焚烧产生烟气量的计算及组成

合集下载

焚烧烟气量计算方式

焚烧烟气量计算方式

相对分子 12.00 质量 质量百分 35.00 比/% 吨垃圾含 有质量 350.00 /kg 焚烧后生 成物质 CO2 (A) 相对分子 44.00 质量 焚烧生成 物质量 1283.33 (B)/kg 校正 焚 烧生成产 1283.33 物质量 (C)/kg 焚烧所需 氧气量 933.33 (1)/kg 垃圾中能 利用的氧 元素量 (-1) /kg 理论所需 氧气量 (2)/kg
H20
NO2 48.00 26.74
SO2 64.00 3.20
P2O5 111.00 1.79
538.43
210.00
26.74
3.20
1.79
478.43
0.00
18.94
1.60
0.79
210.00
1283.76
理论所需 5545.42 空气质量 (3)/kg 空气过程 1.70 系数α 实际所需 9427.21 空气质量 (4)/kg 实际所需 2182.40 氧气质量 (5)/kg 富余氧气 898.63 质量 (6)/kg 焚烧后生 成物质密 1.964286 0.803571 1.428571 2.142857 2.857143 4.955357 度(D) /kg/Nm3 焚烧后生 成物质体 653.3333 670.0439 0 12.48 1.12 0.36129 积(E) /Nm3 剩余空气 8143.44 质量/kg 剩余空气 6410.175094 体积/Nm3 剩余氧气 898.63 质量/kg 剩余氧气 628.4157953 体积/Nm3 焚烧后烟 气体积 8055.443552 (F) /Nm3 焚烧后烟 7.801132133 气氧浓度 /V/V% 医疗垃圾 项目 /20t/d烟 气量 /Nm3/h

生活垃圾燃烧烟气量计算公式

生活垃圾燃烧烟气量计算公式

生活垃圾燃烧烟气量计算公式
生活垃圾燃烧烟气量的计算涉及多个因素,包括垃圾组成、燃烧效率、燃烧温度等。

以下是一个简单的燃烧烟气量的计算公式:
烟气量 = 垃圾总质量 × 垃圾可燃物含量 × 燃烧效率
其中:
•垃圾总质量是指被燃烧的生活垃圾的总质量,单位可以是千克、吨等。

•垃圾可燃物含量是指生活垃圾中可燃物质的占比。

根据不同地区和垃圾组成的差异,可燃物质的含量也有所不同,
通常以百分比表示。

•燃烧效率是指生活垃圾在燃烧过程中转化为热能的效率。

燃烧效率一般取值在0到1之间,或以百分比表示。

需要注意的是,这个公式仅作为一个简化的估计方法,并不考虑烟气成分的具体情况和各种复杂的化学和物理过程。

实际情况受到多种因素的影响,如垃圾组成的变化、燃烧设备的不同、燃烧控制条件等,因此精确的燃烧烟气量计算需要更详细的数据和模型。

在实际的工程或研究中,需要根据具体情况利用更精确和细致的方法进行烟气量的计算和评估。

烟气成分

烟气成分

烟气成分焚烧烟气污染物的形成及处理的分析1.1 酸性气体焚烧烟气中的酸性气体主要由SOX、NOX、HCl、HF组成,均来源于相应垃圾组分的燃烧。

SOX主要由SO2构成,产生于含硫化合物焚烧氧化所致。

NOX包括NO、NO2、N2O3等,主要由垃圾中含氮化合物分解转换或由空气中的氮在燃烧过程中高温氧化生成。

HCl来源于氯化物,如PVC、像胶、皮革,厨余中的NaCl以及KCl等。

焚烧烟气中HCl气体的浓度相对较高,往往在400~1200 ppm。

SOX与NOx的浓度相对较低[。

所以HCl是垃圾焚烧烟气中主要的污染气体。

HCl气体对人体有较强的伤害性。

据全球污染排放评估组织(GEIA )测算,全世界每年由生活垃圾焚烧向环境排放的HCl气体达218 kg之多,相当于每人每年仅通过垃圾焚烧向大气排放了0.42 kg HCl 。

HCl气体会对余热锅炉受热面和监测仪表产生高低温腐蚀,影响余热锅炉安全并限制了过热蒸汽参数的提高;HCl气体的存在升高了烟气露点,导致排烟温度升高,降低锅炉热效率,氯源在一定条件下与重金属反应生成低沸点的金属氯化物,从而加剧了重金属的挥发,导致重金属在飞灰上的富集,增加飞灰毒性。

HCl气体能促进氯酚、氯苯、氯苯并呋喃等“三致”有机物的生成,而且PVC裂解后生成的HCl被认为能促进多环芳烃(PAHs)的生成。

因此,有效去除HCl气体直接关系到焚烧系统的安全和环保运行。

1.2 有机类污染物有机类污染物主要是指在环境中浓度虽然很低,但毒性很大,直接危害人类健康的二噁英类化合物,其主要成分为多氯二苯并二噁英(PCDDs)和多氯二苯并呋喃(PCDFs)。

通常认为,垃圾的焚烧是环境中此类化合物产生的主要来源。

垃圾焚烧炉中二噁英有两种成因:一是垃圾自身含有微量的二噁英类物质,二是焚烧炉在垃圾燃烧过程中产生二噁英,其形成机理概括起来有三种(1)高温合成。

在垃圾进入焚烧炉的初期干燥阶段,除水分外,含碳氢成分的低沸点有机物挥发后,与空气中的氧反应生成水和二氧化碳,形成暂时缺氧状况,使部分有机物同氯化氢反应,生成二噁英;(2)通过合成反应形成二噁英。

烟气成分

烟气成分

焚烧烟气污染物的形成及处理的分析1.1 酸性气体焚烧烟气中的酸性气体主要由SOX、NOX、HCl、HF组成,均来源于相应垃圾组分的燃烧。

SOX主要由SO2构成,产生于含硫化合物焚烧氧化所致。

NOX包括NO、NO2、N2O3等,主要由垃圾中含氮化合物分解转换或由空气中的氮在燃烧过程中高温氧化生成。

HCl 来源于氯化物,如PVC、像胶、皮革,厨余中的NaCl以及KCl等。

焚烧烟气中HCl气体的浓度相对较高,往往在400~1200 ppm。

SOX与NOx的浓度相对较低[。

所以HCl是垃圾焚烧烟气中主要的污染气体。

HCl气体对人体有较强的伤害性。

据全球污染排放评估组织(GEIA )测算,全世界每年由生活垃圾焚烧向环境排放的HCl气体达218 kg之多,相当于每人每年仅通过垃圾焚烧向大气排放了0.42 kg HCl 。

HCl气体会对余热锅炉受热面和监测仪表产生高低温腐蚀,影响余热锅炉安全并限制了过热蒸汽参数的提高;HCl气体的存在升高了烟气露点,导致排烟温度升高,降低锅炉热效率,氯源在一定条件下与重金属反应生成低沸点的金属氯化物,从而加剧了重金属的挥发,导致重金属在飞灰上的富集,增加飞灰毒性。

HCl气体能促进氯酚、氯苯、氯苯并呋喃等“三致”有机物的生成,而且PVC裂解后生成的HCl被认为能促进多环芳烃(PAHs)的生成。

因此,有效去除HCl气体直接关系到焚烧系统的安全和环保运行。

1.2 有机类污染物有机类污染物主要是指在环境中浓度虽然很低,但毒性很大,直接危害人类健康的二噁英类化合物,其主要成分为多氯二苯并二噁英(PCDDs)和多氯二苯并呋喃(PCDFs)。

通常认为,垃圾的焚烧是环境中此类化合物产生的主要来源。

垃圾焚烧炉中二噁英有两种成因:一是垃圾自身含有微量的二噁英类物质,二是焚烧炉在垃圾燃烧过程中产生二噁英,其形成机理概括起来有三种(1)高温合成。

在垃圾进入焚烧炉的初期干燥阶段,除水分外,含碳氢成分的低沸点有机物挥发后,与空气中的氧反应生成水和二氧化碳,形成暂时缺氧状况,使部分有机物同氯化氢反应,生成二噁英;(2)通过合成反应形成二噁英。

锅炉烟气量、烟尘、二氧化硫的计算

锅炉烟气量、烟尘、二氧化硫的计算

一、烟气量的计算:0V -理论空气需求量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); ar net Q ⋅-收到基低位发热量(kJ/kg 或kJ/Nm 3(气体燃料));daf V -干燥无灰基挥发分(%);V Y -烟气量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); α-过剩空气系数, α=αα∆+0。

1、理论空气需求量daf V >15%的烟煤:278.01000Q 05.1arnet 0+⨯=⋅V daf V <15%的贫煤及无烟煤:61.04145Q arnet 0+=⋅V 劣质煤ar net Q ⋅<12560kJ/kg :455.04145Q arnet 0+=⋅V 液体燃料:21000Q 85.0arnet 0+⨯=⋅V 气体燃料,ar net Q ⋅<10468kJ/Nm 3:1000Q 209.0arnet 0⋅⨯=V 气体燃料,ar net Q ⋅>14655kJ/Nm 3:25.01000Q 260.0arnet 0-⨯=⋅V 2、实际烟气量的计算(1)固体燃料无烟煤、烟煤及贫煤:0arnet Y )1(0161.177.041871.04Q V V -++⋅α=ar net Q ⋅<12560kJ/kg 的劣质煤:0arnet Y )1(0161.154.041871.04Q V V -++⋅α=(2)液体燃料:0arnet Y )1(0161.141871.1Q V V -+⋅α=(3)气体燃料:ar net Q ⋅<10468kJ/Nm 3时:0arnet Y )1(0161.10.141870.725Q V V -++⋅α=ar net Q ⋅>14655kJ/Nm 3时:0arnet Y )1(0161.125.041871.14Q V V -+-⋅α=炉膛过剩空气系数α表烟气总量:y V B V ⨯=V -烟气总量,m 3/h 或m 3/a ;B -燃料耗量,kg/h 、m 3/h 、kg/a 、m 3/a 。

焚烧理论计算书

焚烧理论计算书

焚烧理论计算书焚烧平衡计算在本项目中,所有设备的规格型号和尺寸大小均以第2节中提供的数据为准。

其中,回转窑焚烧温度需大于850℃,而二燃室焚烧温度则需大于1100℃。

锅炉参数方面,蒸汽压力为1.0Mpa,蒸汽温度为183℃,烟气出口温度为550℃。

给水温度按104℃计算,排污率为5%。

急冷塔参数方面,烟气进口温度为550℃,烟气出口温度为200℃,使用喷水降温。

1.1 工艺参数计算1.1.1 焚烧需要的理论空气量和燃烧产物计算废物完全焚烧需要的理论空气量和燃烧产物计算可通过反应方程式得出。

在完全焚烧的情况下,反应方程式如下:C + O2 = CO24H + O2 = 2H2O2N = N2S + O2 = SO22Cl = Cl22Cl2 + 2H2O = 4HCl + O2H2O = H2O理论空气量可通过元素气量计算得出,其中C、H、O、N的理论空气量分别为2.280Nm3/kg、1.267Nm3/kg、-0.167Nm3/kg、1.801Nm3/kg。

CO2、H2O、N2、SO2、HCl的理论燃烧产物分别为0.479Nm3/kg、0.532Nm3/kg、1.801Nm3/kg、0.092kg/kg、0.025kg/kg。

飞灰、灰渣、S、Cl、F、A、W的理论燃烧产物分别为0.117kg/kg、-0.023kg/kg、0.000kg/kg、3.474kg/kg、0.092kg/kg、0.025kg/kg、0.019kg/kg、0.024kg/kg、0.216kg/kg、-0.009kg/kg、-0.018kg/kg、0.000kg/kg、0.401kg/kg、0.000kg/kg、2.759kg/kg、0.479Nm3/kg、0.924Nm3/kg、0.025Nm3/kg、0.019Nm3/kg、0.024Nm3/kg、0.216Nm3/kg。

在标准状态下,完全燃烧需要的理论空气量为3.5Nm3/kg,完全燃烧后的烟气量为4.2Nm3/kg。

锅炉烟气量、烟尘、二氧化硫的计算

锅炉烟气量、烟尘、二氧化硫的计算

一、烟气量的计算:0V -理论空气需求量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); ar net Q ⋅-收到基低位发热量(kJ/kg 或kJ/Nm 3(气体燃料)); daf V -干燥无灰基挥发分(%);V Y -烟气量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料));α-过剩空气系数, α=αα∆+0。

1、理论空气需求量daf V >15%的烟煤:278.01000Q 05.1arnet 0+⨯=⋅V daf V <15%的贫煤及无烟煤:61.04145Q arnet 0+=⋅V 劣质煤ar net Q ⋅<12560kJ/kg :455.04145Q arnet 0+=⋅V 液体燃料:21000Q 85.0arnet 0+⨯=⋅V 气体燃料,ar net Q ⋅<10468kJ/Nm 3:1000Q 209.0arnet 0⋅⨯=V 气体燃料,ar net Q ⋅>14655kJ/Nm 3:25.01000Q 260.0arnet 0-⨯=⋅V2、实际烟气量的计算(1)固体燃料无烟煤、烟煤及贫煤:0arnet Y )1(0161.177.041871.04Q V V -++⋅α=ar net Q ⋅<12560kJ/kg 的劣质煤:0arnet Y )1(0161.154.041871.04Q V V -++⋅α=(2)液体燃料:0arnet Y )1(0161.141871.1Q V V -+⋅α=(3)气体燃料:ar net Q ⋅<10468kJ/Nm 3时:0arnet Y )1(0161.10.141870.725Q V V -++⋅α=ar net Q ⋅>14655kJ/Nm 3时:0arnet Y )1(0161.125.041871.14Q V V -+-⋅α=炉膛过剩空气系数0α表烟气总量:y V B V ⨯= V -烟气总量,m 3/h 或m 3/a ;B -燃料耗量,kg/h 、m 3/h 、kg/a 、m 3/a 。

焚烧烟气量计算方式

焚烧烟气量计算方式

HClO 52.50 9.17
/ / 177.ቤተ መጻሕፍቲ ባይዱ0
H2O 18.00 244.30
烟气 / /
9.17
177.70
244.30
2494.66
2.97
57.70
0.00
1493.76
210.00
3.76
5.42
.70
7.21
2.40
8.63
2.34375
飞灰/残 0.803571 渣
/
3.912113
生活垃圾(某20吨/日医疗垃圾) 成分 质量百分 比/% C 35.00 H 6.00 O 21.00 N 0.78 S 0.16 P 0.01 Cl 0.62 A 不可燃 分 12.00
焚烧垃圾量(1t/h=1000kg=1000000000mg) 成分 C H 1.00 6.00 60.00 O 16.00 21.00 210.00 N 14.00 0.78 7.80 S 32.00 0.16 1.60 P 31.00 0.10 1.00
6712.869626
医疗垃圾 项目 /20t/d烟 气量/25 ℃m3/h
7327.263698
W H2O 24.43
合计 100.00
热值 /Kcal/kg 3578.00
=1000000000mg) Cl 35.50 0.62 6.20 A 不可燃 分 / 12.00 120.00 W H2O 18.00 24.43 244.30 合计 / 100.09 1000.90
H20 18.00 540.00
O2 32.00 210.00
NO2 48.00 26.74
SO2 64.00 3.20
P2O5 111.00 1.79

垃圾焚烧发电设计计算完整版(锅炉蒸发量、烟气量、发电量、风机选型等)

垃圾焚烧发电设计计算完整版(锅炉蒸发量、烟气量、发电量、风机选型等)
垃圾焚烧发电设计计算完整版(锅炉蒸发量、烟气量、发电量、风机选型等)
序号
项目
一 垃圾元素分析值
1 应用基碳 2 应用基氢 3 应用基氧 4 应用基氮 5 应用基硫 6 应用基氯 7 应用基水份 8 应用基灰份
合计 10 收到基低位发热量
二 垃圾量计算
(一 )
天垃圾焚烧量
1 垃圾焚烧炉台数
2 设计每小时垃圾焚烧量 t/h
0.79*V0+0.008*(1-N转化率)*Nar 1.866(Car+0.375*S转*Sar)/100 1.866*0.375*S转*Sar/100 1.866*Car/100 0.016*β*Nar 0.111Har-0.00315Clar+0.0124Mar+0.0161*V0 V0N2+V0RO2+V0NO+V0HCL V0N2+V0RO2+V0H2O+V0NO+V0HCL V0dg+(α-1)*V0 V0H2O+0.016*(α-1)*V0 Vdg+VH2O 0.631*Clar/100
Pd Mp 0.101325/Pd
αpy1 不计入炉膛出口过剩空气计算
αpy2 不计入炉膛出口过剩空气计算
TGT Vpydw Qpy
Va.wg 1000*Bjz*Vpydw
Vpy1 Mp*Qpy*(273+TGT)/273
Vpydg Vdg
Qpg 1000*Bjz*Vpydg
Vpy2 Mp*Qpg*(273+TGT)/273
7 实际燃烧产体积(干烟气)
8 实际水蒸汽容积
9 实际燃烧产体积(湿烟气)
10 HCL含量估算

锅炉烟气量、烟尘、二氧化硫的计算

锅炉烟气量、烟尘、二氧化硫的计算

一、烟气量的计算:0V -理论空气需求量(Nm3/Kg 或Nm 3/Nm 3(气体燃料));ar net Q ⋅-收到基低位发热量(kJ/kg 或kJ/Nm 3(气体燃料)); daf V -干燥无灰基挥发分(%);V Y -烟气量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); α-过剩空气系数, α=αα∆+0。

1、理论空气需求量daf V >15%的烟煤:278.01000Q 05.1arnet 0+⨯=⋅V daf V <15%的贫煤及无烟煤:61.04145Q arnet 0+=⋅V 劣质煤ar net Q ⋅<12560kJ/kg :455.04145Q arnet 0+=⋅V液体燃料:21000Q 85.0arnet 0+⨯=⋅V 气体燃料,ar net Q ⋅<10468kJ/Nm 3:1000Q 209.0ar net 0⋅⨯=V气体燃料,ar net Q ⋅>14655kJ/Nm 3:25.01000Q 260.0arnet 0-⨯=⋅V 2、实际烟气量的计算(1)固体燃料无烟煤、烟煤及贫煤:0arnet Y )1(0161.177.041871.04Q V V -++⋅α=ar net Q ⋅<12560kJ/kg 的劣质煤:0arnet Y )1(0161.154.041871.04Q V V -++⋅α=(2)液体燃料:0arnet Y )1(0161.141871.1Q V V -+⋅α=(3)气体燃料:ar net Q ⋅<10468kJ/Nm 3时:0arnet Y )1(0161.10.141870.725Q V V -++⋅α=ar net Q ⋅>14655kJ/Nm3时:0arnet Y )1(0161.125.041871.14Q V V -+-⋅α=炉膛过剩空气系数0α表燃烧方式 烟煤 无烟煤 重油 煤气 链条炉 1.3~1.4 1.3~1.5 煤粉炉 1.2 1.25 1.15~1.21.05~1.10沸腾炉1.25~1.3漏风系数α∆表漏风 部位 炉膛 对流 管束 过热器 省煤器 空气 预热器 除尘器钢烟道(每10m )钢烟道 (每10m ) α∆ 0.1 0.15 0.05 0.1 0.1 0.05 0.010.05烟气总量:y V B V ⨯=V -烟气总量,m 3/h 或m 3/a ;B -燃料耗量,kg/h 、m 3/h 、kg/a 、m 3/a 。

50t回转窑计算书

50t回转窑计算书

N
0.01280
S
0.06567
0.05188 0.01379
CL -0.01397
-0.00587 -0.01104
0.01174
F
-0.00014
-0.00006 -0.00011
0.00012
A
0.02894
W
0.30539
0.26046
合计 3.87078 0.58259 0.81242
3.07071 0.01379 0.01174 0.00012
符号 t1 h1 T2 t2 h2 Q水 T1 Q1 V1 ⊿a
⊿VK ⊿QK
Q2 ⊿T q Q G Vk ⊿QK V2 D f W t
急冷塔计算 单位 ℃ kJ/kg ℃ ℃ kJ/m3 kJ/h ℃
Kcal/h Nm3/h
Nm3/h kJ/h kJ/h
% kJ/h kg/h Nm3/h kJ/h Nm3/h
符号 T1 Vy1 Q1
Q11 ⊿a ⊿VK ⊿QK T1 Q2 Q21 Q2
G G1 D f W G2 Vk Vy2
干式脱酸塔计算 单位 ℃ Nm3/h
Kcal/h Kcal/h
Nm3/h kJ/h ℃ kJ/h kJ/h kJ/h kg/h kg/h
m m2 m/s kg/h Nm3/h Nm3/h
重量(kg/h)
热量
入口
废物
2083.33
助燃空气
12512.2857
辅助燃料
助燃空气
合计
14595.6190
30787630.21 189368.07 0 0
30976998.28
出口 烟气 灰渣 散热损失 CO 总计

垃圾焚烧发电设计计算完整版(锅炉蒸发量、烟气量、发电量、风机选型等)

垃圾焚烧发电设计计算完整版(锅炉蒸发量、烟气量、发电量、风机选型等)

1.4864 0.3495 0.0006 0.3489 0.0003 0.8559 1.8385 2.6944 3.1528 0.8770 4.0298 0.0022
1.0599 0.3141 0.0006 0.3135 0.0003 0.6966 1.3765 2.0731 2.3129 0.7116 3.0245 0.0022
0.02 0.02 850.00 3.67 84011.35 346628.54 2.82 64555.29 266353.36
0.03
0.03
0.03
0.03

220.00
220.00
220.00
220.00
3
余热锅炉出口燃烧产物的体积(标态、湿烟 气)
4 余热锅炉出口烟气量(标态、湿烟气)
Vrydw Vpydw+1.016*αpy3*V0 Vry1 1000*Bjz*Vrydw

(一 )
初始排放浓度
1 二氧化硫(11%O2,干态,标态)SO2
2 氯化氢(11%O2,干态,标态) HCL
3 氮氧化物(11%O2,干态,标态)以NO2计
4 烟尘(11%O2,干态,标态)
(二 )
国家最新排放标准
1 二氧化硫(11%O2,干态,标态)SO2
2 氯化氢(11%O2,干态,标态) HCL
传统焚烧炉排取值范围1.6~1.8(新型燃烧技术为1.3~ 1.4)氧含量7-9%
α*V0
1.016*α*V0
单位
% % % % % % % %
kJ/kg kLeabharlann al/kg数据 设计值 16.800 1.800 12.780 0.400 0.140 0.348 45.000 22.732 100.000 5046.44 1205.55

焚烧产生烟气量的计算及组成

焚烧产生烟气量的计算及组成

焚烧产生烟气量的计算及组成
发布日期:2012-06-06 浏览次数:15
一、烟气产生量假定废物以理论空气量完全燃烧时的燃烧烟气量称为理论烟气产生量。

如果废物组成已知,以C、H、N、O、S
【湖北环保产业网】
一、烟气产生量
假定废物以理论空气量完全燃烧时的燃烧烟气量称为理论烟气产生量。

如果废物组成已知,以C、H、N、O、S、Cl、W表示单位废物中碳、氢、氮、氧、硫、比,氯和水分的质量比,则理论燃烧湿基烟气量为:
2 .烟气组成
固体或液体废物燃烧烟气组成,可依下表所示方法计算。

表焚烧干、湿烟气百分组成计算表
组成
体积百分组成质量百分组成湿烟气干烟气湿烟气干烟气
CO2 1.867C/G 1.867C/G’ 3.67C/G 3.67C/G’SO20.7S/G0.7S/G’2S/G2S/G’
HC l 0.631Cl/G
0.631Cl/G

1.03Cl/
G
1.03Cl/G’
O20.21(m-1)A0
/G
0.21(m-1)A0
/G’
0.23(m-
1)A0/G
0.23(m-1)A0/G’
N2(0.8N+0.79
mA0)/G
(0.8N+0.79
mA0)/G’
(N+0.77
mA0)/G
(N+0.77mA0)/G’
H2O (11.2H’+1
.244W)/G
(9H’+W)/G。

焚烧炉 一般物质的燃烧与烟气的计算

焚烧炉 一般物质的燃烧与烟气的计算

焚烧炉一般物质的燃烧与烟气的计算1. 物质燃烧过程及燃烧产物~~中环焚烧燃烧过程是可燃物的快速氧化过程(放热反应)1. 完全燃烧的产物:CO2、H2O2. 不完全燃烧的产物:CO2、H2O & CO、黑烟及其他部分氧化产物3. 如果燃料中含有S和N,则会生成SO2和NO4. 空气中的部分N可能被氧化成NO-热力型NO x2. 燃烧可能释放的污染物:1. CO2、CO、SO x、NO x、CH烟、飞灰、金属及其氧化物等2. 温度对燃烧产物的绝对量和相对量都有影响(图1)3. 物质种类和燃烧方式对燃烧产物也有影响3. 燃烧产物与温度的关系(图1)4.物质完全燃烧的条件1. 空气条件:提供充足的空气;但是空气量过大,会降低炉温,增加热损失a) 温度条件(Temperature):达到燃料的着火温度b) 时间条件(Time):燃料在高温区停留时间应超过燃料燃烧所需时间c) 燃料与空气的混合条件(Turbulence):燃料与氧充分混合5.燃烧所需空气量和产生烟气量的计算物质燃烧烟气量计算的假定:1. 空气组成:20.9%O2和79.1%N2,两者体积比为:N2/ O2 = 3.782. 气体的标准状态:温度273.15k,压力101325Pa3. 燃料中的氧可用于燃烧4. 燃料中硫被氧化为SO25. 不考虑NOX的生成6. 燃料的化学式为CxHySzOw6. 燃烧方程式:物资重量= 12x+1.008y+32z+16w7. 物质燃烧所需的空气量理论空气量:按化学反应式计算,燃料完全燃烧时所需要的空气量8.物质燃烧所需的空气量空气过剩系数:实际空气量与理论空气量之比。

以a表示,a 通常>1a=实际空气量/ 理论空气量=QA/Qa实际空气量QA= Qa*a9. 物质燃烧产生的烟气量烟气量计算(CO2、SO2、N2和H2O)完全燃烧时理论烟气量(m3/kg)完全燃烧时理论干烟气量(m3/kg)完全燃烧时实际烟气量(m3/kg)完全燃烧时实际干烟气量(m3/kg)。

垃圾焚烧发电工艺设计参数的计算方法

垃圾焚烧发电工艺设计参数的计算方法

垃圾焚烧发电工艺设计参数的计算方法浙江旺能环保股份有限公司作者:周玉彩摘要:本文介绍了垃圾焚烧发电炉排炉、汽轮机组工艺设计的参数计算方法。

关键词:参数、垃圾、焚烧、炉排、汽轮机组。

前言:生活垃圾焚烧发电应用于环境保护领域,实现城市生活垃圾的无害化、减量化、减容化和资源化、智能化处理,达到节能减排之目的。

在生活垃圾焚烧发电工艺设计流程中首先进行垃圾焚烧发电炉排炉工艺设计参数的计算,为后续设计提供参数依据。

一、生活垃圾焚烧炉排炉工艺设计参数的计算1、待处理生活垃圾的性质1.1待处理生活垃圾主要组成成分表1:待处理生活垃圾的性质表2:待处理生活垃圾可燃物的元素分析(应用基)%表3:要求设计主要参数1.2 根据垃圾元素成分计算垃圾低位热值:LHV=81C+246H+26S-26O-6W (Kcal/Kg)=81*20.6+246*0.9+26*0.12-26*0.12-6*47.4=1388(Kcal/Kg)*4.18=5800(KJ/Kg)。

1.3根据垃圾元素成分计算垃圾高位热值:HHV={LHV+600*(W+9H)}*4.18={1388+600(0.474+9*0.009)}*4.18=7193.78(KJ/Kg)。

2、处理垃圾的规模及能力焚烧炉3台: 每台炉日处理垃圾350t;处理垃圾量: 1000t/24h=41.67(t/h);炉系数:(8760-8000)/8000=0.095;实际每小时处理生产能力:41.67*(1+0.095)=45.6(t/h);全年处理量: 45.6*8000=36.5*104t;故:每台炉每小时处理垃圾量:350/24*1.05=15.3(t/h)。

3、设计参数计算:3.1垃圾仓的设计和布置已知设计中焚烧炉长度L=75.5米,宽D=18.5米,取垃圾仓内壁与炉长度对齐,T=5d,垃圾的堆积密度取0.35t/m3求:垃圾的容积工程公式:V=a*T式中: V----垃圾仓容积m3;a--- 容量系数,一般为1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积;T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化;V=a*T=1.2*5*1000/0.35=17142.86(m3 )。

危险废物焚烧污染控制标准(GB18484-2001)

危险废物焚烧污染控制标准(GB18484-2001)
1)
17

原子吸收分光光度法
1)
18
二噁英类
色谱-质谱联用法
2)
1)《空气和废气监测分析方法》,中国环境科学出版社,北京,1990年。
2)《固体废弃物试验分析评价手册》,中国环境科学出版社,北京,1992年,P332~359。
6.2焚烧残渣热灼减率监测
6.2.1样品的采集和制备方法执行HJ/T 20。
2引用标准
以下标准所含条文,在本标准中被引用即构成本标准的条文,与本标准同效。
GHZB l-1999地表水环境质量标准
GB 3095-1996环境空气质量标准
GB/T 16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法
GB l5562.2-1995环境保护图形标志固体废物贮存(处置)场
TEQ=∑(二噁英毒性同类物浓度×TEF)
3.13标准状态
指温度在273.16K,压力在101.325kPa时的气体状态。本标准规定的各项污染物的排放限值,均指在标准状态下以11%O2(干空气)作为换算基准换算后的浓度。
4技术要求
4.1焚烧厂选址原则
4.1.1各类焚烧厂不允许建设在GHZBl中规定的地表水环境质量I类、Ⅱ类功能区和GB 3095中规定的环境空气质量一类功能区,即自然保护区、风景名胜区和其它需要特殊保护地区。集中式危险废物焚烧厂不允许建设在人口密集的居住区、商业区和文化区。
6.2.2焚烧残渣热灼减率的分析采用重量法。依据本标准“3.6”所列公式计算,取3次平均值作为判定值。
7标准实施
(1)自2000年3月1日起,二噁英类污染物排放限值在北京市、上海市、广州市执行。2003年1月1日之日起在全国执行
(2)本标准由县级以上人民政府环境保护行政主管部门负责监督与实施。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 .烟气组成
固体或液体废物燃烧烟气组成,可依下表所示方法计算。
表 焚烧干、湿烟气百分组成计算表
组成
体积百分组成
质量百分组成
湿烟气
干烟气
湿烟气
干烟气
CO2
1.867C/G
1.867C/G’
3.67C/G
3.67C/G’
SO2
0.7S/G
0.7S/G’
2S/G
2S/G’
HCl
0.631Cl/G
0.631Cl/G’
焚烧产生烟气量的计算及组成
发布日期:2012-06-06 浏览次数:15
一、烟气产生量假定废物以理论空气量完全燃烧时的燃烧烟气量称为理论烟气产生量。如果废物组成已知,以C、H、N、O、S
【Hale Waihona Puke 北环保产业网】一、烟气产生量
假定废物以理论空气量完全燃烧时的燃烧烟气量称为理论烟气产生量。如果废物组成已知,以C、H、N、O、S、Cl、W表示单位废物中碳、氢、氮、氧、硫、比,氯和水分的质量比,则理论燃烧湿基烟气量为:
(9H’+W)/G
1.03Cl/G
1.03Cl/G’
O2
0.21(m-1)A0/G
0.21(m-1)A0/G’
0.23(m-1)A0/G
0.23(m-1)A0/G’
N2
(0.8N+0.79mA0)/G
(0.8N+0.79mA0)/G’
(N+0.77mA0)/G
(N+0.77mA0)/G’
H2O
(11.2H’+1.244W)/G
相关文档
最新文档