初三二次函数的图像与性质

合集下载

九年级数学二次函数的图像和性质

九年级数学二次函数的图像和性质
D.y4>y2>y3>y1 y2
(B )
y1
y3 y4
x2
x4
x3 x1
(2)已知二次函数y=ax2+c ,当x取x1,x2(x1≠x2, x1,x2分别是A,B两点的横坐标)时,函数值相等, 则当x取x1+x2时,函数值为 ( D) A. a+c B. a-c C. –c D. c
a (3) 函数y=ax2-a与y= (a 0) x
-8
向 下 平移 |c|个单位得到。
上加下减
(1)函数y=4x2+5的图象可由y=4x2的图象 向上 平移 5 个单位得到;y=4x2-11的图象 下 平移 11个单位得到。 可由 y=4x2的图象向 (2)将函数y=-3x2+4的图象向 下 平移 4 个单位可得 y=-3x2的图象;将y=2x2-7的图象向 上平移 7 个 单位得到可由 y=2x2的图象。将y=x2-7的图象 向上 平移 9 个单位可得到 y=x2+2的图象。 (3)将抛物线y=4x2向上平移3个单位,所得的 抛物线的函数式是 y=4x2+3 。 将抛物线y=-5x2+1向下平移5个单位,所得的 抛物线的函数式是 y=-5x2-4 。
y=ax2 (a≠0) 图 象
O
a>0 y
O
a<0 y x
x
开口方向 向上 向下 顶点坐标 (0 ,0) (0 ,0) 对称轴 y轴 y轴 当x<0时, 增 当x<0时, y随着x的增大而增大。 y 随着 x 的增大而减小。 减 当x>0时, 当x>0时, y随着x的增大而减小。 性 y随着x的增大而增大。 x=0时,y最小=0 x=0时,y最大=0 极值 抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说来, |a|越大,抛物线的开口就越小.

二次函数的图像及性质

二次函数的图像及性质

与对数函数的比较
值域:二次函数值域为全体实 数,而对数函数值域为实数加 一个常数
图像:二次函数图像为抛物线, 而对数函数图像为单调递增或 递减的曲线
定义域:二次函数定义域为全 体实数,而对数函数定义域为 正实数
性质:二次函数具有对称性, 而对数函数具有反函数性质
汇报人:
性质:二次函数有最小 值或最大值,反比例函 数在x>0时单调递减, 在x<0时单调递增。
应用:二次函数在数学、 物理等领域有广泛应用, 反比例函数在解决一些 实际问题时也很有用。
与指数函数的比较
开口方向:二次函数开口向上或向下,指数函数开口向右 顶点:二次函数有顶点,指数函数无顶点 函数值:二次函数有最大值或最小值,指数函数无最大值或最小值 图像:二次函数图像是抛物线,指数函数图像是指数曲线
开口变化规律
二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下。
二次函数的开口大小由系数a和b共同决定,a的绝对值越大,开口越小;b的绝对值越大,开口 越大。
二次函数的对称轴为x=-b/2a,对于开口向上的函数,对称轴左侧函数值随x的增大而减小;对 于开口向下的函数,对称轴左侧函数值随x的增大而增大。
图像的对称性
二次函数的对称中心是(k,0)
二次函数的顶点坐标是(h,k)
二次函数的对称轴是x=h
二次函数的开口方向由a决定, a>0向上开口,a<0向下开口
与一次函数的比较
函数表达式:二次函数的一般形式 为y=ax^2+bx+c,一次函数的一 般形式为y=kx+b
开口方向:二次函数的开口方向由 a的符号决定,一次函数的图像是 一条直线,没有开口方向

九年级数学-二次函数的图象和性质

九年级数学-二次函数的图象和性质

第二十二章 二次函数第5讲 二次函数的图象和性质【板块一】二次函数的图象和性质题型一 开口方向、对称轴、顶点坐标及位置【例1】(1)抛物线y =2x ²+1的开口方向是 向上 ,对称轴是 y 轴 ,顶点坐标是 (0,1) ;二次函数y =-12(x +1)²﹣2的图象的开口方向是 向下 ,对称轴是直线 x =﹣1 ,顶点坐标是(﹣1.﹣2). (2)抛物线y =2x ²+1在x 轴的 上 方;当x >0时,图象自左向右逐渐 上升 ,它的顶点是最低点;抛物线y =-12(x +1)²﹣2,当x 为全体实数 时,它的图象在x 轴的 下方 ,顶点是 最高点 。

【解析】当a >0时,开口向上;当a <0时,开口向下,y =a (x ﹣h )²+k 的顶点坐标为(h ,k ),对称轴是直线x =h ;当a >0时,抛物线的顶点为最低点,当a <0时,抛物线的顶点为最高点。

题型二 抛物线的开口大小【例2】如图,若抛物线y =ax ²与四条直线x =1,x =2,y =1,y =2围成的正方形ABCD 有公共点,则a 的取值范围是( )A .14≤a ≤1B .12≤a ≤2C .12≤a ≤1D .14≤a ≤2 【解析】确定a 的取值范围,就是探究抛物线的开口大小,当抛物线经过点D 时,开口最小;抛物线经过点B 时,开口最大,而这两条抛物线的解析式的a 值分别2,14,∴14≤a ≤2. 故选D.【例3】如图,在同一平面直角坐标系中,作出①y =x ²;②y =-12x ²,③y =-2x ²的图象,则三个图象I ,Ⅱ,Ⅲ对应的抛物线的解析式依次是 ②③① .【解析】当a >0时,开口向上,当a <0时,开口向下;当|a |越大,开口越小,当|a |越小,开口越大。

故抛物线I 的解析式为y =-12x ²,抛物线Ⅱ的解析式为y =﹣2x ²;抛抛物线Ⅲ的解析式为y =x ².故填②③① 题型三 抛物线的对称性 【例4】抛物线y =ax ²+bx +5经过A (2,5).B (﹣1,2)两点。

二次函数的图像与性质(含答案)

二次函数的图像与性质(含答案)

九年级数学竞赛专题 ---二次函数的图像与性质一、内容概述二次函数有丰富的内容,下面从四个方面加以总结1.定义: 形如函数2(0)y ax bx c a =++≠称为二次函数,对实际问题二次函数也有定义域.2.图像二次函数的图像为抛物线,一般作二次函数图像,取五个点,先确定顶点的横坐标,再以它为中心向左、向右对称取点.3.性质 对2(0)y ax bx c a =++≠的图像来讲,(1)开口方向:当0a >时,抛物线开口向上;当0a <时,抛物线开口向下。

(2)对称轴方程:2bx a=-(3)顶点坐标:24,24b ac b a a ⎛⎫-- ⎪⎝⎭(4)抛物线与坐标轴的交点情况: 若240bac -<,则抛物线与x 轴没有交点;若240b ac -=,则抛物线与x 轴有一个交点;若240b ac ->,则抛物线与x 轴有两个交点,分别为,;另外,抛物线与y 轴的交点为()0,c .(5)抛物线在x a=(6)y 与x 的增减关系:当0a >,2b x a >-时,y 随x 的增大而增大,2bx a <-时,y 随x 的增大而减小;当0a <,2b x a >-时,y 随x 的增大而减小,2bx a<-时,y 随x 的增大而增大.(7)最值:当0a >时,y 有最小值,当2b x a =-时,244ac b y a -最小值=;当0a <时,y 有最大值,当2b x a =-时,244ac b y a-最大值=(8)若抛物线与x 轴两交点的横坐标为1x 、2x (12x x <),则:当0a >时,12x x x <<时,0y <;12x x x x <>或时,0y >;当0a<时,12x x x <<时,0y >;12x x x x <>或时,0y <.4.求解析式抛物线的解析式常用的有三种形式:(1)一般式:2(0)y ax bx c a =++≠(2)顶点式:2()(0)y a x h k a =-+≠,其中(,)h k 是抛物线的顶点坐标。

二次函数图像的性质与解析

二次函数图像的性质与解析

二次函数图像的性质与解析一、二次函数的定义与标准形式1.二次函数的定义:一般地,形如y=ax^2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数。

2.二次函数的标准形式:y=a(x-h)2+k,其中顶点式y=a(x-h)2+k的图像为抛物线,a为抛物线的开口方向和大小,h、k为顶点坐标。

二、二次函数图像的性质1.开口方向:由a的符号决定,a>0时,开口向上;a<0时,开口向下。

2.对称性:二次函数图像关于y轴对称,即若点(x,y)在图像上,则点(-x,y)也在图像上。

3.顶点:二次函数图像的顶点为抛物线的最高点或最低点,顶点式y=a(x-h)^2+k中,(h,k)为顶点坐标。

4.轴:二次函数图像与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。

5.增减性:当a>0时,二次函数图像在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,二次函数图像在顶点左侧单调递增,在顶点右侧单调递减。

三、二次函数图像的解析1.求顶点:根据顶点式y=a(x-h)^2+k,直接得出顶点坐标为(h,k)。

2.求对称轴:对称轴为x=h。

3.求开口大小:开口大小由a的绝对值决定,绝对值越大,开口越大。

4.求与坐标轴的交点:与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。

5.判断增减性:根据a的符号,判断二次函数图像在顶点两侧的单调性。

四、二次函数图像的应用1.实际问题:利用二次函数图像解决实际问题,如抛物线与坐标轴的交点问题、最值问题等。

2.几何问题:利用二次函数图像研究几何图形的性质,如求解三角形面积、距离等问题。

3.物理问题:利用二次函数图像研究物理现象,如抛物线运动、振动等。

五、二次函数图像的变换1.横向变换:对二次函数y=ax2+bx+c进行横向变换,如向左平移h个单位,得到y=a(x+h)2+k;向右平移h个单位,得到y=a(x-h)^2+k。

二次函数的图像及其性质

二次函数的图像及其性质

单调性
二次函数的开口 方向由系数a决 定,a>0时开口 向上,a<0时开 口向下
二次函数的对称 轴为x=-b/a
二次函数的最值 在对称轴上取得, 即x=-b/2a时的 函数值y=cb^2/4a
二次函数在区间 (-∞,-b/2a)和(b/2a,+∞)上单 调性相反
最值点
二次函数的最值点为顶点 顶点的坐标为(-b/2a, f(-b/2a)) 当a>0时,函数在顶点处取得最小值 当a<0时,函数在顶点处取得最大值
开口大小与一次项 系数和常数项无关
开口变化趋势
二次函数的开口方向由二次项系数a决定,a>0时向上开口,a<0时向下开口。 二次函数的开口大小由二次项系数a和一次项系数b共同决定,a的绝对值越大,开口越小。 二次函数的对称轴为x=-b/2a,当a>0时,对称轴为x=-b/2a;当a<0时,对称轴为x=-b/2a。 二次函数的最值点为顶点,顶点的坐标为(-b/2a, c-b^2/4a)。
在物理领域的应用
二次函数在抛物线运动中的应用 二次函数在弹簧振荡中的应用 二次函数在单摆运动中的应用 二次函数在简谐振动中的应用
在其他领域的应用
二次函数在经济学中的应用, 例如计算成本、收益、利润等。
二次函数在生物学中的应用, 例如种群增长、药物疗效等。
二次函数在物理学中的应用, 例如弹簧振动、单摆运动等。
二次函数的应用
解决实际问题
二次函数在物理学中的应用,例如计算抛物线的运动轨迹 二次函数在经济学中的应用,例如计算商品价格与销售量的关系
二次函数在日常生活中的应用,例如计算最优化问题,如最小费用、最大效率等
二次函数在科学实验中的应用,例如模拟实验数据,预测实验结果

九年级数学二次函数的图象和性质课件

九年级数学二次函数的图象和性质课件
(h>0)
向下平移k个单位
(k<0)
y=
2
ax
|k|
-
探究
抛物线y = a(x-h)2+k抛物线y=ax2 有什么关系?
y=ax2
向右(h>0)或向左(h<0)平
移|h|个单位长度
2
向上(k﹥0)或
向下(k﹤0)平
移|k|个单位长度
向上(k﹥0)或
向下(k﹤0)平
移|k|个单位长度
y=ax2+k
=a −h
向右(h>0)或向左(h<0)
平移|h|个单位长度
= a − h 2 +k
1
2
【提问】若将抛物线y= − x2 先向右平移3个单位,再向下平移2个单
思考
位后所得的图象与抛物线 = −
抛物线 =
1

2
+1
2
− 1与抛物线y=
1 2
− x
2
1
2
+1
2
− 1有什么关系呢?
有什么关系?
y=
1

2
与抛物线y=
+ 1, =
1 2
− x
2
1

2
−1
有什么关系?
二次函数"y=ax2+c"的性质
抛物线y = ax2+k
a>0
a<0
k>0
图象
k<0
开口方向
向上
向下
对称轴
y轴(直线x=0)
y轴(直线x=0)
顶点坐标
(0,k)
(0,k)
函数的增减性

22.1.3 二次函数的y=a(x-h)2+k的图像和性质2024-2025学年人教版数学九年级上册

22.1.3 二次函数的y=a(x-h)2+k的图像和性质2024-2025学年人教版数学九年级上册
− 3
的解析式为 = −. − ,则=____
(3) 若抛物线 = + 的最小值为 4,且经过点(1,5),
则该抛物线的解析式是_________,将此抛物线向下平移
3
= +
= +
个单位,得到的新的抛物线的解析式是__________.
课堂小结
第二十二章 二次函数
22.1 二次函数的图象和性质
第3课时 二次函数的

= ( − ) +的图像和性质
第1节 二次函数 = + 的图像和性质
第2节 二次函数 = ( − ) 的图象和性质
第3节 二次函数 = ( − ) +的图象和性质
九年级上册•人教版
学习目标
中的三条抛物线分别表示桥上的三条钢梁,轴表示桥面,轴经过中
间抛物线的最高点,左右两条抛物线关于轴对称.经过测算,中间抛
物线的函数解析式为 =



+ .
你能计算出中间抛物线的最高点离轴的高度吗?
O
猎豹图书
x
获取新知
例1
在同一直角坐标系中,通过画出二次函数 = + ,
1 x2
y

;把抛物线
2 向右 平移 1 个单位就
得到抛物线y - 12(x-1)
2
(
− )
平移
的图象还可以由抛物线
2
个单位得到.
y
O
-4
-2
2
y - 1(x-1)
2
2
4 x
-2
2
y - 1(x+1)
2
-4
-6
-8

初三数学:《二次函数的图象和性质》知识点归纳

初三数学:《二次函数的图象和性质》知识点归纳

初三数学:《二次函数的图象和性质》知识点归纳二次函数图像的性质:1.二次函数(a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点是原点(0,0)。

(1)二次函数图像怎么画作法:①列表:一般取5个或7个点,作为顶点的原点(0,0)是必取的,然后在y轴的两侧各取2个或3个点,注意对称取点;②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。

(2)二次函数与的图像和性质:2.二次函数(a,k是常数,a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是(0,k),它与的图像形状相同,只是位置不同。

函数的图像是由抛物线向上(或下)平移|k|个单位得到的。

当a&gt;0时,抛物线的开口向上,在对称轴的左边(x&lt;0时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x&gt;0时),曲线自左向右上升,函数y随x的增大而增大。

顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=0时,y最小值=k。

当a&lt;0时,抛物线的开口向下,在对称轴的左边(x&lt;0时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x&gt;0时),曲线自左向右下降,函数y随x的增大而减小。

顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=0时,y最大值=k。

3.二次函数(a≠0)的图像是一条抛物线,它的对称轴是平行于y轴或与y轴重合的直线x=h,顶点坐标是(h,0),它与的图像形状相同,位置不同,函数(a≠0)的图像是由抛物线向右(或左)平移|h|个单位得到的。

画图时,x的取值一般为h和h左右两侧的值,然后利用对称性描点画图。

当a&gt;0时,抛物线的开口向上,在对称轴的左边(xh时),曲线自左向右上升,函数y随x的增大而增大。

顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=0。

二次函数与三角函数的图像与性质

二次函数与三角函数的图像与性质

二次函数与三角函数的图像与性质一、二次函数的图像与性质1.图像特点:二次函数的图像是一条开口向上或向下的抛物线。

开口向上的抛物线顶点在最低点,开口向下的抛物线顶点在最高点。

2.性质:二次函数的图像具有对称性,对称轴是抛物线的轴线,即x = -b/2a。

对称轴上的点关于抛物线对称。

3.顶点:二次函数的顶点坐标为(-b/2a, c - b^2/4a)。

顶点是抛物线的最高点或最低点,取决于a的正负。

4.零点:二次函数与x轴的交点称为零点。

二次函数最多有两个零点。

5.开口方向:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

6.增减性:当a > 0时,随着x的增大,y值增大;当a < 0时,随着x的增大,y值减小。

二、三角函数的图像与性质1.正弦函数(sin x):–图像特点:正弦函数的图像是一条周期性波动的曲线,周期为2π。

–性质:正弦函数的值域为[-1, 1],在0°到π之间,正弦函数是增函数;在π到2π之间,正弦函数是减函数。

2.余弦函数(cos x):–图像特点:余弦函数的图像与正弦函数相似,也是一条周期性波动的曲线,周期为2π。

–性质:余弦函数的值域为[-1, 1],在0°到π之间,余弦函数是减函数;在π到2π之间,余弦函数是增函数。

3.正切函数(tan x):–图像特点:正切函数的图像是一条周期性波动的曲线,周期为π。

–性质:正切函数的值域为全体实数,在每个周期内,正切函数是增函数。

4.弧度制与角度制的转换:–弧度制:π rad = 180°。

–角度制:1° = π/180 rad。

5.三角函数的定义:–正弦函数:sin x = 对边/斜边。

–余弦函数:cos x = 邻边/斜边。

–正切函数:tan x = 对边/邻边。

三、二次函数与三角函数的图像与性质的联系与区别1.联系:二次函数与三角函数都是周期性函数,具有周期性波动的特点。

九年级数学上册《二次函数的图象与性质》PPT

九年级数学上册《二次函数的图象与性质》PPT

3
3.5
5 7.5

2
y
描点
10
9
连线
8
7
y 1 (x 6)2 3 2
6
5 4
3 2
1
–1 O
–1
1 2 3 4 5 6 7 8 9 10 x
活动1:
y 1 x2 6x 21
观察图象,你能描述二次函数 2
的性质
吗?
y
y
10 9 8 7 6 5 4 3 2 1
–1 O
–1
1 2 3 4 5 6 7 8 9 10 x
九年级数学上册
二次函数 y=ax²+bx+c 的图象和性质
学习目标
1.理解二次函数 y = ax;k 之
间的联系,体会转化思想;
2.通过图象了解二次函数 y = ax 2 + bx + c 的性质,体
会数形结合的思想.
学习重点
会用配方法将数字系数的二次函数的表达式化为 y = a(x - h)2 +k 的形式,并能由此得到二次函数y = ax 2 + bx + c 的图象和性质.
2.已知二次函数 y ax2 b的x 图c象上部分点的坐标满足下表:
x ... -3 -2 y ... -3 -2
-1 0 -3 -6
1 ... -11 ...
则该函数的顶点坐标是(-2,.-2)
3.已知二次函数 y 3x2 ;6x 2
(1)对称轴是 x ,1 顶点坐标是 (1;,1)
(2)当 x 1时, 随y的增x大而增大, 当 x 时1, 随 的y增大x而减小.
你能确定二次函数 y 1 x2 6x 21
的顶点吗?

二次函数的性质及其图象

二次函数的性质及其图象

象经过一、三、四象限,反比例函数 y
c x
经过二、四象限.故选择B.
经典考题
【例2】(2016年达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴
交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),
对称轴为直线x=1,下列结论:
( D)
①abc>0
(2)c<0时,抛物线与y轴的交点在y轴负半轴上.
(3)c=0时,抛物线过原点.
3.4.5 二次函数图象的平移
y=ax2
平移 |h|个 左 单 位 加 向右 右 (h 减 0)、 左 (h 0) y=a(x-h)2
上加下减 向上(k>0)、下(k<0)
平移|k|个单位
上加下减 向上(k>0)、下(k<0)
经典考题

4a 2b 4 36a 6b 0
,解得
a
1 2

b 3
(2)如图,过A作x轴的垂线,垂足为D(2,0),
连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E、
F.则:S△OAD
1 2
OD
AD
1 2
2
4
4.
S△ACD
1 2
AD
CE
1 2
4x
2
2x
4.
S△BCD
1 2
BD
CF
1 2
3.4.2 二次函数的图象及性质
要点梳理
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象是抛物线.
1.当a>0时,抛物线开口向上,对称轴是直线x= b .当x= b 时, y有最小
值为4ac b2 .在对称轴左边(即x<

初三数学,二次函数(图像、性质、规律、实际问题)

初三数学,二次函数(图像、性质、规律、实际问题)
解析式 顶点坐标 对 称 轴
y=ax^2 (0,0) x=0
y=ax^2+K (0,K) x=0
y=a(x-h)^2 (h,0) x=h
y=a(x-h)^2+k (h,k) x=h
y=ax^2+bx+c (-b/2a,4ac-b&sup2;/4a) x=-b/2a
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?| =√△/∣a∣(a绝对值分之根号下△)另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)
3。一般式,顶点式,交点式,等,区分对称轴,顶点,图像等的差异性。
4。联系实际对函数图像的理解。
5。计算时,看图像时切记取值范围。

二次函数的图像
在平面直角坐标系中作出二次函数y=2x的平方的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0)。
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时

九年级数学下第五章二次函数5.2二次函数的图象与性质5.2.3二次函数y=ax2+bx+c(a≠0)

九年级数学下第五章二次函数5.2二次函数的图象与性质5.2.3二次函数y=ax2+bx+c(a≠0)

知2-讲
例2 [期末·南通] 关于抛物线y=-x2-2x-3,下列说法 中错误的是( C ) A. 开口向下 B. 对称轴是直线x=-1 C. 当x>-1 时,y随x的增大而增大 D. 顶点坐标为(-1,-2)
知2-讲
解题秘方:紧扣函数表达式中的系数和二次函数的性 质逐一判断各个选项中的说法是否正确
当x= -2ba 时,
4ac-b2
y最小值= 4a
当x= -2ba 时, y最大值= 4ac-b2
4a
活学巧记:
知2-讲
曲线名叫抛物线,线轴交点是顶点,顶点纵标是最值.
如果要画抛物线,描点平移两条路.
提取配方定顶点,平移描点皆成图.
列表描点后连线,五点大致定全图.
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小都不变
a>0
a<0
开后方向
对称轴
向上
向下
对称轴 顶点坐标
增减性
最值
知2-讲
直线 x=-2ba
(-2ba,4ac4-a b2)
当x< -2ba 时,y 当x< -2ba 时,y 随 随x的增大而减小;x 的增大而增大; 当x> -2ba 时,y随 当x> -2ba 时,y 随 x的增大而增大 x的增大而减小
又∵
4ac-b2 4×(-1)×(-3)-(-2)2
4a =
4×(-1)
=-2,∴顶点坐
标是(-1,-2),故选项D 正确.
方法总结:
知2-讲
若不画图像直接得出函数图像的特征,则必须根据
函数图像的特征与二次函数表达式中系数之间的
关系来确定.对于抛物线y=ax2+bx+c,其中a决定

二次函数的图像和性质总结

二次函数的图像和性质总结

二次函数的图像和性质总结二次函数(Quadratic Function)是高中数学中重要的一个部分,是指一种形式为y=ax²+bx+c(a≠0)的函数。

二次函数的图像是一条抛物线,其性质包括:开口方向、顶点、对称轴、最值、零点、增减性等。

下面将对二次函数的图像和性质进行详细总结。

一、图像特征:1.开口方向:-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。

2.顶点:-对于抛物线开口向上的情况,顶点是抛物线的最低点;-对于抛物线开口向下的情况,顶点是抛物线的最高点。

3.对称轴(y轴):- 对于一般的二次函数y=ax²+bx+c,其对称轴的方程为x=-b/2a;-对于抛物线开口向上的情况,对称轴是抛物线的最低点;-对于抛物线开口向下的情况,对称轴是抛物线的最高点。

4.最值:-对于抛物线开口向上的情况,最小值为顶点的纵坐标;-对于抛物线开口向下的情况,最大值为顶点的纵坐标。

5.零点:- 零点是指二次函数y=ax²+bx+c与x轴的交点;-二次函数可能有0个、1个或2个零点;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。

6.增减性:-当a>0时,抛物线开口向上,函数在对称轴两侧递增;-当a<0时,抛物线开口向下,函数在对称轴两侧递减。

二、性质总结:1.函数的解析式:- 二次函数的解析式一般形式为y=ax²+bx+c,其中a、b、c为常数,a≠0;-通过解析式可以得到函数的图像特征。

2.零点:-零点是指函数与x轴的交点;- 零点可以通过解二次方程ax²+bx+c=0来求解;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。

初中:二次函数性质与图像

初中:二次函数性质与图像

3.二次函数的图象与性质:
二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,当a>0
时,抛物线的开口向上,这时当x≤-
b 2a
时,y随x的增大而减
小;当x≥-2ba时,y随x的增大而增大;当x=-2ba时,y有最
小值
4ac-b2 4a
.当a<0时,抛物线开口向下,这时当x≤-
b 2a
时,y随x的增大而增大;当x≥-
1.二次函数的定义: 一般地,形如_y=ax2+bx+c(其中 a,b,c 是常数,a≠0) 的函数叫做二次函数.
2.二次函数的三种表达式:
(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0).
(2)顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),顶 点坐标是(h,k). (3)交点式:y=a(x-x1)(x-x2)(a,x1,x2是常数, a≠0),其中x1,x2是二次函数与x轴的交点的横坐标,图 象的对称轴为直线__x=x1+2 x2.
=ax2+bx+c的图象与x轴相交于A(-2,0),B(1,0)
两点.有下列结论:①ac>0;②二次函数y=ax2+bx
+c的图象的对称轴为直线x=-1;③2a+c=0;④a
-b+c>0.其中正确的有
()
A. 0个
B. 1个
C. 2个
D. 3个
【解析】 函数图象开口向下,∴a<0,与y轴的交点在y轴的正半轴, ∴c>0,∴ac<0,故①错误. 二次函数的图象与x轴相交于点A(-2,0),B(1,0),由对称性可知其对
(1)b2-4ac>0⇔抛物线与x轴有两个交点
-b±
2ba2-4ac,0.
(2)b2-4ac=0⇔抛物线与x轴只有一个交点-2ba,0. (3)b2-4ac<0⇔抛物线与x轴没有交点.

二次函数图像性质与应用

二次函数图像性质与应用

二次函数图像性质与应用二次函数,也叫做一元二次方程,是中学数学中非常重要的一门知识。

它的图像是一条叫做抛物线的曲线,也广泛应用于物理学、经济学、生物学等领域。

在这篇文章中,我将会介绍二次函数的图像性质以及在现实生活中的应用。

一、二次函数的图像性质二次函数是以 x 的二次方作为自变量的函数。

它的一般式为:y = ax^2 + bx + c其中,a、b、c 都是实数,a 不等于 0。

这个式子是抛物线的标准式,根据 a 的正负可以确定抛物线的形状。

如果 a 大于 0,抛物线开口朝上;如果 a 小于 0,抛物线开口朝下。

除了开口方向,二次函数还有一些其他的图像性质。

以下是一些重要的性质:1、对称轴二次函数的对称轴是一个垂直于 x 轴的直线。

它过抛物线的顶点,用下面的公式可以求出它的方程:x = -b / 2a2、零点二次函数的零点就是方程 y = 0 的解。

抛物线和 x 轴的交点就是它的零点。

用下面的公式可以求出它的值:x = (-b ± √(b^2 - 4ac)) / 2a如果判别式 b²-4ac 大于 0,那么二次函数就会有两个不同的零点;如果判别式等于 0,那么二次函数有一个二重根;如果判别式小于 0,那么二次函数没有实数解。

3、极值二次函数的极值就是抛物线的顶点。

如果 a 大于 0,那么它的极小值就是 y = c - (b²/4a),对应的 x 坐标是 -b/2a;如果 a 小于 0,那么它的极大值就是 y = c - (b²/4a),对应的 x 坐标也是 -b/2a。

二、二次函数在现实生活中的应用二次函数在现实生活中的应用非常广泛。

以下是几个例子。

1、建筑设计建筑设计中常常需要使用二次函数。

比如说,建筑师需要设计一个带拱形的门,那么他们会使用二次函数来描述这个门的形状。

不同的二次函数可以绘制出不同形状的门,用于满足客户的设计需求。

2、股市预测股市是一个非常复杂的市场,股票价格每天都有不同的波动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三二次函数的图像与性质
二次函数是初中数学中的一个重要概念。

在数学学习的过程中,我
们常常会接触到二次函数,并且需要了解它的图像特点以及性质。


文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。

一、二次函数的定义及一般式
二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。

它的图像是抛物线,并且开口的方向由$a$的正负决定。

当$a>0$时,
抛物线开口向上;而当$a<0$时,抛物线开口向下。

二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。

其中,
$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,
$c$影响抛物线和$y$轴的交点。

【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图
像和性质。

解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,
$c=1$。

由于$a>0$,所以抛物线开口向上。

考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。

首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-
\frac{b}{2a}$。

代入$a=2$,$b=-3$,我们得到$x=-\frac{-
3}{2\times2}=\frac{3}{4}$。

因此,对称轴的方程为$x=\frac{3}{4}$。

接下来,我们需要计算抛物线的顶点坐标。

顶点坐标可以通过将对
称轴的$x$坐标代入原函数方程计算得到。

将$x=\frac{3}{4}$代入
$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-
3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。

因此,顶点
坐标为$(\frac{3}{4}, \frac{1}{8})$。

不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二
次函数的图像。

它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。

既然我们已经知道了二次函数的图像,接下来我们来了解它的性质。

二、二次函数的性质
1. 零点和交点:二次函数可能有零,也可能没有。

当二次函数有零
点时,这些点就是函数图像与$x$轴的交点。

零点可以通过解方程
$ax^2+bx+c=0$求得。

若该方程有两个根,说明二次函数与$x$轴有两
个交点;若该方程有一个根,说明二次函数与$x$轴有一个交点;若该
方程没有实根,说明二次函数与$x$轴没有交点。

【例题2】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数与
$x$轴的交点。

解:我们已经知道了这个二次函数的方程为$y=2x^2-3x+1$。

要求
它与$x$轴的交点,我们需要解方程$2x^2-3x+1=0$。

通过使用求根公式$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$,我们可以求
出该方程的根。

代入$a=2$,$b=-3$,$c=1$,我们得到$x=\frac{-(-
3)\pm\sqrt{(-3)^2-4\times2\times1}}{2\times2}=\frac{3\pm\sqrt{1}}{4}$。

化简后得到$x=\frac{3\pm1}{4}$,即$x=\frac{1}{2}$和$x=1$。

因此,该二次函数与$x$轴的交点为$(\frac{1}{2}, 0)$和$(1, 0)$。

2. 单调性:二次函数在对称轴两侧具有不同的单调性。

当$a>0$时,对称轴上的函数值最小,函数图像开口向上,所以函数在对称轴两侧
递增;当$a<0$时,对称轴上的函数值最大,函数图像开口向下,所以
函数在对称轴两侧递减。

3. 极值点:二次函数的顶点是它的极值点。

当$a>0$时,函数的顶
点为最小值点;当$a<0$时,函数的顶点为最大值点。

通过以上性质,我们可以更好地理解和分析二次函数的图像。

【例题3】如果一个二次函数的顶点坐标为$(3, 4)$,且开口向上,
求该二次函数的方程。

解:已知顶点坐标为$(3, 4)$,开口向上。

根据顶点的坐标,我们可
以得到对称轴的方程为$x=3$。

由于开口向上,所以$a>0$。

代入到一般式$y=ax^2+bx+c$,我们得
到$y=a(x-3)^2+4$。

至此,我们可以得到该二次函数的方程为$y=a(x-3)^2+4$,其中$a>0$。

通过以上的例题和解析,我们对初三二次函数的图像与性质有了较为深入的了解。

掌握了二次函数的图像特点和性质,我们可以更好地解题和应用二次函数。

综上所述,初三二次函数的图像是一个抛物线,其开口的方向由$a$的正负决定。

初三二次函数的性质包括零点和交点、单调性以及极值点等。

理解并掌握这些概念,可以帮助我们更好地应对与二次函数相关的问题和题目。

初三同学们在学习二次函数时,可通过总结归纳了解二次函数的图像与性质,并灵活应用于解题过程中。

希望本文所述能为初三同学的数学学习提供一定的帮助。

相关文档
最新文档