数学中国中高考真题成长博客CERSPBLOG教师
十年真题(2010_2019)高考数学真题分类汇编专题05三角函数与解三角形文(含解析)
专题05三角函数与解三角形历年考题细目表历年高考真题汇编1.【2019年新课标1文科07】tan255°=()A.﹣2B.﹣2C.2D.2【解答】解:tan255°=tan(180°+75°)=tan75°=tan(45°+30°).故选:D.2.【2019年新课标1文科11】△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A,则()A.6 B.5 C.4 D.3【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c,a sin A﹣b sin B=4c sin C,cos A,∴,解得3c2,∴6.故选:A.3.【2018年新课标1文科08】已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为4【解答】解:函数f(x)=2cos2x﹣sin2x+2,=2cos2x﹣sin2x+2sin2x+2cos2x,=4cos2x+sin2x,=3cos2x+1,,,故函数的最小正周期为π,函数的最大值为,故选:B.4.【2018年新课标1文科11】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α,则|a﹣b|=()A.B.C.D.1【解答】解:∵角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α,∴cos2α=2cos2α﹣1,解得cos2α,∴|cosα|,∴|sinα|,|tanα|=||=|a﹣b|.故选:B.5.【2017年新课标1文科11】△ABC的内角A,B,C的对边分别为a,b,c,已知sin B+sin A(sin C﹣cos C)=0,a=2,c,则C=()A.B.C.D.【解答】解:sin B=sin(A+C)=sin A cos C+cos A sin C,∵sin B+sin A(sin C﹣cos C)=0,∴sin A cos C+cos A sin C+sin A sin C﹣sin A cos C=0,∴cos A sin C+sin A sin C=0,∵sin C≠0,∴cos A=﹣sin A,∴tan A=﹣1,∵A<π,∴A,由正弦定理可得,∴sin C,∵a=2,c,∴sin C,∵a>c,∴C,故选:B.6.【2016年新课标1文科04】△ABC的内角A、B、C的对边分别为a、b、c.已知a,c=2,cos A,则b=()A.B.C.2 D.3【解答】解:∵a,c=2,cos A,∴由余弦定理可得:cos A,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或(舍去).故选:D.7.【2016年新课标1文科06】将函数y=2sin(2x)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x)B.y=2sin(2x)C.y=2sin(2x)D.y=2sin(2x)【解答】解:函数y=2sin(2x)的周期为Tπ,由题意即为函数y=2sin(2x)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x)],即有y=2sin(2x).故选:D.8.【2015年新课标1文科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得 2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.9.【2014年新课标1文科02】若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>0【解答】解:∵tanα>0,∴,则sin2α=2sinαcosα>0.故选:C.10.【2014年新课标1文科07】在函数①y=cos|2x|,②y=|cos x|,③y=cos(2x),④y=tan(2x)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③【解答】解:∵函数①y=cos丨2x丨=cos2x,它的最小正周期为π,②y=丨cos x丨的最小正周期为π,③y=cos(2x)的最小正周期为π,④y=tan(2x)的最小正周期为,故选:A.11.【2013年新课标1文科10】已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10 B.9 C.8 D.5【解答】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A,A为锐角,∴cos A,又a=7,c=6,根据余弦定理得:a2=b2+c2﹣2bc•cos A,即49=b2+36b,解得:b=5或b(舍去),则b=5.故选:D.12.【2012年新课标1文科09】已知ω>0,0<φ<π,直线x和x是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.【解答】解:因为直线x和x是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T2π.所以ω=1,并且sin(φ)与sin(φ)分别是最大值与最小值,0<φ<π,所以φ.故选:A.13.【2011年新课标1文科07】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.14.【2011年新课标1文科11】设函数,则f(x)=sin(2x)+cos(2x),则()A.y=f(x)在(0,)单调递增,其图象关于直线x对称B.y=f(x)在(0,)单调递增,其图象关于直线x对称C.y=f(x)在(0,)单调递减,其图象关于直线x对称D.y=f(x)在(0,)单调递减,其图象关于直线x对称【解答】解:因为f(x)=sin(2x)+cos(2x)sin(2x)cos2x.由于y=cos2x的对称轴为x kπ(k∈Z),所以y cos2x的对称轴方程是:x(k∈Z),所以A,C错误;y cos2x的单调递减区间为2kπ≤2x≤π+2kπ(k∈Z),即(k∈Z),函数y=f(x)在(0,)单调递减,所以B错误,D正确.故选:D.15.【2010年新课标1文科10】若cos α,α是第三象限的角,则sin(α)=()A.B.C.D.【解答】解:∵α是第三象限的角∴sinα,所以sin(α)=sinαcos cosαsin.故选:A.16.【2019年新课标1文科15】函数f(x)=sin(2x)﹣3cos x的最小值为.【解答】解:∵f(x)=sin(2x)﹣3cos x,=﹣cos2x﹣3cos x=﹣2cos2x﹣3cos x+1,令t=cos x,则﹣1≤t≤1,∵f(t)=﹣2t2﹣3t+1的开口向上,对称轴t,在[﹣1,1]上先增后减,故当t=1即cos x=1时,函数有最小值﹣4.故答案为:﹣417.【2018年新课标1文科16】△ABC的内角A,B,C的对边分别为a,b,c.已知b sin C+c sin B=4a sin B sin C,b2+c2﹣a2=8,则△ABC的面积为.【解答】解:△ABC的内角A,B,C的对边分别为a,b,c.b sin C+c sin B=4a sin B sin C,利用正弦定理可得sin B sin C+sin C sin B=4sin A sin B sin C,由于0<B<π,0<C<π,所以sin B sin C≠0,所以sin A,则A由于b2+c2﹣a2=8,则:,①当A时,,解得bc,所以.②当A时,,解得bc(不合题意),舍去.故:.故答案为:.18.【2017年新课标1文科15】已知α∈(0,),tanα=2,则cos(α)=.【解答】解:∵α∈(0,),tanα=2,∴sinα=2cosα,∵sin2α+cos2α=1,解得sinα,cosα,∴cos(α)=cosαcos sinαsin,故答案为:19.【2016年新课标1文科14】已知θ是第四象限角,且sin(θ),则tan(θ)=.【解答】解:∵θ是第四象限角,∴,则,又sin(θ),∴cos(θ).∴cos()=sin(θ),sin()=cos(θ).则tan(θ)=﹣tan().故答案为:.20.【2014年新课标1文科16】如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.【解答】解:△ABC中,∵∠BAC=45°,∠ABC=90°,BC=100,∴AC100.△AMC中,∵∠MAC=75°,∠MCA=60°,∴∠AMC=45°,由正弦定理可得,解得AM=100.Rt△AMN中,MN=AM•sin∠MAN=100sin60°=150(m),故答案为:150.21.【2013年新课标1文科16】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:22.【2011年新课标1文科15】△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.【解答】解:由余弦定理可知cos B,求得BC=﹣8或3(舍负)∴△ABC的面积为•AB•BC•sin B5×3故答案为:23.【2010年新课标1文科16】在△ABC中,D为BC边上一点,BC=3BD,AD,∠ADB=135°.若AC AB,则BD=.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BD cos135°AC2=CD2+AD2﹣2AD•CD cos45°即AB2=BD2+2+2BD①AC2=CD2+2﹣2CD②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC AB所以由(3)得 2AB2=4BD2+2﹣4BD(4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2故答案为:224.【2015年新课标1文科17】已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sin A sin C.(Ⅰ)若a=b,求cos B;(Ⅱ)设B=90°,且a,求△ABC的面积.【解答】解:(I)∵sin2B=2sin A sin C,由正弦定理可得: 0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cos B.(II)由(I)可得:b2=2ac,∵B=90°,且a,∴a2+c2=b2=2ac,解得a=c.∴S△ABC1.25.【2012年新课标1文科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,c a sin C﹣c cos A.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)c a sin C﹣c cos A,由正弦定理有:sin A sin C﹣sin C cos A﹣sin C=0,即sin C•(sin A﹣cos A﹣1)=0,又,sin C≠0,所以sin A﹣cos A﹣1=0,即2sin(A)=1,所以A;(2)S△ABC bc sin A,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bc cos A,即4=b2+c2﹣bc,即有,解得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题f x的单调递增区间为()1.函数的部分图象如图所示.则函数()A .,k z ∈B .,k z ∈C .,k z ∈D .,k z ∈【答案】C 【解析】 根据函数的部分图象,可得:,解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:,可得:,k ∈Z ,解得:,k ∈Z ,由于:0ϕπ<<,可得:6π=ϕ,即,令,k ∈Z 解得:,k ∈Z ,可得:则函数()f x 的单调递增区间为:,k ∈Z .故选C .2.将函数的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若且,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】 由题意,函数的图象向右平移12π个单位长度,再向上平移1个单位长度,得到的图象,若且,则,则,解得,因为,所以,当时,122x x -取得最大值,最大值为,故选C. 3.将函数(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为,将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以,又,所以()g x 关于2x π=对称,所以,即,因为0πϕ-<<,所以易得23πϕ=-. 故选A 4.已知函数的图象经过两点, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( )A .B .C .D .【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为,由图可知,又因为0ϕπ<<,所以34πϕ=,所以,因为,由图可知,,解得,又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=,所以,故答案选D.5.已知函数,则下列结论中正确的个数是( ).①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A 【解析】 由题意,函数,①中,由不为最值,则()f x 的图象不关于直线3x π=对称,故①错;②中,将()f x 的图象向右平移3π个单位,得到函数的图象,故②对;③中,由,可得,03π⎛⎫-⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由,解得,即增区间为,由,解得,即减区间为,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足,b =则ABC △的面积为A .BC .D 【答案】C【解析】 把看成关于a 的二次方程,则,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,,2a ∴=,由余弦定理可得,,解可得,c =∴.故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若,∴ 022A π<<,3A B A +=,,04A π<<,由正弦定理得,即4cos b A =则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若,53a b =,则C =( ).A .3π B .23π C .34π D .56π 【答案】B 【解析】 由题意,因为,可得:,即,可得∴或0cosA =,又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得,∵(0,)C π∈,∴23C π=. 故选:B .9.若函数(01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数的图像过点(,即:sin 2ϕ=02πϕ<<3πϕ∴=又函数图象关于点()2,0-对称,即:,k Z ∈,k Z ∈01ω<< 6πω∴=,本题正确结果:1 10.若实数,x y 满足.则xy 的最小值为____________【答案】1.4【解析】 ∵,∴10x y -+>,,当且仅当11x y -+=时即=x y 时取等号,当且仅当时取等号∴且,即,因此(当且仅当0k =时取等号),从而xy 的最小值为1.411.设函数,若120x x <,且,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则,由图可知.故答案为:(3π,+∞) 12.已知角α为第一象限角,,则实数a 的取值范围为__________.【答案】(1,2] 【解析】 由题得,因为所以所以.故实数a 的取值范围为(1,2]. 故答案为:(1,2] 13.已知函数的图象关于直线x π=对称,则cos 2ϕ=___.【答案】35【解析】 因为函数的图象关于直线x π=对称,,即,即,即1tan 2ϕ=-, 则,故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,,,则AD 的长为______【解析】连接AC ,设ACB θ∠=,则,如图:故在Rt ABC ∆中,,,又在ACD ∆中由余弦定理有,解得,即,15.在锐角ABC ∆中,角AB C ,,的对边分别为a b c ,,.且n 3Ca,b =.则a c +的取值范围为_____.【答案】(6, 【解析】∴由正弦定理可得:,可得:,,又ABC ∆为锐角三角形,3B π∴=,∴可得:2,3A A π-均为锐角,可得:,.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】 因为1tan A ,1tan C ,1tan B成等差数列, 所以,即,所以,由正弦定理可得,又由余弦定理可得,所以,故,又因为AB 边上的中线1CM =,所以1CM =,因为,所以,即,解c =.即AB故答案为317.在ABC ∆中,AB C ,,的对边分别a b c ,,,.(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若,求ABC ∆的面积.【答案】(Ⅰ)4;(Ⅱ)9【解析】(Ⅰ)因为cos 3B =,∴sin 3B =,,由正弦定理得sin DCCAD∠,因为AD 平分BAC ∠,所以.(Ⅱ)由,即,所以sin sin a b A B=,∴,故.18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称. (1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域; (2)若7a =且,求ABC ∆的面积.【答案】(1)2⎛⎤- ⎥ ⎝⎦(2)【解析】(1)∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数, 且,5π112f ⎛⎫=⎪⎝⎭,。
十年(2012-2021)高考数学真题分项汇编(全国通用)-专题12 解析几何(学生版)
专题12 解析几何【2021年】1.(2021年全国高考乙卷数学(文)试题)设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则PB 的最大值为( )A .52B C D .22.(2021年全国高考乙卷数学(理)试题)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .2⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦3.(2021年全国高考甲卷数学(文)试题)点()3,0到双曲线221169x y -=的一条渐近线的距离为( ) A .95B .85C .65D .454.(2021年全国新高考Ⅰ卷数学试题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .6二、多选题5.(2021年全国新高考Ⅰ卷数学试题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =三、填空题6.(2021年全国高考乙卷数学(文)试题)双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.7.(2021年全国高考乙卷数学(理)试题)已知双曲线22:1(0)x C y m m-=>0my +=,则C 的焦距为_________.8.(2021年全国高考甲卷数学(理)试题)已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q 为C上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________. 9.(2021年全国新高考Ⅰ卷数学试题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.四、解答题10.(2021年全国高考乙卷数学(文)试题)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.11.(2021年全国高考乙卷数学(理)试题)已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.12.(2021年全国高考甲卷数学(理)试题)抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.13.(2021年全国新高考Ⅰ卷数学试题)在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3D .42.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设12,F F 是双曲线22:13y C x -=的两个焦点,O为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( ) A .72B .3C .52D .23.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .94.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知ⅠM :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作ⅠM 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=5.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 6.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .327.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线8.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)9.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +1210.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⅠF 2P .若ⅠPF 1F 2的面积为4,则a =( ) A .1B .2C .4D .811.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒12.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为13.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p = A .2 B .3 C .4D .814.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 15.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知F 是双曲线22:145x y C 的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为A .32B .52C .72D .9216.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))双曲线C :2242x y -=1的右焦点为F ,点P 在C的一条渐近线上,O 为坐标原点,若=PO PF ,则ⅠPFO 的面积为A B C . D .17.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为A .13B .12C .2D .318.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .819.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN 为直角三角形,则|MN |=A .32B .3C .D .420.(2018年全国普通高等学校招生统一考试理数(全国卷II ))双曲线22221(0,0)x y a b a b-=>>的离心率A .y =B .y =C .y x =D .y x = 21.(2018年全国普通高等学校招生统一考试文数(全国卷II ))已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1-B .2C D 122.(2018年全国普通高等学校招生统一考试理数(全国卷II ))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .1423.(2018年全国卷Ⅰ理数高考试题)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣24.(2018年全国卷Ⅰ文数高考试题)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为A B .2C D .25.(2018年全国卷Ⅰ理数高考试题)设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为A B C .2D26.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF 的面积为A .13B .1 2C .2 3D .3 227.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))(2017新课标全国卷Ⅰ文科)设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足ⅠAMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞28.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1029.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .2)C .D .(1,2)30.(2017年全国普通高等学校招生统一考试)过抛物线C :y 2=4x 的焦点F C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN Ⅰl ,则M 到直线NF 的距离为( )A B .C .D .31.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为A .2B CD 32.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B .3C .3D .1333.(2016年全国普通高等学校招生统一考试文科数学新课标Ⅰ卷))已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=34.(2016年全国普通高等学校招生统一考试)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .C .(0,3)D .)35.(2016年全国普通高等学校招生统一考试)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=|DE |=C 的焦点到准线的距离为 A .8B .6C .4D .236.()设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k = A .12B .1C .32D .237.(2016年全国普通高等学校招生统一考试)圆2228130+--+=x y x y 的圆心到直线10ax y +-=的距离为1,则a =A .43- B .34-C D .238.((2016新课标全国Ⅰ理科)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为A B .32CD .239.(2016年全国普通高等学校招生统一考试)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF Ⅰx 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .3440.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = A .3 B .6C .9D .1241.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知00(,)M x y 是双曲线C :2212x y -=上的一点,1F ,2F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是A .(,)33- B .(66-C .(,33-D .(,33-42.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为A B .2C D43.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知双曲线的离心率为2,则A .2B .C .D .144.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知抛物线C :的焦点为,是C 上一点,,则A .1B .2C .4D .845.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知抛物线C :的焦点为F ,准线为,P 是上一点,Q 是直线PF 与C 得一个交点,若4FP FQ =,则A .B .C .D .46.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =A B .6 C .12 D .47.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A .[]1,1- B .11,22⎡⎤-⎢⎥⎣⎦C .⎡⎣D .22⎡-⎢⎣⎦48.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅰ卷))设F 为抛物线C:23y x =的焦点,过F且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则 ⅠOAB 的面积为A B C .6332D .9449.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))为坐标原点,为抛物线的焦点,为上一点,若,则的面积为 A .B .C .D .50.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷)已知椭圆22x a+22y b =1(a>b>0)的右焦点为F(3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为A .245x +236y =1B .236x +227y =1C .227x +227x =1D .218y +218x =151.(2012年全国普通高等学校招生统一考试理科数学)设1F 、2F 是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30的等腰三角形,则E 的离心率为 A .12B .23C .34D .45二、填空题52.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________.53.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y x ,则C 的离心率为_________.54.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.55.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设12F F ,为椭圆22:+13620x y C =的两个焦点,M为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.56.(2018年全国卷Ⅰ理数高考试题)已知点()11M ,-和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________.57.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线于交M 、N 两点,若60MAN ∠=,则C 的离心率为__________.58.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N =____________.59.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))(2017新课标全国III 文科)双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a =______________.60.(2016年全国普通高等学校招生统一考试))设直线2y x a =+与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若AB =,则圆C 的面积为________61.(2016年全国普通高等学校招生统一考试文科数学(新课标3卷))已知直线l :60x -+=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点.则CD =_________.62.(2016年全国普通高等学校招生统一考试理科数学(全国3卷))已知直线l :30mx y m ++=与圆2212x y +=交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若||AB =,则||CD =__________.63.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为 .64.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________.65.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅰ卷带解析))设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得ⅠOMN=45°,则0x 的取值范围是________.三、解答题66.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.67.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.68.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.69.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.70.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知点A ,B 关于坐标原点O 对称,│AB │ =4,ⅠM 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求ⅠM 的半径.(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.71.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.72.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 73.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE Ⅰx 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.74.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.75.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.76.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.77.(2018年全国普通高等学校招生统一考试理数(全国卷II ))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.78.(2018年全国卷Ⅰ文数高考试题)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+.79.(2018年全国卷Ⅰ理数高考试题)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.80.(2017年全国卷文数高考试题)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⅠBM ,求直线AB 的方程.81.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))已知椭圆C :2222=1x y a b+(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1C 上. (Ⅰ)求C 的方程;(Ⅰ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.82.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .83.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⅠBC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.84.(2017年全国普通高等学校招生统一考试理科数学(新课标3卷))已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.85.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OH ON;(Ⅰ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.86.(2016新课标全国卷Ⅰ)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.87.(2016新课标全国卷)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 于A ,M两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN 的面积(Ⅰ) 当2AM AN =2k <<.88.(2016年全国普通高等学校招生统一考试理科数学(新课标2卷))已知椭圆E:2213x y t +=的焦点在x轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MAⅠNA . (Ⅰ)当t=4,AM AN =时,求ⅠAMN 的面积; (Ⅰ)当2AM AN =时,求k 的取值范围.89.(2016年全国普通高等学校招生统一考试)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点. (Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ; (Ⅰ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.90.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.91.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))在直角坐标系xoy 中,曲线C :y=24x 与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅰ)y 轴上是否存在点P ,使得当k 变动时,总有ⅠOPM =ⅠOPN ?说明理由.92.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,点在C 上 (1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.93.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅰ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.94.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积95.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知点A (0,-2),椭圆E :22221x y a b+=(a >b >0)F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当ⅠOPQ 的面积最大时,求l 的方程.96.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .97.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))(本小题满分12分)已知圆()22:11M x y ++=,圆()22:19N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅰ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 98.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线 C (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.99.(2012年全国普通高等学校招生统一考试文科数学(课标卷))设抛物线C :22x py =(p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若090BFD ∠=,ABD ∆的面积为p 的值及圆F 的方程;(Ⅰ)若A ,B ,F 三点在同一条直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.100.(2012年全国普通高等学校招生统一考试理科数学(课标卷))设抛物线2:2(0)C x py p =>的焦点为F ,准线为,l A C ,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点;(1)若90,BFD ABD ∠=︒△的面积为p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.。
2000-08高考真题摘萃-圆锥曲线之三-07年
. 当 时,上式取等号. (ⅱ)当 的斜率 k=0 或斜率不存在时,四边形
93
的面积 S=4.
益智(Easy)学习 Easymathsedu@
2000-2008 高考真题圆锥曲线摘萃 188 题 白林老师 2010 年 10 月 16 日整理
共 180 页 本节自 93 页-131 页
所以 M 为矩形 ABCD 外接圆的圆心. 又 AM
(2 0) 2 (0 2) 2 2 2 .
94
益智(Easy)学习 Easymathsedu@
2000-2008 高考真题圆锥曲线摘萃 188 题 白林老师 2010 年 10 月 16 日整理
共 180 页 本节自 93 页-131 页
103.(2007 全国 II 理 12) 设 F 为抛物线 y 2 4 x 的焦点, A,B,C 为该抛物线上三点,若
FA FB FC 0 ,则 FA FB FC ________
【解析】 由题设知抛物线焦点坐标 F(1,0),设三点坐标为 A(x1,y1),B(x2,y2),C(x3,y3),则由
从而矩形 ABCD 外接圆的方程为 ( x 2)2 y 2 8 . (III)因为动圆 P 过点 N ,所以 PN 是该圆的半径,又因为动圆 P 与圆 M 外切, 所以 PM PN 2 2 , 即 PM PN 2 2 . 故点 P 的轨迹是以 M ,N 为焦点,实轴长为 2 2 的双曲线的左支. 因为实半轴长 a
由 AC⊥BD 知点 P 在以线段 F1F2 为直径的圆上,故 x02+y02=1,
|BD|= 1+k2|x1-x2|= (1+k2)[(x1+x2)2-4x1x2] =
历年高考数学真题精选51 坐标系与参数方程
(2)曲线 M 由 M1 , M 2 , M 3 构成,若点 P 在 M 上,且 | OP | 3 ,求 P 的极坐标.
解:(1)由题设得,弧 AB , BC ,CD 所在圆的极坐标方程分别为 2 cos , 2sin ,
2 cos ,
则 M1 的极坐标方程为
2 cos
,(0
4
1.(2019•新课标Ⅰ)在直角坐标系
xOy
中,曲线
C
的参数方程为
x
1 1
t2 t2
, (t
为参数).以
y
1
4t t
2
坐标原点 O 为极点, x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为
2 cos 3 sin 11 0 .
(1)求 C 和 l 的直角坐标方程;
(2)求 C 上的点到 l 距离的最小值.
2.(2019•新课标Ⅱ)在极坐标系中, O 为极点,点 M (0 ,0 )(0 0) 在曲线 C : 4sin
上,直线 l 过点 A(4, 0) 且与 OM 垂直,垂足为 P .
(1)当 0
3
时,求
0 及 l
的极坐标方程;
第 6页(共 19页)
(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.
在 C3 上,求 a .
16.(2015•湖南)已知直线
l
:
x
5
3t 2 (t 为参数).以坐标原点为极点, x 轴的正半轴为
y
3 1t 2
极轴建立极坐标系,曲线 C 的坐标方程为 2 cos .
(1)将曲线 C 的极坐标方程化为直坐标方程;
(2)设点 M 的直角坐标为 (5, 3) ,直线 l 与曲线 C 的交点为 A , B ,求 | MA || MB | 的值.
十年国高中数学联赛试题一试解析几何含解析
十年全国高中数学联赛试题一试解析几何圆锥曲线部分解答题2000、已知C 0:x 2+y 2=1和C 1:12222=+by a x (a >b >0)。
试问:当且仅当a ,b 满足什么条件时,对C 1上任意一点P ,均存在以P 为项点,与C 0外切,与C 1内接的平行四边形?并证明你的结论。
2002.已知点A (0,2)和抛物线y 2=x +4上两点B ,C ,使得AB ⊥BC ,求点C 的纵坐标的取值范围.2006. 给定整数2n ≥,设 ),(000y x M 是抛物线12-=nx y 与直线x y =的一个交点. 试证明对于任意正整数m ,必存在整数2k ≥,使),(00mm y x 为抛物线12-=kx y 与直线x y =的一个交点.2008.如图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.2000.答案:所求条件为21a +21b=1. 证明:必要性:易知,圆外切平行四边形一定是菱形,圆心即菱形中心.假设论成立,则对点( a, 0 ), 有( a, 0 )为项点的菱形与C 1内接,与C o 外切. ( a, 0 )的相对顶点为( - a, 0 ),由于菱形的对角线互相垂直平分,另外两个顶点必在y 轴上,为(0, b)和 (0, -b) .菱形一条边的方程为a x +by=1,即bx+ay=ab.由于菱形与C O 外切,故必有22b a ab +=1,整理得21a +21b=1. 必要性得证. 充分性:设21a +21b=1,P 是C 1上任意一点,过P 、O 作C 1的弦PR ,再过O 作与PR 垂直的弦QS ,则PQRS 为与C 1内接菱形.设 OP = r 1, OQ =r 2, 则点O 的坐标为(r 1cos θ, r 1sin θ),点Q 的坐标为(r 2cos(θ+2π),r 2sin(θ+2π)),代入椭圆方程,得()221cos a r θ+()221sin b r θ=1,222)]2cos([a r πθ++222)]2sin([br πθ+=1,于是,21OP +21OQ =222111R R +=(2222sin cos b a θθ+)+[22)2(cos a πθ++22)2(sin b πθ+] =21a +21b=1. 又在Rt △POQ 中,设点O 到PQ 的距离为h ,则h 1=21OP +21OQ=1,故得h=1同理,点O 到QR ,RS ,SP 的距离也为1,故菱形PQRS 与C 0外切.充分性得证. [注]对于给出2222b a b a =+ ,22ba ab +=1等条件者,应同样给分.2002.解:设B (y 02-4,y 0),C (y 12-4,y 1).则k AB =y 0-2y 20-4=1y 0+2.k BC =y 1-y 0y 21-y 20=1y 1+y 0. 由k AB ·k BC =-1,得(y 1+y 0)(y 0+2)=-1. ∴ y 02+(y 1+2)y 0+(2y 1+1)=0.∴ △=(y 1+2)2-4(2y 1+1)=y 12-4y 1≥0, ∴ y 1≤0,y 1≥4.当y 1=0时,得B (-3,-1),当y 1=4时,得B (5,-3)均满足要求,故点C 的纵坐标的取值范围是(-∞,0]∪[4,+∞).2005.过抛物线2x y =上的一点A (1,1)作抛物线的切线,分别交x 轴于D ,交y 轴于B.点C在抛物线上,点E 在线段AC 上,满足1λ=EC AE ;点F 在线段BC 上,满足2λ=FCBF,且121=+λλ,线段CD 与EF 交于点P.当点C 在抛物线上移动时,求点P 的轨迹方程. 解一:过抛物线上点A 的切线斜率为:∴=='=,2|21x x y 切线AB 的方程为D B x y 、∴-=.12的坐标为D D B ∴-),0,21(),1,0(是线段AB 的中点. ………………5分设),(y x P 、),(200x x C 、),(11y x E 、),(22y x F ,则由1λ=ECAE 知,;11,11120111011λλλλ++=++=x y x x ,2λ=FC BE得.11,1220222022λλλλ++-=+=x y x x∴EF 所在直线方程为:,1111111111111202101120122021201λλλλλλλλλλλλ++-+++-=++-++-++-x x x x x x x y 化简得.1]3)[()]1()[(202020122012x x x x y x λλλλλλ-++--=+--…①…………10分当210≠x 时,直线CD 的方程为:12202020--=x x x x y …②联立①、②解得02133x x x y +⎧=⎪⎪⎨⎪=⎪⎩,消去0x ,得P 点轨迹方程为:.)13(312-=x y ………15分 当210=x 时,EF 方程为:CD x y ,4123)34141(23212λλλ-+--=-方程为:21=x ,联立解得⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧==.121,21y x 也在P 点轨迹上.因C 与A 不能重合,∴.32,10≠∴≠x x ∴所求轨迹方程为).32()13(312≠-=x x y ………………………………………………20分解二:由解一知,AB 的方程为),0,21(),1,0(,12D B x y --=故D 是AB 的中点. ……5分令,1,1,2211λλγ+==+===CF CB t CE CA t CP CD 则.321=+t t 因为CD 为ABC ∆的中线,而,23,232)11(212212*********=∴=+=+=+==⋅⋅=∆∆∆∆∆∆γγγγγt t t t t t t t S S S S S S CB CA CF CE t t CBD CFP CAD CEP CAB CEF P ∴是ABC ∆的重心. ………………………………………………………………………10分设),,(),,(20x x C y x P 因点C 异于A ,则,10≠x 故重心P 的坐标为 ,3311),32(,31310202000x x y x x x x =++-=≠+=++=消去,0x 得.)13(312-=x y故所求轨迹方程为).32()13(312≠-=x x y ………………………………………………20分2006.【证明】 因为12-=nx y 与x y =的交点为00x y ==显然有001x n x +=。
高考数学必得分题全国卷真题解析 (教师版)
高考数学必得分题---全国卷真题解析 (教师版)一、集 合1.(2002.全国2.3) 不等式0|)|1)(1(>-+x x 的解集是 ( )A .}10|{<≤x xB .0|{<x x 且}1-≠xC .}11|{<<-x xD .1|{<x x 且}1-≠x【解析】D2.(2004.全国2.1) 已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =A .{x |x <-2}B .{x |x >3}C .{x |-1<x <2}D .{x |2<x <3}【解析】C3. (2005.全国2.9) 已知集合M=|x |x 2-3x -28≤0|,N={x |x 2-x -6>0|,则M ∩N 为( )A. |x |-4≤x <-2或3<x ≤7|B. |x |-4<x ≤-2或3≤x <7|C. |x |x ≤-2或x >3|D. |x |x <-2或x ≥3|【解析】A4.(2006.全国2.1) 已知集合{}2{|3},|log 1M x x N x x =<=>,则M N = ( )(A )∅ (B ){}|03x x << (C ){}|13x x << (D ){}|23x x <<【解析】D5.(2008.全国2.1) 设集合}23{<<-∈=m Z m M ,}31{≤≤-∈=n Z n N ,则=⋂N MA .}1,0{ B. }1,0,1{- C. }2,1,0{ D }2,1,0,1{-【解析】}1,0,1{},21|{-=∈<≤-=⋂Z x x x N M ,选B6.(2009.全国2.2) 设集合{}1|3,|04x A x x B x x -⎧⎫=>=<⎨⎬-⎩⎭,则A B = A. ∅ B. ()3,4 C.()2,1- D. ()4.+∞【解析】B7.(2010.全国2.5) 不等式2601x x x ---的解集为 A {}2,3x x x -<或> B {}213x x x -<,或<< C {}213x x x -<<,或> D {}2113x x x -<<,或<<【解析】利用数轴穿根法解得-2<x <1或x >3,故选C8.(2012.全国1.1) 已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;则B 中所含元素的个数为( )(A) 3 (B)6 (C)8 (D)10【解析】选(D) 5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个9.(2012.全国2.2) 已知集合A ={1,3,B ={1,m },A ∪B =A ,则m = ( )(A) 0(B) 0或3 (C) 1 (D) 1或310.(2013.全国1.1) 已知集合{}{2|20,|A x x x B x x =->=<,则 ( )A. A ∪B=RB. A∩B=∅C. B ⊆AD. A ⊆B 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选A. 11.(2013.全国2.1)【解析】选(A)12.(2014.全国1.1) 已知集合A={x | x 2﹣2 x ﹣3≥0},B={ x |﹣2≤x <2},则A ∩B=( )A . [﹣2,﹣1]B . [﹣1,2)C . [﹣1,1]D . [1,2)【解析】A={ x | x 2﹣2 x ﹣3≥0}={ x | x ≥3或x ≤﹣1},B={x|﹣2≤x <2},则A ∩B={ x |﹣2≤x ≤﹣1}.选A.13.(2014.全国2.1) 设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A .{1}B . {2}C .{0,1}D .{1,2}【解析】选(D)14.(2015.全国2.1) 已知集合{2,1,0,1,2}A =--,{|(1)(2)0}B x x x =-+<,则A B =A .{1,0}-B .{0,1}C .{1,0,1}-D .{0,1,2}【解析】由已知得{|21}B x x =-<<,故{1,0}A B =- ,故选A.二、复 数1.(2002.全国2.2) 复数3)2321(i +的值是 A .i -B .iC .1-D .1【解析】C2.(2004.全国2.3) 设复数ω=-21+23i ,则1+ω= (A )–ω (B )ω2 (C )ω1- (D )21ω【解析】C 3.(2006.全国2.3)23(1)i =-( ) (A )32i (B )32i - (C )i (D )i - 【解析】A4.(2007.全国2.3) 设复数z 满足12i i z +=,则z =( ) A .2i -+B .2i --C .2i -D .2i +【解析】C 5.(2008.全国2.2) 设a ,b ∈R 且b ≠0,若复数3bi)(a +是实数,则A . 223a b = B. 223b a = C. 229a b = D.229b a =【解析】22323223330,03,)3(3)(a b b b b a i b b a ab a bi a =∴≠=-∴-+-=+ ,选A.6.(2009.全国2.1)10i 2-i = A. -2+4iB. -2-4iC. 2+4iD. 2-4i 【解析】A 7.(2010.全国2.1) 复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i +【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦.选 A. 8.(2011.全国2.1) 复数1z i =+,z 为z 的共轭复数,则1zz z --=(A )2i - (B )i - (C )i (D )2i【解析】B9.(2012.全国1.3) 下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-(A)23,p p (B) 12,p p (C) ,p p 24 (D),p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-.10.(2012.全国2.1) 复数131i i-++= (A) 2+i (B) 2-i (C) 1+2i (D)1-2i11.(2013.全国1.2) 若复数z 满足(34)|43|i z i -=+,则z 的虚部为( ) A.4- B.45- C.4 D.45【解析】由题知z =|43|34i i +-=3455i +,故z 的虚部为45,故选D. 12.(2013.全国2.2)【解析】选(A)13.(2014.全国1.2)=( )【解析】==﹣(1+i )=﹣1﹣i ,故选:D .14.(2014.全国2.2) 设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .- 5B . 5C .- 4+ iD . - 4 - i 【解析】选(A)15.(2015.全国1.1) 设复数z 满足i z z =-+11,则=||z (A) 1 (B) 2 (C) 3 (D)2【解析】16.(2015.全国2.2) 若a 为实数,且(2)(2)4ai a i i +-=-,则a =A .-1B .0C .1D .2 【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,得a=0,故选B.三、程序框图1.(2011.全国1.3) 执行下左面的程序框图,如果输入的N 是6,那么输出的p 是 ( )(A )120 (B )720 (C )1440 (D )5040【解析】选(B)2.(2012.全国1.6) 如果执行上右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B +为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选(C)3. (2013.全国1.5)执行如图的程序框图,如果输入的[1,3]t ∈-,则输出s 属于( )A.[3,4]- B .[5,2]- C.[4,3]- D.[2,5]- 【解析】选4.(2014.全国1.7)执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M=( )A.B . C. D.【解析】选(D)5.(2015.全国1.9)执行右面的程序框图,如果输入的01.0=t ,则输出的=n(A )5 (B )6 (C )7 (D )8【解析】选6.(2015.全国2.8)下左边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
十年(2012-2021)高考数学真题分项汇编(全国通用)-专题11 立体几何(学生版)
专题11 立体几何【2021年】1.(2021年全国高考乙卷数学(文)试题)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π62.(2021年全国高考甲卷数学(理)试题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''- 1.732≈)( )A .346B .373C .446D .4733.(2021年全国高考甲卷数学(理)试题)已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A B C D4.(2021年全国新高考Ⅰ卷数学试题母线长为( )A .2B .C .4D .二、填空题5.(2021年全国高考甲卷数学(文)试题)已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.三、解答题6.(2021年全国高考乙卷数学(文)试题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.7.(2021年全国高考乙卷数学(理)试题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.8.(2021年全国高考甲卷数学(文)试题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.9.(2021年全国高考甲卷数学(理)试题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?10.(2021年全国新高考Ⅰ卷数学试题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A B C .14 D 2.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知,,A B C 为球O 的球面上的三个点,Ⅰ1O 为ABC 的外接圆,若Ⅰ1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( ) A .64πB .48πC .36πD .32π3.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知ⅠABC 点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .24.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,ⅠABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,ⅠCEF =90°,则球O 的体积为A .B .C . D5.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设α,β为两个平面,则αⅠβ的充要条件是 A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面6.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线7.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π8.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为A.8 B .C .D .9.(2018年全国普通高等学校招生统一考试理数(全国卷II ))在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为A .15B .6CD .210.(2018年全国卷Ⅰ理数高考试题)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为D ABC -体积的最大值为A .B .C .D .11.(2017年全国普通高等学校招生统一考试)如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面 MNQ 不平行的是( ) A . B .C .D .12.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4 C .π2 D .π4 13.(2016年全国普通高等学校招生统一考试文科数学(新课标1))平面α过正方体ABCD—A 1B 1C 1D 1的顶点A ,,ABCD m α⋂=平面,11ABB A n α⋂=平面,则m ,n 所成角的正弦值为A B .2 C D .1314.(2016年全国普通高等学校招生统一考试文科数学(全国2卷))体积为8的正方体的顶点都在同一球面上,则该球面的表面积为A .12πB .323πC .8πD .4π15.(2016年全国普通高等学校招生统一考试)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =, 13AA =,则该球体积V 的最大值是A .4πB .92πC .6πD .323π16.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析))(2015新课标全国I 理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛17.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为A .5003πcm 3B .8663πcm 3C .13723πcm 3D .10003πcm 3 18.(2013年全国普通高等学校招生统一考试))已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为A B C D二、填空题19.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⅠAC ,AB ⅠAD ,ⅠCAE =30°,则cosⅠFCB =______________.20.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m Ⅰ平面α,则m Ⅰl .则下述命题中所有真命题的序号是__________.Ⅰ14p p ∧Ⅰ12p p ∧Ⅰ23p p ⌝∨Ⅰ34p p ⌝∨⌝21.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知ⅠACB=90°,P 为平面ABC 外一点,PC =2,点P 到ⅠACB 两边AC ,BC P 到平面ABC 的距离为___________.22.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .23.(2018年全国普通高等学校招生统一考试文数(全国卷II ))已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30,若SAB 的面积为8,则该圆锥的体积为__________.24.(2018年全国普通高等学校招生统一考试)已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.25.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,ⅠDBC ,ⅠECA ,ⅠF AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起ⅠDBC ,ⅠECA ,ⅠF AB ,使得D,E,F重合,得到三棱锥.当ⅠABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为______.26.(2017年全国普通高等学校招生统一考试)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为__________.27.(2016年全国普通高等学校招生统一考试)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:Ⅰ当直线AB与a成60°角时,AB与b成30°角;Ⅰ当直线AB与a成60°角时,AB与b成60°角;Ⅰ直线AB与a所成角的最小值为45°;Ⅰ直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)28.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷带解析))已知H是球O的直径AB上AH HB=,AB⊥平面α,H为垂足, α截球O所得截面的面积为π,则球O的表面积为一点, :1:2_______.三、双空题29.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.四、解答题30.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC是底面的内接正三角形,P为DO上一点,ⅠAPC=90°.(1)证明:平面P ABⅠ平面P AC;(2)设DO,求三棱锥P−ABC的体积.31.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))如图,D为圆锥的顶点,O是圆锥底面的圆心,=.ABC是底面的内接正三角形,P为DO上一点,PO=.AE为底面直径,AE AD(1)证明:PA⊥平面PBC;(2)求二面角B PC E --的余弦值.32.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN Ⅰ平面EB 1C 1F ;(2)设O 为ⅠA 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且ⅠMPN =π3,求四棱锥B –EB 1C 1F 的体积. 33.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1ⅠMN ,且平面A 1AMN ⅠEB 1C 1F ;(2)设O 为ⅠA 1B 1C 1的中心,若AO Ⅰ平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.34.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,在长方体1111ABCD A B C D -中,点E ,F分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.35.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.36.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,ⅠBAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MNⅠ平面C1DE;(2)求点C到平面C1DE的距离.37.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,ⅠBAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MNⅠ平面C1DE;(2)求二面角A-MA1-N的正弦值.38.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEⅠEC1.(1)证明:BE Ⅰ平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.39.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⅠEC 1.(1)证明:BE Ⅰ平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.40.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.41.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))图1是由矩形ADEB ,RtⅠABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,ⅠFBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC Ⅰ平面BCGE ;(2)求图2中的二面角B−CG−A 的大小.42.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将ⅠACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.43.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.44.(2018年全国普通高等学校招生统一考试文数(全国卷II ))如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.45.(2018年全国普通高等学校招生统一考试理数(全国卷II ))如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30,求PC 与平面PAM 所成角的正弦值. 46.(2018年全国卷Ⅰ文数高考试题)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.47.(2018年全国卷Ⅰ理数高考试题)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.48.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB Ⅰ平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.49.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若ⅠPCD 面积为,求四棱锥P ABCD -的体积.50.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))如图,四棱锥P -ABCD 中,侧面PAD 是边长为2的等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠=E 是PD 的中点.(1)证明:直线//CE 平面PAB ;--的余弦值.(2)点M在棱PC上,且直线BM与底面ABCD所成角为o45,求二面角M AB D51.(2017年全国普通高等学校招生统一考试文科数学(新课标3))如图,四面体ABCD中,ⅠABC是正三角形,AD=CD.(1)证明:ACⅠBD;(2)已知ⅠACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AEⅠEC,求四面体ABCE 与四面体ACDE的体积比.52.(2017年全国普通高等学校招生统一考试理科数学(新课标3))(2017新课标全国Ⅰ理科)如图,四面体ABCD中,ⅠABC是正三角形,ⅠACD是直角三角形,ⅠABD=ⅠCBD,AB=BD.(1)证明:平面ACDⅠ平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C 的余弦值.53.(2016年全国普通高等学校招生统一考试)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连结PE 并延长交AB 于点G.(Ⅰ)证明:G 是AB 的中点;(Ⅰ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.54.(2016年全国普通高等学校招生统一考试)试题)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABEF 为正方形,2AF FD =,90AFD ∠=︒,且二面角D AF E --与二面角C BE F --都是60︒.(1)证明:平面ABEF ⊥平面EFDC ;(2)求二面角E BC A --的余弦值.55.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))如图,菱形ABCD 的对角线AC 与BD 交于点O ,点,E F 分别在,AD CD 上,,AE CF EF =交BD 于点H ,将DEF ∆沿EF 折起到D EF ∆'的位置.(Ⅰ)证明:AC HD ⊥';(Ⅰ)若55,6,,4AB AC AE OD ==='=D ABCFE '-的体积.56.(2016年全国普通高等学校招生统一考试数学)如图,菱形ABCD 的对角线AC 与BD 交于点,5,6O AB AC ==,点,E F 分别在,AD CD 上,5,4AE CF EF ==交BD 于点H ,将DEF ∆沿EF 折到D EF '∆位置,OD '=(1)证明:D H '⊥平面ABCD ;(2)求二面角B D A C '--的正弦值.57.(2016年全国普通高等学校招生统一考试数学)如图,四棱锥P ABC -中,PA ⊥平面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN ∥平面PAB ;(II )求四面体N BCM -的体积.58.(2016年全国普通高等学校招生统一考试理科数学(新课标3卷))如图,四棱锥P−ABCD 中,PAⅠ底面ABCD ,ADⅠBC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(Ⅰ)证明MNⅠ平面PAB;(Ⅰ)求直线AN 与平面PMN 所成角的正弦值.59.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为3,求该三棱锥的侧面积.60.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))(2015新课标全国Ⅰ理科)如图,四边形ABCD 为菱形,ⅠABC =120°,E ,F 是平面ABCD 同一侧的两点,BE Ⅰ平面ABCD ,DF Ⅰ平面ABCD ,BE =2DF ,AE ⅠEC .(1)证明:平面AEC Ⅰ平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.61.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))如图,长方体1111ABCD A B C D -中,116,10,8AB BC AA ===,点,E F 分别在1111,A B D C 上,114A E D F ==,过点,E F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.62.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))如图,长方体1111ABCD A B C D -中, =16AB , =10BC , 18AA =,点 E , F 分别在 11A B , 11C D 上, 114A E D F ==.过点 E , F 的平面 α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅰ)求直线AF 与平面 α所成角的正弦值.63.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.64.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))(本小题满分12分) 如图,三棱柱中,侧面为菱形,.(Ⅰ)证明:; (Ⅰ)若1AC AB ⊥,,,求二面角的余弦值. 65.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=.(1)证明:; (2)若,,求三棱柱111ABC A B C -的体积.66.(2013年全国普通高等学校招生统一考试理科数学(新课标1))如图,三棱柱ABC -A 1B 1C 1中,CA=CB ,AB="A" A 1,ⅠBA A 1=60°.(Ⅰ)证明ABⅠA 1C;(Ⅰ)若平面ABCⅠ平面AA 1B 1B ,AB=CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.67.(2013年全国普通高等学校招生统一考试理科数学(新课标2卷))如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,12AA AC CB AB ===.(1)证明:1//BC 平面1A CD ;(2)求二面角1D A C E --的正弦值.68.(2012年全国普通高等学校招生统一考试文科数学(课标卷))如图,三棱柱111ABC A B C -中,侧棱垂直底面,ⅠACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点.(I) 证明:平面BDC Ⅰ平面1BDC(Ⅰ)平面1BDC 分此棱柱为两部分,求这两部分体积的比.69.(2012年全国普通高等学校招生统一考试理科数学(课标卷))如图,直三棱柱111ABC A B C -中, 112AC BC AA ==, D 是棱的中点,(1)证明:(2)求二面角的大小.。
教育技术学习博客 网站 论坛 大全(最全整理版)
教育技术学优秀资源大全(不断更新中.....)一、教育技术综合及专题网站1 中国教育技术网/新增:查找优秀的PPT:slideshare2 中国教育技术学网/(中国教育技术学网站为广大用户提供与教育技术学相关的各种资源。
它既提供包括教育理论、实践经验、基本知识等方面的文章,又提供各种形式的资源下载,最大限度的满足用户的各种需求;同时,集思广义,大家共建,使它成为教育人士的资源库和联系枢纽。
)3 中央电化教育馆/4 温州大学现代教育技术精品课程/xdjyjs/caseindex.aspx?caseid=1285 计算机辅助教学网/list/cai/index.asp6 中国教育技术学科网:/7 信息化教育:/中国教育技术协会专业网站8 三人行-教师专业能力发展与支持平台http://61.178.14.123/9 中国教育技术协会师范院校专业委员会网址:/10 中国教育技术协会:http://218.22.0.27/wyh1/ZY.HTM11 计算机辅助教育专业委员会:/12.教育技术论坛/13.陕西师大现代教育技术精品课程;http:///browse.asp14.信息技术与课程整合的理论与实践:/course/kczh/IT/IIS/index.htm15.国家基础教育资源网:/derscn/portal2/SearchAction.do?method=index免费为教师提供教学学习用资源。
16.教育技术学动态:/(该网站的热站推荐、相关资源、FERC论文集等都值得一看。
)17.无限思考:/index.html(该网是东北师大一研究生个人网站,该网的资源链接比较好。
)18.惟存教育网:/(该站关于教育技术与课程整合的实践探索与理性思考、研究性学习探索、多种学习模式的探索和网络资源的链接等非常丰富。
)19.中小学信息技术教育网:/index.php3(中国中小学信息技术教育网是全国中小学计算机教育研究中心主办的,进行中小学信息技术教育理论研究的非盈利性教育类专业网站。
一些不错的教育博客
一些不错的教育博客向所有的中小学教师尤其是中小学班主任们推荐以下博客和网站,因为这些博客和网站里有很多优秀的文章值得我们学习,有很丰富的资源值得我们充分利用。
1、重庆南山风教育博客 /2、老板老班的博客 /3、万玮的教育博客 /phwan@126/4、我们共同探讨和交流的园地 /5、打开心窗的博客 /6、郑飞卡的博客 /7、做阳光教师教快乐语文 /kanglianghr@126/8、心亭 /9、凝秀书屋 /10、迎春的小筑 /11、王立华 /12、教者仁心的博客 /13、武城实验中学 /14、性灵的冲动 /15、磐石上的花 /16、小学数学教研天地 /17、香儿 /18、岐山沙堤李钊 /19、风中走石 /20、李逵的博客 /21、守拙 /22、云山书隐的草庐 /23、一个乡村教师的自留地 /24、灵智书痴 /25、余华安的博客读书做事品人生 /26、黑白之间——马国锋的教育博客 /27、漫天飞雪 /28、明理教育德行天下 /my_papers/29、刘明伟教育咨询与策划工作室 /china_education/blog30、李银河的博客 /liyinhe31、易中天1001的BLOG /yizhongtian32、周国平的BLOG /zhouguoping33、韩寒 /twocold34、央视撒贝宁的BLOG /cctvsabeining35、张迎曦的教育教学 /zhangyx_3zh/blog36、心灵港湾 /baowenshun/blog37、网络小天地人生大智慧 /skw_1963/blog38、张五常Steven N.S. Cheung /zhangwuchang39、快乐语文家园 /liuguochen8899/blog40、我的作文革命 /�ܽ���/blog41、杏花春雨 /678000/blog42、生命化教育 /group/index/2108.jspx43、生命的色彩 /index/1053103.jspx44、成长 /45、特级教师家园 /index/1003517.jspx46、教师阅读网 /47、德育管理新时空 /index/1000177.jspx?articleId=89715348、新思考——中国教育资源服务平台 /49、无忧无虑中学语文网 /50、自然的箫声 /zxw_54133513551、英子的天空 /����ʦ�IJ���/blog52、李镇西 /index.html#53、朱永新教育随笔 /user1/zyx/index.html54、卢志文杏坛絮语 /user1/20012/index.html55、杨东平的BLOG /yangdongping56、韩寒 /twocold57、熊丙奇的BLOG /bqxiong58、李开复的博客 /kaifulee59、胡建波的博客 /jianbohu60、徐小平:感知生命一瞬间 /xuxiaoping61、张五常作品 /62、薛兆丰作品 /63、吴华教授的博客 /blog/wuhua/index.asp64、许新海教育随笔 /user1/5871/index.html65、过客无痕 /user1/王胜/index.html66、海南省教育研究培训院 /index/1000546.jspx67、教育日常生活批判 /index/1016734.jspx68、陶继新教育文集 /69、教育在线 /70、愚者一虑 /71、魏智渊教育博客 /user1/37/72、道法自然 /index/1092684.jspx73、半介书生文存 /user1/liyihjy/index.html。
十年真题(2010-近年)高考数学真题分类汇编专题07数列理(含解析)(最新整理)
故选:C.
4.【2017 年新课标 1 理科 12】几位大学生响应国家的创业号召,开发了一款应用软件.为
激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码"的活动.这款软件的激活
码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中
第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22,依此类推.求满足如下条件
9a5.
∴a100=a5+95d=98, 故选:C.
6.【2013 年新课标 1 理科 07】设等差数列{an}的前 n 项和为 Sn,若 Sm﹣1=﹣2,Sm=0,Sm+1=
3,则 m=(
)
A.3
B.4
C.5
D.6
【解答】解:am=Sm﹣Sm﹣1=2,am+1=Sm+1﹣Sm=3,
所以公差 d=am+1﹣am=1,
故选:D.
9.【2019 年新课标 1 理科 14】记 Sn 为等比数列{an}的前 n 项和.若 a1 ,a42=a6,则 S5 =. 【解答】解:在等比数列中,由 a42=a6,得 q6a12=q5a1>0, 即 q>0,q=3,
则 S5
,
故答案为:
10.【2018 年新课标 1 理科 14】记 Sn 为数列{an}的前 n 项和.若 Sn=2an+1,则 S6
m(a1+am)=0, (m+1)(a1+am+1)=3,
可得 a1=﹣am,﹣2am+am+1+am+1
0,
解得 m=5.
故选:C.
7.【2013 年新课标 1 理科 12】设△AnBn∁ n 的三边长分别为 an,bn,cn,△AnBn∁ n 的面积为 Sn,
专题05 三角函数-十年(2012-2021)高考数学真题分项详解(全国通用)(解析版)
专题05 三角函数【2021年】1.(2021年全国高考乙卷数学(文)试题)函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A .3πB .3π和2C .6πD .6π和2【答案】C【分析】由题,()34x f x π⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期为2613T故选:C .2.(2021年全国高考乙卷数学(文)试题)22π5πcoscos 1212-=( ) A .12BC .2D 【答案】D【分析】由题意,2222225coscos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos6π==故选:D.3.(2021年全国高考乙卷数学(理)试题)把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=-⎪⎝⎭的图像,则()f x =( ) A .7sin 212x x ⎛⎫-⎪⎝⎭ B .sin 212x π⎛⎫+⎪⎝⎭ C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+⎪⎝⎭【答案】B【分析】解法一:函数()y f x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x =的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f x π⎡⎤⎛⎫=-⎪⎢⎥⎝⎭⎣⎦的图象, 根据已知得到了函数sin 4y x π⎛⎫=-⎪⎝⎭的图象,所以2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令23t x π⎛⎫=-⎪⎝⎭,则,234212t t x x πππ=+-=+, 所以()sin 212t f t π⎛⎫=+⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭; 解法二:由已知的函数sin 4y x π⎛⎫=-⎪⎝⎭逆向变换, 第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象, 第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+⎪⎝⎭的图象, 即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭. 故选:B.4.(2021年全国高考乙卷数学(理)试题)魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A【分析】如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差.故选:A.5.(2021年全国高考甲卷数学(理)试题)若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A B C D .3【答案】A 【分析】cos tan 22sin ααα=-2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--, 0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,cos α∴==sin tan cos ααα∴==. 故选:A.6.(2021年全国新高考Ⅰ卷数学试题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A【分析】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭, 则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件; 取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭, 32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.7.(2021年全国新高考Ⅰ卷数学试题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25 D .65【答案】C【分析】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++ ()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++. 故选:C .二、填空题8.(2021年全国高考甲卷数学(文)试题)已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫=⎪⎝⎭_______________.【答案】【分析】由题意可得:31332,,241234T T T πππππω=-=∴===, 当1312x π=时,()131322,2126x k k k Z πωϕϕπϕππ+=⨯+=∴=-∈, 令1k =可得:6πϕ=-,据此有:()52cos 2,2cos 22cos 62266f x x f πππππ⎛⎫⎛⎫⎛⎫=-=⨯-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:9.(2021年全国高考甲卷数学(理)试题)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【答案】2【分析】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=;由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=-⎪⎝⎭. 因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,()2cos 032f 4π5π⎛⎫== ⎪⎝⎭; 所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <; 因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以, 方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭, 解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2. 故答案为:2.【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9 B .7π6 C .4π3D .3π2【答案】C【分析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C2.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( ) AB .23C .13D.9【答案】A【分析】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴==. 故选:A.3.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))若α为第四象限角,则( ) A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<0【分析】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α< 故选:D. 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D.4.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A .12B .3C .23D .2【答案】B【分析】由题意可得:1sin sin 12θθθ++=,则:3sin 122θθ+=,1cos 223θθ+=,从而有:sin coscos sin66ππθθ+=,即sin 6πθ⎛⎫+= ⎪⎝⎭ 故选:B.5.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称【分析】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x x ππ-=--≠-=+=故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对 故选:D6.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A .–2 B .–1C .1D .2【答案】D 【分析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D.7.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【答案】D 【分析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 8.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))tan255°= A .-2B .-C .2D .【分析】:000000tan 255tan(18075)tan75tan(4530)=+==+=0001tan 45tan 3021tan 45tan 30+==+- 9.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))关于函数()sin |||sin |f x x x =+有下述四个结论:Ⅰf (x )是偶函数 Ⅰf (x )在区间(2π,π)单调递增 Ⅰf (x )在[,]-ππ有4个零点 Ⅰf (x )的最大值为2 其中所有正确结论的编号是 A .ⅠⅠⅠ B .ⅠⅠC .ⅠⅠD .ⅠⅠ【答案】C【分析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故Ⅰ正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π⎪⎝⎭单调递减,故Ⅰ错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故Ⅰ错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故Ⅰ正确.综上所述,ⅠⅠ 正确,故选C .10.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .12【答案】A【分析】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,得2ω=.故选A . 11.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))曲线y =2sin x +cos x 在点(π,–1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+=D .10x y +-π+=【答案】C【分析】当x π=时,2sin cos 1y =π+π=-,即点(,1)π-在曲线2sin cos y x x =+上.2cos sin ,y x x '=-2cos sin 2,x y πππ=∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .12.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知α Ⅰ(0,π2),2sin2α=cos2α+1,则sinα=A .15BC D 【答案】B 【分析】2sin 2cos 21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin 5α∴=,故选B . 13.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A .f (x )=│cos 2x │ B .f (x )=│sin 2x │ C .f (x )=cos│x │ D .f (x )= sin│x │【答案】A【分析】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间(,)42ππ单调递增,A 正确;作出sin 2y x=的图象,由图象知,其周期为2π,在区间(,)42ππ单调递减,排除B ,故选A .14.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))函数()2sin sin2f x x x =-在[]0,2π的零点个数为 A .2 B .3C .4D .5【答案】B【分析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2x π∈,02x ππ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .15.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:Ⅰ()f x 在(0,2π)有且仅有3个极大值点 Ⅰ()f x 在(0,2π)有且仅有2个极小值点Ⅰ()f x 在(0,10π)单调递增 Ⅰω的取值范围是[1229510,)其中所有正确结论的编号是 A .ⅠⅠ B .ⅠⅠC .ⅠⅠⅠD .ⅠⅠⅠ【答案】D【分析】当[0,2]x π时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦, Ⅰf (x )在[0,2]π有且仅有5个零点, Ⅰ5265πππωπ≤+<,Ⅰ1229510ω≤<,故Ⅰ正确, 由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时, 令59,,5222x ππππω+=时取得极大值,Ⅰ正确;极小值点不确定,可能是2个也可能是3个,Ⅰ不正确; 因此由选项可知只需判断Ⅰ是否正确即可得到答案, 当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦, 若f (x )在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ωππ+< ,即<3ϖ , Ⅰ1229510ω≤<,故Ⅰ正确.故选D . 16.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4 【答案】B【分析】根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+, 所以函数()f x 的最小正周期为22T ππ==,且最大值为()max 35422f x =+=,故选B. 17.(2018年全国普通高等学校招生统一考试理数(全国卷II ))若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .4πB .2π C .34π D .π【答案】A【详解】详解:因为π()cos sin )4=-=+f x x x x ,所以由π02ππ2π,(k Z)4+≤+≤+∈k x k 得π3π2π2π,(k Z)44-+≤≤+∈k x k 因此π3ππ3ππ[,][,],,044444-⊂-∴-<-≥-≤∴<≤a a a a a a a ,从而a 的最大值为π4,选A. 18.(2018年全国卷Ⅰ文数高考试题)若1sin 3α=,则cos2α=A .89B .79C .79- D .89-【答案】B【详解】详解:227cos2α12199sin α=-=-=故选B. 19.(2018年全国卷Ⅰ文数高考试题)函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π【答案】C【详解】:由已知得()221f sin2,1221()sinx tanx cosx sinxcosx x x k k Z sinx tan x c x osxππ⎛⎫====≠+∈ ⎪+⎝⎭+ ()f x 的最小正周期2T π2π==故选C. 20.(2017年全国普通高等学校招生统一考试文科数学(新课标1))函数sin21cos xy x=-的部分图像大致为A .B .C .D .【答案】C 【详解】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos2y =>-,故排除A .故选C .21.(2017年全国普通高等学校招生统一考试)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D 【详解】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x+π12)=cos (2x+π6)=sin (2x+2π3)的图象,即曲线C 2, 故选D .22.(2017年全国普通高等学校招生统一考试文科数学(新课标2))函数π()sin(2)3f x x =+的最小正周期为 A .4π B .2πC .πD .π2【答案】C 【详解】由题意22T ππ==,故选C . 23.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))已知4sin cos 3αα-=,则sin 2α=.A .79-B .29-C .29D .79【答案】A【详解】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A.24.(2017年全国普通高等学校招生统一考试理科数学)函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .15【答案】A【详解】由诱导公式可得ππππcos cos sin 6233x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 则()1ππ6πsin sin sin 53353f x x x x ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,函数()f x 的最大值为65.所以选A. 25.(2016年全国普通高等学校招生统一考试数学)设函数f (x )=cos (x +3π),则下列结论错误的是A .f(x)的一个周期为−2πB .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6πD .f(x)在(2π,π)单调递减 【答案】D【详解】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确;Ⅰf (x +π)=cos ππ3x ⎛⎫++⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,Ⅰf ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误.故选D.26.(2016年全国普通高等学校招生统一考试数学)将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为( )A .π2sin(2)4y x =+B .2sin(2)3y x π=+C .2sin(2)4y x π=- D .2sin(2)3y x π=-【答案】D【详解】函数2sin(2)6y x π=+的周期为π,将函数2sin(2)6y x π=+的图象向右平移14个周期即4π个单位,所得图象对应的函数为2sin[2())]2sin(2)463y x x πππ=-+=-,故选D.27.(2016年全国普通高等学校招生统一考试数学)若函数()1sin 2sin 3f x x x a x =-+在R 上单调递增,则a 的取值范围是 A .[]1,1- B .11,3⎡⎤-⎢⎥⎣⎦C .11,33⎡⎤-⎢⎥⎣⎦D .11,3⎡⎤--⎢⎥⎣⎦【答案】C【详解】:()21cos 2cos 03f x x a x =-+'对x R ∈恒成立, 故()2212cos 1cos 03x a x --+,即245cos cos 033a x x -+恒成立, 即245033t at -++对[]1,1t ∈-恒成立,构造()24533f t t at =-++,开口向下的二次函数f t 的最小值的可能值为端点值,故只需保证()()1103{1103f a f a -=-=+,解得1133a -.故选C .28.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))函数sin()y A x ωϕ=+的部分图象如图所示,则A .2sin(2)6y x π=-B .2sin(2)3y x π=- C .2sin(+)6y x π=D .2sin(+)3y x π=【答案】A【详解】:由题图知,2A =,最小正周期2[()]36T πππ=--=,所以22πωπ==,所以2sin(2)y x ϕ=+.因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2sin()13πϕ+=,所以22()32k k Z ππϕπ+=+∈,令0k =,得6πϕ=-,所以2sin(2)6y x π=-,故选A.29.(2016年全国普通高等学校招生统一考试)函数π()cos 26cos()2f x x x =+-的最大值为 A .4 B .5 C .6 D .7【答案】B【详解】:因为22311()12sin 6sin 2(sin )22f x x x x =-+=--+,而sin [1,1]x ∈-,所以当sin 1x =时,()f x 取得最大值5,选B.30.(2016年全国普通高等学校招生统一考试理科数学(新课标2))若将函数y=2sin2x 的图像向左平移12π个单位长度,则平移后图像的对称轴为A .x=26k ππ-(kⅠZ ) B .x=26k ππ+(kⅠZ )C .x=212k ππ-(kⅠZ ) D .x=212k ππ+(kⅠZ ) 【答案】B【详解】:由题意得,将函数2sin 2y x =的图象向左平移12π个单位长度,得到2sin(2)6y x π=+,由2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,即平移后的函数的对称轴方程为,26k x k Z ππ=+∈,故选B .31.(2016年全国普通高等学校招生统一考试理科数学)若3cos()45πα-=,则sin 2α=A .725B .15C .15-D .725-【答案】D【详解】:2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⨯-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ , 且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.32.(2016年全国普通高等学校招生统一考试)若1tan 3θ= ,则cos 2θ= A .45-B .15-C .15D .45【答案】D【详解】222222cos cos2cos cos sin sin sin θθθθθθθ-=-=+. 分子分母同时除以2cos θ,即得:2211149cos211519tan tan θθθ--===++.故选D.33.(2015年全国普通高等学校招生统一考试)若3tan 4α= ,则2cos 2sin 2αα+= A .6425B .4825C .1D .1625【答案】A 【详解】:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .34.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D【详解】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.35.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))在函数Ⅰ,Ⅰ,Ⅰ,Ⅰ中,最小正周期为的所有函数为A .ⅠⅠⅠB .ⅠⅠⅠC .ⅠⅠD .ⅠⅠ【答案】A【解析】:Ⅰ中函数是一个偶函数,其周期与y =cos2x 相同,T=2π2=π;Ⅰ中函数的周期是函数y =cosx 周期的一半,即T =π; ⅠT =2π2=π; ⅠT =π2,则选A .36.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则A .32παβ-=B .32παβ+=C .22παβ-=D .22παβ+=【答案】C【详解】:由已知得,sin 1sin tan cos cos αβααβ+==,去分母得,sin cos cos cos sin αβααβ=+,所以 sin cos cos sin cos ,sin()cos sin()2παβαβααβαα-=-==-,又因为22ππαβ-<-<,022ππα<-<,所以2παβα-=-,即22παβ-=,选C37.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅰ卷))设函数()xf x mπ=.若存在()f x 的极值点0x 满足()22200x f x m ⎡⎤+<⎣⎦,则m 的取值范围是A .()(),66,-∞-⋃∞B .()(),44,-∞-⋃∞C .()(),22,-∞-⋃∞D .()(),11,-∞-⋃∞ 【答案】C【详解】:()f x 的极值为()203f x ⎡⎤=⎣⎦,因为00()0x f x m mππ='=, 所以,2x k k z mπππ=+∈,所以01,2x k k z m =+∈即01122x k m =+≥,所以02m x ≥,即2200[()]x f x +≥24m +3,而已知()22200x f x m ⎡⎤+<⎣⎦,所以224m m >+3,故2334m >,解得2m >或2m <-,故选C.38.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))函数()(1cos )sin f x x x =-在[,]-ππ的图像大致为( )A .B .C .D .【答案】C【详解】:因为()102f π=>,故排除A ;因为()(1cos )(sin )()f x x x f x -=--=-,所以函数()f x 为奇函数,故排除B ;因为()cos cos 2f x x x =-',分别作出cos y x =与cos 2y x =的图象,可知极值点在(,)2ππ上,故选C .39.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))已知sin2α=,则cos 2(α+)=( ) A .16B .15C .14D .13【答案】A【详解】21cos(2)2cos ()42παπα+++==1sin 22α-=2132-=16,故选A.40.(2012年全国普通高等学校招生统一考试文科数学(课标卷))已知ω>0,,直线和是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=A .4πB .3π C .2π D .34π 【答案】A 【详解】因为和是函数图象中相邻的对称轴,所以,即.又,所以,所以,因为是函数的对称轴所以,所以,因为,所以,检验知此时也为对称轴,所以选A.41.(2012年全国普通高等学校招生统一考试理科数学(课标卷))已知0>ω,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( ) A .15[,]24 B .13[,]24 C .1(0,]2D .(0,2]【答案】A 【详解】 由题意可得,322,22442k k k Z ππππππωπωπ+≤+<+≤+∈, ∴1542,24k k k Z ω+≤≤+∈, 0ω>,1524ω∴≤≤.故A 正确.二、填空题42.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))若2sin 3x =-,则cos 2x =__________. 【答案】19【分析】22281cos 212sin 12()1399x x =-=-⨯-=-=. 故答案为:19. 43.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))关于函数f (x )=1sin sin x x+有如下四个命题:Ⅰf (x )的图象关于y 轴对称. Ⅰf (x )的图象关于原点对称. Ⅰf (x )的图象关于直线x =2π对称. Ⅰf (x )的最小值为2.其中所有真命题的序号是__________. 【答案】ⅠⅠ【分析】对于命题Ⅰ,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题Ⅰ错误;对于命题Ⅰ,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题Ⅰ正确;对于命题Ⅰ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题Ⅰ正确;对于命题Ⅰ,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题Ⅰ错误. 故答案为:ⅠⅠ.44.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-.【分析】23()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x π=+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.45.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))已知函数()2sin sin 2f x x x =+,则()f x 的最小值是_____________. 【答案】【详解】:()()21'2cos 2cos24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫=+=+-=+-⎪⎝⎭,所以当1cos 2x <时函数单调减,当1cos 2x >时函数单调增,从而得到函数的减区间为()52,233k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦,函数的增区间为()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,所以当2,3x k k Z ππ=-∈时,函数()f x取得最小值,此时sin x x ==,所以()min 2f x ⎛=⨯= ⎝⎭,故答案是. 46.(2018年全国普通高等学校招生统一考试文数(全国卷II ))已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________. 【答案】32. 【分析】5tan tan5tan 114tan 541tan 51tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2α=. 47.(2018年全国普通高等学校招生统一考试)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________. 【答案】12- 【详解】 因为,所以,Ⅰ因为,所以,ⅠⅠⅠ得,即,解得,故本题正确答案为48.(2018年全国卷Ⅰ理数高考试题)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 【答案】3【分析】:0x π≤≤193666x πππ∴≤+≤由题可知3336262x x ,ππππ+=+=,或5362x ππ+=解得4x ,99ππ=,或79π故有3个零点.49.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))已知π(0)2a ∈,,tanα=2,则πcos ()4α-=______________.【详解】由tan 2α=得sin 2cos αα=,又22sin cos 1αα+=,所以21cos 5α=,因为(0,)2πα∈,所以cos αα==cos()cos cos sin sin 444πππααα-=+,所以cos()4πα-=525210⨯+=. 50.(2017年全国普通高等学校招生统一考试文科数学(新课标2))函数()2cos sin f x x x =+的最大值为__________.【分析】:函数f (x )=2cos x +sin x =x x )=(x +θ),其中tanθ=2,51.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))函数()23s 4f x in x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 【答案】1【详解】化简三角函数的解析式,可得()22311cos cos 44f x x x x x =--=-++=2(cos 1x -+,由[0,]2x π∈,可得cos [0,1]x ∈,当cos x =时,函数()f x 取得最大值1.52.(2015年全国普通高等学校招生统一考试)已知θ是第四象限角,且sin (θ+π4)=35,则tan (θ–π4)=___________. 【答案】43-【分析】:Ⅰθ是第四象限角, Ⅰ222k k ππθπ-+<<,则22444k k k Z ππππθπ-+++∈<<,,又sin (θ4π+)35=, Ⅰcos (θ4π+)45===. Ⅰcos (4πθ-)=sin (θ4π+)35=,sin (4πθ-)=cos (θ4π+)45=.则tan (θ4π-)=﹣tan (4πθ-)44453354sin cos πθπθ⎛⎫- ⎪⎝⎭=-=-=-⎛⎫- ⎪⎝⎭. 故答案为43-. 53.(2015年全国普通高等学校招生统一考试数学)函数sin y x x =的图象可由函数2sin y x =的图象至少向右平移________个单位长度得到. 【答案】3π【详解】:因为sin 2sin()3y x x x π==-,所以函数sin y x x =的的图像可由函数2sin y x =的图像至少向右平移3π个单位长度得到.54.(2014年全国普通高等学校招生统一考试数学)函数sin y x x =的图象可由函数sin y x x =的图象至少向右平移_____个单位长度得到.【答案】23π【详解】:sin 2sin(),sin 2sin()33y x x x y x x x ππ=-=-=+=+,故应至少向右平移23π55.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))函数的最大值为________. 【答案】1【详解】:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数的最大值为1.56.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅰ卷))函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.【答案】1【详解】由题意知:()()()sin 22sin cos f x x x ϕϕϕ=+-+=()()sin[]2sin cos x x ϕϕϕϕ++-+ =()sin cos x ϕϕ++()cos sin x ϕϕ+-()2sin cos x ϕϕ+=()cos sin x ϕϕ+-()sin cos x ϕϕ+ =()sin[]x ϕϕ+-=sin x ,即()sin f x x =,因为x R ∈,所以()f x 的最大值为1.57.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.【答案】5-;【详解】f(x)=sin x -2cos x x x ⎫⎪⎪⎝⎭-φ),其中sin φ,cos φ当x -φ=2kπ+2π (kⅠZ)时,函数f(x)取得最大值,即θ=2kπ+2π+φ时,函数f(x)取到最大值,所以cosθ=-sin φ.58.(2013年全国普通高等学校招生统一考试理科数学(新课标2))设θ为第二象限角,若tan(θ+)=12,则sinθ+cosθ=_________.【答案】【详解】因为θ为第二象限角,若tan(θ+)=12>0,所以角θ的终边落在直线y x=-的左侧,sinθ+cosθ<0,由tan(θ+)=12得tan11tanθθ+-=12,即sin coscos sinθθθθ+-=12,所以设sinθ+cosθ=x,则cosθ- sinθ=2x,将这两个式子平方相加得:22 5x=,即sinθ+cosθ=.。
高考数学真题全国卷(汇总5篇)
高考数学真题全国卷(汇总5篇)1.高考数学真题全国卷第1篇一、正余弦定理正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc*cosA二、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)三、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a四、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))五、和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB2.高考数学真题全国卷第2篇集合与函数内容子交并补集,还有幂指对函数。
十年真题(2010-近年)高考数学真题分类汇编专题12平面
(2)若 3 ,求|AB|.
【解答】解:(1)设直线l的方程为y (x﹣t),将其代入抛物线y2=3x得: x2﹣( t+3)x t2=0,
设A(x1,y1),B(x2,y2),
则x1+x2 2t ,①,x1x2=t2②,
由抛物线的定义可得:|AF|+|BF|=x1+x2+p=2t 4,解得t ,
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.
【解答】解:(1)根据椭圆的对称性,P3(﹣1, ),P4(1, )两点必在椭圆C上,
又P4的横坐标为1,∴椭圆必不过P1(1,1),
∴P2(0,1),P3(﹣1, ),P4(1, )三点在椭圆C上.
由PQ⊥l,设PQ:y=﹣m(x﹣1),
由 可得(3m2+4)y2+6my﹣9=0,
设M(x1,y1),N(x2,y2),
可得y1+y2 ,y1y2 ,
则|MN| •|y1﹣y2| •
• 12• ,
A到PQ的距离为d ,
|PQ|=2 2 ,
则四边形MPNQ面积为S |PQ|•|MN| • •12•
=24• 2Байду номын сангаас ,
(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;
(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,
历年全国卷高考数学真题汇编(教师版)
中,
,
,
,则
A.
B.
C.
D.
【答案】 A
【解析】分析:先根据二倍角余弦公式求
cosC, 再根据余弦定理求 AB.
详解:因为
所以
,选 A.
点睛: 解三角形问题,多为边和角的求值问题,这就需要根据正、
余弦定理结合已知条件灵
活转化边和角之间的关系,从而达到解决问题的目的
.
( 2018 全国 I 卷理) 17.( 12 分)
.
(2) 给值求值:关键是找出已知式与待求式之间的联系及函数的差异
.
Hale Waihona Puke ①一般可以适当变换已知式,求得另外函数式的值,以备应用;
②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的
.
(3) 给值求角:实质是转化为“给值求值”,先求角的某一函数值,
再求角的范围, 确定角 .
(2018 全国 2 卷理) 10. 若
( 1)由题设及正弦定理得 sin Asin A C sinB sin A . 2
因为 sin A 0 ,所以 sin A C sin B . 2
由A
B
C
180 ,可得 sin A C
cos B
,故
B cos
BB 2sin cos .
2
2
2
22
因为 cos B 0 ,故 sin B = 1 ,因此 B 60 .
'.
全国卷历年高考真题汇编 -三角函数与解三角形
(2019 全国 2 卷文)8.若 x1= ,x2= 是函数 f(x)=sin x ( >0)两个相邻的极值点, 则 =
4
4
A. 2
十年真题(2010-近年)高考数学真题分类汇编专题16坐标系与参数方程理(含解析)(最新整理)
专题16坐标系与参数方程解答题2011综合测试题2011年新课标1理科23解答题2010综合测试题2010年新课标1理科23历年高考真题汇编1.【2019年新课标1理科22】在直角坐标系xOy中,曲线C的参数方程为(t 为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【解答】解:(1)由(t为参数),得,两式平方相加,得(x≠﹣1),∴C的直角坐标方程为(x≠﹣1),由2ρcosθρsinθ+11=0,得.即直线l的直角坐标方程为得;(2)设与直线平行的直线方程为,联立,得16x2+4mx+m2﹣12=0.由△=16m2﹣64(m2﹣12)=0,得m=±4.∴当m=4时,直线与曲线C的切点到直线的距离最小,为.2.【2018年新课标1理科22】在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该射线关于y轴对称,且恒过定点(0,2).由于该射线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,或解得:k或0,当k=0时,不符合条件,故舍去,同理解得:k或0经检验,直线与曲线C2没有公共点.故C1的方程为:.3.【2017年新课标1理科22】在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d,φ满足tanφ,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+φ)﹣a﹣4|≤|﹣5﹣a﹣4|=|5+a+4|=17解得a=8和﹣26,a=8符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+φ)﹣a﹣4|≤|5﹣a﹣4|=|5﹣a﹣4|=17,解得a=﹣16和18,a=﹣16符合题意.4.【2016年新课标1理科23】在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).5.【2015年新课标1理科23】在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y ﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2,∴|MN|=|ρ1﹣ρ2|,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N•1•1.6.【2014年新课标1理科23】已知曲线C:1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.7.【2013年新课标1理科23】已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,联立,解得或,∴C1与C2交点的极坐标为()和(2,).8.【2012年新课标1理科23】已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]9.【2011年新课标1理科23】在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ与C1的交点A的极径为ρ1=4sin,射线θ与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|.10.【2010年新课标1理科23】已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【解答】解:(Ⅰ)当α时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为x sinα﹣y cosα﹣sinα=0①.则OA的方程为x cosα+y sinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.本专题考查的知识点为:极坐标方程与直角坐标方程的转化,极坐标几何意义的应用,参数方程与普通方程的互化,参数方程的应用。
历年全国卷高考数学真题汇编(教师版)
全国卷历年高考真题汇编-三角函数与解三角形〔2021全国2卷文〕8.假设x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,那么ω= A .2 B .32 C .1D .12答案:A〔2021全国2卷文〕11.a ∈〔0,π2〕,2sin2α=cos2α+1,那么sin α=A .15BCD 答案:B〔2021全国2卷文〕15.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .b sin A +a cos B =0,那么B =___________. 答案:43π〔2021全国1卷文〕15.函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 答案:-4〔2021全国1卷文〕7.tan255°=〔 〕A .-2B .-C .2D .答案:D〔2021全国1卷文〕11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,C c B b A a sin 4sin sin =- ,41cos -=A ,那么bc =〔 〕A .6B .5C .4D .3答案:A〔2021全国3卷理〕18.〔12分〕△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sinsin 2A Ca b A +=. 〔1〕求B ;〔2〕假设△ABC 为锐角三角形,且1c =,求△ABC 面积的取值范围.〔1〕由题设及正弦定理得sin sin sin sin 2A CA B A +=. 因为sin 0A ≠,所以sinsin 2A CB +=. 由180A BC ++=︒,可得sin cos 22A C B +=,故cos 2sin cos 222B B B=.因为cos 02B ≠,故1sin =22B ,因此60B =︒.〔2〕由题设及〔1〕知△ABC 的面积ABC S ∆=.由正弦定理得sin sin(120)1sin sin 2c A c C a C C ︒-===+. 由于△ABC 为锐角三角形,故090A ︒<<︒,090C ︒<<︒.由〔1〕知120A C +=︒,所以3090C ︒<<︒,故122a <<ABC S ∆<< 因此,△ABC 面积的取值范围是〔2021全国2卷理〕15.ABC △的内角,,A B C 的对边分别为,,a b c .假设π6,2,3b ac B ===,那么ABC △的面积为_________. 答案:36〔2021全国2卷理〕9.以下函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos2x │B .f (x )=│sin2x │C .f (x )=cos│x │D .f (x )=sin │x │答案:A〔2021全国2卷理〕10.α∈(0,2π),2sin2α=cos2α+1,那么sin α=A .15B 5C 3D 5答案:B〔2021全国1卷理〕17.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.〔1〕求A ;〔22b c +=,求sin C .【答案】〔1〕3A π=;〔2〕sin 4C =.【解析】 【分析】〔1〕利用正弦定理化简边角关系式可得:222b c a bc +-=,从而可整理出cos A ,根据()0,A π∈可求得结果;〔2〕利用正弦定理可得sin 2sin A B C +=,利用()sin sin B A C =+、两角和差正弦公式可得关于sin C 和cos C 的方程,结合同角三角函数关系解方程可求得结果.【详解】〔1〕()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=-即:222sin sin sin sin sin B C A B C +-= 由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,πA ∈3Aπ〔2〕22a b c +=sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1sin 2sin 2C C C +=整理可得:3sin C C =22sin cos 1C C += (()223sin 31sin C C ∴=-解得:sin 4C =或4因sin 2sin 2sin 02B C A C ==->所以sin 4C >,故sin 4C =.〔2〕法二:22a b c +=sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1sin 2sin 2C C C +=整理可得:3sin C C =,即3sin 6C C C π⎛⎫=-= ⎪⎝⎭sin 62C π⎛⎫∴-=⎪⎝⎭ 由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+sin sin()46C ππ=+= 【点睛】此题考察利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进展化简,得到余弦定理的形式或角之间的关系.〔2021全国1卷理〕()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间〔2π,π〕单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④ B. ②④C. ①④D. ①③【答案】C 【解析】【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,应选C .〔2021全国3卷文〕11.ABC ∆的内角,,A B C 的对边分别为,,a b c ,假设ABC ∆的面积为2224a b c +-,那么C =( )A .2π B .3π C .4π D .6π 【答案】C 【解析】2221sin 24ABCa b c S ab C ∆+-==,而222cos 2a b c C ab+-=故12cos 1sin cos 242ab C ab C ab C ==,4C π∴= 【考点】三角形面积公式、余弦定理〔2021全国3卷文〕()2tan 1tan xf x x=+的最小正周期为( )A .4π B .2πC .πD .2π 【答案】C【解析】()()2222tan tan cos 1sin cos sin 2221tan 1tan cos x x x f x x x x x k x x x ππ⨯⎛⎫====≠+ ⎪++⎝⎭,22T ππ==(定义域并没有影响到周期) 〔2021全国3卷文〕1sin 3α=,那么cos 2α=( )A .89 B .79 C .79- D .89- 【答案】B【解析】27cos212sin 9αα=-=〔2021全国2卷理〕15. ,,那么__________.【答案】【解析】分析:先根据条件解出再根据两角和正弦公式化简求结果. 详解:因为,,所以,因此点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出式与待求式之间的联系及函数的差异. ①一般可以适当变换式,求得另外函数式的值,以备应用;②变换待求式,便于将式求得的函数值代入,从而到达解题的目的.(3)给值求角:实质是转化为“给值求值〞,先求角的某一函数值,再求角的范围,确定角.〔2021全国2卷理〕10. 假设在是减函数,那么的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期(3)由求对称轴,(4)由求增区间;由求减区间.〔2021全国2卷理〕6. 在中,,,,那么A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合条件灵活转化边和角之间的关系,从而到达解决问题的目的.〔2021全国I 卷理〕17.〔12分〕在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =. 〔1〕求cos ADB ∠;〔2〕假设22DC =,求BC解:〔1〕在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以2sin 5ADB ∠=.由题设知,90ADB ∠<︒,所以223cos 1255ADB ∠=-=. 〔2〕由题设及〔1〕知,2cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠225825225=+-⨯⨯⨯25=.所以5BC =.〔2021全国I 卷理〕16.函数()2sin sin2f x x x =+,那么()f x 的最小值是_____________. 〔2021全国I 卷文〕16.〔5分〕△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .bsinC+csinB=4asinBsinC ,b 2+c 2﹣a 2=8,那么△ABC 的面积为 .【解答】解:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . bsinC+csinB=4asinBsinC ,利用正弦定理可得sinBsinC+sinCsinB=4sinAsinBsinC ,由于sinBsinC≠0,所以sinA=,那么A=由于b2+c2﹣a2=8,那么:,①当A=时,,解得:bc=,所以:.②当A=时,,解得:bc=﹣〔不合题意〕,舍去.故:.故答案为:〔2021全国I卷文〕11.〔5分〕角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A〔1,a〕,B〔2,b〕,且cos2α=,那么|a﹣b|=〔〕A.B.C.D.1【解答】解:∵角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A〔1,a〕,B〔2,b〕,且cos2α=,∴cos2α=2cos2α﹣1=,解得cos2α=,∴|cosα|=,∴|sinα|==,|tanα|=||=|a﹣b|===.应选:B.〔2021全国I卷文〕函数f〔x〕=2cos2x﹣sin2x+2,那么〔〕A .f 〔x 〕的最小正周期为π,最大值为3B .f 〔x 〕的最小正周期为π,最大值为4C.f 〔x 〕的最小正周期为2π,最大值为3 D .f 〔x 〕的最小正周期为2π,最大值为4【解答】解:函数f 〔x 〕=2cos2x ﹣sin2x+2, =2cos2x ﹣sin2x+2sin2x+2cos2x , =4cos2x+sin2x ,=3cos2x+1, =,=, 故函数的最小正周期为π, 函数的最大值为, 应选:B .1〔2021全国I 卷9题〕曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,那么下面结论正确的选项是〔〕A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 【答案】D【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理. πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来 2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x .注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减〞原那么,“π4+x 〞到“π3+x 〞需加上π12,即再向左平移π122 〔2021全国I 卷17题〕ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,ABC △的面积为23sin a A.〔1〕求sin sin B C ;〔2〕假设6cos cos 1B C =,3a =,求ABC △的周长.【解析】此题主要考察三角函数及其变换,正弦定理,余弦定理等根底知识的综合应用.〔1〕∵ABC △面积23sin a S A=.且1sin 2S bc A =∴21sin 3sin 2a bc A A = ∴223sin 2a bc A =∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.〔2〕由〔1〕得2sin sin 3B C =,1cos cos 6B C =∵πA B C ++=∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=又∵()0πA ∈,∴60A =︒,sin A =1cos 2A =由余弦定理得2229a b c bc =+-= ① 由正弦定理得sin sin a b B A =⋅,sin sin ac C A=⋅ ∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=+ABC △周长为33. (2021·新课标全国Ⅱ卷理17)17.〔12分〕ABC ∆的内角,,A B C 的对边分别为,,a b c ,2sin()8sin 2B AC +=. (1)求cos B(2)假设6a c += , ABC ∆面积为2,求.b 【命题意图】此题考察三角恒等变形,解三角形.【试题分析】在第〔Ⅰ〕中,利用三角形内角和定理可知A C B π+=-,将2sin 8)sin(2B C A =+转化为角B 的方程,思维方向有两个:①利用降幂公式化简2sin 2B ,结合22sin cos 1B B +=求出cos B ;②利用二倍角公式,化简2sin 8sin 2B B =,两边约去2sin B ,求得2tan B,进而求得B cos .在第〔Ⅱ〕中,利用〔Ⅰ〕中结论,利用勾股定理和面积公式求出a c ac +、,从而求出b . 〔Ⅰ〕 【根本解法1】由题设及2sin8sin ,2BB C B A ==++π,故 sin 4-cosB B =(1)上式两边平方,整理得 217cos B-32cosB+15=0 解得 15cosB=cosB 171(舍去),= 【根本解法2】由题设及2sin8sin ,2B BC B A ==++π,所以2sin 82cos 2sin 22B B B =,又02sin ≠B ,所以412tan=B ,17152tan 12tan 1cos 22=+-=B BB 〔Ⅱ〕由158cosB sin B 1717==得,故14a sin 217ABC S c B ac ∆==又17=22ABC S ac ∆=,则由余弦定理及a 6c +=得2222b 2cos a 2(1cosB)1715362(1)2174a c ac Bac =+-=-+=-⨯⨯+=(+c )所以b=2【知识拓展】解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进展“边转角〞“角转边〞,另外要注意22,,a c ac a c ++三者的关系,这样的题目小而活,备受教师和学生的欢迎.4 〔2021全国卷3理〕17.〔12分〕ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,sin 0A A =,a =,2b =. 〔1〕求c ;〔2〕设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】〔1〕由sin 0A A +=得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A +=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵12,cos 2a b A ===-代入并整理得()2125c +=,故4c =.〔2〕∵2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-==. ∵AC AD ⊥,即ACD △为直角三角形, 那么cos AC CD C =⋅,得CD =由勾股定理AD =又2π3A =,那么2πππ326DAB ∠=-=, 1πsin 26ABDS AD AB =⋅⋅△5 〔2021全国卷文1〕14 π(0)2a ∈,,tan α=2,那么πcos ()4α-=__________。
历高考数学真题全国卷整理版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ).A .3B .4C .5D .6 2.(2013大纲全国,理2)3=( ).A .-8B .8C .-8iD .8i3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-14.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭ C .(-1,0) D .1,12⎛⎫ ⎪⎝⎭ 5.(2013大纲全国,理5)函数f (x )=21log 1x⎛⎫+ ⎪⎝⎭(x >0)的反函数f -1(x )=( ).A .121x -(x >0)B .121x-(x≠0) C .2x -1(x ∈R) D .2x-1(x >0)6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43-,则{a n }的前10项和等于( ).A .-6(1-3-10)B .19(1-310) C .3(1-3-10) D .3(1+3-10)7.(2013大纲全国,理7)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ).A .56B .84C .112D .1688.(2013大纲全国,理8)椭圆C :22=143x y+的左、右顶点分别为A 1,A 2,点P在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( ).A .13,24⎡⎤⎢⎥⎣⎦ B .33,84⎡⎤⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦ 9.(2013大纲全国,理9)若函数f (x )=x 2+ax +1x 在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ).A .[-1,0]B .[-1,+∞)C .[0,3]D .[3,+∞) 10.(2013大纲全国,理10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23 B.3 C.3 D .1311.(2013大纲全国,理11)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若0MA MB ⋅=,则k =( ).A .12 B.2 C.212.(2013大纲全国,理12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ).A .y =f(x)的图像关于点(π,0)中心对称B .y =f(x)的图像关于直线π=2x 对称C .f(x)的最大值为 D .f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,理13)已知α是第三象限角,sin α=3-,则cot α=__________.14.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.(用数字作答)15.(2013大纲全国,理15)记不等式组0,34,34xx yx y≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是__________.16.(2013大纲全国,理16)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,OK=32,且圆O与圆K所在的平面所成的一个二面角为60°,则球O的表面积等于__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n}的前n项和为S n.已知S3=22a,且S1,S2,S4成等比数列,求{a n}的通项公式.18.(2013大纲全国,理18)(本小题满分12分)设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.(1)求B;(2)若sin A sin C=14,求C19.(2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的大小.20.(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为2,各局比赛的结果相互独立,第1局甲当裁判. (1)求第4局甲当裁判的概率;(2)X 表示前4局中乙当裁判的次数,求X 的数学期望.21.(2013大纲全国,理21)(本小题满分12分)已知双曲线C :2222=1x y a b-(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB |,|BF 2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f (x )=1ln(1+)1x x x xλ(+)-+. (1)若x ≥0时,f (x )≤0,求λ的最小值; (2)设数列{a n }的通项111=1+23n a n+++,证明:a 2n -a n +14n >ln 2.2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素.故选B. 2. 答案:A解析:323=13=8-.故选A. 3. 答案:B解析:由(m +n )⊥(m -n )?|m |2-|n |2=0?(λ+1)2+1-[(λ+2)2+4]=0?λ=-3.故选B. 4. 答案:B解析:由题意知-1<2x +1<0,则-1<x <12-.故选B. 5. 答案:A解析:由题意知11+x=2y ?x =121y -(y >0), 因此f -1(x )=121x-(x >0).故选A. 6.答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4.∴S 10=101413113⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C.7. 答案:D解析:因为(1+x )8的展开式中x 2的系数为28C ,(1+y )4的展开式中y 2的系数为24C ,所以x 2y 2的系数为2284C C 168=.故选D.8. 答案:B解析:设P 点坐标为(x 0,y 0),则2200=143x y +, 2002PA y k x =-,1002PA y k x =+,于是12220222003334244PA PA x y k k x x -⋅===---. 故12314PA PA k k =-. ∵2PA k ∈[-2,-1],∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B.9. 答案:D解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D. 10. 答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11=CH BD CH C OBD C O O ⊥⎫⎪⊥⎬⎪⎭CH ⊥平面C 1BD ,∴∠HDC 为CD 与平面BDC 1所成的角. 设AA 1=2AB =2,则2==22AC OC,222211293=22222C O OC CC ⎛⎫+=+ ⎪ ⎪⎝⎭由等面积法,得C 1O ·CH =OC ·CC 1,即322222CH ⋅, ∴2=3CH .∴sin ∠HDC =223==13HC DC .故选A.11. 答案:D解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k 2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k(+),x 1x 2=4.① 由112222y k x y k x =(-)⎧⎨=(-)⎩∵0MA MB ⋅=,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0, 即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D. 12. 答案:C解析:由题意知f (x )=2cos 2x ·sin x =2(1-sin 2x )sin x . 令t =sin x ,t ∈[-1,1], 则g (t )=2(1-t 2)t =2t -2t 3. 令g ′(t )=2-6t 2=0,得=t ±. 当t =±1时,函数值为0;当t =时,函数值为;当t =. ∴g (t )max=9, 即f (x )的最大值为9.故选C.二、填空题:本大题共4小题,每小题5分.13.答案:解析:由题意知cos α===.故cot α=cos sin αα. 14.答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种).15.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示.∵直线y =a (x +1)过定点C (-1,0),由图并结合题意可知12BC k =,k AC =4, ∴要使直线y =a (x +1)与平面区域D 有公共点, 则12≤a ≤4. 16.答案:16π解析:如下图,设MN 为两圆的公共弦,E 为MN 的中点, 则OE ⊥MN ,KE ⊥MN ,结合题意可知∠OEK =60°.又MN =R ,∴△OMN 为正三角形.∴OE .又OK ⊥EK ,∴32=OE R ∴R =2.∴S=4πR2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:设{a n}的公差为d.由S3=22a得3a2=22a,故a2=0或a2=3.由S1,S2,S4成等比数列得22S=S1S4.又S1=a2-d,S2=2a2-d,S4=4a2+2d,故(2a2-d)2=(a2-d)(4a2+2d).若a2=0,则d2=-2d2,所以d=0,此时S n=0,不合题意;若a2=3,则(6-d)2=(3-d)(12+2d),解得d=0或d=2.因此{a n}的通项公式为a n=3或a n=2n-1.18.解:(1)因为(a+b+c)(a-b+c)=ac,所以a2+c2-b2=-ac.由余弦定理得cos B=222122a c bac+-=-,因此B=120°.(2)由(1)知A+C=60°,所以cos(A-C)=cos A cos C+sin A sin C=cos A cos C-sin A sin C+2sin A sinC=cos(A+C)+2sin A sin C=11+2242⨯=,故A-C=30°或A-C=-30°,因此C=15°或C=45°.19.(1)证明:取BC的中点E,连结DE,则ABED为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD , 所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD . 取PD 的中点F ,PC 的中点G ,连结FG , 则FG ∥CD ,FG ⊥PD .连结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角. 连结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =,EG =12PB =1,故AG 3.在△AFG 中,FG =12CD =,AF =,AG =3,所以cos ∠AFG =22223FG AF AG FG AF +-=-⨯⨯因此二面角A -PD -C 的大小为π-解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB |=2,则A(0,0),D (0,,0),C(,0),P (0,0.PC =(),PD =(0,,).AP =(0,,AD =,0).设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1·PC =(x ,y ,z)·(,)=0,n 1·PD =(x ,y ,z)·(0,,)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故n 1=(0,-1,1).设平面PAD 的法向量为n 2=(m ,p ,q ),则n 2·AP =(m ,p ,q=0,n 2·AD =(m ,p ,q,0)=0,可得m +q =0,m -p =0. 取m =1,得p =1,q =-1,故n 2=(1,1,-1). 于是cos 〈n 1,n 2〉=1212||||3=-·n n n n . 由于〈n 1,n 2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C的大小为πarccos3-. 20.解:(1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.(2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B 3表示事件“第3局乙参加比赛时,结果为乙负”.则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)·P (A 3)=18,P (X =2)=P (1B ·B 3)=P (1B )P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1151848--=,EX =0·P (X =0)+1·P (X =1)+2·P (X =2)=98. 21.(1)解:由题设知c a=3,即222a b a +=9,故b 2=8a 2. 所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,求得x =由题设知,=a 2=1.所以a =1,b =(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k (x -3),k (k 2-8)x 2-6k 2x +9k 2+8=0.设A (x 1,y 1),B (x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=2268k k -,x 1·x 2=22988k k +-.于是|AF 1|==(3x 1+1),|BF 1|=3x 2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=23-.故226283kk=--,解得k2=45,从而x1·x2=199-.由于|AF2|==1-3x1,|BF2|=3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16.因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.22.(1)解:由已知f(0)=0,f′(x)=22121x xxλλ(-)-(+),f′(0)=0.若12λ<,则当0<x<2(1-2λ)时,f′(x)>0,所以f(x)>0.若12λ≥,则当x>0时,f′(x)<0,所以当x>0时,f(x)<0.综上,λ的最小值是12.(2)证明:令12λ=.由(1)知,当x>0时,f(x)<0,即2ln(1) 22x xxx(+)>++.取1xk=,则211>ln21k kk k k++(+).于是212111422(1)nn nk na an k k-=⎡⎤-+=+⎢⎥+⎣⎦∑=2121211ln 21n n k n k nk k k k k --==++>(+)∑∑=ln 2n -ln n =ln 2. 所以21ln 24n n a a n-+>. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ).A .A ∩B =B .A ∪B =RC .B ⊆AD .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .453.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为5C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为 6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .810.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0] 12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n nc a +,c n+1=2n nb a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列 C .{S2n -1}为递增数列,{S2n}为递减数列 D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和2133n n S a =+,则{an}的通项公式是an =_______.15.(2013课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x 取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )≤g (x ),求a 的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为: 由图象可以看出A ∪B =R ,故选B. 2. 答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3. 答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样. 4. 答案:C解析:∵c e a ==22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±.∴渐近线方程为12b y x x a =±±. 5. 答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3). 若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4]. 综上可知,输出的s ∈[-3,4].故选A. 6. 答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7. 答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3. ∴d =a m +1-a m =3-2=1. ∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8. 答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9. 答案:B解析:由题意可知,a =2C m m ,b =21C mm +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10. 答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a .又∵a2-b2=9,∴a2=18,b2=9.∴椭圆E的方程为22=1189x y.故选D.11.答案:D解析:由y=|f(x)|的图象知:①当x>0时,y=ax只有a≤0时,才能满足|f(x)|≥ax,可排除B,C.②当x≤0时,y=|f(x)|=|-x2+2x|=x2-2x.故由|f(x)|≥ax得x2-2x≥ax.当x=0时,不等式为0≥0成立.当x<0时,不等式等价于x-2≤a.∵x-2<-2,∴a≥-2.综上可知:a∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c=t a+(1-t)b,∴b·c=t a·b+(1-t)|b|2.又∵|a|=|b|=1,且a与b夹角为60°,b⊥c,∴0=t|a||b|cos 60°+(1-t),0=12t +1-t . ∴t =2. 14.答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1nn a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 15.答案:解析:f (x )=sin x -2cos x=x x ⎫⎪⎭,令cos α=,sin α=则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称, ∴f (x )满足f (0)=f (-4),f (-1)=f (-3), 即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2+.易知,f (x )在(-∞,-2)上为增函数,在(-2,-2)上为减函数,在(-2,-2上为增函数,在(-2+,+∞)上为减函数.∴f (-2=[1-(-2-)2][(-22+8(-2-)+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15) =-9.f (-2=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16. 故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA =2. (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得sin sin150sin(30)αα=︒︒-,化简得cos α=4sin α.所以tan α=4,即tan ∠PBA =4. 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C . (2)解:由(1)知OC ⊥AB ,OA 1⊥AB . 又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B , 故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(00),C (0,0),B (-1,0,0).则BC =(1,0,),1BB =1AA =(-10),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.x x ⎧=⎪⎨-+=⎪⎩可取n =1,-1). 故cos 〈n ,1AC 〉=11A C A C⋅n n =5-. 所以A 1C 与平面BB1C 1C 所成角的正弦值为5. 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14.所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=. 20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R . (1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长(左顶点除外),其方程为22=143x y +(x ≠-2).(2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2, 所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2. 所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4). 由l 与圆M,解得k=4±. 当k=4时,将4y x =+22=143x y +, 并整理得7x 2+8x -8=0, 解得x 1,2=47-±.所以|AB |=2118||7x x -=.当k =|AB |=187.综上,|AB |=|AB |=187. 21.解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4. 而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1). 设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2, 则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1. 令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0. 故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立. ②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增. 而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立. ③若k >e 2,则F (-2)=-2k e -2+2=-2e -2(k -e 2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}. (2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a .不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立.故2a -≥a -2,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S=( ).A.111 1+2310+++B.111 1+2!3!10!+++C.111 1+2311+++D.111 1+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a=log36,b=log510,c=log714,则( ).A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件1,3,3.xx yy a x≥⎧⎪+≤⎨⎪≥(-)⎩若z=2x+y的最小值为1,则a=( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax +b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.1122⎛⎫-⎪⎪⎝⎭C.11,23⎛⎤-⎥⎝⎦D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海南省2009年初中毕业生学业考试数 学 科 试 题(考试时间100分钟,满分110分)特别提醒:1.选择题用2B 铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效. 2.答题前请认真阅读试题及有关说明. 3.请合理安排好答题时间.一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.2的相反数是( ) A .2B .2-C .12D .12-2.cos60°的值等于( ) A .12B.2CD3.数据1,0,4,3的平均数是( ) A .3 B .2.5 C .2 D .1.5 4.图1中几何体的主视图是( )5.已知图2中的两个三角形全等,则α∠的度数是( ) A .72° B .60° C .58° D .50°6.如图3,DE 是ABC △的中位线,若BC 的长为3cm ,则DE 的长是( ) A .2cm B .1.5cm C .1.2cm D .1cm 7.当2x =-时,代数式1x +的值是( ) A .1- B .3- C .1 D .3 8x 的取值范围是( ) A .1x ≥B .1x >C .1x ≤D .1x ≠9.下列各式中,与2()a b -一定相等的是( ) A .222a ab b ++B .22a b -C .22a b +D .222a ab b -+10.如图4,AB 是O ⊙的直径,C 是O ⊙上一点,且45A ∠=°, 则下列结论中正确的是( )A .12BC AB =B .BC AC =C .BC AC <D .BC AC >AE DB C 图3 a c c a bα50°58° 72° 图2正面A . B. C . D .图1图411.方程(1)0x x +=的解是( ) A .0x =B .1x =-C .10x =,21x =-D .10x =,21x =12.一次函数2y x =-+的图象是( )二、填空题(本大题满分18分,每小题3分) 13.计算:32a a -= . 14.在反比例函数2y x=-中,当1y =时,x = . 15.100件产品中仅有4件是次品,从中随机抽出1件,则抽到次品的概率是 . 16.“a 的2倍与1的和”用代数式表示是 .17.如图5,菱形ABCD 中,605B AB ∠==°,,则AC = .18.如图6,将矩形纸片ABCD 沿EF 折叠后,点C D 、分别落在点C D ''、处.若65AFE ∠=°,则C EF '∠= 度. 三、解答题(本大题满分56分) 19.(满分8分,每小题4分) (123(2)⨯- ; (2)化简:(1)(1)(1)a a a a +---.20.(满分8分)目前我省小学和初中在校生共136万人,其中小学在校生人数比初中在校生人数的2倍少2万人,问目前我省小学和初中在校生各有多少万人? 21.(满分8分)根据图7、图8提供的信息,解答下列问题:(1)2007年海南省城镇居民年人均可支配收入为 元,比2006年增长 %; (2)求2008年海南省城镇居民年人均可支配收入(精确到1元),并补全条形统计图;A D CB 60°图5 A B E D FD 'C '图62005年 2006年 2007年 2008年 图7 单位:元2005-2008年海南省城镇居民年人均可支配收入统计图 18% 15% 10% 9% 15.1% 17.1% 14.6% 图82005年 2006年 2007年 2008年2005-2008年海南省城镇居民年人均可支配收入比上年增长率统计图(3)根据图7指出:2005-2008年海南省城镇居民年人均可支配收入逐年 (填“增加”或“减少”). 22.(满分8分)如图9所示的正方形网格中,ABC △的顶点均在格点上,在所给直角坐标系中解答下列问题: (1)分别写出A B 、两点的坐标;(2)作出ABC △关于坐标原点成中心对称的111A B C △; 单位长度落在111A B C △的内部..,请直(3)作出点C 关于x 轴的对称点P ,若点P 向右平移....x 个接写出x 的取值范围. 23.(满分11分)如图10,在ABC △中,90ACB ∠=°,30CAB ∠=°,ABD △是等边三角形,E 是AB 的中点,连结CE 并延长交AD 于F . (1)求证:①AEF BEC △≌△;②四边形BCFD 是平行四边形;(2)如图11,将四边形ACBD 折叠,使D 与C 重合,HK 为折痕,求sin ACH ∠的值.24.(满分13分)如图12,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为(24),;矩形ABCD 的顶点A 与点O 重合,AD AB 、分别在x 轴、y 轴上,且2AD =,3AB =.(1)求该抛物线所对应的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图12所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速....度.从点A 出发向B 匀速移动.设它们运动的时间为t 秒(03t ≤≤),直线AB 与该抛物线的交点为N (如图13所示). ①当52t =时,判断点P 是否在直线ME 上,并说明理由; ②设以P N C D 、、、为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.图9 30°图10D B CF A E HAD K BC (D )图1130°图12海南省2009年初中毕业生学业考试参考答案及评分标准一、选择题(本大题满分36分,每小题3分)BACCD BAADB CD二、填空题(本大题满分18分,每小题3分)13.a 14.2- 15.12516.21a + 17.5 18.65 三、解答题(本大题满分56分) 19.解:(1)原式234=-⨯ ······································································ (2分) 212=- ········································································· (3分) 10=- ··········································································· (4分) (2)原式221a a a =--+ ········································································· (3分) 1a =- ····················································································· (4分) 20.解:设初中在校生为x 万人,依题意得 ···················································· (1分)(22)136x x +-= ···················································································· (4分)解得46x = ····························································································· (6分) 于是22246290x -=⨯-=(万人). ························································· (7分) 答:目前我省小学在校生为90万人,初中在校生为46万人. ··························· (8分)21.(1)10997,17.1; ·································· (2分) (2)10997(114.6%)12603⨯+≈(元)········· (4分) 所补全的条形图如图1所示;·························· (6分) (3)增加.22.(1)A B 、两点的坐标分别为(1-,0)、(2-,2-); ··········································· (2分) (2)所作111A B C △如图2所示; ·················· (5分)(3)所作点P 如图2所示, ························· (6分)5.58x <<. ············································ (8分)23.(1)①在ABC △中,9030ACB CAB ∠=∠=°,°, ∴60ABC ∠=°.在等边ABD △中,60BAD ∠=°, ∴60BAD ABC ∠=∠=°. ······································································· (1分) ∵E 为AB 的中点, ∴AE BE =. ························································································· (2分) 又∵AEF BEC ∠=∠, ············································································· (3分) ∴AEF BEC △≌△. ············································································· (4分) ②在ABC △中,90ACB ∠=°,E 为AB 的中点,图22005年 2006年 2007年 2008年 图1∴1122CE AB BE AB ==,, ∴60BCE EBC ∠=∠=°. ······································································· (5分) 又∵AEF BEC △≌△, ∴60AFE BCE ∠=∠=°.又∵60D ∠=°,∴60AFE D ∠=∠=°. ∴FC BD ∥. ························································································ (6分) 又∵60BAD ABC ∠=∠=°, ∴AD BC ∥,即FD BC ∥. ··································································· (7分) ∴四边形BCFD 是平行四边形. ································································· (8分)(2)∵6030BAD CAB ∠=∠=°,°,∴90CAH ∠=°. 在Rt ABC △中,30CAB ∠=°,设BC a =, ∴22AB BC a ==,∴2AD AB a ==.设AH x =,则2HC HD AD AH a x ==-=-. ·········································· (9分)在Rt ABC △中,2222(2)3AC a a a =-=.在Rt ACH △中,222AH AC HC +=,即2223(2)x a a x +=-.解得14x a =,即14AH a =. ∴172244HC a x a a a =-=-=. ···························································· (10分)∴114sin 774aAH ACH AC a ∠===. ······························································ (11分) 24.(1)因所求抛物线的顶点M 的坐标为(2,4),故可设其关系式为2(2)4y a x =-+. ·························································· (1分)又抛物线经过(00)O ,,于是得2(02)40a -+=, ·········································· (2分)解得1a =-. ·························································································· (3分) ∴所求函数关系式为2(2)4y x =--+,即24y x x =-+. ······························· (4分) (2)①点P 不在直线ME 上. ··································································· (5分) 根据抛物线的对称性可知E 点的坐标为(4,0), 又M 的坐标为(2,4),设直线ME 的关系式为y kx b =+.于是得4024k b k b +=⎧⎨+=⎩,解得28k b =-⎧⎨=⎩.所以直线ME 的关系式为28y x =-+. ························································ (6分)由已知条件易得,当52t =时,52OA AP ==,∴5522P ⎛⎫ ⎪⎝⎭,. ·························· (7分) ∵P 点的坐标不满足直线ME 的关系式28y x =-+, ∴当52t =时,点P 不在直线ME 上. ·························································· (8分) ②S 存在最大值.理由如下: ····································································· (9分) ∵点A 在x 轴的非负半轴上,且N 在抛物线上, ∴OA AP t ==,∴点P N ,的坐标分别为()t t ,、2(4)t t t -+,,∴24AN t t =-+(03t ≤≤),∴22(4)3(3)0AN AP t t t t t t -=-+-=-+=-≥,∴23PN t t =-+. ················································································· (10分)(i )当0PN =,即0t =或3t =时,以点P N C D ,,,为顶点的多边形是三角形,此三角形的高为AD ,∴1132322S DC AD ==⨯⨯= . ································································ (11分) (ii )当0PN ≠时,以点P N C D ,,,为顶点的多边形是四边形, ∵PN CD AD CD ∥,⊥, ∴22211321()[3(3)]2332224S CD PN AD t t t t t ⎛⎫=+=+-+⨯=-++=--+ ⎪⎝⎭,其中(03t <<),由1a =-,3032<<,此时214S =最大. ·························· (12分) 综上所述,当32t =时,以点P N C D ,,,为顶点的多边形面积有最大值,这个最大值为214. (13分)说明:(ii )中的关系式,当0t =和3t =时也适合.。