向量法解立体几何

合集下载

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题在高中数学学习中,立体几何一直是学生们非常头疼的一个部分。

立体几何的主要难点是空间的复杂性,加上几何思维本来就不易理解,许多学生解题困难。

但是,通过向量方法解题是一种很好的解决立体几何问题的方法。

本文将通过纵观立体几何考题,分享一些关于向量方法解题的经验与感悟。

一、向量的基本概念及运算向量的表示法是用箭头表示。

箭头的长度代表向量的大小,箭头的方向代表向量的方向。

一个向量可以被表示为一个由有序数对$(x,y)$所确定的点A和另一个由有序数对$(x',y')$所确定的点B之间的向量$\vec{AB}$。

向量也可以表示为箭头的坐标,即$\vec{AB}=\begin{pmatrix}x'-x\\y'-y\end{pmatrix}$。

向量的大小表示为$|\vec{AB}|=\sqrt{(x'-x)^2+(y'-y)^2}$。

向量的运算有向量加法和向量数乘。

向量加法的定义是:$\vec{a}+\vec{b}=\begin{pmatrix}a_1+b_1\\a_2+b_2\\a_3+b_3\e nd{pmatrix}$。

其中,$\vec{a}=(a_1,a_2,a_3)$,$\vec{b}=(b_1,b_2,b_3)$。

向量数乘的定义是:$\lambda\vec{a}=(\lambda a_1,\lambda a_2,\lambda a_3)$。

其中,$\lambda$是一个实数。

二、应用向量方法求解空间几何问题1.立体几何基本概念首先,我们需要掌握一些立体几何的基本概念,比如平面、线段、角等。

此外,还需要了解空间中的直线、平面、空间角、平行线等概念。

了解这些概念是建立解题基础的必要条件。

2.向量表达式的转化在解题中,我们可以通过向量的基本运算将问题转化为向量的加、减、数乘问题。

因此,我们需要能够将向量从一个表达式转化为另一个表达式,并灵活地运用向量的加、减、数乘运算法则来求解问题。

高三立体几何大题专题(用空间向量解决立体几何类问题)

高三立体几何大题专题(用空间向量解决立体几何类问题)

1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。

称为基向量。

2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。

则轴。

则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。

)称为空间直角坐标。

注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。

建立即可。

3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。

121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。

数学解决立体几何问题的四种常用方法

数学解决立体几何问题的四种常用方法

数学解决立体几何问题的四种常用方法数学作为一门科学,其应用范围及其广泛。

在解决现实生活中的各种问题中,立体几何问题是其中之一。

在本文中,将介绍数学解决立体几何问题的四种常用方法,分别是平面几何方法、向量法、投影法和立体坐标法。

一、平面几何方法平面几何方法是解决立体几何问题最常用的方法之一。

该方法的基本思想是将立体几何问题转化为平面几何问题来求解。

具体来说,可以通过绘制立体几何图形的几个视图,将其分解为多个平面几何图形,然后利用平面几何中的定理和性质进行求解。

例如,对于一个立方体求其体积,可以将其展开成一个平面图形,然后计算出展开图形的面积。

再根据立方体的性质,将展开图形的面积乘以立方体高度所得的积即为立方体的体积。

二、向量法向量法是一种几何分析方法,可以有效地解决立体几何问题。

该方法利用向量的运算和性质,将立体几何问题转化为向量计算问题来求解。

在利用向量法解决立体几何问题时,首先需要确定坐标系,并定义几何体的位置和方向。

然后,通过向量运算来计算几何体的性质。

例如,对于一个平行六面体的体积,可以通过计算其底面向量与高度向量的叉积来求解。

三、投影法投影法是解决立体几何问题的另一种常用方法。

该方法利用几何体在不同平面上的投影关系,将立体几何问题转化为投影几何问题来求解。

具体来说,可以通过绘制几何体在不同平面上的投影图形,并利用投影几何的定理和性质进行求解。

例如,对于一个棱柱在某个平面上的截面积,可以通过计算棱柱的投影图形在该平面上的面积来求解。

四、立体坐标法立体坐标法是一种通过引入三维坐标系来解决立体几何问题的方法。

该方法通过确定几何体的坐标,将立体几何问题转化为坐标几何问题来求解。

在利用立体坐标法解决立体几何问题时,首先需要建立一个三维坐标系,并确定几何体的坐标。

然后,通过坐标运算来计算几何体的性质。

例如,对于一个球体求其体积,可以根据球体的坐标及其半径,利用坐标运算公式计算出体积。

总结起来,数学解决立体几何问题的常用方法有平面几何方法、向量法、投影法和立体坐标法。

立体几何中的向量公式

立体几何中的向量公式

向量法解立体几何用传统的方法解立体几何需要烦琐的分析、复杂的计算。

而用向量法解题思路清晰、过程简洁。

对立体几何的常见问题都可以起到化繁为简,化难为易的效果。

一. 证明两直线平行已知两直线a 和b , b D C a B A ∈∈,,,,则⇔b a //存在唯一的实数λ使CD AB λ=二. 证明直线和平面平行1。

已知直线αα∈∈⊄E D C a B A a ,,,,,且三点不共线,则a ∥⇔α存在有序实数对μλ,使CE CD AB μλ+=2。

已知直线,,,a B A a ∈⊄α和平面 α的法向量n ,则a ∥n AB ⊥⇔α三.证明两个平面平行已知两个不重合平面βα,,法向量分别为n m ,,则α∥n m //⇔β四.证明两直线垂直 已知直线b a ,。

b D C a B A ∈∈,,,,则0=•⇔⊥CD AB b a五。

证明直线和平面垂直已知直线α和平面a ,且A 、B a ∈,面α的法向量为m ,则m AB a //⇔⊥α六.证明两个平面垂直已知两个平面βα,,两个平面的法向量分别为n m ,,则n m ⊥⇔⊥βα七.求两异面直线所成的角已知两异面直线b a ,,b D C a B A ∈∈,,,,则异面直线所成的角θ为:CDAB •=θcos八.求直线和平面所成的角AB已知A ,B 为直线a 上任意两点,n 为平面α的法向量,则a 和平面α所成的角θ为:1.⎪⎭⎫ ⎝⎛•2,0π时-=2πθ 2.⎪⎭⎫ ⎝⎛∈ππ,2时2πθ-= 九.求二面角1.已知二面角βα--l ,且l CD l AB D C B A ⊥⊥∈∈,,,,且βα,则二面角的平面角θ的大小为:=θ2.已知二面角,βα--l n m ,分别为面βα,的法向量,则二面角的平面角θ的大小与两个法向量所成的角相等或互补。

即-=πθ注:如何判断二面角的平面角和法向量所成的角的关系。

(1)通过观察二面角锐角还是钝角,再由法向量的成的角求之。

知识归纳:立体几何中的向量方法

知识归纳:立体几何中的向量方法

知识归纳:立体几何中的向量方法1.直线的方向向量:我们把直线l 上的向量以及与共线的向量叫做直线l 的方向向量.2.平面的法向量:如果表示向量a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥,那么向量叫做平面α的法向量.给定一个点,以向量为法向量的平面是完全确定的.3.空间向量解决立体几何问题的“三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及到的点、直线、平面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(3)把向量的运算结果“翻译”成相应的几何意义.4.用向量研究空间线面关系,设空间两条直线21,l l 的方向向量分别为21,e e ,两个平面21,αα的法向量分别为21,n n ,则有如下结论5.用向量法求线线角:AB 与CD 的夹角和AB 与CD 的夹角相等或互补.公式为cos ,||||AB CDAB CD AB CD ⋅<>=.6.法向量求线面角:设平面β的斜线l 与平面β所成的角为α1,斜线l 与平面β的法向量所成角α2,则α1与α2互余或与α2的补角互余.求出斜线与平面的法向量所成的角后,即可求出斜线与平面所成的角的大小.公式为cos ,||||AB nAB n AB n ⋅<>=.7.法向量求面面角:一个二面角的平面角α1与这个二面角的两个半平面的法向量所成的角α2相等或互补.求出两平面的法向量所成的角后,即可求出二面角的大小.公式为121212cos ,||||n n n n n n ⋅<>=.8.向量法求异面直线间的距离:设分别以这两异面直线上任意两点为起点和终点的向量为,与这两条异面直线都垂直的向量为,则两异面直线间的距离是在方向上的正射影向量的模.公式为d 9.向量法求点到平面的距离:设分别以平面外一点P 与平面内一点M 为起点和终点的向量为,平面的法向量为,则P 到平面的距离d 等于在方向上正射影向量的模.公式为||n d =。

法向量解立体几何专题训练

法向量解立体几何专题训练

法向量解立体几何专题训练一、运用法向量求空间角1、向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ=''''AA BB AA BB ⋅⋅, 不需要用法向量;2、设平面α的法向量为n =x, y, 1,则直线AB 和平面α所成的角θ的正弦值为sin θ=cos2π-θ = |cos<AB , n >| = AB AB n n•• 3、 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角;这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角; 二、运用法向量求空间距离 1、求两条异面直线间的距离设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点 A 、B,则异面直线a 、b 的距离d =AB ·cos ∠BAA '=||||AB n n • 2、求点到面的距离求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B,则A 点到平面α的距离为d =||||AB n n •,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设(1,,0)n y =三、证明线面、面面的平行、垂直关系设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则1a//a n α⇔⊥ 1a a//n α⊥⇔12////n n αβ⇔ 12n n αβ⊥⇔⊥四、应用举例:例1:如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. 1 求二面角C —DE —C 1的正切值; 2 求直线EC 1与FD 1所成的余弦值.解:I 以A 为原点,1,,AB AD AA 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则D0,3,0、D 10,3,2、E3,0,0、F4,1,0、C 14,3,2 于是,11(3,3,0),(1,3,2),(4,2,2)DE EC FD =-==- 设法向量(,,2)n x y =与平面C 1DE 垂直,则有13301320n DE x y x y x y z n EC ⊥-=⇒⇒==-++=⊥⎫⎫⎪⎬⎬⎭⎪⎭11111(1,1,2),(0,0,2),cos 3||||1tan 2n AA CDE n AA C DE C n AAn AA θθθ∴=--=∴--•-===⨯∴=向量与平面垂直与所成的角为二面角的平面角 II 设EC 1与FD 1所成角为β,则1111cos 14||||1EC FD EC FD β•===⨯例2:高考辽宁卷17如图,已知四棱锥P-ABCD,底面ABCD 是菱形,∠DAB=600,PD⊥平面ABCD,PD=AD,点E 为AB 中点,点F 为PD 中点;1证明平面PED ⊥平面PAB ; 2求二面角P-AB-F 的平面角的余弦值 证明:1∵面ABCD 是菱形,∠DAB=600,∴△ABD 是等边三角形,又E 是AB 中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=900, 如图建立坐标系D-ECP,设AD=AB=1,则PF=FD=12∴P0,0,1,E2,0,0,B2,12,0∴PB=32,12,-1,PE=2,0,-1,平面PED的一个法向量为DC=0,1,0 ,设平面PAB的法向量为n=x, y, 1由11(,,1),1)01022(,,1)1)010x y x y xn PBn PE yx y x⎧⎧•-=--=⎪⎧=⊥⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=•-=-=⎩⎪⎩∴n∵DC·n=0 即DC⊥n∴平面PED⊥平面PAB2解:由1知:平面PAB的法向量为n0, 1, 设平面FAB的法向量为n1=x, y, -1, 由1知:F0,0,12,FB,12,-12,FE,0,-12,由111111(,,1)(,)00222222110(,,1))0022x y x y xn FBn FE yx y x⎧⎧-•-=-+=⎪⎧=⊥⎪⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=-•-=+=⎩⎪⎩∴n1∴二面角P-AB-F的平面角的余弦值cosθ= |cos<n, n1>| =11n5714nnn•=•例3:在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.Ⅰ求直线AP与平面BCC1B1所成的角的大小结果用反三角函数值表示;Ⅱ设O点在平面D1AP上的射影是H,求证:D1H⊥AP;Ⅲ求点P到平面ABD1的距离.解: Ⅰ如图建立坐标系D-ACD1, ∵棱长为4 ∴A4,0,0,B4,4,0,P0,4,1∴AP = -4, 4, 1 , 显然DC=0,4,0为平面BCC1B1的一个法向量,∴直线AP与平面BCC1B1所成的角θ的正弦值sinθ= |cos<AP,DC >|=22216433334414=++• ∵θ为锐角,∴直线AP 与平面BCC 1B 1所成的角θ为arcsin 43333Ⅲ 设平面ABD 1的法向量为n =x, y, 1,∵AB =0,4,0,1AD =-4,0,4由n ⊥AB ,n ⊥1AD 得0440y x =⎧⎨-+=⎩ ∴ n =1, 0,1,∴点P 到平面ABD 1的距离 d =322AP n n•=例4:在长、宽、高分别为2,2,3的长方体ABCD-A 1B 1C 1D 1中,O 是底面中心,求A 1O 与B 1C 的距离;解:如图,建立坐标系D-ACD 1,则O1,1,0,A 12,2,3,C0,2,0∴1(1,1,3)AO =-- 1(2,0,3)B C =-- 11(0,2,0)A B = 设A 1O 与B 1C 的公共法向量为(,,1)n x y =,则113(,,1)(1,1,3)0302(,,1)(2,0,3)023032x n AO x y x y x y x n B C y ⎧=-⎧⎪⊥•--=-+-=⎧⎧⎪⎪⇒⇒⇒⎨⎨⎨⎨•--=--=⊥⎩⎩⎪⎪⎩=⎪⎩ ∴ 33(,,1)22n =-∴ A 1O 与B 1C 的距离为d =()1122330,2,0,,122||332211||11331222A B n n ⎛⎫•-⎪•⎝⎭===⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭例5:在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是B 1C 1、C 1D 1的中点,求A 1到面BDFEABCDA 1B 1D 1C 1O的距离;解:如图,建立坐标系D-ACD 1,则B1,1,0,A 11,0,1,E12,1,1 ∴(1,1,0)BD =-- 1(,0,1)2BE =- 1(0,1,1)A B =-设面BDFE 的法向量为(,,1)n x y =,则(,,1)(1,1,0)002112(,,1)(,0,1)01022x y x y n BD x y x y x n BE •--=--=⎧⎧⎧⊥=⎧⎪⎪⎪⇒⇒⇒⎨⎨⎨⎨=-•-=-+=⊥⎩⎪⎪⎪⎩⎩⎩ ∴ (2,2,1)n =-∴ A 1到面BDFE 的距离为d =()()()1220,1,12,2,1|||3|13||221A B n n -•-•-===+-+新课标高二数学空间向量与立体几何测试题1一、选择题1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA=90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是A .1030 B .21 C .1530 D .1015 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离图图FEA BCDA 1B 1D 1C 1AA 1DCB B 1C 1图A .515 B .55 C .552 D .105 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离A .a 42B .a 82C .a 423D .a 226.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离A .63 B .33 C .332 D .23 7.在三棱锥P -ABC 中,AB ⊥BC,AB =BC =21PA,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC,则直线OD 与平面PBC 所成角的正弦值A .621B .338 C .60210D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D,E分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面ABD 所成角的余弦值A .32 B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是CB 延长线上一点,且BC BD =,则二面角B AD B --1的大小A .3π B .6πC .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E,F 分别为棱AB,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积VA .66B .3316 C .316D .16二、填空题11.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 . 12. 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是11A B 、CD 的中点,求点B 到截面1AEC F 的距离 .13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面DBEF 的距离 .14.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成角的正弦值 . 三、解答题 15.已知棱长为1的正方体ABCD -A 1B 1C 1D 1,求平面A 1BC 1与平面ABCD 所成的二面角的大小16.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,求证:平面A 1EF ∥平面B 1MC .17.在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD=90°,AD ∥BC,AB=BC=a,AD=2a,且PA ⊥底面ABCD,PD 与底面成30°角. 1若AE ⊥PD,E 为垂足,求证:BE ⊥PD ; 2求异面直线AE 与CD 所成角的余弦值.18.已知棱长为1的正方体AC 1,E 、F 分别是B 1C 1、C 1D 的中点. 1求证:E 、F 、D 、B 共面;2求点A 1到平面的BDEF 的距离; 3求直线A 1D 与平面BDEF 所成的角.19.已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:ⅠD1E与平面BC1D所成角的大小;Ⅱ二面角D-BC1-C的大小;Ⅲ异面直线B1D1与BC1之间的距离.高二数学空间向量与立体几何专题训练2一、选择题1.向量a=2x,1,3,b=1,-2y,9,若a与b共线,则A.x=1,y=1 B.x=错误!,y=-错误!C.x=错误!,y=-错误! D.x=-错误!,y=错误! 2.已知a=-3,2,5,b=1,x,-1,且a·b=2,则x的值是A.6 B.5 C.4 D.33.设l1的方向向量为a=1,2,-2,l2的方向向量为b=-2,3,m,若l1⊥l2,则实数m的值为A.3 B.2 C.14.若a,b均为非零向量,则a·b=|a||b|是a与b共线的A.必要不充分条件 B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件5.在△ABC中,错误!=c,错误!=b.若点D满足错误!=2错误!,则错误!=b+错误!c 错误!c-错误!b 错误!b-错误!c 错误!b+错误!c6.已知a,b,c是空间的一个基底,设p=a+b,q=a-b,则下列向量中可以与p,q一起构成空间的另一个基底的是A.a B.b C.c D.以上都不对7.已知△ABC的三个顶点A3,3,2,B4,-3,7,C0,5,1,则BC边上的中线长为A.2 B.3 C.错误!错误!8.与向量a=2,3,6共线的单位向量是A.错误!,错误!,错误! B.-错误!,-错误!,-错误!C.错误!,-错误!,-错误!和-错误!,错误!,错误! D.错误!,错误!,错误!和-错误!,-错误!,-错误!9.已知向量a=2,4,x,b=2,y,2,若|a|=6且a⊥b,则x+y为A.-3或1 B.3或-1 C.-3 D.110.已知a=x,2,0,b=3,2-x,x2,且a与b的夹角为钝角,则实数x的取值范围是A.x>4 B.x<-4 C.0<x<4 D.-4<x<0.11.已知空间四个点A1,1,1,B-4,0,2,C-3,-1,0,D-1,0,4,则直线AD与平面ABC所成的角为A.30° B.45° C.60° D.90°12.已知二面角α-l-β的大小为50°,P为空间中任意一点,则过点P且与平面α和平面β所成的角都是25°的直线的条数为A.2 B.3 C.4 D.5二、填空题13.已知{i,j,k}为单位正交基底,且a=-i+j+3k,b=2i-3j-2k,则向量a+b与向量a-2b的坐标分别是________;________.14.在△ABC中,已知错误!=2,4,0,错误!=-1,3,0,则∠ABC=________.15.正方体ABCD-A1B1C1D1中,面ABD1与面B1BD1所夹角的大小为________.16.在下列命题中:①若a,b共线,则a,b所在的直线平行;②若a,b所在的直线是异面直线,则a,b一定不共面;③若a,b,c三向量两两共面,则a,b,c三向量一定也共面;④已知三向量a,b,c,则空间任意一个向量p总可以唯一表示为p=xa+yb+zc,其中不正确的命题为________.三、解答题17.如图所示,PD垂直于正方形ABCD所在的平面,AB=2,PC与平面ABCD所成角是45°,F 是AD的中点,M是PC的中点.求证:DM∥平面PFB.18.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.1证明A1C⊥平面BED;2求二面角A1-DE-B的余弦值.19.正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点.1证明:平面AED⊥平面A1FD1;2在AE上求一点M,使得A1M⊥平面DAE.高考真题能力提升1.如图,平面PAC⊥平面ABC,ABC∆是以AC为斜边的等腰直角三角形,,,E F O分别为PA,PB,AC的中点,16AC=,10PA PC==.I设G是OC的中点,证明://FG平面BOE;II证明:在ABO∆内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.2.如图,在三棱锥P ABC -中,PA ⊥底面,,60,90ABC PA AB ABC BCA ︒︒=∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BCⅠ求证:BC ⊥平面PAC ;Ⅱ当D 为PB 的中点时,求AD 与平面PAC 所成的角的大小; Ⅲ是否存在点E 使得二面角A DE P --为直二面角 并说明理由.3.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.Ⅰ求证:平面AEC PDB ⊥平面;Ⅱ当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.4.在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =. 以AC 的中点O 为球心、AC 为直径的球面交PD 于点M ,交PC 于点N . 1求证:平面ABM ⊥平面PCD ; 2求直线CD 与平面ACM 所成的角的大小; 3求点N 到平面ACM 的距离.yz DMCB PA NONMA BDCO5. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点Ⅰ证明:直线MN OCD 平面‖;Ⅱ求异面直线AB 与MD 所成角的大小; Ⅲ求点B 到平面OCD 的距离;6. 如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点; Ⅰ求证:AB 1⊥面A 1BD ;Ⅱ求二面角A -A 1D -B 的大小; Ⅲ求点C 到平面A 1BD 的距离;7.如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE Ⅰ求二面角B —AD —F 的大小;Ⅱ求直线BD 与EF 所成的角.8.如图,在长方体ABCD —A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.1证明:D 1E ⊥A 1D ;2当E 为AB 的中点时,求点E 到面ACD 1的距离;3AE 等于何值时,二面角D 1—EC —D 的大小为4π.9. 如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22, M 为BC 的中点Ⅰ证明:AM ⊥PM ;Ⅱ求二面角P -AM -D 的大小; Ⅲ求点D 到平面AMP 的距离;10.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,2AD DE AB ==,F 为CD 的中点. 1 求证://AF 平面BCE ; 2 求证:平面BCE ⊥平面CDE ; 3 求直线BF 和平面BCE 所成角的正弦值.1A C M PD C B A A BCD EF11. 如图,已知等腰直角三角形RBC ,其中∠RBC =90º,2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . 1求证:BC ⊥PB ;2求二面角P CD A --的平面角的余弦值.12. 如图,正三棱柱ABC -111C B A 的底面边长是2,D 是侧棱C 1C 的中点,直线AD 与侧面C C BB 11所成的角为45°.1 求二面角A-BD-C 的大小; 2求点C 到平面ABD 的距离.13. 如图,P 、O 分别是正四棱柱1111ABCD A B C D -上、下底面的中心,E 是AB 的中点,1AB kAA =. Ⅰ求证:1A E ∥平面PBC ;Ⅱ当k =,求直线PA 与平面PBC 所成角的大小;Ⅲ 当k 取何值时,O 在平面PBC 内的射影恰好为PBC ∆ABCD1A 1B 1C A 1C14. 如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上.Ⅰ问点E 在何处时,//PA EBD 平面,并加以证明; Ⅱ当//PA EBD 平面时,求点A 到平面EBD 的距离; Ⅲ求二面角C PA B --的大小.15.如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 Ⅰ求异面直线A 1M 和C 1D 1所成的角的正切值; Ⅱ证明:平面ABM ⊥平面A 1B 1M 116.已知三棱锥P -ABC 中,PA ⊥ABC,AB ⊥AC,PA=AC=½AB,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点. Ⅰ证明:CM ⊥SN ;Ⅱ求SN 与平面CMN 所成角的大小.EPDCBA17.如图,四棱锥S-ABCD 中,SD ⊥底面ABCD,AB ⊥⊥Ⅰ证明:SE=2EB ; Ⅱ求二面角A-DE-C 的大小 .18.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点;ABCDEFHⅠ求证:FH ∥平面EDB ;Ⅱ求证:AC ⊥平面EDB ; Ⅲ求二面角B DE C --的大小;19.如图,在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== 1求证1;AC BC ⊥2在AB 上是否存在点D 使得1?AC CD ⊥ 3在AB 上是否存在点D 使得11//A C CDB 平面A1C BCD1A 1B20、如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD,底面ABCD 为正方形,PD=DC,E 、F 分别是AB 、PB 的中点. Ⅰ求证:EF ⊥CD ;Ⅱ在平面PAD 内求一点G,使GF ⊥平面PCB,并证明你的结论; Ⅲ求DB 与平面DEF 所成角的大小.21、如图, 在直三棱柱ABC -A 1B 1C 1中,∠ACB=90°,CB=1,CA=3, AA 1=6,M 为侧棱CC 1上一点, 1AM BA ⊥. 1求证: AM ⊥平面1A BC ; 2求二面角B -AM -C 的大小; 3求点C 到平面ABM 的距离.ABCABCM22、如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.I证明:AB1⊥BC1;II求点B到平面AB1C1的距离.III求二面角C1—AB1—A1的大小。

立体几何中的向量方法

立体几何中的向量方法
◆复习引入
1.用空间向量解决立体几何问题的“三步曲” (1)建立立体图形与空间向量的联系,用空间向
量表示问题中涉及的点、直线、平面,把立体几 何问题转化为向量问题;
(2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间夹角问题
(3)把向量的运算结果“翻译”成相对应的几何意 义。
2.向量的相关知识: (1)两向量数量积的定义:
且OS=OC=BC=1,OA=2.
z
求:(3)二面角B-AS-O的余弦值.
S
解:由(2)知平面SAB的一个法向量为n (1,1,2),
O
又由OC 平面SAO知OC是平面SAO的法向量
A
且OC (0,1,0)
x
cos n,OC 0 1 0 6 6 1 6
所以二面角B-AS-O的余弦值为 6 6
2
CD (1, 1 , 0), SD (0, 1 , 1)
2
2
S B
xA D
设平面 SCD的法向量n2 (x, y, z), 由n2 CD, n2 SD,得:
x2y 2yz
0 0
x
z
y 2 y 2
任取n2 (1, 2,1)
cos
n1, n2
|
n1 n2 n1 || n2
|
可得PA 2EG PA // EG。因为PA与EG不共线,所以PA // EG
又PA 平面EDB,EG 平面EDBPA // 平面EDB
(2)求EB与底面ABCD所成的角的正切值。
解:因为PD 平面ABCD,所以PD是平面ABCD的法向量。
由(1)知D(0,0,0),P(0,0,1),
z P
两直线 l, m 所成的角为 ( 0 ≤ ≤ ), cos a b ;

第八章第六节立体几何中的向量方法课件共18张PPT

第八章第六节立体几何中的向量方法课件共18张PPT

A.-
10 10
B.-210
C.210
D.
10 10
D [建立如图所示的空间直角坐标系 D-xyz,
设 DA=1,A(1,0,0),C(0,1,0),E(0,12 ,1),
则A→C =(-1,1,0),D→E =(0,12 ,1),
设异面直线 DE 与 AC 所成的角为 θ,
则 cos θ=|cos〈A→C
(2)点到平面的距离 如图所示,已知 AB 为平面 α 的一条斜线段,n 为平面 α 的法向量,则 B 到平面 α 的距离为|B→O |=|A→B|n·| n| .
直线的方向向量与平面的法向量的确定 (1)直线的方向向量:l 是空间一直线,A,B 是直线 l 上任意两点,则称A→B 为直线 l 的方向向量,与A→B 平行的任意非零向量也是直线 l 的方向向量.
,D→E
〉|=
10 10
.]
4.(选修 2-1P113 习题 T9 改编)如图所示,在空间直角坐标系中,有一 棱长为 a 的正方体 ABCD-A′B′C′D′,A′C 的中点 E 与 AB 的中点 F 的 距离为________.
解析: 由图易知 A(a,0,0),B(a,a,0),C(0,a,0),A′(a,0, a),所以 F(a,a2 ,0),E(a2 ,a2 ,所成的角是这两个平面所成的角.( )
(4) 两 异 面 直 线 夹 角 的 范 围 是 0,π2 , 直 线 与 平 面 所 成 角 的 范 围 是
0,π2 ,二面角的范围是[0,π].(
)
答案: (1)× (2)× (3)× (4)√
2.已知两平面的法向量分别为 m=(0,1,0),n=(0,1,1),则两平面
所以 EF= (a-a2)2+(a2-a2)2+(0-a2)2

数学立体几何法向量快速求解

数学立体几何法向量快速求解

数学立体几何法向量快速求解在立体几何中,法向量是一个非常重要的概念,它通常用于描述一个平面或超平面的方向。

在三维空间中,一个平面的法向量是一个垂直于该平面的向量。

快速求解法向量,通常涉及以下步骤:1.确定两个非共线向量:首先,在平面上选择两个不共线的向量。

这两个向量可以是由平面上的两个点形成的向量,或者是平面上任意两个不共线的向量。

2.计算这两个向量的叉积:叉积(也称为外积)是向量运算的一种,其结果是一个新的向量,这个向量垂直于原来的两个向量。

在三维空间中,叉积的公式为:(\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1))其中,(\mathbf{a} = (a_1, a_2, a_3)) 和(\mathbf{b} = (b_1, b_2, b_3)) 是两个三维向量。

3.规范化叉积结果:叉积的结果可能不是单位向量,如果需要单位法向量,可以对叉积的结果进行规范化(即除以它的模长):(\mathbf{n} = \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|})其中,(|\mathbf{a} \times \mathbf{b}|) 是叉积的模长,可以通过计算(\sqrt{(a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2}) 得到。

4.检查方向:确保得到的法向量方向符合题目要求。

有时候,根据问题的上下文,可能需要取叉积结果的相反方向作为法向量。

5.应用法向量:一旦得到法向量,就可以用它来进行各种计算,比如计算点到平面的距离、判断点的位置关系等。

向量法解决立体几何问题总结

向量法解决立体几何问题总结

向量法解决立体几何问题总结
向量法是一种解决立体几何问题的有效方法。

通过使用向量的性质和运算,可以简化复杂的几何关系,找到简单且准确的解决办法。

以下是一些向量法解决立体几何问题的总结:
1. 建立坐标系:通过建立适当的坐标系,可以将立体几何问题转化为平面几何问题,从而更容易处理和求解。

2. 向量的线性运算:利用向量的加法、减法和数量乘法,可以求解直线的交点、线段的中点等问题。

3. 向量的数量积:使用向量的数量积,可以计算出向量的长度、判断向量的夹角大小,从而解决立体几何问题中涉及角、直线的垂直和平行关系。

4. 点和直线向量表示:通过将平面上的点和直线用向量表示,可以简化问题,将几何关系转化为向量运算,从而更方便求解。

5. 三角函数和向量:利用三角函数与向量的关系,可以计算出向量在某个方向上的分量,进而求解垂直、平行关系以及向量的投影等问题。

6. 平面方程与向量:通过将平面的方程转化为向量的形式,可以更容易地判断点与平面的关系,求解平面的交点等问题。

总的来说,向量法在解决立体几何问题时具有简单、直观、可
靠的优势。

通过合理运用向量的性质和运算,能够快速解决各种立体几何问题。

立体几何 向量法

立体几何 向量法

立体几何向量法
在立体几何中,向量法是一种常用的求解问题和证明定理的方法。

通过引入向量概念,可以将几何问题转化为向量运算,从而简化推导过程。

在向量法中,我们将空间中的点表示为位置向量,线段或向量则表示为起点到终点的差向量。

利用向量的性质,可以进行向量加法、减法、数量乘法等运算,从而得到几何对象之间的关系。

对于平面几何,向量法可以用来证明和推导平行关系、垂直关系、共线关系等。

例如,两条平行线可以表示为它们的方向向量相等,两条垂直线可以表示为它们的方向向量互为内积为零。

在空间几何中,向量法可以用来证明和推导线段的长度、角的大小、平面的交角等。

例如,两个线段的长度可以通过计算它们的差向量的模长得到,两个平面的交角可以通过计算它们的法向量之间的夹角得到。

此外,向量法还可以应用于立体图形的计算和分析。

例如,利用向量法可以求解三角形的面积、四面体的体积,以及判断点是否在多面体内部等。

总之,向量法是立体几何中一种重要的分析和解题方法,通过引入向量概念和运算,可以简化问题的推导过程,提高几何问题的求解效率。

立体几何中的向量方法及二面角的平面角求法总结

立体几何中的向量方法及二面角的平面角求法总结

讲义:立体几何中的向量方法及二面角的平面角求法总结一、几种角的范围1、 _________________________________ 二面角平面角的范围:2、 _________________________________ 线面角的范围:3、 _________________________________ 直线倾斜角范围:4、异面直线夹角范围:_______________5、向量夹角范围:_________________二、立体几何中的向量方法1.三个重要向量(1)直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的向量,一条直线的方向向量有 ______ .(2)平面的法向量:直线I丄平面a取直线I的方向向量,则这个向量叫做平面a的法向量.显然一个平面的法向量有 ____ ,它们是共线向量.(3)直线的正法向量:直线L:Ax+By+C=O的正法向量为n=(A,B).2.直线的方向向量与平面的法向量在确定直线和平面位置关系中的应用(1)直线l i的方向向量为u 1= (a i, b i, c i),直线l2的方向向量为比=(a2, b2, C2).女口果丨1 //丨2,那么U1 // U2? 5=右2? _____________________________ ;女口果丨1丄l2, 那么U1丄U2? U1 U2= 0? ________________⑵直线I的方向向量为u= (a1, b1, C1),平面a的法向量为n= (a2, b2, C2).若I // a 贝U u 丄n? u n = 0? _________________若I 丄a 贝U u // n? u = k n? _____________________(3)平面a的法向量为U1 = (a1, b1, C1),平面B的法向量为u2= (a2, b2, C2).若all B U1 / U2? U1 = k u2? (a1, b1, G)=_________ ;若a丄B 贝y U1 丄U2? U1 U2= 0? ____________________3.利用空间向量求空间角(1)求两条异面直线所成的角:设a, b分别是两异面直线I1, I2的方向向量,则(2) 求直线与平面所成的角:设直线I 的方向向量为a ,平面a 的法向量为n ,直线I 与平面a 所成的角为 0,则 si nA |cos 〈 a , n > |=(3) 求二面角的大小:(I )若 AB , CD 分别是二面角a — I — B 的两个半平面内与棱I 垂直的异面直线,则二面角的大 小就是向量AB , CD 的夹角(如图①所示).(H )设n i , n 2分别是二面角a — I — B 的两个半平面a, B 的法向量,贝U 向量n i 与n 2的夹角(或其补角)的大小就是二面角的大小(如图②③).4. 求点面距:平面a 外一点P 到平面a 的距离为:其中n 为平面a 的法向量,PQ 为平面a 的斜线,Q 为斜足 5. 平面法向量的求法设出平面的一个法向量n = (x , y , z),利用其与该平面内的两个不共线向量垂直,即数量积为 0, 列出方程组,两个方程,三个未知数,此时给其中一个变量恰当赋值,求出该方程组的一个非零 解,即得到这个法向量的坐标.注意,赋值不同得到法向量的坐标也不同, 法向量的坐标不唯一. 6. 射影面积公式:二面角的平面角为 a ,则cos a=7. 利用空间向量求角要注意的问题(1)异面直线所成的角、直线和平面所成的角、二面角都可以转化成空间向量的夹角来求.⑵空间向量的夹角与所求角的范围不一定相同,如两向量的夹角范围是[0, n,两异面直线所成的角的范围是o , n . (3)用平面的法向量求二面角时,二面角的大小与两平面法向量的夹角有相等和互补两种情况 .三、二面角的平面角的求法1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角 ,这条直线叫做二面角的棱,这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线d=② ③所成的角的大小就是二面角的平面角。

基向量法解决立体几何问题

基向量法解决立体几何问题

AB (2)当 的值为多少时,才能使AC’⊥平面A’BD.请证明。 AA'
解:
AC' 平面A' BD AC' A' B且AC' A' D
AC' A' B 0且AC' A' D 0 (a b c) (a c) 0 (a b c) (b c) 0 2 m n m2 m n m n 2 m n 0 2 2 2 2 2 A m m n m2 m n m n n2 0 2 2 2 2 3m2 mn 2n2 0, 解得m n
A'
D'
C'
m2 mn ab ,a c bc 2 2
B'
D C
BD BA AD b a
AA' BD c (b a ) c b c a 0 所以 AA' BD.
A
B
线线线面垂直
13(2)在平行六面体AC’中,AB=AD,∠A’AD=∠A’AB=∠DAB=60º .
D'
C
A'
B'
D C
B
所以当AB / AA' 1时,AC' 平面A' BD.
线线线面垂直2
如图,60°的二面角的棱上有A、B两点,直线AC、BD分别在这个 二面角的两个半平面内,且都垂直AB,已知AB=4,AC=6,BD=
8,求CD的长.
C
A
解: CA 6 , AB 4 , BD 8 且 CA AB, BD AB , CA, BD 120

立体几何典型问题的向量解法

立体几何典型问题的向量解法

立体几何中几类典型问题的向量解法空间向量的引入为求立体几何的空间角和距离问题、证线面平行与垂直以及解决立体几何的探索性试题提供了简便、快速的解法。

它的实用性是其它方法无法比拟的,因此应加强运用向量方法解决几何问题的意识,提高使用向量的熟练程度和自觉性,注意培养向量的代数运算推理能力,掌握向量的基本知识和技能,充分利用向量知识解决图形中的角和距离、平行与垂直问题。

一、利用向量知识求点到点,点到线,点到面,线到线,线到面,面到面的距离(1)求点到平面的距离除了根据定义和等积变换外还可运用平面的法向量求得,方法是:求出平面的一个法向量的坐标,再求出已知点P 与平面内任一点M 构成的向量MP u u u r的坐标,那么P 到平面的距离cos ,n MP d MP n MP n •=•<>=r u u u r u u u r r u u u rr(2)求两点,P Q 之间距离,可转化求向量PQ uuu r的模。

(3)求点P 到直线AB 的距离,可在AB 上取一点Q ,令,AQ QB PQ AB λ=⊥u u u r u u u r u u u r u u u r或PQ u u u r 的最小值求得参数λ,以确定Q 的位置,则PQ u u u r为点P 到直线AB 的距离。

还可以在AB 上任取一点Q 先求<AB ,cos ,再转化为><,sin ,则PQ u u u r><,sin 为点P 到直线AB 的距离。

(4)求两条异面直线12,l l 之间距离,可设与公垂线段AB 平行的向量n r,,C D 分别是12,l l 上的任意两点,则12,l l 之间距离CD nAB n•=u u u r r r例1:设(2,3,1),(4,1,2),(6,3,7),(5,4,8)A B C D --,求点D 到平面ABC 的距离例2:如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。

巧用向量法,妙解立体几何题

巧用向量法,妙解立体几何题

思路探寻立体几何问题的命题方式较多,常见的有证明线面平行、求二面角、求点到平面的距离等.由于立体几何问题对同学们的空间想象和运算能力有较高的要求,所以对大部分的同学来说,解答这类问题存在一定的难度.若根据题意和几何图形的特点构造空间向量,则可利用向量法,简便、快速地求得问题的答案.接下来,通过几个例题介绍一下如何巧妙运用向量法解答立体几何问题.一、运用向量法求点到平面的距离一般来说,求点到平面的距离,可以运用定义法、等体积法、向量法.运用向量法求点到平面的距离,要先求出平面的一个法向量n ;再求出一个已知点P 与平面内任意一点M 的方向向量MP ,可得点P 到平面的距离为d =| MP |∙|cos < n , MP >|=| n ∙ MP || n |,其中| MP |是向量 MP 的模,| n |是平面的法向量n 的模.例1.如图1所示的多面体是由底面为ABCD 的长方形被截面AEC 1F 所截而得到的,其中AB =4,BC =2,CC 1=3,BE =1.试求点C 到平面AEC 1F 的距离.解:以DA 、DC 、DF 为坐标轴建立如图1所示的空间直角坐标系,则A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3),CC 1=(0,0,3),设F 点的坐标为(0,0,z ),由于AEC 1F 为平行四边形,所以 AF =EC 1,又 AF =(-2,0,z ), EC 1=(-2,0,2),即z =2.设n 为平面AEC 1F 的一个法向量,因为 n 不垂直于平面ADF ,所以设 n =(x ,y ,1),于是{n ∙ AE =0, n ∙ AF =0,即{4y +1=0,-2x +2=0,解得ìíîx =1,y =-14,设 CC 1与n 的夹角为α,可得cos α=| CC 1∙ n || CC 1|∙| n |=31,则点C 到平面AEC 1F 的距离为d =|CC 1cos α|=3×.先根据图形的特点建立空间直角坐标系,得到 CC 1;然后求出平面AEC 1F 的法向量,即可利用公式d =| CC 1|∙|cos < n , CC 1>|=| n ∙CC 1|| n |求解.在求平面的法向量时,可采用待定系数法,先设出平面的法向量;然后根据法向量与平面内的两个直线垂直的关系,建立方程组,解该方程组即可求出待定系数、法向量的坐标.二、运用向量法证明线面平行由线面平行的判定定理可知,要证明线面平行,只要证明直线与平面内的两条相交直线平行即可.但有时候很难在平面内找到两条相交的直线与已知直线平行,此时,可建立合适的空间直角坐标系,求得平面外一条直线的方向向量 l 和平面的法向量n ,只要证明 n ∙l =0,就说明直线l 与平面平行.例2.如图2,在直三棱锥ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于点D ,求证:PB 1//平面BDA 1.图2图3证明:如图3所示,以A 1为原点,以 A 1B 1, A 1C 1,A 1A为x 轴,y 轴,z 轴建立空间直角坐标系,则P (0,2,0),B 1(1,0,0),B (1,0,1),D (0,1,0.5),所以 PB 1=()1,-2,0, BD =æèöø-1,1,-12, BA 1=(-1,0,-1),设平面BDA 1的法向量为n =(x ,y ,z ),由ìíî BD ∙n =0,BA 1∙ n =0,得{-x +y -0.5z =0,-x -z =0,不妨令z =2,则x =-2,y =-1,可得n =(-2,-1,2),则 PB 1∙ n =1×()-2+()-2×()-1+0×2=0,得 PB 1⊥ n ,所以PB 1//平面BDA 1.先建立空间直角坐标系,求得 PB 1、 BD 、BA 1,根据BD 、 BA 1垂直平面BDA 1的法向量,建立方程组,求得法向量n ,并证明 PB 1∙ n =0,即可证明平面BDA 1的法向量n 与PB 1的方向向量 PB 1垂直,这就说明PB 1//平面BDA 1.求解空间几何中的二面角、线面角等问题,也可以采用向量法.运用向量法求解立体几何问题,一要寻找题目或图形中的垂直关系,有时可以作一个平面的垂线,以建立方便求点的坐标的空间直角坐标系;二要熟记并灵活运用一些空间向量的运算法则、公式、定义等.(作者单位:江西省南昌市第十九中学)肖雪芝图147Copyright ©博看网. All Rights Reserved.。

不建系用向量法求立体几何的方法

不建系用向量法求立体几何的方法

不建系用向量法求立体几何的方法立体几何是数学的一个重要分支,研究的是三维空间中的图形和物体的性质。

在求解立体几何问题时,我们通常会使用向量法来进行分析和计算。

然而,本文将介绍一种不依赖于向量法的方法,来解决立体几何问题。

这种方法主要基于几何的性质和关系,通过观察和推理来得出结论。

下面将以几何中的一些经典问题为例,来说明这种方法的应用。

我们来讨论一个关于平行四边形的问题。

假设有一个平行四边形ABCD,我们需要证明对角线AC和BD相等。

传统的向量法可以通过向量的加减和数量积来进行证明,但我们可以使用更简洁的方法。

我们观察到平行四边形的性质,可以得出以下结论:平行四边形的对边平行且相等,对角线互相平分。

根据这个性质,我们可以得出如下推理:由于ABCD是平行四边形,所以AB平行于CD且AB=CD,AC平行于BD且AC=BD。

又因为AB=CD,所以AC=BD。

因此,我们得证对角线AC和BD相等。

接下来,我们来讨论一个关于三角形的问题。

假设有一个三角形ABC,其中AB=AC,我们需要证明角B=角C。

传统的向量法可以使用向量的数量积来进行证明,但我们可以使用更简单的方法。

我们观察到三角形的性质,可以得出以下结论:如果一个三角形的两边相等,那么这两边对应的两个角也相等。

根据这个性质,我们可以得出如下推理:由于AB=AC,所以角B=角C。

因此,我们得证角B等于角C。

我们来讨论一个关于立方体的问题。

假设有一个立方体,我们需要证明其对角线相等。

传统的向量法可以使用向量的加减和数量积来进行证明,但我们可以使用更直观的方法。

我们观察到立方体的性质,可以得出以下结论:立方体的所有边相等且平行,对角线互相垂直。

根据这个性质,我们可以得出如下推理:由于立方体的所有边相等,所以其对角线相等。

因此,我们得证立方体的对角线相等。

通过以上几个例子,我们可以看出不建系用向量法求解立体几何问题的方法的优势。

这种方法不仅简洁明了,而且不需要繁琐的计算,只需要基于几何的性质和关系进行观察和推理即可得出结论。

高中数学立体几何向量公式

高中数学立体几何向量公式

高中数学立体几何向量公式立体几何是数学中研究三维空间中图形和对象特性的一个分支。

而向量是立体几何中非常重要的一部分,可以用来描述空间中的位置、方向和大小等。

在高中数学中,常常使用向量来解决立体几何问题。

下面将介绍一些高中数学中常用的立体几何向量公式。

1.向量的模和坐标向量的模表示向量的长度,也称为向量的大小。

记向量AB为→AB,则向量的模记作,→AB,表示向量AB的长度。

向量的模具有非负性、同一性和三角不等式等性质。

向量的坐标表示向量在一些坐标系中的位置。

以三维坐标系为例,向量→AB的坐标记作(AB)=(x1,y1,z1)-(x0,y0,z0),其中(x0,y0,z0)为向量起点A的坐标,(x1,y1,z1)为向量终点B的坐标。

2.向量的加法向量的加法表示将两个向量按照一定规则进行相加得到一个新的向量。

设有向量→AB和→CD,则向量→AB和→CD的和记作→AB+→CD。

3.向量的减法向量的减法表示将两个向量按照一定规则进行相减得到一个新的向量。

设有向量→AB和→CD,则向量→AB和→CD的差记作→AB-→CD。

向量的减法可以等价于向量的加法。

4.向量的数量积向量的数量积又称为点积,表示两个向量的乘积的数量。

设有向量→AB和→CD,则向量→AB和→CD的数量积记作→AB·→CD,满足以下计算公式:→AB · →CD = ,→AB,× ,→CD,× cosθ其中,θ为→AB和→CD之间的夹角。

从公式可以看出,数量积是一个标量,它表示的是两个向量之间的相似程度。

5.向量的向量积向量的向量积又称为叉积,表示两个向量的乘积的向量。

设有向量→AB和→CD,则向量→AB和→CD的向量积记作→AB×→CD,满足以下计算公式:→AB × →CD = ,→AB,× ,→CD,× sinθ × →n其中,θ为→AB和→CD之间的夹角,→n为单位向量,垂直于平面ABCD的法向量。

立体几何的向量方法-空间向量求距离

立体几何的向量方法-空间向量求距离

BIG DATA EMPOWERS TO CREATE A NEW
ERA
向量的表示与运算
向量的表示
空间中一个点可以表示为一个有序实数对(x,y,z),与该点对应的向量可以表示为 $overrightarrow{OP} = (x,y,z)$。
向量的加法
对于任意两个向量$overrightarrow{a} = (a_1, a_2, a_3)$和$overrightarrow{b} = (b_1, b_2, b_3)$,它们的和为$overrightarrow{a} + overrightarrow{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$。
04
空间向量求距离的实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
球面距离问题
总结词
利用向量方法求球面上的两点之间的最 短距离
VS
详细描述
将球面上的两点分别表示为向量,通过向 量的模长和夹角计算两点之间的距离。具 体步骤包括将球面距离转化为平面距离, 利用向量的模长和夹角公式计算距离。
平面距离问题
总结词
利用向量方法求平面上的两点之间的最短距 离
详细描述
将平面上的两点分别表示为向量,通过向量 的模长和夹角计算两点之间的距离。具体步 骤包括将平面距离转化为直线距离,利用向 量的模长和夹角公式计算距离。
异面直线间的距离问题
总结词
利用向量方法求异面直线间的最短距离
详细描述
将异面直线分别表示为向量,通过向量的模 长和夹角计算直线之间的距离。具体步骤包 括将异面直线间的距离转化为平面距离,利
用向量的模长和夹角公式计算距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量法解立体几何
用传统的方法解立体几何需要烦琐的分析、复杂的计算。

而用向量法解题思路清晰、过程简洁。

对立体几何的常见问题都可以起到化繁为简,化难为易的效果。

一. 证明两直线平行
已知两直线a 和b , b D C a B A ∈∈,,,,则⇔b a //存在唯一的实数λ使CD AB λ=
二. 证明直线和平面平行
1.已知直线αα∈∈⊄E D C a B A a ,,,,,且三点不共线,则a ∥⇔α存在有序实数对μλ,使μλ+=
2.已知直线,,,a B A a ∈⊄α和平面 α的法向量,则a ∥⊥⇔α
三.证明两个平面平行
已知两个不重合平面βα,,法向量分别为n m ,,则α∥//⇔β
四.证明两直线垂直 已知直线b a ,。

b D C a B A ∈∈,,,,则0=∙⇔⊥b a
五.证明直线和平面垂直
已知直线α和平面a ,且A 、B a ∈,面α的法向量为,则a //⇔⊥α
六.证明两个平面垂直
已知两个平面βα,,两个平面的法向量分别为n m ,,则n m ⊥⇔⊥βα
七.求两异面直线所成的角
已知两异面直线b a ,,b D C a B A ∈∈,,,,则异面直线所成的角θ
为:CD
AB ∙=θcos
八.求直线和平面所成的角
A
B
已知A,B 为直线a 上任意两点,为平面α的法向量,则a 和平面α所成的角θ为:
1.
⎪⎭
⎫ ⎝⎛∙2,0π
时-=2πθ 2.
⎪⎭⎫ ⎝⎛∈ππ,2
时2πθ-= 九.求二面角
1.已知二面角βα--l ,且l CD l AB D C B A ⊥⊥∈∈,,,,且βα,则二面角的平面角θ
的大小为:=θ
2.已知二面角,βα--l ,分别为面βα,的法向量,则二面角的平面角θ的
大小与两个法向量所成的角相等或互补。

即-=πθ
注:如何判断二面角的平面角和法向量所成的角的关系。

(1)通过观察二面角锐角还是钝角,再由法向量的成的角求之。

(2)通过观察法向量的方向,判断法向量所成的角与二面角的平面角相等还是互补。

十.求两条异面直线的距离
已知两条异面直线b a ,,
m 是与两直线都垂直的向量,b B a A ∈∈,则两条
异面直线的距离d = 十一.求点到面的距离
已知平面α和点A,B 且αα∈∉B A ,,m 为平面α的法向量,则点A 到平面α
的距离d =。

相关文档
最新文档