2.3有理数的乘法(2) ( 教案)

合集下载

(最新)人教版七年级数学上册《有理数的乘法》(第2课时) 教案

(最新)人教版七年级数学上册《有理数的乘法》(第2课时) 教案

有理数的乘法(第二课时) 教案[教学目标]知识目标:有理数乘法运算能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算; 情感态度和价值观:体会用计算器给有理数运算带来的方便[教学重点与难点]重点: 有理数乘法运算有理数的乘法运算 你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解]活动一: 从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题. 确定下列积的符号,你能从中发现什么?①()5432⨯⨯⨯- ②()()5432⨯⨯-⨯-③()()()()5432-⨯-⨯-⨯- ④()()()50432-⨯⨯⨯-⨯-学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 巩固练习:判断下列积的符号(口答)①()()1432-⨯⨯⨯- ②()()()6532-⨯-⨯⨯-③()()()222-⨯-⨯- ④()()()()3333-⨯-⨯-⨯-活动二:例3 计算:41)54(6)5()2();41()59(65)3()1(⨯-⨯⨯--⨯-⨯⨯- 几个数相乘,如果其中有因数0,积等于0 课堂练习计算:(1)(-85)×(-25)×(-4);(2)(-87)×15×(-171); (3)(151109-)×30;(4)2524×7. (5)-9×(-11)-12×(-8);课后作业教科书第38页 习题1.4第7题(1)(2)(3)课后选作题1.计算:).8(161571)6(;04.0311843)5(;36187436597)4(;534.265)3();1.0()24.8()10)(2();8(25.12014)1(-⨯⎪⎭⎫ ⎝⎛--⨯-⨯⎪⎭⎫ ⎝⎛-+-⨯⨯--⨯-⨯--⨯⨯⎪⎭⎫ ⎝⎛- 2.2003减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20031,求最后剩下的数。

2.3 有理数的乘除运算(教案)北师大版(2024)数学七年级上册

2.3 有理数的乘除运算(教案)北师大版(2024)数学七年级上册

2.3有理数的乘除运算第1课时有理数的乘法法则1.了解有理数乘法的意义,掌握有理数乘法法则;2.理解倒数的概念,会求一个数的倒数.重点运用有理数乘法法则正确计算乘法.难点理解有理数乘法的符号法则.一、导入新课问题1:指名学生计算:(-2)+(-2)+(-2).问题2:你们知道有理数包括哪些数吗?小学学习的四则运算是在有理数的什么范围内进行的?(非负数)问题3:在有理数的加、减运算中,关键问题是什么?与小学所学的运算最主要的不同点是什么?(符号问题)学生讨论并举手回答,教师点评.教师:根据有理数加、减运算中引出的新问题主要是负数的加、减,运算的关键是符号的确定,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)二、探究新知1.有理数乘法法则甲水库的水位每天升高3 cm,乙水库的水位每天下降3 cm,预计经过4天甲、乙水库水位的总变化量各是多少?如果用正号表示水位上升,用负号表示水位下降,那么经过4天甲水库的水位变化量为3+3+3+3=3×4=12(cm);乙水库的水位变化量为(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(cm).(1)课件出示:一只小虫沿一条东西向的跑道,以每分钟3 m的速度向东爬行2 min,那么它现在位于原位置的哪个方向?相距多少米?(规定向东为正,向西为负)引导学生用乘法来解答:3×2=6.①即小虫位于原来位置的东边6 m处.(2)把上述问题变为:小虫以每分钟3 m的速度向西爬行2 min,那么结果有何变化?引导学生用乘法来解答:(-3)×2=-6.②即小虫位于原来位置的西边6 m处.教师:请同学们比较上面两道算式,它们有什么特点呢?引导学生得出:当我们把“3×2=6”中的一个因数“3”换成它的相反数“-3”时,所得的积是原来的积“6”的相反数“-6”.总结:把一个因数换成它的相反数,所得的积是原来的积的相反数.教师:应用此结论计算3×(-2),(-3)×(-2),(-3)×0,3×0.学生思考后举手回答,教师点评,并进一步引导学生归纳出有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,积仍为0.教师强调:“同号得正”中正数乘正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.例1(课件出示教材第50页例1)要求学生独立完成后汇报答案,教师点评,并进一步讲解:如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个有理数互为倒数.三、课堂练习1.教材第50页“随堂练习”.2.计算:(1)9×6;(2)(-9)×6;(3)3×(-4); (4)(-3)×(-4).【答案】2.(1)54(2)-54(3)-12(4)12四、课堂小结1.什么是倒数?2.有理数乘法法则是什么?五、课后作业教材第55页习题2.3第1,2题.有理数的乘法运算是在小学数的乘法运算知识的基础上进行教学的.本节课的关键是把中学引入负数后的乘法运算化归为小学算术数的乘法运算.由于有理数的乘法是有理数最基本的运算之一,因而它是今后学习实数运算、代数式的运算、解方程以及函数知识的基础.在教学过程中,通过设置问题让学生自主探索、合作交流,从新的角度去认识乘法,引导学生理解有理数乘法法则的实质,掌握运算规律,激发学生的学习兴趣,并让学生思考归纳,培养学生的归纳能力和语言表达能力.第2课时有理数的乘法运算律1.掌握多个有理数连续相乘的运算方法;2.正确理解乘法交换律、结合律和分配律,能用字母表示运算律的内容;3.能运用运算律较熟练地进行乘法运算.重点多个有理数连续相乘的运算方法以及乘法的运算律,运用运算律进行乘法运算.难点运用乘法对加法的分配律进行简便计算.一、导入新课1.有理数的乘法法则是什么?2.小学时大家学过乘法的哪些运算律?二、探究新知1.提出问题,激发学生探索的欲望和学习积极性.计算(-5)×89.2×(-2)的过程能否使用简便方法.这样做有没有依据.小学里数的运算律在有理数中是否适用?2.导入运算律:(1)通过计算①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5.(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等.(3)用公式的形式表示为:ab=ba.这里的a,b表示有理数,讲解“a×b→a·b→ab”的过程.(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论,归纳出乘法结合律.用文字语言归纳:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.用公式的形式表示为:(ab)c=a(bc)(5)全班交流,规范乘法结合律的两种表达形式:文字语言、公式形式.(6)分组计算、比较,5×[3+(-7)])与5×3+5×(-7)的结果,讨论归纳出乘法对加法的分配律.用文字语言归纳:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用公式的形式表示为:a(b+c)=ab+ac(7)一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.a(b+c+d)=ab+ac+ad(8)确定下列积的符号,试分析积的符号与各因数的符号之间有什么规律?2×8×(-0.5)×(-7),2×(-3)×(-0.5)×(-7),(-2)×(-3)×(-0.5)×(-7).当负的乘数个数为奇数时,积为________;当负的乘数个数为偶数时,积为________.结论1:几个不等于0的数相乘,积的符号由____________决定;结论2:有一个乘数为0,则积为________;用两种方法计算:(13+14-16)×12比较上面两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种解法运算量小?三、课堂练习1.教材第52页“随堂练习”第1、2题.2.下列各式中用了哪条运算律?如何用字母表示?(1)(-4)×8=8×(-4);(2)[(-8)+5]+(-4)=(-8)+[5+(-4)].【答案】2.(1)乘法交换律:a×b=b×a(2)加法结合律:(a+b)+c=a+(b+c)四、课堂小结这节课你有什么收获?1.乘法的运算律2.多个有理数相乘积的符号规律五、课后作业教材第55页习题2.3第3,7题这一节课既是前面所学知识的继续,又是有理数的混合运算的基础,起着承前启后的作用.本节课的学习按以下流程进行:探索有理数的乘法运算律→运用乘法运算律简化计算的方法.通过课堂练习、变式练习,让学生灵活掌握运算律的使用场景,加深乘法对加法的分配律的理解和掌握,培养学生应用所学知识解决问题的能力,以及独立完成练习的习惯.第3课时有理数的除法1.通过类比小学除法与乘法的关系归纳总结出有理数除法法则一,能理解有理数除法法则,感受类比思想,发展归纳总结的能力;2.通过计算观察归纳出有理数除法法则二,熟练掌握有理数的除法运算,发展从大量事实概括法则的能力.重点正确运用有理数除法法则进行有理数的除法运算.难点根据不同的情况选择更简便的方法求商.一、导入新课问题:请同学们思考:一个数乘以3等于12,这个数是多少?如何列算式表示?一个数乘以-3等于-12,这个数又是多少?如何列算式表示?根据学生所列算式,引出本节课题:第3课时有理数的除法.二、探究新知1.讨论探究,归纳分类让学生利用手中的卡片讨论有理数的除法有几种情况,并进行分类.六种情况:正数÷正数,负数÷负数,同号;正数÷负数,负数÷正数,异号;0÷正数,0÷负数,0除以任何非0的数.2.计算猜测,探究法则根据有理数乘法法则完成以下问题:除法是乘法的逆运算,猜测以下式子结果:8×9=________,72÷9=______;2×(-3)=________,(-6)÷(-3)=________;(-4)×(-3)=________,12÷(-4)=________;(-1)×4=________,(-4)÷4=________;0×3=________,0÷3=________;(-10)×0=________,0÷(-10)=________.3.观察探究,总结法则问题1:小组合作,观察各组商的符号及商的绝对值与被除数和除数有何关系,归纳总结出有理数的除法法则,并用数学语言表述出来.问题2:想一想被除数是0的情况下,除法法则是什么?板书:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0.提醒学生注意:0不能做除数.4.举例示范,理解法则例1.计算:(1)(-15)÷(-3);(2)(-0.75)÷0.25;(3)7÷(-63);(4)0÷(-13 49).板书:解:(1)(-15)÷(-3)=+(15÷3)=5;(学生尝试完成第(1)题之后,引导学生分析得出步骤:)步骤:①判断类型;②确定符号;③绝对值相除.注意:负数在有理数运算中一定要加上括号.(2)(-0.75)÷0.25=-(0.75÷0.25)=-3;(3)7÷(-63)=-(7÷63)=-19 ; (4)0÷(-1349 )=0.5.趁热打铁,熟练法则(1)(-64)÷4;(2)36÷(-9);(3)0÷(-16).(一名学生成果展示,并讲解这三道题,教师及时鼓励学生). 问题3:对于有理数的除法还有其他解法吗?6.法则再探,柳暗花明计算:(男生做除法题,女生做乘法题)(1)1÷(-25 )与1×(-52 );(2)0.8÷(-310 )与0.8×(-103 );(3)(-14 )÷(-160 )与(-14 )×(-60).比较计算结果,你发现了什么?由此得到什么结论?并与同伴交流.引导学生归纳出有理数除法的又一个法则并板书:除以一个数等于乘这个数的倒数.并且通过观察、比较发现在非负数范围内成立的法则在有理数范围内也成立,除法的两个法则本质上是一致的.7.举例示范,理解法则例2.计算:(1)(-18)÷(-23 );(2)16÷(-43 )÷(-98 );(3)(-15)÷(-15 )÷(-2).学生尝试完成此题之后,引导学生分析得出步骤:①除号变为乘号;②除数变为倒数;③确定符号,绝对值相乘.本例的目的是巩固转化的思想,在书写上与例1有区别,突出了先转化再计算的思想.8.两个有理数相除,有两种方法方法一、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0数都得0(0不能作除数).方法二、把除法转化为乘法:除以一个数等于乘这个数的倒数. 说说在进行除法运算时如何选择法则使计算更简便呢?如(-78)÷3运用上述第________种方法简便;425 ÷(-35 )用上述________种方法比较简便.引导学生总结:根据算式中所给数的不同合理选择法则,整数的除法先确定符号,再把两数绝对值相除;有分数或小数参与的运算,将除法转化为乘法,确定结果符号后再计算,一般情况下这样做会比较简便,学生做题时可有目的地选择方法.三、课堂练习计算:(1)(-18)÷6;(2)(-1)÷(-1.5);(3)(-3)÷(-25 )÷(-14 );(4)(-12)÷(-112 )÷(-100).【答案】(1)-3 (2)23 (3)-30 (4)1.44四、课堂小结1.通过本节课的学习,你学到了哪些知识?2.有理数除法法则是什么?3.计算有理数除法的一般步骤有哪些?五、课后作业教材第55页习题2.2第4、6题.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计可以采用课本的引例作为探究除法法则的过程.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.并讲清楚除法的两种计算方法:(1)在除式的项和数字不复杂的情况下直接运用除法法则计算.(2)分数除法,或多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律进行计算.。

2.3有理数的乘除法运算(第2课时)课件 2024-2025学年北师大版数学七年级上册

2.3有理数的乘除法运算(第2课时)课件  2024-2025学年北师大版数学七年级上册






=− × − × + ×




=(− − + ) ×


= ×

=;
教学过程
典例解析
198
(4)9
199
× (−)
=(


)

× (−)

= × (−��) −
× (−)
有理数乘的运算律
可以利用乘法的交换律、结合律和乘法对加法的分配律进行计算:


=
× (−) × (−) ×




× (−) × (−) ×
=(−) × (−)
=


(−) × (− +




)


=(−) × (− ) + (−) ×


= + (−)

× (− ) × (−)




(− ) × × (−) × (− )



教学过程
回顾引入
计算:
(−) × × = −
.


× (− ) × (−) =


.



(−
. ) × × (−) × (− ) = −
想一想:积的符
号与负因数的个数
教学过程
知识点2
有理数乘的运算律
乘法运算律的推广:
(1)应用交换律时,交换因数的位置,要连同符号一起交换;
(2)利用分配律时,若括号外的项是负数,要带上“ − ”号;

2.3有理数乘法的运算律 (第2课时) 课件 (19张PPT)北师大版(2024)数学七年级上册

2.3有理数乘法的运算律 (第2课时) 课件 (19张PPT)北师大版(2024)数学七年级上册
(-2)×(-3)×(-4)×(-5)
-120
1
120
2
-120
3
120
4
思考:(1)几个不为 0 的数相乘,积的符号与负因数的个数之间有什么关系?(2)有一个因数为 0 时,积是多少?

几个不是 0 的数相乘,负因数的个数是_____时,积为正;负因数的个数是_____时,积为负。
1. 有理数的乘法法则:
2. 小学学过乘法的哪些运算律:
两数相乘,同号得正,
任何数与 0 相乘,积仍为 0。
异号得负,并把绝对值相乘。
乘法交换律、结合律和分配律。
例1 计算
(1) (-4)×5×(-0.25);
解:(1) 原式=[-(4×5)]×(-0.25)
=(-20)×(-0.25)
=+(20×0.25)
一个数同两个数的和相乘,等于把这个数分别同________相乘,再把积_____
两个数相乘,交换_____的位置,____相等
相加
这两
有理数乘法运算律
ba
a(bc)
ab+ac
因数
个数
前两个



乘法对加法的分配律
1. 运用分配律计算 (-3)×(-4 + 2 - 3),下面有四种不同的结果,其中正确的是( )A. (-3)×4 - 3×2 - 3×3B. (-3)×(-4) - 3×2 - 3×3C. (-3)×(-4) + 3×2 - 3×3D. (-3)×(-4) + (-3)×2 + (-3)×(-3)
=+5
有没有更加简便的方法?
探究1:观察下列各式,它们的积是正的还是负的?

2.3有理数的乘法(2)课时巩固教学设计2024—2025学年浙教版数学七年级上册

2.3有理数的乘法(2)课时巩固教学设计2024—2025学年浙教版数学七年级上册
4. 乘法运算的性质:结合律、交换律和分配律。例如:(2×3)×4=2×(3×4),2×(3+4)=(2×3)+(2×4)。
二、核心素养目标
本节课的核心素养目标在于培养学生的数学运算能力和数学思维能力。通过学习有理数的乘法法则,学生能够熟练运用乘法运算计算各种类型的有理数乘法题目,提高数学运算能力。同时,通过解决实际问题,学生能够将数学知识应用于生活情境中,培养数学应用能力。此外,通过小组讨论和合作探究,学生能够培养团队合作意识和沟通能力,提升解决问题的能力。
2. 设计一些练习题,让学生在实践中运用乘法法则进行计算。可以先让学生独立完成练习题,然后进行小组讨论,共同解决问题。这样可以让学生在实践中加深对乘法法则的理解,并提高计算能力。
3. 对于一些容易混淆的情况,可以引导学生进行归纳总结。例如,可以让学生总结同号有理数乘法和异号有理数乘法的区别,以及零的乘法的特点。通过归纳总结,学生能够更好地理解和记忆乘法法则。
四、教学方法与策略
1. 选择适合教学目标和学习者特点的教学方法:本节课将采用讲授法、讨论法和案例研究法相结合的教学方法。讲授法用于传授有理数的乘法法则,讨论法用于让学生分享和交流学习心得,案例研究法用于分析实际问题中的应用。
2. 设计具体的教学活动:为增强学生参与和互动,将组织小组讨论、角色扮演和游戏等活动。例如,让学生分组讨论有理数乘法法则的应用,进行角色扮演模拟计算过程,以及设计有关有理数乘法的游戏,让学生在轻松愉快的氛围中学习。
(4)小组合作:组织学生进行小组合作,共同研究有理数乘法的问题,鼓励学生分享自己的方法和思路,提高学生的合作能力和沟通能力。
(5)自主学习:引导学生利用网络资源进行自主学习,鼓励学生提问和解答其他同学的问题,提高学生的自主学习和解决问题的能力。

有理数乘法(二)教学案

有理数乘法(二)教学案
例2:计算
×12.
四、课堂练习
教材32页练习题
教材33页练习题
五、课堂小结
多个有理数相乘:几个不为0的数相乘,积的符号由________决定.当负因数有________个时,积为________.当负因数有________个时,积为________.几个数相乘,其中有一个因数为0,积就为________.
绝对值的积有什么关系?
要点归纳:
1、几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积
是负数.积的绝对值是各个因数绝对值的积.
2、几个数相乘,如果其中有因数为0,那么积等于0.
探究点2:有理数乘法的运算律
第一组:
(1)25=3;3×(4×0.25)=3;
教学重点
有理数的乘法运算律及其应用.
教学难点
符号问题的处理.
教法指导
讲授与小组交流相结合.
教学设想
课堂引入,探索新知,典例精析,课堂练习,课堂小结,作业布置,教学反思
教学过程
一、创设情境
你会计算下列各题吗?试试看!
(1)5×(-6). (2)(-6)×5. (3)[3×(-4)]×(-5). (4)3×[(-4)×(-5)].
乘法的运算律:(1)乘法交换律:______________.
(2)乘法结合律:______________.
(3)乘法对加法的分配律:________________.
六、作业布置
选编练习
七、教学反思
内容、方法补充分层点拨、要点归纳、错误纠正
课题:
有理数的乘法(第二课时)
使用时间
2019年9月13日
总课时
2课时
课型
新授课

有理数的乘法(第二课时)教案

有理数的乘法(第二课时)教案

有理数的乘法(第二课时)教案教学目标1.知识与技能使学生经历探究有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之运算简便.2.过程与方法通过对问题的探究,培养观看、分析和概括的能力.3.情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心.教学重点难点重点:熟练运用运算律进行运算.难点:灵活运用运算律.教与学互动设计(一)创设情境,导入新课想一想上一节课大伙儿一起学习了有理数的乘法运算法则,把握得较好.那在学习过程中,大伙儿有没有摸索多个有理数相乘该如何来运算?做一做(出示胶片)你能运算吗?(1)234(-5)(2)23(-4)(-5)(3)2(-3)(-4)(-5)(4)(-2)(-3)(-4)(-5)那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录同时阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。

如此下去,除假期外,一年便能够积存40多则材料。

假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(5)-1302(-2021)0要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

由此我们可总结得到什么?死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。

浙教版七年级2.3有理数的乘法(2)

浙教版七年级2.3有理数的乘法(2)

24 (3)(-3)³(2+ 1)=(-3)³ = ; 以上各组题的运算 -7 3 (-3)³2+(-3)³ =-6-1= 。 结果有什么特点? 1 -7 3 各组题的运算形式, 与乘法的运算律的 结构特征对比,你 你得到的猜想是什么? 发现了什么?
乘法交换律: 两个数相乘,交 换因数的位置,积不变。
5 37 12 (乘法交换律) 6
本算式结果 取什么符号?
370
1 解(2) 6 ( 10 ) 0.1 3 1 (乘法交换律和结合律) = (10 0.1) (6 解(3) 30 ( ) 2 3 5
1 (2) 6 10 0.1 3 1 2 4 30 2 3 5
(4) 4.99×(-12)
能约分 的、凑整 的、互为 倒数的数 要尽可能 的结合在 一起
5 解(1) 12 ( 37) 6
5 37 (12 ) (乘法结合律) 6 37 10
2.利用分配律计算
3、提高练习:
2 2 (1)( 18) (1 ) (2) 1 3 3
(2)已知3a 2b 3.求8 6a 4b (3)已知a、b互为相反数, c, d互为倒数,
ab m的绝对值为 2,试求 cd m的值。 m
畅谈所得 感悟提升
课内练习
KENNEILIANXI
1.计算下列各式
(1)(125) 7 (8) 2 7 9 3 (2)( ) ( ) ( ) 3 5 14 2 8 2 (3) ( ) (3.4) 0 7 3
课内练习
KENNEILIANXI
1 1 (1) 6 ( ) 3 2 1 5 2 ( 2)( ) 105 3 7 5

有理数的乘法教案【6篇】

有理数的乘法教案【6篇】

有理数的乘法教案【6篇】有理数的乘法教案篇1目标:1、学问与技能使同学理解有理数乘法的意义,把握有理数的乘法法则,能娴熟地进行有理数的乘法运算。

2、过程与方法经受探究有理数乘法法则的过程,理解有理数乘法法则,进展观看、探究、合情推理等力量,会进行有理数和乘法运算。

重点、难点:1、重点:有理数乘法法则。

2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。

过程:一、创设情景,导入新1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?乘法是加法的特别运算,例如5+5+5=5×3,那么请思索:(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。

3、在一条由西向东的笔直的公路上,取一点O,以向东的路程为正,则向西的路程为负,假如小玫从点O动身,以5千米的向西行走,那么经过3小时,她走了多远?二、合作沟通,解读探究1、学校学过的乘法的意义是什么?乘法的安排律:a×(b+c)=a×b+a×c假如两个数的和为0,那么这两个数互为相反数。

2、由前面的问题3,依据学校学过的乘法意义,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)3、同学活动:计算3×(-5)+3×5,留意运用简便运算通过计算表明3×(-5)与3×5互为相反数,从而有 3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把肯定值3与5相乘。

类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0由此看出(-5)×(-3)得正数,并且把肯定值5与3相乘。

4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?鼓舞同学自己归纳,并用自己的语舞衫歌扇,并与同伴沟通。

2.3《有理数的乘法第2课时》北师大版七年级数学上册教案

2.3《有理数的乘法第2课时》北师大版七年级数学上册教案

第二章有理数及其运算7有理数的乘法第2课时一、教学目标1.经历探索有理数乘法运算律的过程,发展观察、归纳、猜测、验证的能力.2.掌握有理数乘法的运算律.3.能正确运用乘法运算律简化运算.4.提高学生的运算能力与解决问题的能力,提升学习兴趣.二、教学重难点重点:掌握有理数乘法的运算律.难点:能正确运用乘法运算律简化运算.三、教学用具多媒体课件四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习引入】教师活动:教师出示练习,并提问,引导学生回顾有理数乘法的计算方法,为探究有理数乘法的运算律奠定基础.算一算:(1)(–7)×2=(2)(–5)×(–3)=(3)8×(1–4)=(4)0×(–12)=师:想一想它们是如何计算的呢?预设答案:1.两数相乘,同号得正,异号得负,并把绝对值相乘.2.任何数同0相乘,结果仍然是0.追问:我们之前学过哪些乘法的运算律?预设答案:乘法交换律:两个数相乘,交换乘数的位学生独立完成计算,思考并回答问题.通过复习有理数乘法的计算方法,以及之前学过的整数乘法的运算律,为接下来探究有理数乘法的运算律奠定基础..置,积不变.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.乘法对加法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.提问:引入负数后,这些运算律是否还成立呢?环节二 探究新知【探究】计算下列各题,并比较它们的结果.(1)(–7)×8=8×(–7)=(2)[(–4)×(–6)]×5(–4)×[(–6)×5](3)思考:你发现了什么?预设答案:第(1)组:(–7)×8=8×(–7)把两个有理数的位置交换,乘积不变.第(2)组:[(–4)×(–6)]×5=(–4)×[(–6)×5]=三个有理数相乘,不管是先乘前两个数,还是先乘后两个数,乘积不变.第(3)组:==一个有理数乘上两个有理数的和,结果等学生独立计算,观察后思考并交流反馈..通过计算并观察算式的特点,找到算式中蕴含的特点与规律,为接下来将乘法的运算律拓展到有理数范围做铺垫.于这个有理数分别去乘这两个有理数,然后再把积相加.【小组合作】(1)在有理数运算中,乘法的交换律,乘法的结合律,乘法对加法的分配律还成立吗?请你们换一些数试试吧;(2)全班展示交流.【归纳】预设答案:乘法的这些运算律在有理数范围内同样适用.乘法交换律:两个有理数相乘,交换乘数的位置,积不变.乘法结合律:三个有理数相乘,先把前两个有理数相加,或者先把后两个有理数相加,积不变.乘法对加法的分配律:一个有理数同两个有理数的和相乘,等于把这个有理数分别同这两个有理数相乘,再把积相加.用字母表示乘法的运算律如下:乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )乘法对加法的分配律:a (b +c )=ab +ac教师提醒学生要注意:用字母表示乘数时,“×”号可以写成“·”或省略.【做一做】计算:(1);(2).预设答案:(1)解:原式==20+(–9)=11.(2)解:原式=学生小组合作,互相换一些数再计算,并反馈.归纳有理数范围内的乘法的运算律.学生独立计算.通过应用所学的运算律进行计算,巩固学生对运算律的掌握程度,培养学生应用所学知识解决问题的能力.==.环节三 应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再在小组内交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1如何计算?分析:可以将写成,然后利用乘法对加法的分配律进行简化运算.答案:解:原式例2计算,用乘法对加法的分配律计算过程正确的是( )A.B.C.D.分析:乘法对加法的分配律为:a (b +c )=ab +ac答案:A认真观察并思考.观察后思考,说一说.通过讲解一些变式练习,让学生灵活掌握运算律的使用场景,加深对乘法对加法的分配律的理解和掌握.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.在计算中,应用了乘法( )A .交换律B .结合律C .结合律和分配律D .交换律和分配律答案:A2.算式–25×14+1×14–39×(–14)=(–25+18+39)×14是逆用了( )A .加法交换律B .乘法交换律C .乘法结合律D .乘法对加法的分配律答案:D 3.计算.(1);(2);(3);(4).答案:解:==(–1)×(–5)=5.解:==15–10=5.解:==自主完成练习,然后集体交流评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.=–9+24=15.解:===.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试归纳总结本节所学内容及收获.回顾知识点,形成知识体系,养成回顾梳理知识的好习惯.环节六布置作业教科书第54页习题2.11第1、3题.学生课后自主完成.加深认识,深化提高.。

2.3 有理数的乘法七年级上册数学浙教版

2.3 有理数的乘法七年级上册数学浙教版
(1)看:看乘数是否有“0”,若有,则积为0。
(2)定:按照负乘数的个数(“奇负偶正”)确定积的符号。
(3)求:把几个乘数的绝对值相乘。
典例2 计算:
(1)(−4) ×ห้องสมุดไป่ตู้2 × (−0.5);
解:(−4) × 2 × (−0.5) = +(4 × 2 × 0.5) = 4。
5
(2)(− )
6
×
5
解:(− )
解:(−0.125) × (−0.05) × 8 × (−40)
= −(0.125 × 0.05 × 8 × 40)(定符号:奇负偶正)
= −[(0.125 × 8) × (0.05 × 40)](乘法交换律和结合律)
= −(1 × 2)
= −2。
1
1
1
(2)12 × ( − − );
4
3
2
1
1
1
相乘,等于把这个数
分配律
×+×
分别与这两个数相

乘,再把积相加。
5 × (−6 + 7) = 5
× (−6) + 5 × 7。
分配律也可以逆用: × + × = × ( + )。

教材延伸:乘法运算律的推广
(1)乘法交换律与乘法结合律的推广:三个或三个
以上的有理数相乘,任意交换因数的位置,或者任意先把其

1
3的倒数是 ,−3的倒
3
数是−
1

3
3
4 9
把这个分数的分子和分
− 的倒数是− , 的

4
3 5
母交换位置,即 的倒

5

2.3 有理数的乘法(2)(含答案)

2.3 有理数的乘法(2)(含答案)

2.3 有理数的乘法(二)◆目标指引1.通过具体例子,经历乘法运算律的发生过程.2.体验乘法的运算律.3.会运用乘法的运算律简化运算.◆要点讲解1.乘法交换律:两个数相乘,交换因数的位置,积不变,记作ab=ba.2.乘法结合律:三个数相乘,先把前面两个数相乘,•或者先把后两个数相乘,积不变,记作(ab)c=a(bc).3.乘法分配律:一个数与两个数的积相乘,•等于把这个数分别与这两个数相乘,再把积相加,记作a(b+c)=ab+ac.◆学法指导1.利用乘法分配律可以使计算简便,有时把分配律反过来用,•也可以使计算简便. 2.在不引起误会时,乘号“×”可以省略不写;在不引起误会时,•乘号“×”(叉乘)可用“·”(点乘)代替.例如8×5不能写成8·5,更不能写成85.3.有时把带分数(或小数)拆成一个整数与一个分数(或小数)的和或差,•再用分配律,可使运算简便.4.遇含加、减、乘、括号等混合运算时,要先判断有哪些运算,•有没有带括号的,能否利用运算律,若能用运算律,先用运算律;若不能,则按运算顺序计算.◆例题分析【例1】计算:(1)(+212)×(-112)×(-45)×(+23);(2)-18×(12-1+23-56).(3)19999899×(-11).【分析】(1)运用乘法交换律结合律;(2)、(3)运用乘法分配律.【解】(1)(+212)×(-112)×(-45)×(+23)=(+212)×(-45)×(-112)×(+23)=[(+52)×(-45)]×[(-32×23)]=-2×(-1)=2.(2)-18×(12-1+23-56)=-18×12+18-18×23+18×56=-9+18-12+15=12.(3)19999899×(-11)=(2000-199)×(-11)=2000×(-11)-199×(-11)=-22000+19=-2199989.【注意】在有理数的乘法中,充分灵活运用乘法运算律,使运算简便,巧用运算律时,千万注意符号.【例2】计算:(1)6.868×(-5)+6.868×(-12)+6.868×(+17);(2)-3.14×35.2+6.28×(-23.3)-1.57×36.4.【分析】(1)逆用乘法分配律;(2)3.14,6.28,1.57之间有倍数关系,只要稍加变形就可逆用分配律.【解】(1)6.868×(-5)+6.868×(-12)+6.868×(+17)=6.868×(-5-12+17)=6.868×0=0.(2)-3.14×35.2+6.28×(-23.3)-1.57×36.4=-3.14×35.2+3.14×(-46.6)-3.14×18.2=-3.14×(35.2+46.6+18.2)=-3.14×100=-314.【注意】逆用乘法分配律计算在解题中经常用到,要引起足够的重视,务必要掌握.◆练习提升一、基础训练1.下列变形中不正确的有()(1)(-7)×8=8×(-7)(2)[12×(-73)]×(-4)=12×4×73(3)(-3)×(-4+2-3)=(-3)×(-4)-3×2-3×3(4)2120×(-98)=4120×(-100+2)A.0个 B.1个 C.2个 D.3个2.三个数的积为0,可以得到()A.三个数都是零 B.三个数中有一个为零C.三个数中有两个为零 D.三个数中至少有一个为零3.-45×(10-114+0.5)=-8+1-0.4这个运算应用了()A.加法结合律 B.乘法结合律 C.乘法交换律 D.乘法分配律4.计算:(1)3×(-57)×(-13);(2)(-4)×(+5)×0.25;(3)24×(13-34-38);(4)(-316-113+114)×(-12).5.用简便方法计算:(1)(-18)×(-22)+(-18)×(-2);(2)14×0.75-0.25×38+25%×18;(3)71315×5;(4)78113-491213.6.计算:(-5)×(-367)+(-7)×(-367)-12×367.7.计算:(512-213-156)×(-18)-(-2)×85×(-5).二、提高训练8.计算:(2×3×4×5)×(12+13+14+15).9.计算:(+1)+(-3)+(+5)+(-7)+…+(+97)+(-99).10.如下图所示,点A ,B ,C ,D 分别表示数a ,b ,c ,d ,且A ,C 到原点的距离相等,•请求下列各式的符号(或值).(1)a-c ; (2)c-d ; (3)abcd ; (4)acd ; (5)2a+cd+ab+c .11.我国股民张斌上星期六买进某公司股票1000股,每股27元,•下表为本周内每日该股票的涨跌情况.(单位:元)已知张斌买进股票时付了1.5‟的手续费,卖出时还需付成交额1.5•‟的手续费和1‟的交易税,如果张斌在星期六收盘前将全部股票卖出,他的收益情况如何?三、拓展训练12.计算:1997×19961996-1996×19971997.13.11119999n n ⨯个个9(n ≥2)的值等于( ) A .111108889n n 个个8 B .11118889n n个个8B .(1)1(1)11108889n n -- 个个8 D .(1)1(1)1118889n n --个个8参考答案1.B 2.D 3.D 4.(1)57(2)-5 (3)-19 (4)395.(1)3 (2)18(3)3913(4)282136.0 7.-874 8.1549.-50 10.(1)<0 (2)<0 (3)=0 (4)<0 (5)>0 11.收益889.5元 12.0 13.C。

《有理数的乘法(第2课时)》教学设计 2022年人教版

《有理数的乘法(第2课时)》教学设计 2022年人教版

本资源为2021年制作,是一线教师经过认真研究,综合教学中遇到的各种问题,总结而来。

是一个非常实用的资源。

资源以课本为依托,以教学经验为蓝本,经过二次备课和实践研究,将教学环节进一步细化,综合同课异构的课堂结构,统一编写而成。

欢送您下载使用!
有理数的乘法
[教学反思]
学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。

本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。

教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。

由于剪的方法不同,展开图的形状也可能是不同的。

学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。

通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。

公开课教案《有理数的乘法》精品教案(市一等奖)(市优)

公开课教案《有理数的乘法》精品教案(市一等奖)(市优)

2.3 有理数的乘法【教学目标】知识与能力:练掌握有理数的乘法法则,,能运用乘法法则求若干个有理数相乘的积,理解倒数的概念。

过程与方法:通过实例经历乘法法则的发生过程。

情感态度与价值观:体会从特殊到一般的思考过程,培养学生的观察、归纳、猜想、验证及语言表达的能力【教学重点、难点】重点:有理数的乘法运算难点:探索有理数的乘法法则及符号的确定。

【设计思路】研究表明,任何新知识的理解都是以旧知识经验为基础的。

学生在小学里已学过乘法的交换律、乘法的结合律和分配律,这些知识为有理数乘法运算律的学习作了很好的铺垫。

教学过程中采用“探索”、“想一想”、“试一试”及分组讨论等活动,让学生在自己摸索和总结中获取知识。

【教学过程】(一)创设情景,提出问题一、创设情境 引出课题上堂课我们学习了水位的变化,知道可以根据给出的一周的每天的水位变化求出一周内的水位总变化量。

现在有甲乙两个水库,甲水库的水位每天升高了三厘米,乙水库的水位每天下降了3厘米,4天后甲乙水库水位的总变化量各是多少?(用“+”号表示水位上升,用“—”号表示水位下降)乙水库甲水库甲水库的水位每天升高2厘米,乙水库的水位每天下降2厘米,3天后甲、乙水库水位的总变化量各是多少?2+2+2=2×3=6(厘米)(-2)+(-2)+(-2)=(-2)×3=-6(厘米)师:同学们甲水库的每天水位变化量是多少?(+3厘米)乙水库的每天水位变化量是多少?(—3厘米)那么四天后甲水库的水位变化量是多少?3+3+3+3= 3×4 = 12 (厘米)四天后乙水库的水位变化量是多少?(-3)+(-3)+(-3)+(-3)=(-3)×4 = - 12 (厘米)(引出课题)二、交流讨论 探索新知1. 议一议:四天后乙水库的水位变化量为(-3)×4=-12(厘米)那么三天后乙水库的水位变化量为(-3)×3=-9(厘米),依次递推(-3)×2=-6(厘米) (-3)×1=-3(厘米)(-3)×0=0 (厘米)由上面这些等式,同学们发现什么规律?学:一个因数都为-3时,另一个因数减小1时,积都减小,-3,也就是积减去-3,等价于积加上3 2.猜一猜:现在同学们借助于我们发现的这一规律猜一猜(-3)×(-1)=(-3)×(-2)=(-3)×(-3)=(-3)×(-4)=3.试一试:同学们由黑板上的这些等式是否能总结出乘法法则。

2.3 有理数的乘法 浙教版数学七年级上册教案1

2.3 有理数的乘法 浙教版数学七年级上册教案1

《2.3有理数的乘法》教学设计一、内容和内容解析内容:有理数的乘法。

内容解析:这节课是浙教版教科书第二章第三节《有理数乘法》的第一课时,是学生小学阶段学习正有理数及其运算,初中阶段学习了负数后的教学内容。

有理数的乘法运算是本节课的核心,难点在于探究有理数乘法中的符号法则。

通过引导学生观察在数轴上物体的运动来突破重点,正确理解法则中的含义来突破难点.与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.对于有理数的乘法的教学可以按三个阶段来完成:(1)正有理数乘法;(2)正有理数与负有理数的乘法;(3)负有理数与负有理数的乘法,从而引出有理数的乘法的运算法则。

运算反思中推衍新的概念——倒数。

二、目标和目标解析目标: 学生要在在了解有理数乘法的意义的基础上,掌握有理数乘法法则。

探讨有理数乘法法则的合理性;学生在观察、反复实践感悟中逐步归纳、概括出运算法则并作出合理解释。

目标解析:1.通过回顾小学到初中数系扩充的历程,结合相关问题让学生了解本节要研究的主要内容及有理数乘法学习的必要性。

2.借助蜗牛实验结果的分析,引导学生探寻数与式之间的一些等量关系。

3.通过对等式表示实验结果的共性归纳,概括出有理数乘法的运算法则,并且与正有理数乘法法则进行类比,从而加深理解。

4.引导学生在观察、对比中探寻并完善乘法法则。

5.通过运算推衍出新的概念——倒数,并探寻倒数运算过程的合理性问题。

《有理数的乘法(第2课时)》优质教案

《有理数的乘法(第2课时)》优质教案

有理数的乘法和除法有理数的乘法第2课时有理数乘法的运算律教学目标:1、知识与技能:经历探索乘法运算律的过程,进一步发展观察、验证、猜想、归纳的能力,促使学生学好乘法运算律及多个有理数相乘积的符号的确定。

2、过程与方法:运用乘法的运算律简化乘法运算。

重点、难点:1、重点:乘法运算律的理解和运用2、难点:乘法运算律的灵活运用及运算中符号的确定。

教学过程:一、创设情景,导入新课复习:有理数的乘法法则,互为倒数的定义,两个有理数相乘积的符号的确定。

二、合作交流,解读探究1、做一做:P32“做一做”填空,并比较她们的结果。

<1> (-2) ×7=,7×(-2)=(-3)×(-4)=,(-4)×(-3)=师:由上面的两组式子,我们发现了什么规律生:乘法满足交换律。

<2> [3×(-4)]×(-5)=×(-5)=3×[(-4)×(-5)]=3×=师:由上面的两组式子,我们发现了什么规律学:乘法满足结合律。

<3>(-6)×[4+(-9)]=(-6)×=(-6)×4+(-6)×(-9)=+=师:由上面的两组式子,我们发现了什么规律学:乘法满足分配律2、想一想:<1>由上面的几道题,我们已经知道了在有理数运算中,乘法的交换律、结合律以及分配律均成立。

那么同学们现在再给你们几分钟的时间,你们分别写出满足乘法的交换律、结合律以及分配律的式子。

2、刚才我们都是通过具体的数来表示乘法的交换律、结合律与分配律的,现在请你们用字母表示乘法的交换律、结合律与分配律。

乘法的交换律:a×b=b×a乘法的结合律:(a×b )×c=a×(b×c)乘法的分配律:a×(b+c)=a×b+a×c三、应用迁移,巩固提高1、例2计算:(1) (-12)×(-37)×65 (2) 6×(-10)××31 (3)-30×(21-32+54) (4) ×(-12) (1)、(2)两题的解题过程引导学先处理符号,再运用交换律与结算.(3)师:这道题如何计算能相对简便一些,请同学们思考一下。

2024年人教版七年级上册教学设计第二章2.3 有理数的乘方

2024年人教版七年级上册教学设计第二章2.3  有理数的乘方

2.3.1乘方第1课时有理数的乘方运算课时目标1.经历探索有理数乘方的意义的过程,体会转化的数学思想方法,培养学生的运算能力.2.理解乘方的意义,了解乘方与幂的关系,能识别指数和底数,掌握幂的符号法则,会进行乘方运算.3.经历发现问题、提出问题、分析问题和解决问题的过程,培养学生科学的思考问题的方法.学习重点乘方的意义以及幂的符号法则.学习难点幂、底数、指数的概念.课时活动设计情境引入问题1:如果一个正方形的边长为2,那么该正方形的面积是多少?问题2:如果一个正方体的棱长为2,那么该正方体的体积是多少?解:该正方形的面积为2×2,该正方体的体积为2×2×2.设计意图:创设情境,引入新课,为本节课的学习作铺垫.探究新知探究1有理数的乘方在上一教学活动中,所列的两个式子有什么特殊之处?你还能写出几个具有上述特征的式子吗?学生自主交流,独立完成,教师适时给予点拨.根据你发现的特征,完成下面的填空.(1)5×5×5记作53,读作5的3次方.(2)5×5×5×5记作54,读作5的4次方.(3)5×5×5×5×5记作55,读作5的5次方.⏟(4)5×5×5×…×5×5记作5n,读作5的n次方.n个5请你根据上面的内容,自己总结发现的规律.,记作a n,读作“a的n次方”.⏟总结:一般地,n个相同的乘数a相乘,即a·a·…·an个求n个相同乘数的积的运算,叫作乘方,乘方的结果叫作幂.在a n中,a叫作底数,n叫作指数,当a n看作a的n次方的结果时,也可读作“a的n次幂”.例如,在94中,底数是9,指数是4,94读作“9的4次方”,或“9的4次幂”.一个数可以看作这个数本身的1次方.例如,5就是51.指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.探究2幂的符号法则思考:(1)-26的底数是多少?它与(-2)6表示的意义相同吗?(2)计算,并将下表补充完整.思考:上表中的计算结果的符号有什么规律?学生归纳总结.总结:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数. 0的任何正整数次幂都是0.设计意图:通过探究引导学生思考有理数乘方的意义,区分-a n 与(-a )n ,通过让学生计算乘方,发现幂的符号规律,并总结出幂的符号法则.典例精讲 例1 计算:(1)(-4)3; (2)(-2)4; (3)(-23)3. 解:(1)(-4)3=(-4)×(-4)×(-4)=-64. (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16. (3)(-23)3=(-23)×(-23)×(-23)=-827. 例2 用计算器计算(-8)5和(-3)6. 解:用带符号键的计算器.显示结果为-32 768.显示结果为729.因此,(-8)5=-32 768,(-3)6=729.设计意图:通过例题练习和讲解,提高学生的运算能力,并学会用计算器计算有理数的乘方运算,提高对新知识的应用能力.巩固训练1.(-2)3等于( C )A.-6B.6C.-8D.82.下列各组数中,运算结果相等的是( A )A.-53与(-5)3B.34与43C.-22与(-2)2D.(45)2与4253.计算3×3×…×32+2+⋯+2⏞ m 个3⏟ n 个2的结果为( A ) A.3m2nB.3m2nC.3mn 2D.m 32n4.(-2)5的底数是 -2 ,指数是 5 ,表示的意义是 5个-2相乘的积 ,即(-2)5= -32 .5.计算:(1)(-3)3; (2)(-5)4; (3)(-13)3; (4)0.23; (5)-72. 解:(1)(-3)3=(-3)×(-3)×(-3)=-27. (2)(-5)4=(-5)×(-5)×(-5)×(-5)=625. (3)(-13)3=(-13)×(-13)×(-13)=-127. (4)0.23=0.2×0.2×0.2=0.008. (5)-72=-(7×7)=-49.学生自主完成,教师订正并给予评价.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也能使学生的思维能力得到有效提高,能更好地将知识学以致用.最后针对练习结果进行统一订正,并对同学们的表现作出及时评价,体现课程评价在课堂中的合理运用.课堂小结1.乘方中的底数、指数和幂的概念,会求有理数的正整数指数幂,掌握乘方运算与乘法运算的关系,会进行有理数的乘方运算.2.强调有理数乘方的符号规律.3.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0.设计意图:学生通过自主反思,可加深对有理数乘方意义的理解,通过反思数学思想方法与活动经验,培养学生的数学思维品质,让学生学会学习,学会思考,使学生真正深入数学的学习过程中,抓住数学思维的内在实质.课堂8分钟.1.教材第52页练习第1,2,3题,第56页习题2.3第1,2题.2.七彩作业.教学反思第2课时有理数的混合运算课时目标1.能确定有理数加、减、乘、除、乘方混合运算的运算顺序,会进行有理数的混合运算,培养学生的运算能力.2.在进行有理数混合运算的过程中,能合理地使用运算律进行简化运算.学习重点掌握有理数混合运算的运算顺序,会进行有理数的混合运算.学习难点熟练合理使用运算律进行混合运算.课时活动设计情境引入计算:1. (1)-32; (2)(-3)2; (3)-16; (4)(-1)6. 2. -3÷25×52.3. 18-32÷8+(-2)2×5.问题:先计算,再思考上述运算中有几种运算?分别是什么?结合经验你能说说混合运算的运算顺序吗?设计意图:通过有理数的混合运算,让学生先独立思考运算顺序,然后谈一谈自己的理解,加深学生对运算顺序的理解.探究新知探究 有理数的混合运算问题:如何计算18-32÷8+(-2)2×5呢?分几步运算? 学生先独立思考,分解计算步骤.教师给出下述计算过程. 18-32÷8+(-2)2×5 ① ① ①所以原式=①-①+①=18-4+20=34.由此可知,有理数混合运算顺序:先算乘方,再算乘除,最后算加减.如果有括号,要先算括号内的.总结:有理数的加、减、乘、除、乘方混合运算的运算顺序为 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 设计意图:通过探究,让学生确定有理数的加、减、乘、除、乘方混合运算的运算顺序,会进行有理数的混合运算,培养学生的运算能力.典例精讲 例1 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×(-42+2)-(-3)2÷(-2).解:(1)原式=2×(-27)-(-12)+15=-54+12+15=-27.(2)原式=-8+(-3)×(-16+2)-9÷(-2)=-8+(-3)×(-14)-(-4.5)=-8+42+4.5=38.5. 例2 观察下面三行数: -2,4,-8,16,-32,64,…;① 0, 6, -6, 18, -30, 66, …; ① -1, 2, -4, 8, -16, 32, …. ①(1)第①行中的数可以看成按什么规律排列? (2)第①①行中的数与第①行中的数分别有什么关系? (3)取每行中的第10个数,计算这三个数的和.分析:观察第①行中的数,发现各数均为2的倍数,联系数的乘方,从符号和绝对值两方面考虑,可以发现排列的规律.解:(1)第①行中的数可以看成按如下规律排列:-2,(-2)2,(-2)3,(-2)4,….(2)对比第①①两行中位置对应的数,可以发现:第①行中的数是第①行中相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…;对比第①①两行中位置对应的数,可以发现:第①行中的数是第①行中相应数的12,即(-2)×12,(-2)2×12,(-2)3×12,(-2)4×12,….(3)每行中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×12=1 024+(1 024+2)+1 024×12=1 024+1 026+512=2 562.设计意图:通过例1让学生得以练习,提高对有理数混合运顺序的应用能力;通过例2引导学生解决简单的规律性问题.巩固训练 计算:(1)(-1)8×3+(-2)4÷4; (2)(-3)3+(-12)3×16; (3)78×(23-12)×37÷54.解:(1)原式=1×3+16÷4=3+4=7. (2)原式=-27+(-18)×16=-27-2=-29. (3)原式=78×16×37×45=120.设计意图:通过设置练习,不仅能使学生的新知得到巩固,也能使学生的思维能力得到有效提高.课堂小结1.有理数混合运算顺序: 先乘方,再乘除,最后加减; 同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 2.探究简单的规律性问题.设计意图:回顾本节课内容,加深学生对本节课知识的理解,提高学生归纳总结及表达的能力.课堂8分钟.1.教材第54页练习,第56页习题2.3第3,11题. 2.七彩作业.教学反思2.3.2科学记数法课时目标1.借助身边熟悉的事物体会大数,发展学生的好奇心、想象力及创新意识.2.通过用科学记数法表示大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以发展学生的数感.学习重点正确使用科学记数法表示大于10的数.学习难点正确掌握10n的特征以及科学记数法中n与数位的关系.课时活动设计情境引入地球距离月球表面约为384 000 000米.这样大的数,读写都有一定的困难.这节课我们就来学习表示大数的一种方法——科学记数法.设计意图:通过实际问题引入本节课的内容,激发学生的学习兴趣.探究新知探究科学记数法观察10的乘方,102=100,103=1 000,104=10 000,….问题1:等号左边10的指数与右边整数中0的个数有什么关系?教师引导学生得到左边10的指数与右边整数中0的个数相同,即10的n次幂等于10…0(在1的后面有n个0),因此可以利用10的乘方表示一些大数,例如,696 000=6.96×105,读作“6.96乘10的5次方(幂)”.像上面这样,把一个大于10的数表示成a×10n的形式(其中a大于或等于1,且a小于10,n是正整数),使用的是科学记数法.问题2:对于小于-10的数能否也用类似的方法表示呢?-567 000 000用这种方法应该怎样表示?学生分小组探究交流,教师将正确答案进行板书.解:-567 000 000=-5.67×108.设计意图:让学生经历用科学记数法表示数的探索过程,提高学生分析问题和解决问题的能力,增强学生的思维能力.典例精讲例用科学记数法表示下列各数:1 000 000,57 000 000,-123 000 000 000.解:1 000 000=1×106.57 000 000=5.7×107.-123 000 000 000=-1.23×1011.设计意图:通过例题讲解,让学生对科学记数法的表示得以运用,提高学生的运用能力.巩固训练1.用科学记数法表示下列各数:(1)352 000 000;(2)167 560 000;(3)602 000 000 000.解:(1)352 000 000=3.52×108.(2)167 560 000=1.675 6×108.(3)602 000 000 000=6.02×1011.2.下列用科学记数法表示的数,原来各是什么数?1×107,1.9×103,2.06×106.解:1×107=10 000 000,1.9×103=1 900,2.06×106=2 060 000.设计意图:通过练习,让学生巩固所学知识,加深对科学记数法的理解,提高学生的运算能力.课堂小结1.本节课主要学习用科学记数法表示大数的方法.应该注意:任意一个大于10的数表示成a×10n的形式,其中10的指数n应等于整数位数减1,1≤a<10,n是正整数.2.思考现实中还有哪些比较大的数,并用科学记数法表示出来.设计意图:学生通过反思,可进一步加深对科学记数法的理解,通过归纳总结,培养学生的数学思维品质,让学生学会学习,学会思考.课堂8分钟.1.教材第56页练习第1,2,3题,第56页习题2.3第4,5,9题.2.七彩作业.2.3.2科学记数法把一个大于10的数表示成a×10n的形式(其中a大于或等于1,且a小于10,n 是正整数),即为科学记数法.教学反思2.3.3近似数课时目标1.了解和掌握近似数的概念,能准确确定一个近似数的精确度.2.能根据要求用四舍五入法取近似数.学习重点近似数、精确度的概念.学习难点由给出的近似数求其精确度.课时活动设计回顾引入回顾什么是四舍五入法.设计意图:通过回顾旧知,引入本节课的学习.探究新知探究近似数和准确数1.宇宙的年龄约为138亿年,长江约长6 300千米,圆周率π约为3.14,每个三角形都有3个内角,某中学七年级共有10个班.上面语句中出现的数字中,哪些是与实际相符的?哪些是与实际相近的?学生分小组交流讨论.教师随后给出近似数和准确数的概念.准确数:与实际相符的数.近似数:与实际相近的数,通过测量或估计得到.2.小明和小颖分别测量了同一片树叶的长度,他们所用的直尺的最小单位是不同的,分别是厘米和毫米.问题:根据小明的测量,这片树叶的长度约为多少米?根据小颖的测量呢?谁的测量结果会更准确一些?学生自主探究.教师给出:近似数与准确数的接近程度,可以用精确度表示.追问:小明、小颖的测量分别精确到什么单位?解:分别精确到了十分位和百分位.按四舍五入法对圆周率π取近似数时,有π≈3(精确到个位),π≈3.1(精确到0.1,或叫作精确到十分位),π≈3.14(精确到0.01,或叫作精确到百分位),π≈3.142(精确到0.001,或叫作精确到千分位),π≈3.141 6(精确到0.000 1,或叫作精确到万分位),……设计意图:让学生通过实际情境理解近似数与准确数及精确度的概念.典例精讲例按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到百分位).解:(1)0.015 8≈0.016.(2)304.35≈304.(3)1.804≈1.8.(4)1.804≈1.80.设计意图:通过例题让学生体会运用四舍五入法求近似数的方法.巩固训练用四舍五入法对下列各数取近似数:(1)0.012 36(精确到0.000 1);(2)688.753 2(精确到个位);(3)2.597 43(精确到0.01);(4)0.085 6(精确到千分位).解:(1)0.012 36≈0.012 4.(2)688.753 2≈689.(3)2.597 43≈2.60.(4)0.085 6≈0.086.设计意图:通过设置练习,不仅能使学生的新知得到巩固,也能使学生的思维能力得到有效提高.课堂小结1.本节课主要学习近似数的概念,并能按要求取近似数.2.通过这节课的学习,还有哪些收获呢?设计意图:学生通过反思,可进一步加深对近似数的理解.通过归纳总结,培养学生的数学思维品质,让学生学会学习,学会思考.课堂8分钟.1.教材第56页练习第4题,第56页习题2.3第6题.2.七彩作业.2.3.3近似数1.准确数和近似数.2.用四舍五入法求近似数.教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.2有理数的乘法(教案)
上有理数相乘,可以任意交换因数的位置,也可先把其中的几个数相乘.
计算下列各题,并比较计算的结果. (3) ()()17
32333
⎛⎫-⨯+=-⨯
⎪⎝⎭
=______; ()()()11
323236133
⎛⎫-⨯+
=-⨯+-⨯=-- ⎪⎝
⎭=______.
你发现了什么?再换一些数试试,你得到了什
么结论?
归纳:分配律:一个数与两个数的和相乘,等于把这个数分别与这两数相乘,再把积相加.数学表达式: a × (b +c )= a ×b +a ×c .
根据分配律可推出:一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.
1、乘法的交换律、结合律只涉及一种运算,而分配律要涉及两种运算.
2、分配律还可写成: ab +ac =a (b +c ), 利用它有时也可以简化计算.
3、字母a 、b 、c 可以表示正数、负数,也可以表示零,即a 、b 、c 可以表示任意有理数.
针对练习
下列各式中用了哪条运算律?如何用字母表示?
(2)[3×(-4)]×(-5)= 3×[(-4)×(-5)];
(3) 5×[3+(-7)]=5×3+5×(-7); (4)[(-10)×2]×0.3=(-10)×[2×0.3] . 典例解析:
例2 计算:
(1)()()5
1237
6
-⨯-⨯;
(2)
124
30
235
⎛⎫-⨯-+

⎝⎭

(3)4.99×(-12).
针对练习:
计算:
(1)(125)2(8)
-⨯⨯-;
(2)
2763 ()()()
35142 -⨯-⨯-⨯;
例3、某校体育器材室总共有60个篮球,一天课外活动,有3个班级分别计划借篮球总数的
1 2,
1
4

1
5
.请你算一算,这60个篮球够借
吗?如果够了,还多几个篮球?如果不够,还缺几个?
针对练习
有1155页稿件需要打字,第一天完成其中的
1 3,第二天完成其中的
2
7
.问还剩多少页稿件需
打字?完成例2和针
对练习.
完成例3和针
对练习.
掌握有理数乘法
运算律,能运用
乘法运算律简化
运算.
掌握有理数乘法
运算,体会有理
数乘法在生活中
的应用.
巩固提升1、3.14×2.5×4=3.14×(2.5×4)利用了乘法的()
A.交换律B.结合律
C.交换律和结合律D.分配律
2、完成练习.通过练习,掌握
有理数乘运算
律,运用运算律
简化运算,进一
步提高学生的运
算能力.
1
(1)
⨯-
3
201320152014
⨯⨯⨯
()(
201420142015
有理数乘法的运算律:
两个数相乘,交换因数的位置,积不变.
ab=ba.。

相关文档
最新文档