sampling自助采样法/可重复采样/有放回采样Bootstrapping自助法Break-Event Point/BEP平衡点3、C开头的词汇Calibration校准Cascade-Correlation级联相关Categorical attribute离散属性Class-conditional probability类条件概率Classification and regression tree/CART分类与回归树Classifier分类器Class-imbalance类别不平衡Closed -form闭式Cluster簇/类/集群Cluster analysis聚类分析Clustering聚类Clustering ensemble聚类集成Co-adapting共适应Coding matrix编码矩阵COLT国际学习理论会议Committee-based learning基于委员会的学习Competitive learning竞争型学习Component learner组件学习器Comprehensibility可解释性Computation Cost计算成本Computational Linguistics计算语言学Computer vision计算机视觉Concept drift概念漂移Concept Learning System /CLS概念学习系统Conditional entropy条件熵Conditional mutual information条件互信息Conditional Probability Table/CPT条件概率表Conditional random field/CRF条件随机场Conditional risk条件风险Confidence置信度Confusion matrix混淆矩阵Connection weight连接权Connectionism连结主义Consistency一致性/相合性Contingency table列联表Continuous attribute连续属性Convergence收敛Conversational agent会话智能体Convex quadratic programming凸二次规划Convexity凸性Convolutional neural network/CNN卷积神经网络Co-occurrence同现Correlation coefficient相关系数Cosine similarity余弦相似度Cost curve成本曲线Cost Function成本函数Cost matrix成本矩阵Cost-sensitive成本敏感Cross entropy交叉熵Cross validation交叉验证Crowdsourcing众包Curse of dimensionality维数灾难Cut point截断点Cutting plane algorithm割平面法4、D开头的词汇Data mining数据挖掘Data set数据集Decision Boundary决策边界Decision stump决策树桩Decision tree决策树/判定树Deduction演绎Deep Belief Network深度信念网络Deep Convolutional Generative Adversarial Network/DCGAN深度卷积生成对抗网络Deep learning深度学习Deep neural network/DNN深度神经网络Deep Q-Learning深度Q 学习Deep Q-Network深度Q 网络Density estimation密度估计Density-based clustering密度聚类Differentiable neural computer可微分神经计算机Dimensionality reduction algorithm降维算法Directed edge有向边Disagreement measure不合度量Discriminative model判别模型Discriminator判别器Distance measure距离度量Distance metric learning距离度量学习Distribution分布Divergence散度Diversity measure多样性度量/差异性度量Domain adaption领域自适应Downsampling下采样D-separation (Directed separation)有向分离Dual problem对偶问题Dummy node哑结点Dynamic Fusion动态融合Dynamic programming动态规划5、E开头的词汇Eigenvalue decomposition特征值分解Embedding嵌入Emotional analysis情绪分析Empirical conditional entropy经验条件熵Empirical entropy经验熵Empirical error经验误差Empirical risk经验风险End-to-End端到端Energy-based model基于能量的模型Ensemble learning集成学习Ensemble pruning集成修剪Error Correcting Output Codes/ECOC纠错输出码Error rate错误率Error-ambiguity decomposition误差-分歧分解Euclidean distance欧氏距离Evolutionary computation演化计算Expectation-Maximization期望最大化Expected loss期望损失Exploding Gradient Problem梯度爆炸问题Exponential loss function指数损失函数Extreme Learning Machine/ELM超限学习机6、F开头的词汇Factorization因子分解False negative假负类False positive假正类False Positive Rate/FPR假正例率Feature engineering特征工程Feature selection特征选择Feature vector特征向量Featured Learning特征学习Feedforward Neural Networks/FNN前馈神经网络Fine-tuning微调Flipping output翻转法Fluctuation震荡Forward stagewise algorithm前向分步算法Frequentist频率主义学派Full-rank matrix满秩矩阵Functional neuron功能神经元7、G开头的词汇Gain ratio增益率Game theory博弈论Gaussian kernel function高斯核函数Gaussian Mixture Model高斯混合模型General Problem Solving通用问题求解Generalization泛化Generalization error泛化误差Generalization error bound泛化误差上界Generalized Lagrange function广义拉格朗日函数Generalized linear model广义线性模型Generalized Rayleigh quotient广义瑞利商Generative Adversarial Networks/GAN生成对抗网络Generative Model生成模型Generator生成器Genetic Algorithm/GA遗传算法Gibbs sampling吉布斯采样Gini index基尼指数Global minimum全局最小Global Optimization全局优化Gradient boosting梯度提升Gradient Descent梯度下降Graph theory图论Ground-truth真相/真实8、H开头的词汇Hard margin硬间隔Hard voting硬投票Harmonic mean调和平均Hesse matrix海塞矩阵Hidden dynamic model隐动态模型Hidden layer隐藏层Hidden Markov Model/HMM隐马尔可夫模型Hierarchical clustering层次聚类Hilbert space希尔伯特空间Hinge loss function合页损失函数Hold-out留出法Homogeneous同质Hybrid computing混合计算Hyperparameter超参数Hypothesis假设Hypothesis test假设验证9、I开头的词汇ICML国际机器学习会议Improved iterative scaling/IIS改进的迭代尺度法Incremental learning增量学习Independent and identically distributed/i.i.d.独立同分布Independent Component Analysis/ICA独立成分分析Indicator function指示函数Individual learner个体学习器Induction归纳Inductive bias归纳偏好Inductive learning归纳学习Inductive Logic Programming/ILP归纳逻辑程序设计Information entropy信息熵Information gain信息增益Input layer输入层Insensitive loss不敏感损失Inter-cluster similarity簇间相似度International Conference for Machine Learning/ICML国际机器学习大会Intra-cluster similarity簇内相似度Intrinsic value固有值Isometric Mapping/Isomap等度量映射Isotonic regression等分回归Iterative Dichotomiser迭代二分器10、K开头的词汇Kernel method核方法Kernel trick核技巧Kernelized Linear Discriminant Analysis/KLDA核线性判别分析K-fold cross validation k 折交叉验证/k 倍交叉验证K-Means Clustering K –均值聚类K-Nearest Neighbours Algorithm/KNN K近邻算法Knowledge base知识库Knowledge Representation知识表征11、L开头的词汇Label space标记空间Lagrange duality拉格朗日对偶性Lagrange multiplier拉格朗日乘子Laplace smoothing拉普拉斯平滑Laplacian correction拉普拉斯修正Latent Dirichlet Allocation隐狄利克雷分布Latent semantic analysis潜在语义分析Latent variable隐变量Lazy learning懒惰学习Learner学习器Learning by analogy类比学习Learning rate学习率Learning Vector Quantization/LVQ学习向量量化Least squares regression tree最小二乘回归树Leave-One-Out/LOO留一法linear chain conditional random field线性链条件随机场Linear Discriminant Analysis/LDA线性判别分析Linear model线性模型Linear Regression线性回归Link function联系函数Local Markov property局部马尔可夫性Local minimum局部最小Log likelihood对数似然Log odds/logit对数几率Logistic Regression Logistic 回归Log-likelihood对数似然Log-linear regression对数线性回归Long-Short Term Memory/LSTM长短期记忆Loss function损失函数12、M开头的词汇Machine translation/MT机器翻译Macron-P宏查准率Macron-R宏查全率Majority voting绝对多数投票法Manifold assumption流形假设Manifold learning流形学习Margin theory间隔理论Marginal distribution边际分布Marginal independence边际独立性Marginalization边际化Markov Chain Monte Carlo/MCMC马尔可夫链蒙特卡罗方法Markov Random Field马尔可夫随机场Maximal clique最大团Maximum Likelihood Estimation/MLE极大似然估计/极大似然法Maximum margin最大间隔Maximum weighted spanning tree最大带权生成树Max-Pooling最大池化Mean squared error均方误差Meta-learner元学习器Metric learning度量学习Micro-P微查准率Micro-R微查全率Minimal Description Length/MDL最小描述长度Minimax game极小极大博弈Misclassification cost误分类成本Mixture of experts混合专家Momentum动量Moral graph道德图/端正图Multi-class classification多分类Multi-document summarization多文档摘要Multi-layer feedforward neural networks多层前馈神经网络Multilayer Perceptron/MLP多层感知器Multimodal learning多模态学习Multiple Dimensional Scaling多维缩放Multiple linear regression多元线性回归Multi-response Linear Regression /MLR多响应线性回归Mutual information互信息13、N开头的词汇Naive bayes朴素贝叶斯Naive Bayes Classifier朴素贝叶斯分类器Named entity recognition命名实体识别Nash equilibrium纳什均衡Natural language generation/NLG自然语言生成Natural language processing自然语言处理Negative class负类Negative correlation负相关法Negative Log Likelihood负对数似然Neighbourhood Component Analysis/NCA近邻成分分析Neural Machine Translation神经机器翻译Neural Turing Machine神经图灵机Newton method牛顿法NIPS国际神经信息处理系统会议No Free Lunch Theorem/NFL没有免费的午餐定理Noise-contrastive estimation噪音对比估计Nominal attribute列名属性Non-convex optimization非凸优化Nonlinear model非线性模型Non-metric distance非度量距离Non-negative matrix factorization非负矩阵分解Non-ordinal attribute无序属性Non-Saturating Game非饱和博弈Norm范数Normalization归一化Nuclear norm核范数Numerical attribute数值属性14、O开头的词汇Objective function目标函数Oblique decision tree斜决策树Occam’s razor奥卡姆剃刀Odds几率Off-Policy离策略One shot learning一次性学习One-Dependent Estimator/ODE独依赖估计On-Policy在策略Ordinal attribute有序属性Out-of-bag estimate包外估计Output layer输出层Output smearing输出调制法Overfitting过拟合/过配Oversampling过采样15、P开头的词汇Paired t-test成对t 检验Pairwise成对型Pairwise Markov property成对马尔可夫性Parameter参数Parameter estimation参数估计Parameter tuning调参Parse tree解析树Particle Swarm Optimization/PSO粒子群优化算法Part-of-speech tagging词性标注Perceptron感知机Performance measure性能度量Plug and Play Generative Network即插即用生成网络Plurality voting相对多数投票法Polarity detection极性检测Polynomial kernel function多项式核函数Pooling池化Positive class正类Positive definite matrix正定矩阵Post-hoc test后续检验Post-pruning后剪枝potential function势函数Precision查准率/准确率Prepruning预剪枝Principal component analysis/PCA主成分分析Principle of multiple explanations多释原则Prior先验Probability Graphical Model概率图模型Proximal Gradient Descent/PGD近端梯度下降Pruning剪枝Pseudo-label伪标记16、Q开头的词汇Quantized Neural Network量子化神经网络Quantum computer量子计算机Quantum Computing量子计算Quasi Newton method拟牛顿法17、R开头的词汇Radial Basis Function/RBF径向基函数Random Forest Algorithm随机森林算法Random walk随机漫步Recall查全率/召回率Receiver Operating Characteristic/ROC受试者工作特征Rectified Linear Unit/ReLU线性修正单元Recurrent Neural Network循环神经网络Recursive neural network递归神经网络Reference model参考模型Regression回归Regularization正则化Reinforcement learning/RL强化学习Representation learning表征学习Representer theorem表示定理reproducing kernel Hilbert space/RKHS再生核希尔伯特空间Re-sampling重采样法Rescaling再缩放Residual Mapping残差映射Residual Network残差网络Restricted Boltzmann Machine/RBM受限玻尔兹曼机Restricted Isometry Property/RIP限定等距性Re-weighting重赋权法Robustness稳健性/鲁棒性Root node根结点Rule Engine规则引擎Rule learning规则学习18、S开头的词汇Saddle point鞍点Sample space样本空间Sampling采样Score function评分函数Self-Driving自动驾驶Self-Organizing Map/SOM自组织映射Semi-naive Bayes classifiers半朴素贝叶斯分类器Semi-Supervised Learning半监督学习semi-Supervised Support Vector Machine半监督支持向量机Sentiment analysis情感分析Separating hyperplane分离超平面Sigmoid function Sigmoid 函数Similarity measure相似度度量Simulated annealing模拟退火Simultaneous localization and mapping同步定位与地图构建Singular Value Decomposition奇异值分解Slack variables松弛变量Smoothing平滑Soft margin软间隔Soft margin maximization软间隔最大化Soft voting软投票Sparse representation稀疏表征Sparsity稀疏性Specialization特化Spectral Clustering谱聚类Speech Recognition语音识别Splitting variable切分变量Squashing function挤压函数Stability-plasticity dilemma可塑性-稳定性困境Statistical learning统计学习Status feature function状态特征函Stochastic gradient descent随机梯度下降Stratified sampling分层采样Structural risk结构风险Structural risk minimization/SRM结构风险最小化Subspace子空间Supervised learning监督学习/有导师学习support vector expansion支持向量展式Support Vector Machine/SVM支持向量机Surrogat loss替代损失Surrogate function替代函数Symbolic learning符号学习Symbolism符号主义Synset同义词集19、T开头的词汇T-Distribution Stochastic Neighbour Embedding/t-SNE T–分布随机近邻嵌入Tensor张量Tensor Processing Units/TPU张量处理单元The least square method最小二乘法Threshold阈值Threshold logic unit阈值逻辑单元Threshold-moving阈值移动Time Step时间步骤Tokenization标记化Training error训练误差Training instance训练示例/训练例Transductive learning直推学习Transfer learning迁移学习Treebank树库Tria-by-error试错法True negative真负类True positive真正类True Positive Rate/TPR真正例率Turing Machine图灵机Twice-learning二次学习20、U开头的词汇Underfitting欠拟合/欠配Undersampling欠采样Understandability可理解性Unequal cost非均等代价Unit-step function单位阶跃函数Univariate decision tree单变量决策树Unsupervised learning无监督学习/无导师学习Unsupervised layer-wise training无监督逐层训练Upsampling上采样21、V开头的词汇Vanishing Gradient Problem梯度消失问题Variational inference变分推断VC Theory VC维理论Version space版本空间Viterbi algorithm维特比算法Von Neumann architecture冯·诺伊曼架构22、W开头的词汇Wasserstein GAN/WGAN Wasserstein生成对抗网络Weak learner弱学习器Weight权重Weight sharing权共享Weighted voting加权投票法Within-class scatter matrix类内散度矩阵Word embedding词嵌入Word sense disambiguation词义消歧23、Z开头的词汇Zero-data learning零数据学习Zero-shot learning零次学习。
大数据算法模型
大数据算法模型大数据领域涉及到的算法模型非常多,具体选择取决于数据的特征、问题的性质以及任务的需求。
以下是一些在大数据分析中常用的算法模型:1. 分类算法:• Logistic Regression(逻辑回归):适用于二分类问题,也可扩展到多分类。
• Decision Trees(决策树):可用于分类和回归问题,易于理解和解释。
• Random Forest(随机森林):由多个决策树组成,可以提高模型的稳定性和准确性。
• Gradient Boosting Machines(梯度提升机):通过组合多个弱学习器来构建一个强学习器。
2. 聚类算法:• K-Means:将数据划分为K个簇,每个簇内的数据点距离其簇内其他点的平均值最小。
• Hierarchical Clustering(层次聚类):通过不断合并或分割簇来构建层次化的聚类结构。
• DBSCAN(基于密度的空间聚类):通过密度来识别簇,适用于非凸形状的簇。
3. 回归算法:• Linear Regression(线性回归):适用于建立输入和输出之间的线性关系。
• Ridge Regression(岭回归)和Lasso Regression(套索回归):用于处理特征共线性和特征选择。
• Elastic Net Regression:结合了岭回归和套索回归的优点。
4. 关联规则挖掘:• Apriori算法:用于发现数据集中频繁出现的项集,尤其在购物篮分析等领域有应用。
• FP-Growth算法:一种高效的挖掘频繁项集的算法,常用于大规模数据集。
5. 降维算法:•主成分分析(PCA):通过线性变换将数据映射到低维空间,保留最大的方差。
• t-SNE:用于可视化高维数据,尤其擅长保留数据中的局部结构。
6. 深度学习模型:•神经网络:包括卷积神经网络(CNN)、循环神经网络(RNN)等,适用于图像识别、自然语言处理等任务。
•深度自编码器:用于学习数据的紧凑表示,常用于无监督学习。
35种原点回归模式
35种原点回归模式详解在数据分析与机器学习的领域中,回归分析是一种重要的统计方法,用于研究因变量与自变量之间的关系。
以下是35种常见的回归分析方法,包括线性回归、多项式回归、逻辑回归等。
1.线性回归(Linear Regression):最简单且最常用的回归分析方法,适用于因变量与自变量之间存在线性关系的情况。
2.多项式回归(Polynomial Regression):通过引入多项式函数来扩展线性回归模型,以适应非线性关系。
3.逻辑回归(Logistic Regression):用于二元分类问题的回归分析方法,其因变量是二元的逻辑函数。
4.岭回归(Ridge Regression):通过增加一个正则化项来防止过拟合,有助于提高模型的泛化能力。
5.主成分回归(Principal Component Regression):利用主成分分析降维后进行线性回归,减少数据的复杂性。
6.套索回归(Lasso Regression):通过引入L1正则化,强制某些系数为零,从而实现特征选择。
7.弹性网回归(ElasticNet Regression):结合了L1和L2正则化,以同时实现特征选择和防止过拟合。
8.多任务学习回归(Multi-task Learning Regression):将多个任务共享部分特征,以提高预测性能和泛化能力。
9.时间序列回归(Time Series Regression):专门针对时间序列数据设计的回归模型,考虑了时间依赖性和滞后效应。
10.支持向量回归(Support Vector Regression):利用支持向量机技术构建的回归模型,适用于小样本数据集。
11.K均值聚类回归(K-means Clustering Regression):将聚类算法与回归分析相结合,通过对数据进行聚类后再进行回归预测。
12.高斯过程回归(Gaussian Process Regression):基于高斯过程的非参数贝叶斯方法,适用于解决非线性回归问题。
人工智能英汉
人工智能英汉Aβα-Pruning, βα-剪枝, (2) Acceleration Coefficient, 加速系数, (8) Activation Function, 激活函数, (4) Adaptive Linear Neuron, 自适应线性神经元,(4)Adenine, 腺嘌呤, (11)Agent, 智能体, (6)Agent Communication Language, 智能体通信语言, (11)Agent-Oriented Programming, 面向智能体的程序设计, (6)Agglomerative Hierarchical Clustering, 凝聚层次聚类, (5)Analogism, 类比推理, (5)And/Or Graph, 与或图, (2)Ant Colony Optimization (ACO), 蚁群优化算法, (8)Ant Colony System (ACS), 蚁群系统, (8) Ant-Cycle Model, 蚁周模型, (8)Ant-Density Model, 蚁密模型, (8)Ant-Quantity Model, 蚁量模型, (8)Ant Systems, 蚂蚁系统, (8)Applied Artificial Intelligence, 应用人工智能, (1)Approximate Nondeterministic Tree Search (ANTS), 近似非确定树搜索, (8) Artificial Ant, 人工蚂蚁, (8)Artificial Intelligence (AI), 人工智能, (1) Artificial Neural Network (ANN), 人工神经网络, (1), (3)Artificial Neural System, 人工神经系统,(3) Artificial Neuron, 人工神经元, (3) Associative Memory, 联想记忆, (4) Asynchronous Mode, 异步模式, (4) Attractor, 吸引子, (4)Automatic Theorem Proving, 自动定理证明,(1)Automatic Programming, 自动程序设计, (1) Average Reward, 平均收益, (6) Axon, 轴突, (4)Axon Hillock, 轴突丘, (4)BBackward Chain Reasoning, 逆向推理, (3) Bayesian Belief Network, 贝叶斯信念网, (5) Bayesian Decision, 贝叶斯决策, (3) Bayesian Learning, 贝叶斯学习, (5) Bayesian Network贝叶斯网, (5)Bayesian Rule, 贝叶斯规则, (3)Bayesian Statistics, 贝叶斯统计学, (3) Biconditional, 双条件, (3)Bi-Directional Reasoning, 双向推理, (3) Biological Neuron, 生物神经元, (4) Biological Neural System, 生物神经系统, (4) Blackboard System, 黑板系统, (8)Blind Search, 盲目搜索, (2)Boltzmann Machine, 波尔兹曼机, (3) Boltzmann-Gibbs Distribution, 波尔兹曼-吉布斯分布, (3)Bottom-Up, 自下而上, (4)Building Block Hypotheses, 构造块假说, (7) CCell Body, 细胞体, (3)Cell Membrane, 细胞膜, (3)Cell Nucleus, 细胞核, (3)Certainty Factor, 可信度, (3)Child Machine, 婴儿机器, (1)Chinese Room, 中文屋, (1) Chromosome, 染色体, (6)Class-conditional Probability, 类条件概率,(3), (5)Classifier System, 分类系统, (6)Clause, 子句, (3)Cluster, 簇, (5)Clustering Analysis, 聚类分析, (5) Cognitive Science, 认知科学, (1) Combination Function, 整合函数, (4) Combinatorial Optimization, 组合优化, (2) Competitive Learning, 竞争学习, (4) Complementary Base, 互补碱基, (11) Computer Games, 计算机博弈, (1) Computer Vision, 计算机视觉, (1)Conflict Resolution, 冲突消解, (3) Conjunction, 合取, (3)Conjunctive Normal Form (CNF), 合取范式,(3)Collapse, 坍缩, (11)Connectionism, 连接主义, (3) Connective, 连接词, (3)Content Addressable Memory, 联想记忆, (4) Control Policy, 控制策略, (6)Crossover, 交叉, (7)Cytosine, 胞嘧啶, (11)DData Mining, 数据挖掘, (1)Decision Tree, 决策树, (5) Decoherence, 消相干, (11)Deduction, 演绎, (3)Default Reasoning, 默认推理(缺省推理),(3)Defining Length, 定义长度, (7)Rule (Delta Rule), 德尔塔规则, 18(3) Deliberative Agent, 慎思型智能体, (6) Dempster-Shafer Theory, 证据理论, (3) Dendrites, 树突, (4)Deoxyribonucleic Acid (DNA), 脱氧核糖核酸, (6), (11)Disjunction, 析取, (3)Distributed Artificial Intelligence (DAI), 分布式人工智能, (1)Distributed Expert Systems, 分布式专家系统,(9)Divisive Hierarchical Clustering, 分裂层次聚类, (5)DNA Computer, DNA计算机, (11)DNA Computing, DNA计算, (11) Discounted Cumulative Reward, 累计折扣收益, (6)Domain Expert, 领域专家, (10) Dominance Operation, 显性操作, (7) Double Helix, 双螺旋结构, (11)Dynamical Network, 动态网络, (3)E8-Puzzle Problem, 八数码问题, (2) Eletro-Optical Hybrid Computer, 光电混合机, (11)Elitist strategy for ant systems (EAS), 精化蚂蚁系统, (8)Energy Function, 能量函数, (3) Entailment, 永真蕴含, (3) Entanglement, 纠缠, (11)Entropy, 熵, (5)Equivalence, 等价式, (3)Error Back-Propagation, 误差反向传播, (4) Evaluation Function, 评估函数, (6) Evidence Theory, 证据理论, (3) Evolution, 进化, (7)Evolution Strategies (ES), 进化策略, (7) Evolutionary Algorithms (EA), 进化算法, (7) Evolutionary Computation (EC), 进化计算,(7)Evolutionary Programming (EP), 进化规划,(7)Existential Quantification, 存在量词, (3) Expert System, 专家系统, (1)Expert System Shell, 专家系统外壳, (9) Explanation-Based Learning, 解释学习, (5) Explanation Facility, 解释机构, (9)FFactoring, 因子分解, (11)Feedback Network, 反馈型网络, (4) Feedforward Network, 前馈型网络, (1) Feasible Solution, 可行解, (2)Finite Horizon Reward, 横向有限收益, (6) First-order Logic, 一阶谓词逻辑, (3) Fitness, 适应度, (7)Forward Chain Reasoning, 正向推理, (3) Frame Problem, 框架问题, (1)Framework Theory, 框架理论, (3)Free-Space Optical Interconnect, 自由空间光互连, (11)Fuzziness, 模糊性, (3)Fuzzy Logic, 模糊逻辑, (3)Fuzzy Reasoning, 模糊推理, (3)Fuzzy Relation, 模糊关系, (3)Fuzzy Set, 模糊集, (3)GGame Theory, 博弈论, (8)Gene, 基因, (7)Generation, 代, (6)Genetic Algorithms, 遗传算法, (7)Genetic Programming, 遗传规划(遗传编程),(7)Global Search, 全局搜索, (2)Gradient Descent, 梯度下降, (4)Graph Search, 图搜索, (2)Group Rationality, 群体理性, (8) Guanine, 鸟嘌呤, (11)HHanoi Problem, 梵塔问题, (2)Hebbrian Learning, 赫伯学习, (4)Heuristic Information, 启发式信息, (2) Heuristic Search, 启发式搜索, (2)Hidden Layer, 隐含层, (4)Hierarchical Clustering, 层次聚类, (5) Holographic Memory, 全息存储, (11) Hopfield Network, 霍普菲尔德网络, (4) Hybrid Agent, 混合型智能体, (6)Hype-Cube Framework, 超立方体框架, (8)IImplication, 蕴含, (3)Implicit Parallelism, 隐并行性, (7) Individual, 个体, (6)Individual Rationality, 个体理性, (8) Induction, 归纳, (3)Inductive Learning, 归纳学习, (5) Inference Engine, 推理机, (9)Information Gain, 信息增益, (3)Input Layer, 输入层, (4)Interpolation, 插值, (4)Intelligence, 智能, (1)Intelligent Control, 智能控制, (1) Intelligent Decision Supporting System (IDSS), 智能决策支持系统,(1) Inversion Operation, 倒位操作, (7)JJoint Probability Distribution, 联合概率分布,(5) KK-means, K-均值, (5)K-medoids, K-中心点, (3)Knowledge, 知识, (3)Knowledge Acquisition, 知识获取, (9) Knowledge Base, 知识库, (9)Knowledge Discovery, 知识发现, (1) Knowledge Engineering, 知识工程, (1) Knowledge Engineer, 知识工程师, (9) Knowledge Engineering Language, 知识工程语言, (9)Knowledge Interchange Format (KIF), 知识交换格式, (8)Knowledge Query and ManipulationLanguage (KQML), 知识查询与操纵语言,(8)Knowledge Representation, 知识表示, (3)LLearning, 学习, (3)Learning by Analog, 类比学习, (5) Learning Factor, 学习因子, (8)Learning from Instruction, 指导式学习, (5) Learning Rate, 学习率, (6)Least Mean Squared (LSM), 最小均方误差,(4)Linear Function, 线性函数, (3)List Processing Language (LISP), 表处理语言, (10)Literal, 文字, (3)Local Search, 局部搜索, (2)Logic, 逻辑, (3)Lyapunov Theorem, 李亚普罗夫定理, (4) Lyapunov Function, 李亚普罗夫函数, (4)MMachine Learning, 机器学习, (1), (5) Markov Decision Process (MDP), 马尔科夫决策过程, (6)Markov Chain Model, 马尔科夫链模型, (7) Maximum A Posteriori (MAP), 极大后验概率估计, (5)Maxmin Search, 极大极小搜索, (2)MAX-MIN Ant Systems (MMAS), 最大最小蚂蚁系统, (8)Membership, 隶属度, (3)Membership Function, 隶属函数, (3) Metaheuristic Search, 元启发式搜索, (2) Metagame Theory, 元博弈理论, (8) Mexican Hat Function, 墨西哥草帽函数, (4) Migration Operation, 迁移操作, (7) Minimum Description Length (MDL), 最小描述长度, (5)Minimum Squared Error (MSE), 最小二乘法,(4)Mobile Agent, 移动智能体, (6)Model-based Methods, 基于模型的方法, (6) Model-free Methods, 模型无关方法, (6) Modern Heuristic Search, 现代启发式搜索,(2)Monotonic Reasoning, 单调推理, (3)Most General Unification (MGU), 最一般合一, (3)Multi-Agent Systems, 多智能体系统, (8) Multi-Layer Perceptron, 多层感知器, (4) Mutation, 突变, (6)Myelin Sheath, 髓鞘, (4)(μ+1)-ES, (μ+1) -进化规划, (7)(μ+λ)-ES, (μ+λ) -进化规划, (7) (μ,λ)-ES, (μ,λ) -进化规划, (7)NNaïve Bayesian Classifiers, 朴素贝叶斯分类器, (5)Natural Deduction, 自然演绎推理, (3) Natural Language Processing, 自然语言处理,(1)Negation, 否定, (3)Network Architecture, 网络结构, (6)Neural Cell, 神经细胞, (4)Neural Optimization, 神经优化, (4) Neuron, 神经元, (4)Neuron Computing, 神经计算, (4)Neuron Computation, 神经计算, (4)Neuron Computer, 神经计算机, (4) Niche Operation, 生态操作, (7) Nitrogenous base, 碱基, (11)Non-Linear Dynamical System, 非线性动力系统, (4)Non-Monotonic Reasoning, 非单调推理, (3) Nouvelle Artificial Intelligence, 行为智能,(6)OOccam’s Razor, 奥坎姆剃刀, (5)(1+1)-ES, (1+1) -进化规划, (7)Optical Computation, 光计算, (11)Optical Computing, 光计算, (11)Optical Computer, 光计算机, (11)Optical Fiber, 光纤, (11)Optical Waveguide, 光波导, (11)Optical Interconnect, 光互连, (11) Optimization, 优化, (2)Optimal Solution, 最优解, (2)Orthogonal Sum, 正交和, (3)Output Layer, 输出层, (4)Outer Product, 外积法, 23(4)PPanmictic Recombination, 混杂重组, (7) Particle, 粒子, (8)Particle Swarm, 粒子群, (8)Particle Swarm Optimization (PSO), 粒子群优化算法, (8)Partition Clustering, 划分聚类, (5) Partitioning Around Medoids, K-中心点, (3) Pattern Recognition, 模式识别, (1) Perceptron, 感知器, (4)Pheromone, 信息素, (8)Physical Symbol System Hypothesis, 物理符号系统假设, (1)Plausibility Function, 不可驳斥函数(似然函数), (3)Population, 物种群体, (6)Posterior Probability, 后验概率, (3)Priori Probability, 先验概率, (3), (5) Probability, 随机性, (3)Probabilistic Reasoning, 概率推理, (3) Probability Assignment Function, 概率分配函数, (3)Problem Solving, 问题求解, (2)Problem Reduction, 问题归约, (2)Problem Decomposition, 问题分解, (2) Problem Transformation, 问题变换, (2) Product Rule, 产生式规则, (3)Product System, 产生式系统, (3) Programming in Logic (PROLOG), 逻辑编程, (10)Proposition, 命题, (3)Propositional Logic, 命题逻辑, (3)Pure Optical Computer, 全光计算机, (11)QQ-Function, Q-函数, (6)Q-learning, Q-学习, (6)Quantifier, 量词, (3)Quantum Circuit, 量子电路, (11)Quantum Fourier Transform, 量子傅立叶变换, (11)Quantum Gate, 量子门, (11)Quantum Mechanics, 量子力学, (11) Quantum Parallelism, 量子并行性, (11) Qubit, 量子比特, (11)RRadial Basis Function (RBF), 径向基函数,(4)Rank based ant systems (ASrank), 基于排列的蚂蚁系统, (8)Reactive Agent, 反应型智能体, (6) Recombination, 重组, (6)Recurrent Network, 循环网络, (3) Reinforcement Learning, 强化学习, (3) Resolution, 归结, (3)Resolution Proof, 归结反演, (3) Resolution Strategy, 归结策略, (3) Reasoning, 推理, (3)Reward Function, 奖励函数, (6) Robotics, 机器人学, (1)Rote Learning, 机械式学习, (5)SSchema Theorem, 模板定理, (6) Search, 搜索, (2)Selection, 选择, (7)Self-organizing Maps, 自组织特征映射, (4) Semantic Network, 语义网络, (3)Sexual Differentiation, 性别区分, (7) Shor’s algorithm, 绍尔算法, (11)Sigmoid Function, Sigmoid 函数(S型函数),(4)Signal Function, 信号函数, (3)Situated Artificial Intelligence, 现场式人工智能, (1)Spatial Light Modulator (SLM), 空间光调制器, (11)Speech Act Theory, 言语行为理论, (8) Stable State, 稳定状态, (4)Stability Analysis, 稳定性分析, (4)State Space, 状态空间, (2)State Transfer Function, 状态转移函数,(6)Substitution, 置换, (3)Stochastic Learning, 随机型学习, (4) Strong Artificial Intelligence (AI), 强人工智能, (1)Subsumption Architecture, 包容结构, (6) Superposition, 叠加, (11)Supervised Learning, 监督学习, (4), (5) Swarm Intelligence, 群智能, (8)Symbolic Artificial Intelligence (AI), 符号式人工智能(符号主义), (3) Synapse, 突触, (4)Synaptic Terminals, 突触末梢, (4) Synchronous Mode, 同步模式, (4)TThreshold, 阈值, (4)Threshold Function, 阈值函数, (4) Thymine, 胸腺嘧啶, (11)Topological Structure, 拓扑结构, (4)Top-Down, 自上而下, (4)Transfer Function, 转移函数, (4)Travel Salesman Problem, 旅行商问题, (4) Turing Test, 图灵测试, (1)UUncertain Reasoning, 不确定性推理, (3)Uncertainty, 不确定性, (3)Unification, 合一, (3)Universal Quantification, 全称量词, (4) Unsupervised Learning, 非监督学习, (4), (5)WWeak Artificial Intelligence (Weak AI), 弱人工智能, (1)Weight, 权值, (4)Widrow-Hoff Rule, 维德诺-霍夫规则, (4)。
各种聚类算法介绍及对比
各种聚类算法介绍及对比聚类算法是一种无监督学习的方法,目标是将数据集中的样本分成不同的组或簇,使得同一个簇内的样本相似度高,而不同簇之间的相似度低。
聚类算法主要有层次聚类、K-means、DBSCAN、谱聚类和密度聚类等。
下面将介绍这些聚类算法,并进行一些对比分析。
1. 层次聚类(Hierarchical Clustering)层次聚类算法可分为自上而下的凝聚聚类和自下而上的分裂聚类。
凝聚聚类从所有样本开始,逐步合并相似的样本,形成一个层次树状结构。
分裂聚类从一个单独的样本开始,逐步分裂为更小的簇,形成一个层次树状结构。
层次聚类的优点是可以根据需要选择得到任意数量的簇,但计算复杂度较高。
2. K-meansK-means是一种划分聚类算法,其步骤为:首先随机选择K个簇中心点,然后根据样本与簇中心的距离将样本划分至最近的簇,接着根据划分结果重新计算簇中心,重复上述过程直到算法收敛。
K-means算法简单高效,但对于非球形簇的数据集表现一般。
3. DBSCAN(Density-Based Spatial Clustering of Applications with Noise)DBSCAN是一种基于密度的聚类算法,不需要预先指定簇的数量。
DBSCAN将样本分为核心对象、边界对象和噪声对象,根据样本之间的密度和可达性关系进行聚类。
核心对象周围一定距离内的样本将被划分为同一个簇。
DBSCAN适用于有噪声数据和不规则形状簇的聚类,但对密度差异较大的数据集效果可能较差。
4. 谱聚类(Spectral Clustering)谱聚类算法先通过样本之间的相似度构建相似度矩阵,然后选取相似度矩阵的前k个最大特征值对应的特征向量作为样本的新表示。
接着将新表示的样本集采用K-means等方法进行聚类。
谱聚类算法在处理复杂几何结构、高维数据和大规模数据时表现出色,但需要选择合适的相似度计算方法和簇的数量。
5. 密度聚类(Density-Based Clustering)密度聚类算法通过估计样本的局部密度来发现簇。
“机器学习”课程教学大纲.
“机器学习”课程教学大纲一、课程名称:机器学习二、学分:3三、先修课程:高等数学、计算方法、概率论四、开课目的本课程是面向数学科学学院、信息科学学院研究生开设的专业基础课(高年级本科生可选修)。
其教学目的是使学生掌握常见“机器学习”类型:监督学习、无监督学习、半监督学习和强化学习中的主要学习算法,包括算法的主要思想和基本步骤,并通过编程练习和典型应用实例加深了解;同时对机器学习的一般理论,如计算学习理论、采样理论等有所了解。
要求选课学生事先受过基本编程训练,熟悉C/C++或Matlab编程语言,具有多元微积分、高等代数和概率统计方面基本知识。
五、教材主要参考书:“Machine Learning”by Tom Mitchell,辅助参考书:“Pattern Recognition and Machine Learning”by Christopher Bishop;“Pattern Recognition”by Richard Duda et al。
六、课程进度课程内容主要由机器学习简介、监督学习、计算学习理论、无监督学习、半监督学习、增强学习组成,其中监督学习包括决策树、贝叶斯学习、核方法、神经网络、图模型,和隐马尔科夫模型,以下是课程进度,括号中的数字为大约所需授课时间。
1)Introduction to machine learning (2hr)2)Inductive learning, decision tree (2hr)3)Evaluating hypotheses, covering Estimating hypothesis accuracy, Basics of sampling theory,and Comparing learning algorithm (3hr).4)Bayesian learning, covering Bayesian theory, Maximum likelihood and MAP estimators,Minimum Description Length Principle, Bayes Optimal Classifier, and Naïve Bayesianclassifier (3hr).5)Computational learning theory, covering PAC learning, VC dimension etc. (3hr)6)Kernel methods, covering Dual representations, Constructing kernels, Radical basisfunction networks, and Gaussian process (4hr).7)Artificial neural network, covering perceptron, multilayer network and the backpropagationalgorithm, and facial recognition as an example (3hr).8)Graphical models, covering Bayesian network, Conditional independence, Markov RandomFields, and Inference in graphical models (8hr)9)Sampling methods, covering Basic sampling algorithms and Markov Chain Monte Carlo(3hr).10)Markov model and Hidden Markov model (HMM), and application of HMM in speechrecognition (3hr).11)Clustering, focusing on Density-based clustering and Hierarchical clustering (2hr).12)Semi-supervised learning (3hr)13)Reinforcement learning, covering Q learning etc. (3hr)在上述内容中1–5、7和13主要出自Mitchell著作中的相关章节,6和8–10主要出自Bishop 著作中的相关章节。
hierarchical clustering结果解读
hierarchical clustering结果解读层次聚类(Hierarchical Clustering)是一种用于将数据集分成层次结构的聚类方法。
聚类的结果可以通过树状图(树状图或树状图)来表示。
以下是层次聚类结果的解读步骤:1.树状图(Dendrogram):层次聚类的主要输出是一个树状图,它显示了数据点如何被聚合成不同的群集。
树状图的每个叶子表示一个数据点,而内部节点表示聚类的合并。
2.横轴表示数据点:树状图的横轴表示数据点或聚类的成员。
树状图的底部是原始的数据点,而树状图的顶部是整个数据集。
3.纵轴表示合并距离:树状图的纵轴表示合并(或分裂)的距离。
在这个轴上,你可以看到数据点或聚类合并的距离,这可以帮助你决定在何处剪切树来获得最佳聚类。
4.切割树:通过在树状图上选择一个高度来切割树,你可以得到不同数量的聚类。
较低的切割高度将导致更多、更大的聚类,而较高的切割高度将导致更少、更小的聚类。
5.聚类标识:根据所选切割高度,可以将树状图的分支分为不同的聚类。
每个聚类由树状图的一个分支表示。
6.解释聚类:分析每个聚类的成员,以了解它们共享的特征或属性。
这可能需要进一步的数据分析和领域知识。
7.评估聚类结果:使用合适的聚类质量评估指标(如轮廓系数、Davies-Bouldin指数等)来评估聚类的质量。
这些指标可以帮助你了解聚类是否合理,聚类之间的差异有多大。
层次聚类结果的解读取决于具体的数据和分析目标。
聚类的选择和解释可能需要深入的领域知识,以确保得到有实际意义的结果。
人工智能专业重要词汇表
⼈⼯智能专业重要词汇表A开头的词汇Artificial General Intelligence/AGI 通⽤⼈⼯智能Artificial Intelligence/AI ⼈⼯智能Association analysis 关联分析Attention mechanism 注意⼒机制Attribute conditional independence assumption 属性条件独⽴性假设Attribute space 属性空间Attribute value 属性值Autoencoder ⾃编码器Automatic speech recognition ⾃动语⾳识别Automatic summarization ⾃动摘要Average gradient 平均梯度Average-Pooling 平均池化Accumulated error backpropagation 累积误差逆传播Activation Function 激活函数Adaptive Resonance Theory/ART ⾃适应谐振理论Addictive model 加性学习Adversarial Networks 对抗⽹络Affine Layer 仿射层Affinity matrix 亲和矩阵Agent 代理 / 智能体Algorithm 算法Alpha-beta pruning α-β剪枝Anomaly detection 异常检测Approximation 近似Area Under ROC Curve/AUC Roc 曲线下⾯积B开头的词汇Backpropagation Through Time 通过时间的反向传播Backpropagation/BP 反向传播Base learner 基学习器Base learning algorithm 基学习算法Batch Normalization/BN 批量归⼀化Bayes decision rule 贝叶斯判定准则Bayes Model Averaging/BMA 贝叶斯模型平均Bayes optimal classifier 贝叶斯最优分类器Bayesian decision theory 贝叶斯决策论Bayesian network 贝叶斯⽹络Between-class scatter matrix 类间散度矩阵Bias 偏置 / 偏差Bias-variance decomposition 偏差-⽅差分解Bias-Variance Dilemma 偏差 – ⽅差困境Bi-directional Long-Short Term Memory/Bi-LSTM 双向长短期记忆Binary classification ⼆分类Binomial test ⼆项检验Bi-partition ⼆分法Boltzmann machine 玻尔兹曼机Bootstrap sampling ⾃助采样法/可重复采样/有放回采样Bootstrapping ⾃助法Break-Event Point/BEP 平衡点3、C开头的词汇Calibration 校准Cascade-Correlation 级联相关Categorical attribute 离散属性Class-conditional probability 类条件概率Classification and regression tree/CART 分类与回归树Classifier 分类器Class-imbalance 类别不平衡Closed -form 闭式Cluster 簇/类/集群Cluster analysis 聚类分析Clustering 聚类Clustering ensemble 聚类集成Co-adapting 共适应Coding matrix 编码矩阵COLT 国际学习理论会议Committee-based learning 基于委员会的学习Competitive learning 竞争型学习Component learner 组件学习器Comprehensibility 可解释性Computation Cost 计算成本Computational Linguistics 计算语⾔学Computer vision 计算机视觉Concept drift 概念漂移Concept Learning System /CLS 概念学习系统Conditional entropy 条件熵Conditional mutual information 条件互信息Conditional Probability Table/CPT 条件概率表Conditional random field/CRF 条件随机场Conditional risk 条件风险Confidence 置信度Confusion matrix 混淆矩阵Connection weight 连接权Connectionism 连结主义Consistency ⼀致性/相合性Contingency table 列联表Continuous attribute 连续属性Convergence 收敛Conversational agent 会话智能体Convex quadratic programming 凸⼆次规划Convexity 凸性Convolutional neural network/CNN 卷积神经⽹络Co-occurrence 同现Correlation coefficient 相关系数Cosine similarity 余弦相似度Cost curve 成本曲线Cost Function 成本函数Cost matrix 成本矩阵Cost-sensitive 成本敏感Cross entropy 交叉熵Cross validation 交叉验证Crowdsourcing 众包Curse of dimensionality 维数灾难Cut point 截断点Cutting plane algorithm 割平⾯法4、D开头的词汇Data mining 数据挖掘Data set 数据集Decision Boundary 决策边界Decision stump 决策树桩Decision tree 决策树/判定树Deduction 演绎Deep Belief Network 深度信念⽹络Deep Convolutional Generative Adversarial Network/DCGAN 深度卷积⽣成对抗⽹络Deep learning 深度学习Deep neural network/DNN 深度神经⽹络Deep Q-Learning 深度 Q 学习Deep Q-Network 深度 Q ⽹络Density estimation 密度估计Density-based clustering 密度聚类Differentiable neural computer 可微分神经计算机Dimensionality reduction algorithm 降维算法Directed edge 有向边Disagreement measure 不合度量Discriminative model 判别模型Discriminator 判别器Distance measure 距离度量Distance metric learning 距离度量学习Distribution 分布Divergence 散度Diversity measure 多样性度量/差异性度量Domain adaption 领域⾃适应Downsampling 下采样D-separation (Directed separation)有向分离Dual problem 对偶问题Dummy node 哑结点Dynamic Fusion 动态融合Dynamic programming 动态规划5、E开头的词汇Eigenvalue decomposition 特征值分解Embedding 嵌⼊Emotional analysis 情绪分析Empirical conditional entropy 经验条件熵Empirical entropy 经验熵Empirical error 经验误差Empirical risk 经验风险End-to-End 端到端Energy-based model 基于能量的模型Ensemble learning 集成学习Ensemble pruning 集成修剪Error Correcting Output Codes/ECOC 纠错输出码Error rate 错误率Error-ambiguity decomposition 误差-分歧分解Euclidean distance 欧⽒距离Evolutionary computation 演化计算Expectation-Maximization 期望最⼤化Expected loss 期望损失Exploding Gradient Problem 梯度爆炸问题Exponential loss function 指数损失函数Extreme Learning Machine/ELM 超限学习机6、F开头的词汇Factorization 因⼦分解False negative 假负类False positive 假正类False Positive Rate/FPR 假正例率Feature engineering 特征⼯程Feature selection 特征选择Feature vector 特征向量Featured Learning 特征学习Feedforward Neural Networks/FNN 前馈神经⽹络Fine-tuning 微调Flipping output 翻转法Fluctuation 震荡Forward stagewise algorithm 前向分步算法Frequentist 频率主义学派Full-rank matrix 满秩矩阵Functional neuron 功能神经元7、G开头的词汇Gain ratio 增益率Game theory 博弈论Gaussian kernel function ⾼斯核函数Gaussian Mixture Model ⾼斯混合模型General Problem Solving 通⽤问题求解Generalization 泛化Generalization error 泛化误差Generalization error bound 泛化误差上界Generalized Lagrange function ⼴义拉格朗⽇函数Generalized linear model ⼴义线性模型Generalized Rayleigh quotient ⼴义瑞利商Generative Adversarial Networks/GAN ⽣成对抗⽹络Generative Model ⽣成模型Generator ⽣成器Genetic Algorithm/GA 遗传算法Gibbs sampling 吉布斯采样Gini index 基尼指数Global minimum 全局最⼩Global Optimization 全局优化Gradient boosting 梯度提升Gradient Descent 梯度下降Graph theory 图论Ground-truth 真相/真实8、H开头的词汇Hard margin 硬间隔Hard voting 硬投票Harmonic mean 调和平均Hesse matrix 海塞矩阵Hidden dynamic model 隐动态模型Hidden layer 隐藏层Hidden Markov Model/HMM 隐马尔可夫模型Hierarchical clustering 层次聚类Hilbert space 希尔伯特空间Hinge loss function 合页损失函数Hold-out 留出法Homogeneous 同质Hybrid computing 混合计算Hyperparameter 超参数Hypothesis 假设Hypothesis test 假设验证9、I开头的词汇ICML 国际机器学习会议Improved iterative scaling/IIS 改进的迭代尺度法Incremental learning 增量学习Independent and identically distributed/i.i.d. 独⽴同分布Independent Component Analysis/ICA 独⽴成分分析Indicator function 指⽰函数Individual learner 个体学习器Induction 归纳Inductive bias 归纳偏好Inductive learning 归纳学习Inductive Logic Programming/ILP 归纳逻辑程序设计Information entropy 信息熵Information gain 信息增益Input layer 输⼊层Insensitive loss 不敏感损失Inter-cluster similarity 簇间相似度International Conference for Machine Learning/ICML 国际机器学习⼤会Intra-cluster similarity 簇内相似度Intrinsic value 固有值Isometric Mapping/Isomap 等度量映射Isotonic regression 等分回归Iterative Dichotomiser 迭代⼆分器10、K开头的词汇Kernel method 核⽅法Kernel trick 核技巧Kernelized Linear Discriminant Analysis/KLDA 核线性判别分析K-fold cross validation k 折交叉验证/k 倍交叉验证K-Means Clustering K – 均值聚类K-Nearest Neighbours Algorithm/KNN K近邻算法Knowledge base 知识库Knowledge Representation 知识表征11、L开头的词汇Label space 标记空间Lagrange duality 拉格朗⽇对偶性Lagrange multiplier 拉格朗⽇乘⼦Laplace smoothing 拉普拉斯平滑Laplacian correction 拉普拉斯修正Latent Dirichlet Allocation 隐狄利克雷分布Latent semantic analysis 潜在语义分析Latent variable 隐变量Lazy learning 懒惰学习Learner 学习器Learning by analogy 类⽐学习Learning rate 学习率Learning Vector Quantization/LVQ 学习向量量化Least squares regression tree 最⼩⼆乘回归树Leave-One-Out/LOO 留⼀法linear chain conditional random field 线性链条件随机场Linear Discriminant Analysis/LDA 线性判别分析Linear model 线性模型Linear Regression 线性回归Link function 联系函数Local Markov property 局部马尔可夫性Local minimum 局部最⼩Log likelihood 对数似然Log odds/logit 对数⼏率Logistic Regression Logistic 回归Log-likelihood 对数似然Log-linear regression 对数线性回归Long-Short Term Memory/LSTM 长短期记忆Loss function 损失函数12、M开头的词汇Machine translation/MT 机器翻译Macron-P 宏查准率Macron-R 宏查全率Majority voting 绝对多数投票法Manifold assumption 流形假设Manifold learning 流形学习Margin theory 间隔理论Marginal distribution 边际分布Marginal independence 边际独⽴性Marginalization 边际化Markov Chain Monte Carlo/MCMC 马尔可夫链蒙特卡罗⽅法Markov Random Field 马尔可夫随机场Maximal clique 最⼤团Maximum Likelihood Estimation/MLE 极⼤似然估计/极⼤似然法Maximum margin 最⼤间隔Maximum weighted spanning tree 最⼤带权⽣成树Max-Pooling 最⼤池化Mean squared error 均⽅误差Meta-learner 元学习器Metric learning 度量学习Micro-P 微查准率Micro-R 微查全率Minimal Description Length/MDL 最⼩描述长度Minimax game 极⼩极⼤博弈Misclassification cost 误分类成本Mixture of experts 混合专家Momentum 动量Moral graph 道德图/端正图Multi-class classification 多分类Multi-document summarization 多⽂档摘要Multi-layer feedforward neural networks 多层前馈神经⽹络Multilayer Perceptron/MLP 多层感知器Multimodal learning 多模态学习Multiple Dimensional Scaling 多维缩放Multiple linear regression 多元线性回归Multi-response Linear Regression /MLR 多响应线性回归Mutual information 互信息13、N开头的词汇Naive bayes 朴素贝叶斯Naive Bayes Classifier 朴素贝叶斯分类器Named entity recognition 命名实体识别Nash equilibrium 纳什均衡Natural language generation/NLG ⾃然语⾔⽣成Natural language processing ⾃然语⾔处理Negative class 负类Negative correlation 负相关法Negative Log Likelihood 负对数似然Neighbourhood Component Analysis/NCA 近邻成分分析Neural Machine Translation 神经机器翻译Neural Turing Machine 神经图灵机Newton method ⽜顿法NIPS 国际神经信息处理系统会议No Free Lunch Theorem/NFL 没有免费的午餐定理Noise-contrastive estimation 噪⾳对⽐估计Nominal attribute 列名属性Non-convex optimization ⾮凸优化Nonlinear model ⾮线性模型Non-metric distance ⾮度量距离Non-negative matrix factorization ⾮负矩阵分解Non-ordinal attribute ⽆序属性Non-Saturating Game ⾮饱和博弈Norm 范数Normalization 归⼀化Nuclear norm 核范数Numerical attribute 数值属性14、O开头的词汇Objective function ⽬标函数Oblique decision tree 斜决策树Occam’s razor 奥卡姆剃⼑Odds ⼏率Off-Policy 离策略One shot learning ⼀次性学习One-Dependent Estimator/ODE 独依赖估计On-Policy 在策略Ordinal attribute 有序属性Out-of-bag estimate 包外估计Output layer 输出层Output smearing 输出调制法Overfitting 过拟合/过配Oversampling 过采样15、P开头的词汇Paired t-test 成对 t 检验Pairwise 成对型Pairwise Markov property 成对马尔可夫性Parameter 参数Parameter estimation 参数估计Parameter tuning 调参Parse tree 解析树Particle Swarm Optimization/PSO 粒⼦群优化算法Part-of-speech tagging 词性标注Perceptron 感知机Performance measure 性能度量Plug and Play Generative Network 即插即⽤⽣成⽹络Plurality voting 相对多数投票法Polarity detection 极性检测Polynomial kernel function 多项式核函数Pooling 池化Positive class 正类Positive definite matrix 正定矩阵Post-hoc test 后续检验Post-pruning 后剪枝potential function 势函数Precision 查准率/准确率Prepruning 预剪枝Principal component analysis/PCA 主成分分析Principle of multiple explanations 多释原则Prior 先验Probability Graphical Model 概率图模型Proximal Gradient Descent/PGD 近端梯度下降Pruning 剪枝Pseudo-label 伪标记16、Q开头的词汇Quantized Neural Network 量⼦化神经⽹络Quantum computer 量⼦计算机Quantum Computing 量⼦计算Quasi Newton method 拟⽜顿法17、R开头的词汇Radial Basis Function/RBF 径向基函数Random Forest Algorithm 随机森林算法Random walk 随机漫步Recall 查全率/召回率Receiver Operating Characteristic/ROC 受试者⼯作特征Rectified Linear Unit/ReLU 线性修正单元Recurrent Neural Network 循环神经⽹络Recursive neural network 递归神经⽹络Reference model 参考模型Regression 回归Regularization 正则化Reinforcement learning/RL 强化学习Representation learning 表征学习Representer theorem 表⽰定理reproducing kernel Hilbert space/RKHS 再⽣核希尔伯特空间Re-sampling 重采样法Rescaling 再缩放Residual Mapping 残差映射Residual Network 残差⽹络Restricted Boltzmann Machine/RBM 受限玻尔兹曼机Restricted Isometry Property/RIP 限定等距性Re-weighting 重赋权法Robustness 稳健性/鲁棒性Root node 根结点Rule Engine 规则引擎Rule learning 规则学习18、S开头的词汇Saddle point 鞍点Sample space 样本空间Sampling 采样Score function 评分函数Self-Driving ⾃动驾驶Self-Organizing Map/SOM ⾃组织映射Semi-naive Bayes classifiers 半朴素贝叶斯分类器Semi-Supervised Learning 半监督学习semi-Supervised Support Vector Machine 半监督⽀持向量机Sentiment analysis 情感分析Separating hyperplane 分离超平⾯Sigmoid function Sigmoid 函数Similarity measure 相似度度量Simulated annealing 模拟退⽕Simultaneous localization and mapping 同步定位与地图构建Singular Value Decomposition 奇异值分解Slack variables 松弛变量Smoothing 平滑Soft margin 软间隔Soft margin maximization 软间隔最⼤化Soft voting 软投票Sparse representation 稀疏表征Sparsity 稀疏性Specialization 特化Spectral Clustering 谱聚类Speech Recognition 语⾳识别Splitting variable 切分变量Squashing function 挤压函数Stability-plasticity dilemma 可塑性-稳定性困境Statistical learning 统计学习Status feature function 状态特征函Stochastic gradient descent 随机梯度下降Stratified sampling 分层采样Structural risk 结构风险Structural risk minimization/SRM 结构风险最⼩化Subspace ⼦空间Supervised learning 监督学习/有导师学习support vector expansion ⽀持向量展式Support Vector Machine/SVM ⽀持向量机Surrogat loss 替代损失Surrogate function 替代函数Symbolic learning 符号学习Symbolism 符号主义Synset 同义词集19、T开头的词汇T-Distribution Stochastic Neighbour Embedding/t-SNE T – 分布随机近邻嵌⼊Tensor 张量Tensor Processing Units/TPU 张量处理单元The least square method 最⼩⼆乘法Threshold 阈值Threshold logic unit 阈值逻辑单元Threshold-moving 阈值移动Time Step 时间步骤Tokenization 标记化Training error 训练误差Training instance 训练⽰例/训练例Transductive learning 直推学习Transfer learning 迁移学习Treebank 树库Tria-by-error 试错法True negative 真负类True positive 真正类True Positive Rate/TPR 真正例率Turing Machine 图灵机Twice-learning ⼆次学习20、U开头的词汇Underfitting ⽋拟合/⽋配Undersampling ⽋采样Understandability 可理解性Unequal cost ⾮均等代价Unit-step function 单位阶跃函数Univariate decision tree 单变量决策树Unsupervised learning ⽆监督学习/⽆导师学习Unsupervised layer-wise training ⽆监督逐层训练Upsampling 上采样21、V开头的词汇Vanishing Gradient Problem 梯度消失问题Variational inference 变分推断VC Theory VC维理论Version space 版本空间Viterbi algorithm 维特⽐算法Von Neumann architecture 冯 · 诺伊曼架构22、W开头的词汇Wasserstein GAN/WGAN Wasserstein⽣成对抗⽹络Weak learner 弱学习器Weight 权重Weight sharing 权共享Weighted voting 加权投票法Within-class scatter matrix 类内散度矩阵Word embedding 词嵌⼊Word sense disambiguation 词义消歧23、Z开头的词汇Zero-data learning 零数据学习Zero-shot learning 零次学习。
clustering 的分类 -回复
clustering 的分类-回复关于clustering 的分类引言:在数据分析和机器学习领域中,聚类(clustering)是一种重要的无监督学习方法,它在没有标签或类别信息的情况下,能够将数据集中的样本划分为具有相似特征的组或类别。
聚类可以帮助我们发现数据集中的隐藏模式和结构,以及进行数据探索和分析。
在聚类分析中,不同的方法和技术被广泛应用于不同的问题和数据类型。
本文将介绍聚类方法的分类,以及它们在数据分析中的应用。
一、基于原理的分类:聚类方法可以根据其基本原理和算法分为以下几类:1. 划分聚类(Partitioning clustering):划分聚类方法通过从数据集中找到最佳的划分,将数据集划分为多个非重叠的子集。
常见的划分聚类方法包括K均值聚类(K-means clustering)和K中心聚类(K-medoids clustering)。
K均值聚类目标是将数据分成K个组,使得组内数据之间的距离最小化;而K中心聚类目标是在聚类的每个组中选择一个数据点作为中心,使得总距离最小化。
划分聚类方法的优点是简单且易于实现,但对于具有非球形分布或噪声的数据集可能不适用。
2. 分层聚类(Hierarchical clustering):分层聚类方法通过逐步将数据集中的样本合并或分裂成不同的组,构建一个层次结构。
分层聚类可以分为聚合层次聚类(agglomerative hierarchical clustering)和分裂层次聚类(divisive hierarchical clustering)。
聚合层次聚类从单个样本开始,逐步合并相似的样本,直到最终形成一个聚类;而分裂层次聚类从所有样本作为一个聚类开始,逐步分割出不同的聚类。
分层聚类方法能够提供丰富的聚类结构信息,但在处理大型数据集时计算复杂度较高。
3. 密度聚类(Density-based clustering):密度聚类方法假设聚类中的样本在密度较高的区域中位于稀疏噪声点的周围。
对数似然 分层聚类 最低贝叶斯信息准则
对数似然分层聚类最低贝叶斯信息准则
对数似然(Log likelihood)是统计学中用来评估一个概率模型
的好坏程度的指标。
对数似然值越大,说明该模型能够更好地解释数据,具有较高的预测能力。
分层聚类(Hierarchical Clustering)是一种将数据集划分为
不同层次的方法。
其基本思想是将相似的数据点首先聚集成小的类别,然后不断合并类别,最终形成更大的聚类。
分层聚类可以用于图像分割、社区检测等领域。
最低贝叶斯信息准则(Bayesian Information Criterion,BIC)是一种模型选择准则。
它通过衡量模型的复杂度和拟合优度的平衡来
确定最佳模型。
BIC值越小,说明模型越优秀。
对数似然、分层聚类和最低贝叶斯信息准则在数据分析过程中都
是重要的工具。
对数似然可以用来评估模型的预测能力;分层聚类可
以发现数据的内部结构,以及不同层次的聚类模式;最低贝叶斯信息
准则可以用来选择最优模型,从而提高模型的拟合效果。
这些工具的
应用在各个领域中都有广泛的应用,有助于我们更好地理解和利用数据。
模糊聚类概述
历
史
时间
事件
1965
1969 1974 1981
L.A.Zadeh创立模糊集合论 E.H.Ruspinid引入模糊划分的概念进行模糊聚类分析 I.Gitman和M.D.Levine提出了单峰模糊集方法用于处理大 数据集和复杂分布的聚类 J.C.Dunn提出了模糊ISODATA聚类方法 J.C.Bezdek改善了FCM方法
③ 画出动态聚类图:将t(R)中所有互不相同的元素按由大到小的顺序编排 进行聚类,这一系列聚类画在同一个图上,直观地看到被分类对象之间 的相关程度。
基于模糊等价关系的动态聚类法
模糊传递闭包法流程
基于模糊等价关系的动态聚类法
直接聚类法 当被分类对象很多时,计算模糊相似矩阵R的传递闭包的工作量是很大 的。为减少计算工作量,可以用直接聚类法,不求传递闭包,直接用模糊相 似矩阵R进行聚类。 步骤: ① 将模糊相似矩阵R中的所有不同的元素按从大到小的顺序编排,直接在模 糊相似矩阵R上找出λ 水平上的等价分类; ② 画出动态聚类图。
基于目标函数的模糊聚类分析法
为了便于理解FCM算法的原理, 以在X轴上的单维数据为例。 这个数据集传统上可以分为 两个集群。通过在X轴上选择 一个阈值,数据被分成两个 簇。如右图,结果集群标记 为A和B。属于该数据集的每 个点因此将具有1或0的成员 系数。每个相应数据点的该 成员系数由包含y轴表示。
聚类分析
传统的聚类是一种硬划分,它把每个待辨识的对象严格地划分到某个类中, 具有非此及彼的性质,因大多数对象并没有严格的属性, 它们在性态和类属方面存在着中介 性, 适合进行软划分。
由于模糊聚类得到了样本属于各个类别的不确定性程度, 表达了样本类属的 中介性, 即建立起了样本对于类别的不确定性的描述, 能更客观地反映现实 世界, 从而成为聚类分析研究的主流。
人工智能的25种算法和应用场景
人工智能的25种算法和应用场景1.决策树算法(Decision Tree Algorithm):用于分类和预测问题,如预测客户购买偏好。
2.随机森林算法(Random Forest Algorithm):用于分类和预测问题,如预测信用卡欺诈。
3.支持向量机算法(Support Vector Machine Algorithm):用于分类和回归问题,如电影评分预测。
4.朴素贝叶斯算法(Naive Bayes Algorithm):用于分类问题,如邮件分类。
5.逻辑回归算法(Logistic Regression Algorithm):用于分类和回归问题,如贷款违约预测。
6.线性回归算法(Linear Regression Algorithm):用于回归问题,如房价预测。
7.分层聚类算法(Hierarchical Clustering Algorithm):用于聚类问题,如客户分群。
8.K均值算法(K-Means Algorithm):用于聚类问题,如产品分类。
9.深度学习算法(Deep Learning Algorithm):用于分类、回归和生成问题,如图像识别、语音识别。
10.协同过滤算法(Collaborative Filtering Algorithm):用于推荐系统,如商品推荐。
11.神经网络算法(Neural Network Algorithm):用于分类、回归和生成问题,如图像处理、语音合成。
12.遗传算法(Genetic Algorithm):用于优化问题,如工艺优化。
13.粒子群算法(Particle Swarm Optimization Algorithm):用于优化问题,如飞机航线优化。
14.模拟退火算法(Simulated Annealing Algorithm):用于最优化问题,如物流配送规划。
15.蚁群算法(Ant Colony Algorithm):用于优化问题,如城市路径规划。
九种方法定量结果比较英语
九种方法定量结果比较英语Comparing Quantitative Results: Nine Methodologies.Quantitative research is a crucial aspect of various fields, ranging from social sciences to the natural sciences. It involves the collection, analysis, and interpretation of numerical data to draw conclusions ortest hypotheses. When comparing the results of quantitative studies, it is essential to employ appropriate methodologies to ensure accurate and reliable comparisons. In this article, we will explore nine methods for comparing quantitative results.1. Statistical Hypothesis Testing: Hypothesis testing is a fundamental statistical tool used to compare quantitative results. It involves formulating a null hypothesis (H0) and an alternative hypothesis (H1), collecting data, and then using statistical tests to determine which hypothesis is more likely to be true. Common statistical tests include the t-test, ANOVA, andchi-square test.2. Regression Analysis: Regression analysis is a statistical method used to investigate the relationship between one or more independent variables and a dependent variable. It can be used to compare the effect of different independent variables on a dependent variable and topredict future outcomes based on past data. Regression analysis can be linear or non-linear, depending on the nature of the relationship being studied.3. Correlation Analysis: Correlation analysis is a statistical technique used to measure the strength and direction of a relationship between two variables. It can be used to compare quantitative results by determining how strongly two variables are related and whether the relationship is positive or negative. Correlation coefficients range from -1 to 1, where -1 indicates a perfect negative correlation, 1 indicates a perfectpositive correlation, and 0 indicates no correlation.4. Variance Analysis: Variance analysis is astatistical method used to compare the variability or dispersion of quantitative data across different groups or categories. It involves calculating the variance or standard deviation of each group and comparing them to determine which group has the most or least variability. Variance analysis can be used to identify patterns or trends in data and to assess the consistency of results.5. Covariance and Correlation Matrix: The covariance matrix is a table that shows the covariance between each pair of variables in a dataset. The correlation matrix is similar but shows the correlation coefficients instead of covariances. These matrices can be used to compare the relationships between multiple quantitative variables simultaneously. High covariance or correlation values indicate strong relationships between variables, while low values suggest weak or no relationships.6. Principal Component Analysis (PCA): PCA is a statistical technique used to reduce the dimensionality of a dataset by identifying and retaining the most important variables or "components." It can be used to comparequantitative results by transforming a large number of variables into a smaller set of uncorrelated componentsthat capture the majority of the variance in the data. PCA is often used in fields like bioinformatics, psychology, and social sciences to simplify complex datasets and identify patterns or trends.7. Cluster Analysis: Cluster analysis is a statistical method used to group similar observations or variables into clusters based on their patterns or relationships. It can be used to compare quantitative results by identifying clusters of variables that are highly correlated or similar and then comparing these clusters across different datasets or conditions. Cluster analysis can be hierarchical (agglomerative or divisive) or non-hierarchical (e.g., k-means clustering).8. Multivariate Analysis of Variance (MANOVA): MANOVAis a statistical test used to compare the mean differences between two or more groups on multiple quantitative variables simultaneously. It is an extension of ANOVA that allows for the analysis of multiple dependent variablessimultaneously, providing a more comprehensive comparison of results across groups. MANOVA is particularly useful when there are multiple outcomes of interest and when the relationships between these outcomes need to be considered.9. Bayesian Analysis: Bayesian analysis is astatistical approach that differs from traditional frequentist methods in that it provides probabilities for hypotheses rather than just tests of significance. It allows researchers to incorporate prior knowledge orbeliefs into their analysis and update these beliefs based on new data. Bayesian analysis can be used to compare quantitative results by calculating the posterior probabilities of different models or hypotheses given the observed data. This approach is becoming increasingly popular in fields like psychology, economics, and medicine where there is a need to consider uncertainty and incorporate prior information into statistical models.In conclusion, there are various methods available for comparing quantitative results depending on the nature of the data and the research questions being addressed. Thechoice of method should be based on the specific objectives of the study, the availability of data, and the expertise of the researcher. By selecting an appropriate methodology, researchers can ensure accurate and reliable comparisons of quantitative results, leading to more informed conclusions and better-informed decisions.。
Bayesian Hierarchical Clustering -
DPM
• Other quantities needed for the posterior merged hypothesis probabilities can also be written and computed with the DPM (see math/proofs in paper)
Merging Clusters
• From Bayes Rule, the posterior probability of the merged hypothesis:
• The pair of trees with highest probability are merged
• Natural place to cut the final tree: where
employed
Hypothesis H2
• Probability of the data under H2:
• Is a product over sub-trees • Prior that all points belong to one cluster: • Probability of the data in tree Tk:
Dirichlet Process Mixture Models (DPMs)
• Probability of a new data point belonging to a cluster is proportional to the number of points already in that cluster
• α controls the probability of the new point creating a new cluster
最新大数据英语词汇
大数据英语词汇兴趣图谱 interest graph大众分类法 folksonomy分类法 taxonomy流 stream开放图协议 open graph protocol OGP团分析 clique analysis图谱API管理工具 Graph API Explorer字段扩展和嵌套 field expansion and nesting 代码库 repository布局算法 layout algorithm档案字段 profile field字段选择器 field selector国防情报 defense intelligence欺诈检测 fraud detection统计地图 cartogram地理聚合泡泡图 Dorling Cartogram自然语言工具 natural language toolkit NLKT 编辑距离 edit distance levenshtein聚合 agglomerate聚类算法clustering algorithm层次聚类 hierarchical clustering信息检索 information retrieval IR非结构化数据分析 Unstructured Data Analysis UDA 环聊 hangouts动态 activities生活片段 moments句子切分 sentence segmentation分词 tokenization单词组合 word chunking实体检测 entity detection搭配检测 collocation detection停用词 stop word解释器会话 interpreter session向量空间模型 vector space model原始频率 raw frequency雅卡尔系数 Jaccard Index似然率 likelihood ratio二项分布 binomial distribution逐点互信息 pointwise mutual information, PMI卡方检验 Chi-square样板 boilerplateGoogle知识图谱 google’s knowledge graph句子解析器 sentence tokenizer交叉验证 cross-validation标签云 tag cloud文摘摘要自动生成 the automatic creation of literature abstracts “词袋”模型“Bag of Words” model贝叶斯分类器 Bayesian classifier广度优先搜索 breadth-first search置信区间 confidence interval监督式机器学习 supervised machine learning线程词 thread pool图灵测试 turning test拉取请求 pull request点度中心度 degree centrality中介中心度 betweenness centrality接近中心度 closeness centrality分页的开发者文档 developer documentation for pagination被加星的库列表 list repositories being starred延迟迭代 lazy iterator超图 hypergraph超边 hyperedges中心度量 centrality measure社交图谱 social graph轴辐式图 hub and spoke graph最小生成树 minimum spanning tree。
taa造hcc模型原理
taa造hcc模型原理TAA模型是一种基于HCC(Hierarchical Co-Clustering)的数据挖掘算法,用于解决数据中的模式发现和聚类分析问题。
本文将介绍TAA模型的基本原理及其在数据挖掘领域中的应用。
我们来了解一下HCC模型。
HCC模型是一种层次聚类算法,它能够将数据集分解成多个层次结构,并对每个层次进行聚类分析。
HCC 模型的基本思想是将数据集分成多个子集,然后对每个子集进行聚类分析,最后将这些子集合并成一个完整的聚类结果。
HCC模型的优点是能够处理大规模数据集,并且对数据的层次结构有较好的解释能力。
TAA模型是在HCC模型的基础上进行改进和拓展的。
TAA模型主要包含三个步骤:初始化、迭代和聚类结果合并。
首先,在初始化阶段,TAA模型会随机选择一部分数据作为初始聚类中心。
然后,在迭代阶段,TAA模型会根据数据之间的相似性进行聚类分析,并更新聚类中心。
最后,在聚类结果合并阶段,TAA模型会将不同层次的聚类结果进行合并,得到最终的聚类结果。
TAA模型的核心思想是通过迭代和聚类结果合并来提高聚类的准确性和稳定性。
通过迭代,TAA模型能够逐步优化聚类中心,使得聚类结果更加准确。
而通过聚类结果合并,TAA模型能够将不同层次的聚类结果进行融合,避免了单一聚类结果的局限性,提高了聚类的稳定性。
TAA模型在数据挖掘领域中有着广泛的应用。
首先,TAA模型可以用于文本挖掘,根据文本的关键词和语义信息进行聚类分析,帮助用户发现文本中隐藏的模式和知识。
其次,TAA模型可以应用于图像处理领域,通过对图像的像素点进行聚类分析,实现图像的分割和特征提取。
此外,TAA模型还可以应用于生物信息学、社交网络分析等领域,帮助研究人员挖掘数据中的有价值的信息。
总结来说,TAA模型是一种基于HCC模型的数据挖掘算法,通过迭代和聚类结果合并来提高聚类的准确性和稳定性。
TAA模型在文本挖掘、图像处理、生物信息学等领域有着广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The generative model for our algorithm is a Dirichlet process mixture model (i.e. a countably infinite mixture model), and the algorithm can be viewed as a fast bottom-up agglomerative way of performing approximate inference in a DPM. Instead of giving weight to all possible partitions of the data into clusters, which is intractable and would require the use of sampling methods, the algorithm efficiently computes the weight of exponentially many partitions which are consistent with the tree structure (section 3).
Bayesian Hierarchical Clustering
Katherine A. Heller Zoubin Ghahramani Gatsby Computational Neuroscience Unit, University College London 17 Queen Square, London, WC1N 3AR, UK
1. Introduction
Hierarchical clustering is one of the most frequently used methods in unsupervised learning. Given a set of data points, the output is a binary tree (dendrogram) whose leaves are the data points and whose internal nodes represent nested clusters of various sizes. The tree organizes these clusters hierarchically, where the hope is that this hierarchy agrees with the intuitive organization of real-world data. Hierarchical struc-
2. Algorithm
Our Bayesian hierarchical clustering algorithm is similar to traditional agglomerative clustering in that it is a one-pass, bottom-up method which initializes each data point in its own cluster and iteratively merges pairs of clusters. As we will see, the main difference is that our algorithm uses a statistical hypothesis test to choose which clusters to merge. Let D = {x(1) , . . . , x(n) } denote the entire data set, and Di ⊂ D the set of data points at the leaves of the subtree Ti . The algorithm is initialized with n trivial trees, {Ti : i = 1 . . . n} each containing a single data point Di = {x(i) }. At each stage the algorithm considers merging all pairs of existing trees. For example, if Ti and Tj are merged into some new tree Tk then the associated set of data is Dk = Di ∪Dj (see figure 1(a)). In considering each merge, two hypotheses are comk pared. The first hypothesis, which we will denote H1 is that all the data in Dk were in fact generated independently and identically from the same probabilistic model, p(x|θ) with unknown parameters θ. Let us imagine that this probabilistic model is a multivariate Gaussian, with parameters θ = (µ, Σ), although it is crucial to emphasize that for different types of data, different probabilistic models may be appropriate. To evaluate the probability of the data under this hypothesis we need to specify some prior over the parameters of the model, p(θ|β ) with hyperparameters β . We now have the ingredients to compute the probability of the k : data Dk under H1
heller@ zoubin@
Abstract
We present a novel algorithm for agglomerative hierarchical clustering based on evaluating marginal likelihoods of a probabilistic model. This algorithm has several advantages over traditional distance-based agglomerative clustering algorithms. (1) It defines a probabilistic model of the data which can be used to compute the predictive distribution of a test point and the probability of it belonging to any of the existing clusters in the tree. (2) It uses a model-based criterion to decide on merging clusters rather than an ad-hoc distance metric. (3) Bayesian hypothesis testing is used to decide which merges are advantageous and to output the recommended depth of the tree. (4) The algorithm can be interpreted as a novel fast bottom-up approximate inference method for a Dirichlet process (i.e. countably infinite) mixture model (DPM). It provides a new lower bound on the marginal likelihood of a DPM by summing over exponentially many clusterings of the data in polynomial time. We describe procedures for learning the model hyperparameters, computing the predictive distribution, and extensions to the algorithm. Experimental results on synthetic and real-world data sets demonstrate useful properties of the algorithm.
tures are ubiquitous in the natural world. For example, the evolutionary tree of living organisms (and consequently features of these organisms such as the sequences of homologous genes) is a natural hierarchy. Hierarchical structures are also a natural representation for data which was not generated by evolutionary processes. For example, internet newsgroups, emails, or documents from a newswire, can be organized in increasingly broad topic domains. The traditional method for hierarchically cluda & Hart, 1973) is a bottomup agglomerative algorithm. It starts with each data point assigned to its own cluster and iteratively merges the two closest clusters together until all the data belongs to a single cluster. The nearest pair of clusters is chosen based on a given distance measure (e.g. Euclidean distance between cluster means, or distance between nearest points). There are several limitations to the traditional hierarchical clustering algorithm. The algorithm provides no guide to choosing the “correct” number of clusters or the level at which to prune the tree. It is often difficult to know which distance metric to choose, especially for structured data such as images or sequences. The traditional algorithm does not define a probabilistic model of the data, so it is hard to ask how “good” a clustering is, to compare to other models, to make predictions and cluster new data into an existing hierarchy. We use statistical inference to overcome these limitations. Previous work which uses probabilistic methods to perform hierarchical clustering is discussed in section 6. Our Bayesian hierarchical clustering algorithm uses marginal likelihoods to decide which clusters to merge and to avoid overfitting. Basically it asks what the probability is that all the data in a potential merge were generated from the same mixture component, and compares this to exponentially many hypotheses at lower levels of the tree (section 2).