靶向抗肿瘤纳米药物研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
靶向抗肿瘤纳米药物研究进展
论文摘要:靶向抗肿瘤药物特有的性质解决了传统的抗肿瘤药物的缺陷,使得抗肿瘤药物的进展到了一个新的阶段
关键词:靶向抗肿瘤纳米
肿瘤是当今严重威胁人类健康的三大疾病之一,而目前在临床肿瘤治疗和诊断中广泛应用的药物还多数为非选择性药物,体内分布广泛,尤其在一些正常组织和器官中也常有较多分布,常规治疗剂量即可对正常组织器官产生显著的毒副作用,导致患者不能耐受,降低药物疗效。靶向制剂是以药物能在靶区浓集为主要特点的一大类制剂的总称, 属于第四代给药系统( drug delivery systerm, DDS) 。靶向制剂给药后最突出的特点是利用药物载体系统将治疗药物最大限度地运送到靶区,使治疗药物在靶区浓集,超出传统制剂的数倍乃至数百倍,治疗效果明显提高。减少药物对非靶向部位的毒副作用,降低药物治疗剂量并减少给药次数,从而提高药物疗效,这种治疗方法即被称为肿瘤靶向治疗。现今在肿瘤靶向治疗领域,靶向抗肿瘤纳米药物研究正日益受到人们的普遍关注和重视,现就其近年来的研究进展综述如下。
1 靶向纳米药物的定义
美国国家卫生研究院(NIH)定义:在疾病治疗、诊断、监控以及生物系统控制等方面应用纳米技术研制的药物称为纳米药物,其表面经过生物或理化修饰后可具有靶向性,即成为靶向纳米药物。
2 靶向纳米药物的特点
基于纳米药物所特有的性质,决定了其在药物和基因运输方面具有以下几个优点:①可缓释药物,提高血药浓度,延长药物作用时间;②可减少药物降解,提高药物稳定性;③可保护核苷酸,防止其被核酸酶降解;④可提高核苷酸转染效率;⑤可建立新的给药途径。而靶向纳米药物除这些固有优点以外,还具有:①可达到靶向输送的目的;
②可在保证药物作用的前提下,减少给药剂量,进一步减少或避免药物的毒副作用等优点。生物靶向纳米药物和磁性靶向纳米药物是目前靶向纳米药物研究的两大热点,并且都已具备了良好的研究基础。
3 靶向纳米药物的分类
3.1被动靶向制剂
微粒给药系统具有被动靶向的性能, 微粒的大小在011~3μm。一般利用脂质、类脂质、蛋白、可生物降解高分子聚合物作为载体,将药物包封或嵌入各类胶体系统,如乳剂、微球、纳米粒等,注射后能选择性地浓集于肝、脾、肺、淋巴组织以及肿瘤细胞并释放药物,从而发挥疗效。
3.1.1 脂质体
脂质体(1 iposome)是指将药物包封于类脂质双分子层内而形成的微型泡囊。脂质体静脉给药进入体内即被巨噬细胞(主要是肝和脾中的网状内皮细胞)作为外界异物而吞噬,从而主要分布于肝脏和脾脏。因脂质体是类似生物膜结构的泡囊,具有很好的细胞亲和性和组织。它可长时间的吸附于靶细胞周围,使药物能充分向靶细胞渗透。它也可以融合进入细胞内,经溶酶体消化释放药物,达到药物细胞内靶向的作用。脂质体作为药物载体有其独特的优势,包括可保护药物免受降解、达到靶向部位和减少毒副作用。Engelmann等用反相蒸发的方法制备更昔洛韦单室脂质体,与更昔洛韦比较,静脉注射更昔洛韦单室脂质
体有更高的肝药浓度。
3.1.2 前体药物
2′, 3′—二脱氧鸟苷(ddG)具有较强的抗乙肝病毒作用。Korba等将其制成一系列磷脂酰化前体药物(DPP—ddG) ,并以216 mmol·kg- 1 ·d- 1的剂量比较了游离ddG及DPP —ddG在动物体内的药效。感染鸭肝病毒(WHV) 的实验鸭用药4 周后,DDP—ddG对血清WHV—DNA可降低23~46倍,而游离ddG仅降低了212—1014倍,可见采用磷脂(酰)化前体药物可明显增强药物抗肝炎病毒的作用,说明磷脂(酰)化前体药物的良好肝靶向性。
3.1.3 纳米粒
纳米粒是一类以天然或合成高分子材料为载体的固体载药胶体微粒,一般粒径为10 —1 000 nm。通过对其表面进行修饰,改变药物对生物膜的透过性,从而达到主动靶向分布的目的,有利于药物透皮吸收和胞内靶向传输(主动)。注射纳米粒不易阻塞血管,可靶向肝、脾、骨髓,纳米粒也可由细胞内或细胞间穿过内皮壁到达靶部位。药物制成纳米粒后,可提高疗效和降低毒副作用。Yu制备了肝靶向氟尿嘧啶类脂纳米粒,用氟尿嘧啶与硬脂酰氯进行反应,制备氟尿嘧啶前体药物N12硬脂酰2Fu,用物理凝聚法制备的类脂纳米粒( 5-FUS —SLN) ,平均粒径240119 nm,载药量20153% ,与氟尿嘧啶水针剂相比, 5—FUS—SLN在
肝脏中药物含量平均增加了1倍以上,表明纳米粒有明显的肝靶向性。
3.1.4 微球
使药物溶解和(或)分散在高分子材料基质中,形成骨架型微小球状实体,称微球,其粒
径通常在1~250 μm。药物制成微球后主要特点之一就是靶向性。微球可在体内特异性分布,小于7μm时一般被肝、脾中巨噬细胞摄取。白蛋白微球是以人血清白蛋白或牛血清白蛋白载体制成的球状制剂,其生物相容性好,可生物降解,并具有缓释作用和靶向性。肝脏大量存在的网状内皮细胞能对血液循环中0.1~2μm的颗粒产生内吞和融合作用,粒径0.1~2μm的白蛋白微球,大部分浓集在肝脏,载带药物释放而起效。Hao等用5-Fu与明胶交联而成的微球(5-Fu-MS) ,经小鼠静脉注射后,与5-Fu比较它在肺中的浓度远远高于5-Fu 的浓度,药物靶向效率( Te)大大高于5-Fu,药物分布是5-Fu的2倍,可见5-Fu-MS比5-Fu
对肺有特异性靶向性。
3.1.5 药质体
药质体可定义为药物通过共价键与脂质结合后,在介质中由于溶解性质的改变而自动形成的腔体分散体系。后者具有两亲性,在水中分子可自组装或与少量表面活性剂混合后形成泡囊等高度分散的聚集体,称为药质体( pharmacosomes) 。药质体中的药物本身就是药物载体,因此载药量大、稳定性好,克服了脂质体中药物包裹率低、易渗漏、不稳定等缺点。同时药质体的高度分散特性可以使其具有靶向性,到达靶部位后,又由于前药分子的两亲性使其能较好的穿越细胞膜。金义光等用阿昔洛韦脂质前药琥珀酰阿昔洛韦单硬脂酸甘油酯制备了阿昔洛韦药质体,药质体在家兔静脉注射后迅速分布到网状内皮系统中,
0.15 h时肝中SAGS占给药剂量50%以上。0.15 h时SAGS的组织浓度为肝436μg·g- 1。可见药质体在体内有网状内皮系统靶向性。因此阿昔洛韦药质体可能会成为一种新型的靶向抗乙肝药。
3.2 主动靶向制剂
3.2.1 半乳糖受体介导的肝主动靶向
无唾液酸糖蛋白受体又称肝细胞半乳糖受体(H-Gal-R)仅存在于哺乳动物的肝细胞膜上,它能特异性地识别具有半乳糖残基的糖蛋白形成受体一配基复合物,内吞人肝细胞后
经溶酶体降解为配基和H-G -R,且H-Gal-R 不进一步被降解,重新转运到细胞浆膜上,参与下一轮循环。将抗病毒药物与含半乳糖酸基载体偶联,即是药物进入体内后靶向作用的导向基团。