人教版初二数学上试卷13.3.2 等边三角形(第1课时) .docx

合集下载

八年级数学上册 13.3 等腰三角形 13.3.2 等边三角形 第1课时 等边三角形的性质与判定说课

八年级数学上册 13.3 等腰三角形 13.3.2 等边三角形 第1课时 等边三角形的性质与判定说课

八年级数学上册 13.3 等腰三角形 13.3.2 等边三角形第1课时等边三角形的性质与判定说课稿(新版)新人教版一. 教材分析等腰三角形和等边三角形是八年级数学上册第13.3节的内容。

这部分内容是学生学习了三角形的基本性质之后,进一步研究三角形的特殊形态。

等腰三角形和等边三角形具有很多独特的性质,例如等腰三角形的两底角相等,等边三角形的三个角都相等,三条边都相等。

这些性质在解决实际问题中有着广泛的应用。

二. 学情分析学生在学习这部分内容时,已经掌握了三角形的基本性质,具备了一定的观察、分析和推理能力。

但等边三角形的性质和判定较为复杂,学生可能难以理解和掌握。

因此,在教学过程中,需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。

三. 说教学目标1.知识与技能目标:让学生了解等腰三角形的性质和判定方法,掌握等边三角形的性质和判定方法。

2.过程与方法目标:通过观察、分析和推理,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 说教学重难点1.教学重点:等腰三角形的性质和判定方法,等边三角形的性质和判定方法。

2.教学难点:等边三角形的性质和判定方法的灵活运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等。

2.教学手段:利用多媒体课件、实物模型、黑板等。

六. 说教学过程1.导入新课:通过回顾三角形的基本性质,引导学生发现等腰三角形和等边三角形的特殊性质。

2.讲解等腰三角形的性质和判定方法:利用多媒体课件和实物模型,展示等腰三角形的性质,引导学生通过观察、分析和推理得出判定方法。

3.讲解等边三角形的性质和判定方法:同样利用多媒体课件和实物模型,展示等边三角形的性质,引导学生通过观察、分析和推理得出判定方法。

4.练习巩固:设计一些具有代表性的练习题,让学生运用所学的性质和判定方法进行解答。

5.课堂小结:让学生总结等腰三角形和等边三角形的性质和判定方法。

第十三章 13.3 13.3.2 第1课时 等边三角形的性质与判定

第十三章 13.3 13.3.2 第1课时 等边三角形的性质与判定

高的等腰三角形.其中是等边三角形的有( D )
A.①②③
B.①②④
C.①③
D.①②③④
5. 如由于木质衣架没有柔性,在挂置衣服的时候不 太方便操作.小敏设计了一种衣架,在使用时能轻易收 拢,然后套进衣服后松开即可.如图①,衣架杆 OA= OB =18 cm,若衣架收拢时,∠AOB=60°,如图②,则 此时 A,B 两点之间的距离是 18 cm.
(1)如图①,在等边△ ABC 中,点 M 是 BC 上的任意 一点(不含端点 B,C),连接 AM,以 AM 为边作等边 △ AMN,连接 CN. 求证:∠ABC=∠ACN.
类比探究 (2)如图②,在等边△ ABC 中,点 M 是 BC 延长线上 的任意一点(不含端点 C),其他条件不变,(1)中结论 ∠ABC=∠ACN 还成立吗?请说明理由.
解:(1)证明:∵等边△ ABC,等边△ AMN, ∴AB=AC,AM=AN, ∠BAC=∠MAN=60°, ∴∠BAM=∠CAN, ∴△BAM≌△CAN(SAS). ∴∠ABC=∠ACN.
(2)结论∠ABC=∠ACN 仍成立. 理由如下:∵等边△ ABC,等边△ AMN, ∴AB=AC, AM=AN, ∠BAC=∠MAN=60°, ∴∠BAM=∠CAN, ∴ △ BAM≌△CAN(SAS). ∴∠ABC=∠ACN.
DE⊥BC 于点 E,EF⊥AC 于点 F,则△ DEF 是( C )
A.不等边三角形 B.等腰三角形
C.等边三角形
D.以上都有可能
2. 如图,在等边△ ABC 中,AC=9,点 O 在 AC 上, 且 AO=3,点 P 是 AB 上的一动点,连接 OP,将线段 OP 绕点 O 逆时针旋转 60°得到线段 OD,要使点 D 恰好 落在 BC 上,则 AP 的长是( C )

13.3.2 第1课时 等边三角形的性质和判定

13.3.2 第1课时 等边三角形的性质和判定

求证:△ABC 是等边三角形.
A
证明:∵∠A =∠B ,
∴ BC = AC.
∵∠B =∠C ,
B
C
∴ AB = AC. ∴ AB = AC = BC.
∴ △ABC 是等边三角形.
知识总结
等边三角形的判定方法: 1. 三边都__相__等__的三角形是等边三角形; 2. 三个角都__相__等__的三角形是等边三角形; 3. 有一个角是___6_0_°_的等腰三角形是等边三角形.
等腰三角形 (2)有两个内角都等于 60° 的三角形是等边三角形;( √ )
(3)一腰上的高也是这条腰上的中线的等腰三角形是等边 三角形 ( × ). 两腰
2.如图,沿着 EF 折叠长方形纸片 ABCD(AD > 3 AB),
点 A、B 分别与点 A'、B' 对应.在不添加字母和线的情
况下,请添加一个条件使重叠部分的形是等边三角形
,这个条件可以是∠_E_F_G__=__6_0_°__.
A'
A
E
B' D
G
B
F
C
3.如(1)是一把折叠椅实物图,支架 AB 与 CD 交干点 O,
OD = OB,如图(2)是椅子打开时的侧面示意图(忽略材
料的厚度),椅面 MN 与地面水平线 l 平行,BD = 2AC.
∠BOD = 60°,BD ≈ 24.70 cm 那么折叠后椅子的高度
链接中考
1.(宜昌)如图,在一个池塘两旁有一条笔直小路(BC 为
小路端点)和一棵小树(A 为小树位置).测得的相关数据
为:∠ABC = 60°,∠ACB = 60°,BC = 48 米,则 AC =
__4_8__米.

13.3.2 等边三角形 人教版数学八年级上册同步作业(含答案)

13.3.2 等边三角形 人教版数学八年级上册同步作业(含答案)

13.3.2 等边三角形 必备知识·基础练(打“√”或“×”)1.三条边都相等的三角形是等边三角形.(√)2.三个角都相等的三角形是等边三角形.(√)3.有一个角是60°的三角形是等边三角形.(×)4.有一个角等于30°的三角形,它所对的边等于最长边的一半. (×) 5.在△ABC中,若AB=BC=AC,则∠A=∠B=∠C=60°.(√)知识点1 等边三角形的性质1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE 的周长为( D )A.4 B.30 C.18 D.12【解析】∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB-BD=10-6=4,∴△ADE的周长为12.2.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=__30__°.【解析】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∠BAC=30°.∴∠BAD=123.(2020·阜新中考)如图,直线a,b过等边三角形ABC顶点A和C,且a∥b,∠1=42°,则∠2的度数为__102°__.【解析】如图,∵△ABC是等边三角形,∴∠BAC=60°,∵∠1=42°,a∥b,∴∠2=∠1+∠BAC=42°+60°=102°.知识点2 等边三角形的判定4.(易错警示题)下列推理中,错误的是( B )A.因为∠A=∠B=∠C,所以△ABC是等边三角形B.因为AB=AC且∠B=∠C,所以△ABC是等边三角形C.因为∠A=60°,∠B=60°,所以△ABC是等边三角形D.因为AB=AC,∠B=60°,所以△ABC是等边三角形【解析】选项A,根据判定方法可知三个角相等的三角形是等边三角形,因此A是正确的;选项B,由AB=AC可推出∠B=∠C,因此它只能判定△ABC是等腰三角形,故B是错误的;选项C,可求出第三个角也是60°,因此有两个角是60°的三角形可判定为等边三角形,故C是正确的;选项D,有一个角为60°的等腰三角形,可判定为等边三角形,故D是正确的.5.(2021·长沙期中)如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.【证明】∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,∵DF⊥AB,DE⊥CB,EF⊥AC,∴∠DAB=∠ACF=∠CBE=90°,∴∠FAC=∠BCE=∠DBA=30°,∴∠D=∠E=∠F=180°-90°-30°=60°,∴△DEF是等边三角形.6.(2021·北京期中)如图,在△ABC中,∠A=120°,AB=AC,D是BC 的中点,DE⊥AB,DF⊥AC,点E,F为垂足,求证:△DEF是等边三角形.【证明】∵∠A=120°,AB=AC,∴∠B=∠C=30°,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∴∠BDE=∠CDF=60°,∴∠EDF=60°,∵D是BC的中点,∴BD=CD,在△BDE与△CDF中,{∠B=∠C,BD=CD,∠BDE=∠CDF,∴△BDE≌△CDF(ASA),∴DE=DF,∴△DEF是等边三角形.知识点3 含30°角的直角三角形的性质7.如图,在Rt△ABC中,∠C=90°,∠B=30°,CD是斜边AB上的高,AD=3 cm,则BD的长度是( C )A.3 cm B.6 cmC.9 cm D.12 cm【解析】在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°(同角的余角相等),∵AD=3 cm,在Rt△ACD中,AC=2AD=6 cm,在Rt△ABC中,AB=2AC=12 cm.∴BD=AB-AD=12-3=9(cm).8.如图,∠MON=30°,且OP平分∠MON,过点P作PQ∥OM交ON 于点Q.若点P到OM的距离为2,则OQ的长为( D )A.1 B.2 C.3 D.4【解析】如图,过点P作PE⊥ON,∵OP平分∠MON,∴∠1=∠2,∵PQ∥OM,∴∠1=∠3,∠MON=15°,∴∠2=∠3=12∴OQ=PQ,∠4=30°,∴PQ=2PE=4,∴OQ=PQ=4.9.(生活情境题)如图是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=12 m,∠A=30°,则立柱BC的长度为( B )A.4 m B.6 m C.8 m D.12 m【解析】∵∠ACB=90°,AB=12 m,∠A=30°,∴BC=1AB=6 m.则立柱BC的长度为6 m.210.(2021·珠海期中)如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=3 cm,求BC的长.【解析】∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×3=6(cm),∵∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=3 cm,∴BC=BD+DC=6+3=9(cm).关键能力·综合练11.如图,在以BC为底边的等腰△ABC中,∠A=30°,AC=8,BD⊥AC,则△ABC的面积是( B )A.12 B.16C.20 D.24【解析】∵AB=AC,AC=8,∴AB=8,∵BD是高,∴∠BDA=90°,∵∠A=30°,∴BD=1AB=4,2∴△ABC的面积=1×8×4=16.212.(2021·深圳质检)如图,在等边三角形ABC中,AD⊥BC,垂足为点D,点E在线段AD上,∠EBC=45°,则∠ACE等于( A )A.15° B.30° C.45° D.60°【解析】∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°.13.(2020·河南中考)如图,在△ABC中,AB=BC=3,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为( D )A.63B.9C.6 D.33【解析】连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=3,∴AD=CD=3AB=3,∴四边形ABCD的面积=2×1×3×3=33.214.(生活情境题)某市在旧城改造中,计划在一块如图所示的△ABC 空地上种植草皮以美化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要( B )A.300a元B.150a元C.450a元D.225a元【解析】如图,作BA边的高CD,设与BA的延长线交于点D,∵∠BAC=150°,∴∠DAC=30°,∵CD⊥BD,AC=30 m,∴CD=15 m,∵AB=20 m,∴S△ABC=12AB×CD=12×20×15=150 m2,∵每平方米售价a元,∴购买这种草皮的价格是150a元.15.(2020·常州中考)如图,在△ABC中,BC的垂直平分线分别交BC,AB于点E,F.若△AFC是等边三角形,则∠B=__30__°.【解析】∵EF 垂直平分BC ,∴BF =CF ,∴∠B =∠BCF ,∵△AFC 为等边三角形,∴∠AFC =60°,∴∠B =∠BCF =30°.16.(2021·杭州期中)如图,AD ,BE 是等边△ABC 的两条高线,AD ,BE 交于点O ,则∠AOB =__120__°.【解析】∵△ABC 是等边三角形,∴AB =AC =BC ,∠CAB =∠ABC =60°,∵AD ,BE 是等边△ABC 的两条高线,∴∠BAD =12∠BAC =30°,∠ABE =12∠ABC =30°,∴∠AOB =180°-∠BAD -∠ABE =180°-30°-30°=120°.17.如图,已知△ABC 是等边三角形,过点B 作BD ⊥BC ,过A 作AD ⊥BD ,垂足为D ,若△ABC 的周长为12,求AD 的长.【解析】∵BD ⊥BC ,在等边三角形ABC 中,∠ABC =60°,∴∠ABD =90°-60°=30°.又∵AD⊥BD,即△ABD是直角三角形,∴∠ABD所对的直角边AD是斜边AB的一半.∵等边三角形ABC的周长为12,∴其边长AB=4.∴AD=1AB=2.218.(素养提升题)(2021·广州期中)如图,已知△ABC和△CDE均为等边三角形,且点B,C,D在同一条直线上,连接AD,BE,交CE 和AC分别于G,H点,连接GH.(1)试证明AD=BE;(2)试证明△BCH≌△ACG;(3)试猜想:△CGH是什么特殊的三角形,并加以说明.【解析】(1)∵△ABC和△CDE均为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=60°.∴∠ACD=∠ECB,∴△ACD≌△BCE,∴AD=BE.(2)∵△ACD≌△BCE,∴∠CBH=∠CAG.∵∠ACB=∠ECD=60°,点B,C,D在同一条直线上,∴∠ACB=∠ECD=∠ACG=60°.又∵AC=BC,∴△ACG≌△BCH.(3)△CGH是等边三角形,理由如下:∵△ACG≌△BCH,∴CG=CH,又∵∠ACG=60°,∴△CGH是等边三角形(有一内角为60度的等腰三角形为等边三角形).模型 等边三角形判定定理1的应用模型如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.求证:△ADE是等边三角形.【证明】∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD⊥AC,AE⊥AB,∴∠ADC=∠AEB=60°,∴∠ADC=∠AEB=∠EAD=60°,∴AD=AE=DE,即△ADE是等边三角形.应用模型:在△ABC中,∵∠A=∠B=∠C,∴AB=BC=CA.关闭Word文档返回原板块。

13.3.2 等边三角形1(含答案)

13.3.2 等边三角形1(含答案)

뷈୽
୽,
୽뷈
୽,
在 上取点 ,使
뷈,
在 뷈୽ 与 ୽ 中,
뷈୽ ୽, ୽뷈
୽ ,뷈

뷈୽
୽,
୽ ୽, ୽
뷈୽ ,

୽뷈 甘 ,
뷈୽ 뷈୽

甘,
୽ ୽,
୽ 为等边三角形,


뷈 ୽.
18.解: 1୽证明:在等边 뷈୽ 中,
뷈 ୽ 甘,
뷈,
뷈୽,
୽,


甘,


⺁甘 ,
甘,
是等边三角形;
୽易知 뷈


뷈 ୽ ,뷈 ୽
뷈 뷈୽ ୽.
뷈 平分 뷈୽,
1 ୽.
是等边三角形,
,又 뷈 ୽. 1 뷈.
16.解:
为等边三角形.
证明: 뷈୽ 为等边三角形, 뷈 ୽.
뷈୽
在 뷈 与 ୽ 中, 뷈


뷈୽
,뷈
୽.
뷈୽ 뷈
ห้องสมุดไป่ตู้
୽ 甘,

୽ 甘,
是等边三角形.
17. 1୽证明: 在等边 뷈୽ 中,
뷈୽
୽뷈 甘 , ୽ 뷈୽,
୽,

୽뷈 甘 ,


뷈 뷈 1ͳ,

뷈 中, 뷈 ⺁甘 ,
뷈 뷈,
뷈 뷈 1ͳ,
뷈 ͳ,
୽ͳ
19.解: 1୽ 뷈 、 ୽ 都是等边三角形,
뷈, ୽
,뷈

뷈 甘, ୽
甘,

୽ ୽ 뷈, ୽

୽ 뷈,
୽ 뷈,
뷈 在 ୽ 和 뷈 中, ୽ 뷈

人教版初二数学上试卷第1课时等边三角形的性质与判定.docx

人教版初二数学上试卷第1课时等边三角形的性质与判定.docx

初中数学试卷 鼎尚图文**整理制作13.3.2 等边三角形第1课时 等边三角形的性质与判定要点感知 1 等边三角形的性质:(1)等边三角形是_______对称图形,且有_____对称轴;(2)等边三角形的三条边都_____,三个角都_____且都为_____;(3)等边三角形具有等腰三角形的一切性质. 预习练习1-1 如图,△ABC 是等边三角形,AD=CD,则∠ADB=_____,∠CBD=_____.要点感知2 等边三角形的判定方法:(1)三个角都_____的三角形是等边三角形;(2)有一个角为60°的_____是等边三角形;(3)三边都_____的三角形为等边三角形.预习练习2-1 在△ABC 中,①AB =BC =CA ;②一底角为60°的等腰三角形;③顶角为60°的等腰三角形.上述条件能判定此三角形为等边三角形的有( )A.1个B.2个C.3个D.0个知识点1 等边三角形的性质1.等边△ABC 的两条角平分线BD 和CE 相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°2.如图,等边△ABC 的边长如图所示,那么y=_____.3.如图所示,△ABC 为等边三角形,AD ⊥BC ,AE=AD ,则∠ADE=_____.4.如图所示,等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE=CD ,DF ⊥BE ,垂足是F.求证:BF=EF.知识点2 等边三角形的判定5.下列条件能判断一个三角形是等边三角形的有( )①三边相等,②三个内角相等,③三个外角相等,④有一个角是60°的等腰三角形.A.1个B.2个C.3个D.4个6.在△ABC中,AB=BC,∠B=∠C,则∠A的度数是_____.7.如图,在△ABC中,点D是AB上的一点,且AD=DC=DB,∠B=30°.求证:△ADC是等边三角形.8.如图所示,锐角三角形ABC中,∠A=60°,它的两条高BD,CE相交于点O,且OB=OC,求证:△ABC是等边三角形.9.如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论:①AD⊥BC;②EF=FD;③BE=BD,其中正确结论的个数为( )A.3B.2C.1D.010.如图所示,等边三角形ABC的三条角平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,那么这个图形中的等腰三角形共有( )A.4个B.5个C.6个D.7个11.如图,将等边△APQ的边PQ向两边延长,使BP=PQ=QC,则∠BAC=_____.12.如图,等边△ABC的边长为1 cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为_____cm.13.如图所示,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.14.如图,已知△ABC 是等边三角形,且∠1=∠2=∠3.(1)求∠BEC 的度数;(2)△DEF 是等边三角形吗?请简要说明理由.挑战自我15.如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 匀速运动,其中点P 运动的速度是1 cm/s,点Q 运动的速度是2 cm/s,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ 的形状,并说明理由.参考答案课前预习要点感知1 轴 三条 相等 相等 60°预习练习1-1 90°30°要点感知2 相等 等腰三角形 相等预习练习2-1 C当堂训练1.A2.33.75°4.证明:∵BD 是等边三角形ABC 的中线,∴BD 平分∠ABC.∴∠DBE=21∠ABC=21∠ACB.又∵CE=CD ,∴∠E=21∠ACB.∴∠DBE=∠E.∴DB=DE.∵DF ⊥BE ,∴DF 为底边上的中线.∴BF=EF. 5.D 6.60°7.证明:∵DC=DB,∴∠B=∠DCB=30°,∴∠ADC=∠DCB+∠B=60°.又∵AD=DC,∴△ADC 是等边三角形. 8.证明:在△EOB 和△COD 中,∠OEB=∠ODC=90°,∠EOB=∠COD ,OB=OC ,∴△EOB ≌△COD.∴∠EBO=∠DCO.∵OB=OC ,∴∠OBC=∠OCB.∴∠EBC=∠DCB.∴AB=AC.又∵∠A=60°,∴△ABC 是等边三角形.课后作业9.A 10.D 11.120° 12.3 13.(1)证明:∵△ABC 是等边三角形,∴AB=AC,∠B=∠BAC.∵BD=AE,∴△ABD ≌△CAE.∴AD=CE.(2)∵△ABD ≌△CAE,∴∠BAD=∠ACE.∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.14.(1)∵△ABC 为等边三角形,∴∠ABC=∠BCA=∠CAB=60°.又∵∠1=∠2=∠3,∴∠ABD =∠BCE =∠CAF.∴∠BEC=180°-∠2-∠BCE=180°-(∠2+∠ABD)=180°-60°=120°.(2)由(1)知∠BEC=120°,∴∠DEF=60°.同理:∠DFE =∠EDF =60°,∴△DEF 为等边三角形.15.△BPQ是等边三角形.理由:当t=2时,AP=2×1=2(cm),BQ=2×2=4(cm).∴BP=AB-AP=6-2=4(cm).∴BQ=BP.又∵∠B=60°,∴△BPQ是等边三角形.。

人教版八年级数学上册13.3.2 第1课时 等边三角形的性质与判定

人教版八年级数学上册13.3.2 第1课时  等边三角形的性质与判定

质 线互相重合(三线合一)
所对的角的平分线互相重合
对称轴(1条)
对称轴(3条)
A A
B
CB
C
类比探究2:
图形 判
等腰三角形 从边看:两条边相等的 三角形是等腰三角形
定 从角看:两个角相等的三
角形是等腰三角形
等边三角形 三条边都相等的三角形 是等边三角形
三个角都相等的三角形 是等边三角形,
小明等认边为三还角有形第的三判种定方方法法“:两条边相等且有一个角是60°的三角 形也是等有边一三个角角形是”60,°你的同等意腰吗三?角形是等边三角形.
变式:上题中,若将条件DE∥BC改为AD=AE, △ADE还是等
边三角形吗?试说明理由. 如图,在等边三角形ABC中,AD=AE, 求证:△ADE是等边三角形.
A
D
E
B
C
习题巩固:
1.下列三角形:①有两个角等于60°;②有
一个角等于60°的等腰三角形;③三个外角
(每个顶点处各取一个外角)都相等的三角
典例精析
例1 如图,在等边三角形ABC中,DE∥BC, 求证:△ADE是等边
三角形.
证明:∵ △ABC是等边三角形,
A
∴ ∠A= ∠B= ∠C.
∵ DE//BC,
D
E
∴ ∠ADE= ∠B, ∠ AED= ∠C.
B
C
∴ ∠A= ∠ADE= ∠ AED.
∴ △ADE是等边三角形.
想一想:本题还有其他证法吗?
轴对称图形
二、探究新知
一般三角形
等腰三角形
等边三角形
定义类比:
在等腰三角形中,有一种特殊的情况,就是底与腰相等, 这时三角形三边相等,我们把三条边都相等的三角形叫 做等边三角形.

2020年人教版数学八年级上册学案13.3.2《等边三角形》(含答案)

2020年人教版数学八年级上册学案13.3.2《等边三角形》(含答案)

13.3.2等边三角形第1课时等边三角形的性质与判定学习目标理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法.预习阅读教材“思考及例4”,完成预习内容.知识探究1.等边三角形的性质:(1)定义:等边三角形的________都相等;(2)等边三角形的三个内角都________,并且每一个角都等于________.2.等边三角形的判定:(1)定义:________都相等的三角形为等边三角形;(2)三个角都________的三角形是等边三角形;(3)有一个角是60°的____________为等边三角形.自学反馈1.在等边三角形ABC中,∠______=∠______=∠______=______.2.在三角形ABC中,AB=AC=2,∠A=60°,则BC=________.3.课本练习第1、2小题.活动1小组讨论如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.解:(1)证明:∵△ABC为等边三角形∴∠BAE=∠DCA=60°,AB=AC.在△ABE与△CAD中,∵AB=AC,∠BAE=∠ACD,AE=CD,∴△ABE≌△CAD.(2)∵△ABE≌△CAD,∴∠ABE=∠DAC.∵∠BAF+∠DAC=∠BAC=60°,∠BFD=∠ABE+∠BAF,∴∠BFD=∠BAF+∠DAC=60°.点拨:由等边三角形的性质,根据SAS证全等,然后利用全等的性质求∠BFD的度数.课堂小结对于等边三角形,它属于特殊的等腰三角形,特殊到三条边相等,三个角都等于60°,“三线合一”的性质就更能不受限制,淋漓尽致地发挥了.第2课时 含30°角的直角三角形的性质学习目标掌握含30°角的直角三角形的性质,并会运用.预习阅读教材P80~81“探究及例5”,完成预习内容.知识探究在直角三角形中,如果一个锐角等于30°,那么它所对的________等于________________. 自学反馈1.在Rt △ABC 中,若∠BCA=90°,∠A=30°,AB=4,则BC=________.2.Rt △ABC 中,∠C=90°,∠B=2∠A ,∠B 和∠A 各是多少度?边AB 与BC 之间有什么关系?活动1 小组讨论如图,∠ACB=90°,∠B=30°,CD ⊥AB.求证:AD=14AB.证明:∵∠ACB=90°,∠B=30°,∴AC=12AB.∵CD ⊥AB ,∴∠CDB=90°.∴∠DCB=60°. ∵∠ACB=90°,∴∠ACD=30°.在Rt △ACD 中,∠ACD=30°.∴AD=12AC=14AB. 课堂小结含30°角的直角三角形中存在线段的比例关系,是证明线段倍数关系的重要途径.课堂小练一、选择题1.如图,在△ABC 中,D 、E 在BC 上,且BD=DE=AD=AE=EC ,则∠BAC 的度数是( )A.30°B.45°C.120°D.15°2.已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形3.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于E ,垂足为D.若ED=5,则CE 的长为( )A.10B.8C.5D.2.54.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4cmB.2cmC.1cmD.0.5m5.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=ABB.BD=ABC.BD=ABD.BD=AB6.如图是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=10m,∠A=30°,则立柱BC的长度是()A.5mB.8mC.10mD.20m7.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为()A.6米B.9米C.12米D.15米8.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°9.如图,过等边△ABC的顶点A作射线,若∠1=20°,则∠2的度数是( )A.100°B.80°C.60°D.40°10.下列推理错误的是( )A.在△ABC中,∵∠A=∠B=∠C,∴△ABC为等边三角形B.在△ABC中,∵AB=AC,且∠B=∠C,∴△ABC为等边三角形C.在△ABC中,∵∠A=60°,∠B=60°,∴△ABC为等边三角形D.在△ABC中,∵AB=AC,∠B=60°,∴△ABC为等边三角形二、填空题11.如图,△ABC是等边三角形,AD⊥BC,DE⊥AB,若AB=8 cm,BD=________,BE=________.12.等腰三角形的底角为15°,腰长是2 cm,则腰上的高为________.13.等腰三角形一底角是30°,底边上的高为9 cm,则其腰长为________,顶角为________.14.在Rt△ACB中,∠C=90°,∠A=30°,AB=10,则BC=________.15.如图,将边长为5 cm的等边△ABC,沿BC向右平移3 cm,得到△DEF,DE交AC于M,则△MEC是________三角形,DM=________cm.参考答案1.答案为:C2.答案为:D3.答案为:A4.答案为:C5.答案为:C6.答案为:A7.答案为:B8.答案为:A9.答案为:A10.答案为:B.11.答案为:4 cm 2 cm12.答案为:1 cm13.答案为:18 cm 120°14.答案为:515.答案为:等边 3。

人教版八年级数学上册13.3.2《等边三角形(1)》教案

人教版八年级数学上册13.3.2《等边三角形(1)》教案

人教版八年级数学上册13.3.2《等边三角形(1)》教案一. 教材分析等边三角形是八年级数学上册13.3节的一个重要内容,它是一种特殊的三角形,具有三条边相等和三个角相等的性质。

本节课主要让学生掌握等边三角形的性质,并能够运用这些性质解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的性质和判定,具备了一定的几何知识基础。

但等边三角形作为一种特殊的三角形,其性质和判定与普通三角形有所不同,需要学生进行一定的思考和理解。

三. 教学目标1.让学生了解等边三角形的性质,能够运用这些性质解决实际问题。

2.培养学生的空间想象能力和逻辑思维能力。

3.提高学生的几何学习兴趣,培养学生的自主学习能力。

四. 教学重难点1.等边三角形的性质及其应用。

2.等边三角形的判定方法。

五. 教学方法1.采用问题驱动法,引导学生通过观察和思考,发现等边三角形的性质。

2.运用案例分析法,让学生通过解决实际问题,巩固等边三角形的性质和判定。

3.采用小组合作学习法,培养学生的团队合作精神和沟通能力。

六. 教学准备1.PPT课件:包含等边三角形的性质和判定内容,以及相关的例题和练习题。

2.练习题:包括基础题和提高题,用于巩固和拓展学生的知识。

3.教学工具:直尺、三角板、彩色粉笔等。

七. 教学过程1.导入(5分钟)利用PPT展示等边三角形的图片,引导学生观察和思考:等边三角形有什么特点?你能否找出一些实际问题,用等边三角形的性质来解决?2.呈现(10分钟)通过PPT呈现等边三角形的性质和判定方法,引导学生理解和掌握。

同时,给出相关的例题,让学生通过观察和思考,发现等边三角形的性质。

3.操练(10分钟)让学生分组合作,运用等边三角形的性质和判定方法,解决实际问题。

教师巡回指导,给予学生必要的帮助和指导。

4.巩固(10分钟)让学生独立完成PPT上的练习题,巩固等边三角形的性质和判定。

教师选取部分学生的作业进行讲评,指出其中的错误和不足。

人教版八年级数学上册《13.3.2等边三角形》练习题(附答案)

人教版八年级数学上册《13.3.2等边三角形》练习题(附答案)

人教版八年级数学上册《13.3.2等边三角形》练习题(附答案)一、选择题1.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为( )A. 2cmB. 4cmC. 6cmD. 8cm2.如图,BC=10cm,∠B=∠BAC=15°,AD⊥BC于点D,则AD的长为( )A. 3cmB. 4cmC. 5cmD. 6cm3.如图,△ABC是等边三角形,AD⊥BC于点D,点E在AC上,且AE=AD,则∠DEC的度数为( )A. 105°B. 95°C. 85°D. 75°4.如图,直线l1//l2,△ABC是等边三角形∠1=50°,则∠2的大小为( )A. 60°B. 80°C. 70°D. 100°5.如图,Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3则BD的长是( )A. 12B. 9C. 6D. 36.如图,直线l//m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为18°,则∠α的度数为( )A. 60°B. 42°C. 36°D. 30°7.如图,△ABC中,AB=AC,∠BAC=120∘,AC的垂直平分线交BC于D,交AC于E,DE=2,则BC=( )A. 8B. 10C. 12D. 158.如图,四边形ABCD中∠C=30∘,∠B=90∘,∠ADC=120∘若AB=2,CD=8,则AD=( )A. 4B. 5C. 6D. 79.如图,已知∠AOB=60°,点P在边OA上OP=12,点M,N在边OB上PM=PN,若MN=2,则OM的长是( )A. 3B. 4C. 5D. 610.如图,C为线段AB上一动点(不与点A、B重合),在AB同侧分别作正三角形ACD和正三角形BCE,AE与BD 交于点F,AE与CD交于点G,BD与CE交于点H,连接GH.以下五个结论:①AE=BD②GH//AB③AD=DH ④GE=HB⑤∠AFD=60°一定成立的是( )A. ①②③④B. ①②④⑤C. ①②③⑤D. ①③④⑤二、填空题11.若一个等边三角形的周长是30cm,一边上的高是5√ 3cm,则这个等边三角形的面积是.12.如图∠MAN=60°,点B在射线AM上,且AB=2,点C在射线AN上.若△ABC是锐角三角形,则AC的取值范围是______.13.在△ABC中,若AB=AC=7,∠B=30°,则BC边上的高AD=.14.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为________米.15.如图,将一副三角板如图所示叠放在一起,若AB=8cm,则阴影部分的面积是cm2.16.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是______.17.如图,在△ABC中∠B=30°,BC的垂直平分线交AB于点E,垂足为点D,若ED=5,则EC的长为.18.在△ABC中∠B=10°,∠C=20°,AC=2cm,CD⊥AB且CD交BA的延长线于点D,则CD的长为.19.如图,将边长为5cm的等边△ABC向右平移1cm,得到△A′B′C′,此时阴影部分的周长为cm.20.如图,△ABC为等边三角形DE//AC,点O为线段EC上一点,DO的延长线与AC的延长线交于点F,DO= FO.若AC=7,FC=3,则OC的长为.三、解答题21.如图,在Rt△ABC中∠A=90°,∠B=30°,请用尺规作图法在AB上求作一点D,使得AB=3AD.(保留作图痕迹,不写作法)22.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.23.如图∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE垂足分别为D、E,CE交AB于点F.(1)求证:BE=CD;(2)若∠ECA=75°,求证:DE=1AB.224.如图,在△ABC中AB=AC=8,∠CBA=45°.(1)求证:AC⊥AB;(2)分别以点A,C为圆心,AC长为半径作弧,两弧交于点D(点D在AC的左侧),连接CD,AD,BD.求△ABD 的面积.25.如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.(1)尺规作图:在直线BC的下方,过点B作∠CBE=∠CBA,作NC的延长线,与BE相交于点E.(2)求证:△BEC是等边三角形;(3)求证:∠AMN=60°.答案和解析1.【答案】B【解析】【分析】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,是基础题,熟记性质是解题的关键.根据直角三角形30°角所对的直角边等于斜边的一半解答.【解析】解:∵直角三角形中30°角所对的直角边为2cm∴斜边的长为2×2=4cm.故选:B.2.【答案】C【解析】解:∵∠B=∠BAC=15°∴AC=BC∵∠ACD=∠B+∠BAC=15°+15°=30°又∵AD⊥BCAC=5cm.∴AD=12故选:C.根据等角对等边的性质可得AC=BC=10cm,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ACD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.本题考查了等角对等边的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.3.【答案】A【解析】【分析】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.先根据△ABC是等边三角形,AD⊥BC可得∠CAD=30°,再由AD=AE可知∠ADE=∠AED,根据三角形内角和定理即可求出∠AED的度数,故可得出∠DEC的度数.【解答】解:∵△ABC是等边三角形∴∠BAC=60°.∵AD⊥BC ∴AD平分∠BAC∴∠DAC=30°.∵AD=AE∴∠ADE=∠AED=180°−30°2=75°∴∠DEC=∠DAC+∠ADE=105°.故选:A4.【答案】C【解析】【分析】本题考查了等边三角形的性质和平行线的性质,熟记等边三角形的性质和平行线的性质是解题的关键.根据等边三角形的性质及外角性质可求∠3,再根据平行线的性质即可得到结论.【解答】解:如图∵△ABC是等边三角形∴∠A=60°∵∠1=50°∴∠3=∠1+∠A=50°+60°=110°∵直线l1//l2∴∠2+∠3=180°∴∠2=180°−∠3=70°故选:C.5.【答案】B【解析】解:∵CD⊥AB,∠ACB=90°∴∠ADC=90°=∠ACB∵∠B=30°∴∠A=90°−∠B=60°∴∠ACD=90°−∠A=30°∵AD=3∴AC=2AD=6∴AB=2AC=12∴BD=AB−AD=12−3=9故选:B.根据三角形的内角和求出∠A,根据余角的定义求出∠ACD,根据含30°角的直角三角形性质求出AC=2AD,AB=2AC求出AB即可.本题主要考查的是含30°角的直角三角形性质和三角形内角和定理的应用,关键是求出AC=2AD,AB=2AC.6.【答案】B【解析】解:∵△ABC是等边三角形∴∠A=∠ABC=60°.∵l//m∴∠1=∠ABC+18°=78°.∴∠α=180°−∠A−∠1=180°−60°−78°=42°.故选:B.先利用等边三角形的性质得到∠A、∠ABC的度数,再利用平行线的性质求出∠1的度数,最后利用三角形的内角和定理求出∠a.本题考查了平行线的性质、等边三角形的性质等知识点,掌握“等边三角形的每个内角都是60°”、“三角形的内角和是180°”及平行线的性质是解决本题的关键.另解决本题亦可过点C作直线l的平行线,利用平行线的性质求解.7.【答案】C【解析】解:连接AD,如图所示:∵AB=AC,∠BAC=120∘∴∠B=∠C=30∘∵AC的垂直平分线交BC于D∴DA=DC,∠DEC=90∘∴CD=2DE=4∴AD=4∵∠BAD=120∘−30∘=90∘∴BD=2AD=8∴BC=BD+CD=8+4=12∴故选C.8.【答案】A【解析】【分析】本题考查了含30∘角的直角三角形的性质,通过作辅助线得出直角三角形是解决问题的关键.作DE⊥BC于E,作AF⊥DE于F,先求出EF=AB=2,再根据含30∘角的直角三角形的性质得出DE= 12CD=4,进而得到DF=DE−EF=2,进而可得出答案.【解答】解:作DE⊥BC于E,作AF⊥DE于F,如图所示:则∠DEC=∠AFD=90∘,EF=AB=2∵∠C=30∘∴∠CDE=60°∴∠ADE=120°−60°=60∘,DE=12CD=4∴DF=DE−EF=2∵∠AFD=90°∴∠DAF=30∘∴AD=2DF=4.故选A.9.【答案】C【解析】【分析】此题考查了含30°角的直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用含30°角的直角三角形的性质得出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD−MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D在Rt△OPD中∠AOB=60°,OP=12∴∠OPD=30°∴OD=12OP=6∵PM=PN,PD⊥MN,MN=2∴MD=ND=12MN=1∴OM=OD−MD=6−1=5.故选C.10.【答案】B【解析】【分析】本题考查了等边三角形的判定与性质的运用,全等三角形的判定及性质的运用,三角形的外角与内角之间的关系的运用,平行线的判定的运用,解答时证明三角形全等是关键.根据等边三角形的性质可以得出△ACE≌△DCB,就可以得出∠CAE=∠CDB,∠AEC=∠DBC,通过证明△CEG≌△CBH就可以得出CG=CH,GE=HB,可以得出△GCH是等边三角形,就可以得出∠GHC=60°就可以得出GH//AB,由∠DCH≠∠DHC就可以得出CD≠DH,就可以得出AD≠DH,进而得出结论.【解答】解:∵△ACD和△BCE是等边三角形∴AD=AC=CD,CE=CB=BE,∠ACD=∠BCE=60°.∴∠DCE =60°.∴∠DCE =∠BCE .∴∠ACD +∠DCE =∠BCE +∠DCE∴∠ACE =∠DCB .在△ACE 和△DCB 中{AC =DC ∠ACE =∠DCB CE =CB∴△ACE ≌△DCB(SAS)∴AE =BD ,∠CAE =∠CDB ,∠AEC =∠DBC.故①正确;在△CEG 和△CBH 中{∠GEC =∠HBC CE =CB ∠GCE =∠HCB,∴△CEG ≌△CBH(ASA)∴CG =CH ,GE =HB ,故④正确;∴△CGH 为等边三角形∴∠GHC =60°∴∠GHC =∠BCH∴GH//AB ,故②正确;∵∠AFD =∠EAB +∠CBD∴∠AFD =∠CDB +∠CBD =∠ACD =60°,故⑤正确;∵∠DHC =∠HCB +∠HBC =60°+∠HBC∴∠DCH ≠∠DHC∴CD ≠DH∴AD ≠DH ,故③不正确;综上所述,正确的有:①②④⑤.故选B .11.【答案】25√ 3cm 2【解析】【分析】根据周长可求边长;根据三角形面积公式计算.此题考查等边三角形的性质和三角形的面积计算,属基础题.【解答】解:∵等边三角形的周长是30厘米∴边长为10厘米.∵高是√ 102−52=√ 75=5√ 3厘米∴面积=10×5√ 3÷2=25√ 3(cm2).故答案是:25√ 3cm2.12.【答案】1<AC<4【解析】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中AB=2,∠A=60°∴∠ABC1=30°∴AC1=12AB=1在Rt△ABC2中AB=2,∠A=60°∴∠AC2B=30°∴AC2=4当点C在C1和C2之间时,△ABC是锐角三角形∴AC的取值范围是1<AC<4故答案为:1<AC<4.当点C在射线AN上运动,△ABC的形状可能是钝角三角形、直角三角形或锐角三角形.画出相应的图形,根据运动三角形的变化,构造含30°角的直角三角形,即可得到AC的取值范围.本题考查了直角三角形中30°的角所对的直角边等于斜边的一半,能熟记含30°角的直角三角形的性质是解此题的关键.13.【答案】3.5【解析】【分析】本题考查了含30°角的直角三角形的性质,熟练掌握含30°角的直角三角形的性质是解题关键.根据含30°角的直角三角形的性质即可得.【解答】解:∵在△ABC中AB=AC=7,∠B=30°,AD⊥BC∴AD=12AB=3.5故答案为:3.5.14.【答案】12【解析】【分析】此题主要利用了直角三角形中30°的角所对的边是斜边的一半解决问题,然后解题时要正确理解题意,把握题目的数量关系.如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面4米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【解答】解:如图∵∠BAC=30°,∠BCA=90°∴AB=2CB而BC=4米∴AB=8米∴这棵大树在折断前的高度为AB+BC=12米.故答案为12.15.【答案】8【解析】【分析】本题主要考查含30°角的直角三角形,等腰直角三角形,平行线的判定与性质等知识点,熟记公式是解题的关键.先利用直角三角形的性质求出AC的长,再根据平行线的性质及等腰直角三角形的性质求出CF的长即可.【解答】解:∵∠B=30°,∠ACB=90°,AB=8cm∴AC=4cm.由题意可知BC//ED∴∠AFC=∠ADE=45°∴AC=CF=4cm.×4×4=8(cm2).故S△ACF=12故答案为8.16.【答案】6【解析】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点∴EF=2∵DE//AB,DF//AC∴△DEF是等边三角形∴剪下的△DEF的周长是2×3=6.故答案为:6.根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.本题考查了等边三角形的判定与性质,平行线的性质,关键是证明△DEF是等边三角形.17.【答案】10【解析】【分析】本题考查的是线段垂直平分线的性质和含30°角的直角三角形的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.先根据线段垂直平分线的性质得出BE=CE,故可得出∠B=∠DCE,再由直角三角形的性质即可得出结论.【解答】解:在△ABC中∠B=30°,BC的垂直平分线交AB于E,ED=5所以BE=CE所以∠B=∠DCE=30°在Rt△CDE中因为∠DCE=30°,ED=5所以CE=2DE=10.故答案为:10.18.【答案】1cm【解析】【分析】根据三角形的外角的性质可求得∠DAC=30°,再根据直角三角形中有一个角是30°,则这个角所对的边等于斜边的一半,从而求得CD的长.本题考查直角三角形的性质的综合运用.【解答】解:∵∠B=10°,∠C=20°∴∠DAC=30°.∵CD⊥AB∴CD=1/2AC=1cm.故CD的长度是1cm.19.【答案】12【解析】【分析】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了平移的性质.利用等边三角形的性质得到AB=BC=5cm,∠B=∠ACB=60°,再根据平移的性质得到∠A′B′C′=∠B= 60°,BB′=1cm,B′C=4cm,于是可判断阴影部分为等边三角形,从而得到阴影部分的周长.【解答】解:∵△ABC为等边三角形∴AB=BC=5cm,∠B=∠ACB=60°∵等边△ABC向右平移1cm得到△A′B′C′∴∠A′B′C′=∠B=60°,BB′=1cm∴∠A′B′C′=∠ACB=60°,B′C=BC−BB′=5−1=4cm∴阴影部分为等边三角形∴阴影部分的周长为3×4=12(cm).故答案为:12.20.【答案】221.【答案】解:如下图:点D即为所求.【解析】本题考查了尺规作图,掌握作一个角的平分线的方法是解题的关键.作∠ACB 的平分线即可.22.【答案】解:(1)∵△ABD 、△AEC 都是等边三角形∴AD =AB ,AC =AE ,∠DAB =∠DBA =∠ADB =60°,∠CAE =60°∵∠DAB =∠DAC +∠CAB ,∠CAE =∠BAE +∠CAB∴∠DAC =∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC≌△BAE∴CD =BE .(2)∵△DAC≌△BAE∴∠ADC =∠ABE∴∠CFE =∠BDF +∠DBF=∠BDF +∠DBA +∠ABF=∠BDF +∠DBA +∠ADC=∠BDA +∠DBA=60°+60°=120°.【解析】本题考查了全等三角形的性质与判定,解决本题的关键是证明△DAC≌△BAE .(1)利用△ABD 、△AEC 都是等边三角形,证明△DAC≌△BAE ,即可得到CD =BE ;(2)由△DAC≌△BAE ,得到∠ADC =∠ABE ,再由∠CFE =∠BDF +∠DBF =∠BDF +∠DBA +∠ABF ,即可解答.23.【答案】证明:(1)∵∠ACB =90°,AD ⊥CE ,BE ⊥CE∴∠ACD +∠BCE =90°,∠ACD +∠CAD =90°,∠ADC =∠CEB =90°∴∠BCE =∠CAD在△ADC 和△CEB 中{∠ADC =∠CEB ∠CAD =∠BCE AC =BC∴△ADC≌△CEB(AAS)∴BE =CD ;(2)∵∠ECA=75°∴∠CAD=15°=∠BCE ∵∠ACB=90°,AC=BC∴∠CBA=∠CAB=45°∴∠BFE=60°,∠DAF=30°∴∠FBE=30°,DF=12AF∴EF=12BF∴DE=DF+EF=12(AF+BF)=12AB.【解析】(1)由“AAS”可证△ADC≌△CEB,可得BE=CD;(2)由直角三角形的性质可得DF=12AF,EF=12BF,可得结论.本题考查了全等三角形的判定和性质,30°所对的直角边是斜边的一半,直角三角形的性质,证明三角形全等是解题的关键.24.【答案】(1)证明:∵AB=AC∴∠CBA=∠ACB=45°∴∠CAB=180°−∠ACB−∠CBA=90°∴AC⊥AB.(2)解:过点D作DE⊥BA,交BA的延长线于点E由题意得:AC=AD=CD=8∴△ACD是等边三角形∴∠DAC=60°∴∠DAE=180°−∠DAC−∠CAB=30°∴DE=12AD=4∴△ABD的面积=12AB⋅DE=12×8×4=16∴△ABD的面积为16.【解析】(1)利用等腰三角形的性质可得∠CBA=∠ACB=45°,然后利用三角形内角和定理求出∠CAB=90°,即可解答;(2)过点D作DE⊥BA,交BA的延长线于点E,根据题意可得:AC=AD=CD=8,从而可得△ACD是等边三角形,然后利用等边三角形的性质可得∠DAC=60°,从而利用平角定义可得∠DAE=30°,最后在Rt△DEA中,利用含30°角的直角三角形的性质可得DE=4,从而利用三角形的面积进行计算即可解答.本题考查了等腰三角形的性质,等边三角形的判定与性质,含30°角的直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【答案】(1)解:如图所示:(2)证明:∵△ABC是等边三角形∴∠ABC=∠ACB=60°∴∠ACH=120°∵CN平分∠ACH∴∠HCN=∠BCE=60°∵∠CBE=∠CBA=60°∴∠EBC=∠BCE=∠BEC=60°∴△BEC是等边三角形;(3)证明:连接ME∵△ABC和△BCE是等边三角形∴AB=BC=BE在△ABM和△EBM中∵{AB=EB∠ABM=∠EBM BM=BM,∴△ABM≌△EBM(SAS)∴AM=EM,∠BAM=∠BEM∵AM=MN∴MN=EM∴∠N=∠CEM∵∠HCN=∠N+∠CMN=60°∠BEC=∠BEM+∠CEM=60°∴∠CMN=∠BEM=∠BAM∵∠AMC=∠ABC+∠BAM=∠AMN+∠CMN∴∠AMN=60°.【解析】【分析】此题是三角形综合题目,考查了等边三角形的性质和判定,作一个角等于已知角的基本作图,全等三角形的判定与性质,三角形的外角性质等知识;熟练掌握等边三角形的性质,通过作辅助线构造三角形全等是解本题的关键.(1)以B为圆心,以任意长为半径画弧,交AB、BC两边为D和F,以F为圆心,以DF为半径画弧,交前弧于G,作射线BG,交NC的延长线于E,则∠CBE=∠CBA;(2)证明△BCE三个角都是60°,可得结论;(3)作辅助线,构建三角形全等,证明△ABM≌△EBM(SAS),得AM=EM,∠BAM=∠BEM,证明∠CMN=∠BEM=∠BAM根据三角形外角的性质可得结论.。

人教版八年级数学上册等边三角形的性质与判定2同步练习题

人教版八年级数学上册等边三角形的性质与判定2同步练习题

人教版八年级数学试题13.3.2 等边三角形第1课时等边三角形的性质和判定1.等边三角形是轴对称图形,它有_________条对称轴。

2.等边三角形两个内角的平分线所成的钝角的度数是_____________.3.若一个三角形有两个外角都是120°,则这个三角形是__________三角形。

4.等边三角形的两条中线相交所成的锐角的度数是_________。

5.若等腰三角形腰上的中线垂直于腰,则这个三角形是_________三角形。

6.若右图所示,已知点D在BC上,点E在AD上,BE=AE=CE,并且∠1=∠2=60°.求证:△ABC是等边三角形。

7.如右图所示,在等边三角形ABC的边AB、AC上分别截出AD=AE,△ADE是等边三角形吗?说明理由。

8.如右图所示,已知△ABC为等边三角形,点D为BC延长线上的一点,CE评分∠ACD,CE=BD,求证:△ADE是等边三角形。

习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。

因此,预习数学的关键是先看书,进而尝试做题。

学生经过自己的努力,初步理解和掌握了新的数学知识,还要通过做练习或解决简单的问题来检验自己预习的效果。

教材中每一小节后的思考练习题,是编者根据教学大纲的要求,对教材中要点和重点的概述,是对学生理解书本内容的具体评估。

因此,我们可以利用这些题目来检查自己的预习效果。

通过试解练习题,哪些知识点已知已会,哪些难懂不会,一下子就检验出来了。

对试解出来的习题,通过听课以加深理解;对试解不出来的习题,课堂上应格外留心听讲,力求政克,为提高课堂学习质量打下坚实的基础。

如何应用习题试解预习法?同学们可以采用以下的步骤:第一步:先阅读教材,然后合上书本,围绕课后几个思考题想一想:这课讲了什么新问题,自己弄懂了没有?这些新知识与旧知识之间有什么联系,自己是否已经掌握?还有什么不懂的问题需要上课时听老师讲解?通过这样的回忆,初步检查自己的预习效果。

人教版初二数学上试卷13.3.2第1课时等边三角形的性质与判定精选练习2.docx

人教版初二数学上试卷13.3.2第1课时等边三角形的性质与判定精选练习2.docx

初中数学试卷
桑水出品
13.3.2 等边三角形
第1课时等边三角形的性质和判定
1.等边三角形是轴对称图形,它有_________条对称轴。

2.等边三角形两个内角的平分线所成的钝角的度数是_____________.
3.若一个三角形有两个外角都是120°,则这个三角形是__________三角形。

4.等边三角形的两条中线相交所成的锐角的度数是_________。

5.若等腰三角形腰上的中线垂直于腰,则这个三角形是_________三角形。

6.若右图所示,已知点D在BC上,点E在AD上,BE=AE=CE,并且∠1=∠2=60°.求证:△ABC是等边三
角形。

7.如右图所示,在等边三角形ABC的边AB、AC上分别截出AD=AE,△ADE是等边三角形吗?说明理由。

8.如右图所示,已知△ABC为等边三角形,点D为BC延长线上的一点,CE评分∠ACD,CE=BD,求证:△ADE 是等边三角形。

13.3.2 等边三角形-八年级数学人教版(上)(原卷版)

13.3.2 等边三角形-八年级数学人教版(上)(原卷版)

第十三章轴对称13. 3.2 等边三角形一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,△ABC是等边三角形,P为BC上一点,在AC上取一点D,使AD=AP,且∠APD=70°,则∠PAB的度数是A.10°B.15°C.20°D.25°2.等边三角形的三条高把这个三角形分成直角三角形的个数是A.8个B.10个C.11个D.12个3.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是ACA.PD=DQ B.DE=12CQ D.PQ⊥ABC.AE=124.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形5.下面几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一条边上的高也是这条边上的中线的三角形;④有一个角为60°的等腰三角形.其中是等边三角形的有A.4个B.3个C.2个D.1个6.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为A.15°B.30°C.45°D.60°二、填空题:请将答案填在题中横线上.7.如图,ABC △是等边三角形,BD 平分ABC ∠,点E 在BC 的延长线上,且1CE =,30E ∠=︒,则BC =__________.8.如图,在正方形ABCD 中,等边三角形AEF 的顶点E 、F 分别在边BC 和CD 上,则∠AEB =_______度.9.如图,已知OA =5,P 是射线ON 上的一个动点,∠AON =60°.当OP =_______时,△AOP 为等边三角形.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.如图所示,△ABC 为等边三角形,BD 为中线,延长BC 至E ,使DE =BD .求证:CE =12BC .11.如图,等边三角形ABD 和等边三角形CBD 的边长均为a ,现把它们拼合起来,E 是AD 上异于A 、D 两点的一动点,F 是CD 上一动点,满足AE +CF =a ,则△BEF 的形状如何?12.如图,四边形ABCD 是正方形,△EBC 是等边三角形.(1)求证:△ABE ≌△DCE ;(2)求∠AED 的度数.13.如图,已知点O 是∠APB 内的一点,M ,N 分别是点O 关于PA ,PB 的对称点,连接MN ,与PA ,PB 分别相交于点E 、F ,已知MN =6 cm .(1)求△OEF 的周长;(2)连接PM ,PN ,若∠APB =a ,求∠MPN (用含a 的代数式表示);(3)当∠a =30°,判定△PMN 的形状,并说明理由.。

数学人教版八年级上册八年级数学上册13.3.2 第1课时 等边三角形的性质与判定 作业课件

数学人教版八年级上册八年级数学上册13.3.2 第1课时 等边三角形的性质与判定 作业课件

(1)求∠EAD 的度数; 解:易证△CBD≌△ABE, ∴∠C=∠BAE=60°, ∴∠EAD=60°.
(2)求 AE-AD 的值. 解:∵△CBD≌△ABE, ∴CD=AE,AE-AD=CD-AD=CA=2.
知识点 2:等边三角形的判定
6.等腰三角形补充下列条件后,仍不一定成为等边三角形的是
∵△ABC,△EDC 是等边三角形,
∴∠ACB=∠DCE=60°,BC=AC,DC=EC.
∴∠BCD=∠ACE.
BC=AC,
在△DBC 和△EAC 中,∠BCD=∠ACE, DC=EC,
∴△DBC≌△EAC(SAS).
(2)试说明 AE∥BC 的理由; 解:理由:∵△DBC≌△EAC,∴∠EAC=∠B=60°. ∵∠ACB=60°,∴∠EAC=∠ACB.∴AE∥BC.
AD 上,∠EBC=45°,则∠ACE 等于
A
()
A.15°
B.30°
C.45°
D.60°
11.★如图,△ABC 和△ADE 都为等边三角形,B,D,E 在同一直
线上,若∠ACE=20°,则∠BAD 等于
C
()
A.20°
B.30°
C.40°
D.50°
12.如图,△ABC 中,∠ACB=90°,AC=BC,D 为 AB 边上一点,
(3)如图②,将动点 D 运动到边 BA 的延长线上,所作仍为等边三角 形,请问是否仍有 AE∥BC?证明你的猜想.
解:仍有 AE∥BC. 证明∵△ABC,△EDC 为等边三角形, ∴BC=AC,DC=CE,∠BCA=∠DCE=60°. ∴∠BCA+∠ACD=∠DCE+∠ACD, 即∠BCD=∠ACE.
60°
∴ ∠α =∠1+∠2=∠3+∠2=

人教版八年级上13.3.2 等边三角形(1)(含答案)

人教版八年级上13.3.2 等边三角形(1)(含答案)

13.3.2等边三角形(1)一.选择题(共8小题)1.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180°B. 220°C. 240°D. 300°2.下列说法正确的是()A.等腰三角形的两条高相等C.有一个角是60°的锐角三角形是等边三角形B.等腰三角形一定是锐角三角形D.三角形三条角平分线的交点到三边的距离相等3.在△ABC中,①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有()A. 1个B. 2个C. 3个D. 4个4.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A. 25° B. 30°C.45°D. 60°5.如图,已知D、E、F分别是等边△ABC的边AB、BC、AC上的点,且DE⊥BC、EF⊥AC、FD⊥AB,则下列结论不成立的是()A.△DEF是等边三角形B.△ADF≌△BED≌△CFEC.DE=AB D.S△ABC=3S△DEF6.如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()A. 30°B. 45°C. 120°D. 15°7.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A. 4cm B. 3cm C. 2cm D. 1cm第1 题第4题第5题第7题8.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形二.填空题(共10小题)9.已知等腰△ABC中,AB=AC,∠B=60°,则∠A=_________度.10.△ABC中,∠A=∠B=60°,且AB=10cm,则BC=_________cm.11.在△ABC中,∠A=∠B=∠C,则△ABC是_________三角形.12.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是_________.13.如图,M、N是△ABC的边BC上的两点,且BM=MN=NC=AM=AN.则∠BAN=_________.第13题第14题第15题14.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则∠AOC等于_________.15.如图,将边长为6cm的等边三角形△ABC沿BC方向向右平移后得△DEF,DE、AC 相交于点G,若线段CF=4cm,则△GEC的周长是_________cm.16.如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE= _________度.第16 题第17题第18题17.三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=_______°.18.如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是_________.①BE=CD;②∠BOD=60°;③∠BDO=∠CEO.三.解答题(共5小题)19.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.20.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.21.已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.22.已知:如图,在△ABC中,AB=BC,∠ABC=120°,BE⊥AC于点D,且DE=DB,试判断△CEB的形状,并说明理由.23.已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC 于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).13.3.2等边三角形三、CDDBDCCD四、9、60;10、10;11、等边;12、等边三角形;13、90度;14、60度;15、6;16、60;17、130;18、①②三、19、(1)证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=CA,即∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS).(2)解:∵∠BFD=∠ABE+∠BAD,又∵△ABE≌△CAD,∴∠ABE=∠CAD.∴∠BFD=∠CAD+∠BAD=∠BAC=60°.20、解答:解:△BDC≌△AEC.理由如下:∵△ABC、△EDC均为等边三角形,∴BC=AC,DC=EC,∠BCA=∠ECD=60°.从而∠BCD=∠ACE.在△BDC和△AEC中,,∴△BDC≌△AEC(SAS).21、解答:证明:(1)∵BF=AC,AB=AE(已知)∴FA=EC(等量加等量和相等).(1分)∵△DEF是等边三角形(已知),∴EF=DE(等边三角形的性质).(2分)又∵AE=CD(已知),∴△AEF≌△CDE(SSS).(4分)(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),△DEF是等边三角形(已知),∴∠DEF=60°(等边三角形的性质),∴∠BCA=60°(等量代换),由△AEF≌△CDE,得∠EFA=∠DEC,∵∠DEC+∠FEC=60°,∴∠EFA+∠FEC=60°,又∠BAC是△AEF的外角,∴∠BAC=∠EFA+∠FEC=60°,∴△ABC中,AB=BC(等角对等边).(6分)∴△ABC是等边三角形(等边三角形的判定).(7分)22、解答:解:△CEB是等边三角形.(1分)证明:∵AB=BC,∠ABC=120°,BE⊥AC,∴∠CBE=∠ABE=60°.(3分)又DE=DB,BE⊥AC,∴CB=CE.(5分)∴△CEB是等边三角形.(7分)23、(1)证明:∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,∴∠ACM+∠MCN=∠NCB+∠MCN,即:∠ACN=∠MCB,在△ACN和△MCB中,AC=MC,∠ACN=∠MCB,NC=BC,∴△ACN≌△MCB(SAS).∴AN=BM.(2)证明:∵△AC N≌△MCB,∴∠CAN=∠CMB.又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,∴∠MCF=∠ACE.在△CAE和△CMF中∠CAE=∠CMF,CA=CM,∠ACE=∠MCF,∴△CAE≌△CMF(ASA).∴CE=CF.∴△CEF为等腰三角形.又∵∠ECF=60°,∴△CEF为等边三角形.(3)解:如右图,∵△CMA和△NCB都为等边三角形,∴MC=CA,CN=CB,∠MCA=∠BCN=60°,∴∠MCA+∠ACB=∠BCN+∠ACB,即∠MCB=∠ACN,∴△CMB≌△CAN,∴AN=MB,结论1成立,结论2不成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷 马鸣风萧萧
13.3.2 等边三角形(第1课时)
一.选择题(共8小题)
1.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )
A . 180°
B . 220°
C . 240°
D . 300°
2.下列说法正确的是( )
A . 等腰三角形的两条高相等 C . 有一个角是60°的锐角三角形是等边三角形
B . 等腰三角形一定是锐角三角形 D .三角形三条角平分线的交点到三边的距离相等
3.在△ABC 中,①若AB=BC=CA ,则△ABC 为等边三角形;②若∠A=∠B=∠C ,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有( )
A . 1个
B . 2个
C . 3个
D . 4个
4.如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( )
A . 25°
B . 30°
C . 45°
D . 60°
5.如图,已知D 、E 、F 分别是等边 △ABC 的边AB 、BC 、AC 上的点,
且DE ⊥BC 、EF ⊥AC 、FD ⊥AB ,则下列结论不成立的是( )
A . △DEF 是等边三角形
B . △ADF ≌△BED ≌△CFE
C . DE=AB
D . S △ABC=3S △DEF
6.如图,在△ABC 中,D 、E 在BC 上,且BD=DE=AD=AE=EC ,则∠BAC 的度数是( )
A . 30°
B . 45°
C . 120°
D . 15°
7.如图,在△ABC 中,AB=AC ,∠A=120°,BC=6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )
A . 4cm
B . 3cm
C . 2cm
D . 1cm
第 1 题 第4题 第5题 第7题
8.已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三角形是( )
A . 直角三角形
B . 钝角三角形
C . 等腰三角形
D . 等边三角形
二.填空题(共10小题)
9.已知等腰△ABC 中,AB=AC ,∠B=60°,则∠A= _________ 度.
10.△ABC 中,∠A=∠B=60°,且AB=10cm ,则BC= _________ cm .
11.在△ABC 中,∠A=∠B=∠C ,则△ABC 是 _________ 三角形.
12.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD 的形状是 _________ .
13.如图,M、N是△ABC的边BC上的两点,且BM=MN=NC=AM=AN.则∠BAN=_________.
第13题第14题第15题
14.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则∠AOC等于_________.
15.如图,将边长为6cm的等边三角形△ABC沿BC方向向右平移后得△DEF,DE、AC相交于点G,若线段CF=4cm,则△GEC的周长是_________cm.
16.如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE=_________度.
第16 题第17题第18题
17.三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=_______°.
18.如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是_________.
①BE=CD;②∠BOD=60°;③∠BDO=∠CEO.
三.解答题(共5小题)
19.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;
(2)求∠BFD的度数.
20.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中
的一组全等三角形,并说明理由.
21.已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:
(1)△AEF≌△CDE;
(2)△ABC为等边三角形.
22.已知:如图,在△ABC中,AB=BC,∠ABC=120°,BE⊥AC于点D,且DE=DB,试判断△CEB的形状,并说明理由.
23.已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM 交CN于点F.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).
一、CDDBDCCD
二、9、60;10、10;11、等边;12、等边三角形;13、90度;14、60度;15、6;
16、60;17、130;18、①②
三、19、(1)证明:∵△ABC为等边三角形,
∴∠BAC=∠C=60°,AB=CA,即∠BAE=∠C=60°,
在△ABE和△CAD中,
AB CA
BAE C AE CD
=


∠=∠

⎪=


∴△ABE≌△CAD(SAS).
(2)解:∵∠BFD=∠ABE+∠BAD,
又∵△ABE≌△CAD,
∴∠ABE=∠CAD.
∴∠BFD=∠CAD+∠BAD=∠BAC=60°.
20、解答:解:△BDC≌△AEC.理由如下:∵△ABC、△EDC均为等边三角形,
∴BC=AC,DC=EC,∠BCA=∠ECD=60°.
从而∠BCD=∠ACE.
在△BDC和△AEC中,
BC AC
BCD ACE DC EC
=


∠=∠

⎪=


∴△BDC≌△AEC(SAS).
21、解答:证明:(1)∵BF=AC,AB=AE(已知)
∴FA=EC(等量加等量和相等).(1分)
∵△DEF是等边三角形(已知),
∴EF=DE(等边三角形的性质).(2分)
又∵AE=CD(已知),
∴△AEF≌△CDE(SSS).(4分)
(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),△DEF是等边三角形(已知),
∴∠DEF=60°(等边三角形的性质),
∴∠BCA=60°(等量代换),
由△AEF≌△CDE,得∠EFA=∠DEC,
∵∠DEC+∠FEC=60°,
∴∠EFA+∠FEC=60°,
又∠BAC是△AEF的外角,
∴∠BAC=∠EFA+∠FEC=60°,
∴△ABC中,AB=BC(等角对等边).(6分)
∴△ABC是等边三角形(等边三角形的判定).(7分)
22、解答:解:△CEB是等边三角形.(1分)
证明:∵AB=BC,∠ABC=120°,BE⊥AC,
∴∠CBE=∠ABE=60°.(3分)
又DE=DB,BE⊥AC,
∴CB=CE.(5分)
∴△CEB是等边三角形.(7分)
23、(1)证明:∵△ACM,△CBN是等边三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
∴∠ACM+∠MCN=∠NCB+∠MCN,
即:∠ACN=∠MCB,
在△ACN和△MCB中,
AC=MC,∠ACN=∠MCB,NC=BC,
∴△ACN≌△MCB(SAS).
∴AN=BM.
(2)证明:∵△ACN≌△MCB,
∴∠CAN=∠CMB.
又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,∴∠MCF=∠ACE.
在△CAE和△CMF中
∠CAE=∠CMF,CA=CM,∠ACE=∠MCF,
∴△CAE≌△CMF(ASA).
∴CE=CF.
∴△CEF为等腰三角形.
又∵∠ECF=60°,
∴△CEF为等边三角形.
(3)解:如右图,
∵△CMA和△NCB都为等边三角形,
∴MC=CA,CN=CB,∠MCA=∠BCN=60°,
∴∠MCA+∠ACB=∠BCN+∠ACB,即∠MCB=∠ACN,
∴△CMB≌△CAN,
∴AN=MB,
结论1成立,结论2不成立.。

相关文档
最新文档