2018年最新北师大版七年级数学下册
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年最新北师大版七年级数学下册
总复习纲要
第一章整式的乘除
1、同底数幂相乘:底数不变,指数相加。
2、幂的乘方:底数不变,指数相乘。
3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。
4、零指数幂:任何一个不等于0的数的0次幂等于1。()注意00没有意义。
5、负整数指数幂:(正整数,)
6、同底数幂相除:底数不变,指数相减。()
注意:以上公式的正反两方面的应用。
常见的错误:,,,,
7、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。
8、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。
9、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项。
10、平方差公式
两数的和乘以这两数的差,等于这两数的平方差。
即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方。
11、完全平方公式
两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。
常见错误:
12、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式。
13、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式。
第二章平行线与相交线
一、互余、互补、对顶角
1、相加等于90°的两个角称这两个角互余。性质:同角(或等角)的余角相等。
2、相加等于180°的两个角称这两个角互补。性质:同角(或等角)的补角相等。
3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角。对顶角的性质:对顶角相等。
4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角。(相邻且互补)
二、三线八角:两直线被第三条直线所截
①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角。
②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角。
③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角。
三、平行线的判定
①同位角相等
②内错角相等两直线平行
③同旁内角互补
四、平行线的性质
①两直线平行,同位角相等。②两直线平行,内错角相等。③两直线平行,同旁内角互补。
五、尺规作图(用圆规和直尺作图)
①作一条线段等于已知线段。②作一个角等于已知角。
第三章三角形
一、认识三角形
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边。
(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)
3、三角形的内角和是180°;直角三角形的两锐角互余。
锐角三角形(三个角都是锐角)
4、三角形按角分类直角三角形(有一个角是直角)
钝角三角形(有一个角是钝角)
5、三角形的特殊线段:
a)三角形的中线:连结顶点与对边中点的线段。(分成的两个三角形面积相等)
b)三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段。
c)三角形的高:顶点到对边的垂线段。(每一种三角形的作图)
二、全等三角形:
1、全等三角形:能够重合的两个三角形。
2、全等三角形的性质:全等三角形的对应边、对应角相等。
3、全等三角形的判定:
判定方法内容简称
边边边三边对应相等的两个三角形全等SSS
边角边两边与这两边的夹角对应相等的两个三角形全等SAS
角边角两角与这两角的夹边对应相等的两个三角形全等ASA
角角边两角与其中一个角的对边对应相等的两个三角形全等AAS
斜边直角边斜边与一条直角边对应相等的两个直角三角形全等HL
注意:三个角对应相等的两个三角形不能判定两个三角形形全等;AAA
两条边与其中一条边的对角对应相等的两个三角形不能判定两个三角三角形全等。SSA 4、全等三角形的证明思路:
条件下一步的思路运用的判定方法
已经两边对应相等找它们的夹角SAS
找第三边SSS
已经两角对应相等找它们的夹边ASA
找其中一个角的对边AAS
已经一角一边找另一个角ASA或AAS
找另一边SAS
5、三角形具有稳定性,
三、作三角形
1、已经三边作三角形
2、已经两边与它们的夹角作三角形
3、已经两角与它们的夹边作三角形(已经两角与其中一角的对边转化成这种情况)
4、已经斜边与一条直角边作直角三角形
第四章变量之间的关系
一、变量、自变量与因变量
①两个变量x与y,y随x的改变而改变,那么x是自变量(先变的量),y是因变量(后变的量)。
二、变量之间的表示方法:
①列表法
②关系式法:能精确地反映自变量与因变量之间数值的对应关系。
③图象法:用水平方向的数轴(横轴)上的点表示自变量,用坚直方向的数轴(纵轴)表示因变量。
第五章生活中的轴对称
一、轴对称图形与轴对称
①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。这条直线叫做对称轴。
②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。这条直线叫做对称轴。
③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形
二、等腰三角形性质:(有两条边相等的三角形叫做等腰三角形)
①等腰三角形是轴对称图形;(一条对称轴)
②等腰三角形底边上中线,底边上的高,顶角的平分线重合;(三线合一)
③等腰三角形的两个底角相等。(简称:等边对等角
三、角平分线的性质:角平分线上的点到角两边的距离相等。
∵∠1=∠2 PB⊥OB PA⊥OA
∴PB=PA
四、线段垂直平分线:
①概念:垂直且平分线段的直线叫做这条线段的垂直平分线。
②性质:线段垂直平分线上的点到线段两个端点的距离相等。
∵OA=OB CD⊥AB
∴PA=PB
五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等。(简称:等角对等边)
六、等边三角形的性质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质。
①等边三角形的三条边相等,三个角都等于60;②等边三角形有三条对称轴。
七、轴对称的性质:
1.关于某条直线对称的两个图形是全等形;
2.对应线段、对应角相等;
3.对应点的连线被对称轴垂直且平分;
4.对应线段如果相交,那么交点在对称轴上。
八、镜子改变了什么:
1、物与像关于镜面成轴对称;(分清左右对称与上下对称)