卷积的物理意义
实验报告信号卷积实验

一、实验目的1. 理解卷积的概念及其物理意义。
2. 掌握卷积运算的原理和方法。
3. 通过实验加深对卷积运算在实际应用中的理解。
二、实验原理1. 卷积的定义:卷积是一种线性运算,它描述了两个信号在时域上的相互作用。
对于两个连续时间信号f(t)和g(t),它们的卷积定义为:F(t) = ∫f(τ)g(t-τ)dτ其中,F(t)是卷积结果,f(τ)是信号f(t)的任意时刻的值,g(t-τ)是信号g(t)在时刻t-τ的值。
2. 卷积的性质:卷积具有交换律、结合律和分配律等性质。
其中,交换律是指f(t)和g(t)的卷积与g(t)和f(t)的卷积相等;结合律是指三个信号f(t)、g(t)和h(t)的卷积可以分别进行两两卷积后再进行一次卷积;分配律是指一个信号与两个信号的卷积等于该信号分别与两个信号卷积后的和。
三、实验内容1. 实验一:连续时间信号卷积实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为矩形脉冲信号,g(t)为指数衰减信号。
(2)卷积计算:根据卷积的定义,计算f(t)和g(t)的卷积F(t)。
(3)结果分析:观察F(t)的波形,分析卷积结果的物理意义。
2. 实验二:离散时间信号卷积实验(1)选用信号:选取两个离散时间信号f[n]和g[n],其中f[n]为单位阶跃信号,g[n]为矩形脉冲信号。
(2)卷积计算:根据离散时间信号卷积的定义,计算f[n]和g[n]的卷积F[n]。
(3)结果分析:观察F[n]的波形,分析卷积结果的物理意义。
3. 实验三:MATLAB仿真实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为正弦信号,g(t)为余弦信号。
(2)MATLAB编程:利用MATLAB的信号处理工具箱,编写程序实现f(t)和g(t)的卷积运算。
(3)结果分析:观察MATLAB仿真得到的卷积结果,分析其物理意义。
四、实验结果与分析1. 实验一:连续时间信号卷积实验(1)实验结果:通过计算得到f(t)和g(t)的卷积F(t)的波形。
卷积拉普拉斯——意义

卷积拉普拉斯——意义数学定义:函数f与g的卷积记作f*g,它是其中⼀个函数翻转并平移后与另⼀个函数的乘积的积分,是⼀个对平移量的函数f(t)*g(t) = (f*g)(t) = ∫f(τ)g(t-τ)dτ积分区间取决于f与g的定义域对于离散域的函数,卷积的定义:(f*g)[m] = ∑n f[n]g[m-n]1.卷积是求累积值,就是某⼀时刻的反应,是多个反应的叠加值。
2.既然如⼀,就有2.1任何信号可微分成脉冲信号的组合,依次通过系统。
2.1,系统是线性的,某时的响应是可以看成是响应的叠加。
注:关于线性系统,可以理解为:如果⼀系统,输⼊为1时,输出为1;那么输⼊为2时,输出也为2.⽽不是1.⼏。
3.y(t)=∫T(τ)H(t-τ),这是卷积的公式,要理解这个,⾸先要有时间的概念,τ,t这两个参数的真正意义,是时间。
t是某时,⽽τ表⽰从零到某时的这个时间段的某时刻。
这个公式包括两个部份,前⾯的表⽰脉冲强度,τ时刻的脉冲强度;是后⾯的是单位脉冲响应函数,或者说是响应的衰减函数,因为响应随着时间的推移⽽减弱,就像疼痛会减弱⼀样这样更好理解,⽽个体表⽰的是t时刻时,τ时刻的脉冲响应的值。
那么整个式⼦就表⽰,强度*衰减系数。
叠加到⼀块⼉,就是t时刻的响应了。
最幽默的解释卷积的物理意义谈起卷积分当然要先说说冲击函数—-这个倒⽴的⼩蝌蚪,卷积其实就是为它诞⽣的。
”冲击函数”是狄拉克为了解决⼀些瞬间作⽤的物理现象⽽提出的符号。
古⼈⽈:”说⼀堆⼤道理不如举⼀个好例⼦”,冲量这⼀物理现象很能说明”冲击函数”。
在t时间内对⼀物体作⽤F的⼒,我们可以让作⽤时间t 很⼩,作⽤⼒F很⼤,但让Ft的乘积不变,即冲量不变。
于是在⽤t做横坐标、F做纵坐标的坐标系中,就如同⼀个⾯积不变的长⽅形,底边被挤的窄窄的,⾼度被挤的⾼⾼的,在数学中它可以被挤到⽆限⾼,但即使它⽆限瘦、⽆限⾼、但它仍然保持⾯积不变(它没有被挤没!),为了证实它的存在,可以对它进⾏积分,积分就是求⾯积嘛!于是”卷积” 这个数学怪物就这样诞⽣了。
卷积物理意义

卷积的物理意义进入到大学之后,学习的第一门课就是微积分,这门课对于理工科学生来说应该是整个大学学习最大的基石,因为读大学的首要目的就是对某一方面的事物有更加具体详细的认识,从而大大增强我们对这方面的事物改造与创造的能力,提升我们个人的生产力。
而对于学工科的我们来说,我们在大学里所要研究与认识的东西是某一具体的物质,这些物质由于具体,所以必然可以被分解为无数非常小的微粒,由于这些微粒各自之间的作用的累积,形成了我们所需研究的物质的种种特性,于是要能够对这些物质具体详细的认识就必须从非常小的微粒开始研究,而微积分本质就是对许多无穷小量的微元在一定范围内进行加减乘除也就是微分与积分的运算,这正好契合了我们工科专业的研究物理性东西的需求。
因此,在这样的背景下,我们在大学中就会学到一系列具有物理意义的数学公式与概念,这些公式十分抽象,但却包罗万象,本文就是试图对卷积这一数学概念做一个深入的分析。
首先,先列出卷积的定义式:()()()r t e h t d τττ+∞−∞=−∫。
从直观上理解这个公式就是r 在t 时刻的取值等于e 在τ时刻的取值乘以它持续的时间d τ再乘以一个大小与t-τ这段时间间隔有关的系数h(t-τ)最后在整个时间域上相加(积分)所得的值,这是最本质的解释。
在物理上e(t)看成一个外界对某一系统的作用(激励)r(t)看成这个作用对该系统的某个状态量的作用效果(响应)h(t)看成一个反映系统性质的函数(冲击响应)如果从这个角度再来理解这一公式的话,那就是:对于一个已有的系统在某一时刻τ外界对它产生了一个作用(激励)e(τ),它的持续时间是d τ,所以它的作用量(作用值乘以作用时间)等于e(τ)d τ,再乘以一个系数h(t-τ)(表示τ时刻激励对t 时刻系统状态量r(t)的影响程度,这个系数的取值是t 与τ的时间间隔t-τ的函数),也就是相当于将这个激励量通过h (t )传递过去(所以h (t )也称为传递函数),系统最终得到τ时刻激励e(τ)对状态量r(t)在t 时刻的取值的影响量e(τ)h(t-τ)d τ,将各时刻的影响量累加起来(积分),就得到了卷积的这个公式了。
卷积的物理意义

卷积的物理意义卷积是“信号与系统”中论述系统对输入信号的响应而提出的。
因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?卷积表示为y(n) = x(n)*h(n)使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来的信号。
同理,x(n)的对应时刻的序列为x(0),x(1),x(2)...and so on;其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。
假设0时刻系统响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。
但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(m-n),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。
再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(m-n)中的m的范围来约束的。
即说白了,就是当前时刻的系统响应与多少个之前时刻的响应的ﻪ“残留影响”有关。
卷积公式

卷积公式卷积的物理意义是将输入信号用时移加权的单位冲激信号和(积分)表示,然后输出就是各个冲激信号作用系统后再求和,而时移量u(f(t-u)),再对u积分,就产生了反转。
卷积的物理意义(2009-11-30 09:25:54)卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。
因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?卷积表示为y(n) = x(n)*h(n)假设0时刻系统响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。
但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(m-n),具体表达式不用多管,只要记着有大概这种关系,引入这个函数h(t)就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。
再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(m-n)中的m 的范围来约束的。
即说白了,就是当前时刻的系统响应与多少个之前时刻的响应的“残留影响”有关。
当考虑这些因素后,就可以描述成一个系统响应了,而这些因素通过一个表达式(卷积)即描述出来不得不说是数学的巧妙和迷人之处了。
对于非数学系学生来说,只要懂怎么用卷积就可以了,研究什么是卷积其实意义不大,它就是一种微元相乘累加的极限形式。
卷积本身不过就是一种数学运算而已。
就跟“蝶形运算”一样,怎么证明,这是数学系的人的工作。
在信号与系统里,f(t)的零状态响应y(t)可用f(t)与其单位冲激响应h(t) 的卷积积分求解得,即y(t)=f(t)*h(t)。
幽默讲卷积

最幽默的解释卷积的物理意义谈起卷积分当然要先说说冲击函数—-这个倒立的小蝌蚪,卷积其实就是为它诞生的。
‖冲击函数‖是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。
古人曰:‖说一堆大道理不如举一个好例子‖,冲量这一物理现象很能说明‖冲击函数‖。
在t时间内对一物体作用F的力,我们可以让作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。
于是在用t 做横坐标、F做纵坐标的坐标系中,就如同一个面积不变的长方形,底边被挤的窄窄的,高度被挤的高高的,在数学中它可以被挤到无限高,但即使它无限瘦、无限高、但它仍然保持面积不变(它没有被挤没!),为了证实它的存在,可以对它进行积分,积分就是求面积嘛!于是‖卷积‖ 这个数学怪物就这样诞生了。
说它是数学怪物是因为追求完美的数学家始终在头脑中转不过来弯,一个能瘦到无限小的家伙,竟能在积分中占有一席之地,必须将这个细高挑清除数学界。
但物理学家、工程师们确非常喜欢它,因为它解决了很多当时数学家解决不了的实际问题。
最终追求完美的数学家终于想通了,数学是来源于实际的,并最终服务于实际才是真。
于是,他们为它量身定做了一套运作规律。
于是,妈呀!你我都感觉眩晕的卷积分产生了。
例子:有一个七品县令,喜欢用打板子来惩戒那些市井无赖,而且有个惯例:如果没犯大罪,只打一板,释放回家,以示爱民如子。
有一个无赖,想出人头地却没啥指望,心想:既然扬不了善名,出恶名也成啊。
怎么出恶名?炒作呗!怎么炒作?找名人呀!他自然想到了他的行政长官——县令。
无赖于是光天化日之下,站在县衙门前撒了一泡尿,后果是可想而知地,自然被请进大堂挨了一板子,然后昂首挺胸回家,躺了一天,嘿!身上啥事也没有!第二天如法炮制,全然不顾行政长管的仁慈和衙门的体面,第三天、第四天……每天去县衙门领一个板子回来,还喜气洋洋地,坚持一个月之久!这无赖的名气已经和衙门口的臭气一样,传遍八方了!县令大人噤着鼻子,呆呆地盯着案子上的惊堂木,拧着眉头思考一个问题:这三十个大板子怎么不好使捏?……想当初,本老爷金榜题名时,数学可是得了满分,今天好歹要解决这个问题:——人(系统!)挨板子(脉冲!)以后,会有什么表现(输出!)?——费话,疼呗!——我问的是:会有什么表现?——看疼到啥程度。
卷积到底是什么?今天让你彻底明白

卷积到底是什么?今天让你彻底明白读本科期间,信号与系统里面经常讲到卷积(convolution),自动控制原理里面也会经常有提到卷积。
硕士期间又学了线性系统理论与数字信号处理,里面也是各种大把大把卷积的概念。
至于最近大火的深度学习,更有专门的卷积神经网络(Convolutional Neural Network, CNN),在图像领域取得了非常好的实际效果,已经把传统的图像处理的方法快干趴下了。
啰啰嗦嗦说了这么多卷积,惭愧的是,好像一直以来对卷积的物理意义并不是那么清晰。
一是上学时候只是简单考试,没有仔细思考过具体前后的来龙去脉。
二是本身天资比较愚钝,理解能力没有到位。
三则工作以后也没有做过强相关的工作,没有机会得以加深理解。
趁着年前稍微有点时间,查阅了一些相关资料,力争将卷积的前世今生能搞明白。
奥本海姆教授的巨作首先选取知乎上对卷积物理意义解答排名最靠前的回答。
不推荐用“反转/翻转/反褶/对称”等解释卷积。
好好的信号为什么要翻转?导致学生难以理解卷积的物理意义。
这个其实非常简单的概念,国内的大多数教材却没有讲透。
直接看图,不信看不懂。
以离散信号为例,连续信号同理。
已知x[0] = a, x[1] = b, x[2]=c已知y[0] = i, y[1] = j, y[2]=k下面通过演示求x[n] * y[n]的过程,揭示卷积的物理意义。
第一步,x[n]乘以y[0]并平移到位置0:第二步,x[n]乘以y[1]并平移到位置1第三步,x[n]乘以y[2]并平移到位置2:最后,把上面三个图叠加,就得到了x[n] * y[n]:简单吧?无非是平移(没有反褶!)、叠加。
从这里,可以看到卷积的重要的物理意义是:一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。
重复一遍,这就是卷积的意义:加权叠加。
对于线性时不变系统,如果知道该系统的单位响应,那么将单位响应和输入信号求卷积,就相当于把输入信号的各个时间点的单位响应加权叠加,就直接得到了输出信号。
卷积物理意义

卷积物理意义
卷积的物理意义主要在于描述系统对输入信号的响应。
对于线性时不变系统,当输入信号f(t)作用于系统后,系统会输出一个响应信号y(t)。
这个响应可以看作是输入信号和系统冲激响应h(t)的卷积积分。
通俗地说,可以把卷积理解为一种“叠加”过程。
具体来说,卷积运算中的每一个输出都是输入信号与系统冲激响应的特定叠加的输出。
这种叠加发生在所有的时间点上,所以卷积的定义式是无限长的。
另外,卷积运算的结果与输入信号和系统冲激响应的顺序无关,即交换输入信号f(t)和系统冲激响应h(t)的顺序并不会改变卷积的结果。
这是卷积满足交换律的表现。
卷积的本质是什么?有什么物理意义?幽默的给你解释

卷积的本质是什么?有什么物理意义?幽默的给你解释分三个部分来理解: 1.信号的角度 2.数学家的理解(外行) 3.与多项式的关系卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。
因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?卷积表示为y(n) = x(n)*h(n)使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来的信号。
同理,x(n)的对应时刻的序列为x(0),x(1),x(2)...and so on;其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。
假设0时刻系统的响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。
但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(n-m),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。
再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(n-m)中的m的范围来约束的。
卷积的物理意义是什么

卷积的物理意义是什么?叽叽拨叽叽丁建辉对于初学者,我推荐用复利的例子来理解卷积可能更直观一些:小明存入100元钱,年利率是5%,按复利计算(即将每一年所获利息加入本金,以计算下一年的利息),那么在五年之后他能拿到的钱数是,如下表所示:将这笔钱存入银行的一年之后,小明又往银行中存入了100元钱,年利率仍为5%,那么这笔钱按复利计算,到了第五年,将收回的钱数是,我们将这一结果作为新的一行加入上面的表格中:以此类推,如果小明每年都往银行中存入新的100元钱,那么这个收益表格将是这样的:可见,最终小明拿到的钱将等于他各年存入的钱分别计算复利之后得到的钱数的总和,即:用求和符号来简化这个公式,可以得到:在上式中,为小明的存钱函数,而为存入银行的每一笔钱的复利计算函数。
在这里,小明最终得到的钱就是他的存钱函数和复利计算函数的卷积。
为了更清晰地看到这一点,我们将这个公式推广到连续的情况,也就是说,小明在从到的这一段时间内,每时每刻都往银行里存钱,他的存钱函数为,而银行也对他存入的每一笔钱按复利公式计算收益:,则小明到时间将得到的总钱数为:这也就是卷积的表达式了,上式可以记为。
相信通过上面这个例子,大家应该能够很清晰地记住卷积公式了。
下面我们再展开说两句:如果我们将小明的存款函数视为一个信号发生(也就是激励)的过程,而将复利函数视为一个系统对信号的响应函数(也就是响应),那么二者的卷积就可以看做是在时刻对系统进行观察,得到的观察结果(也就是输出)将是过去产生的所有信号经过系统的「处理/响应」后得到的结果的叠加,这也就是卷积的物理意义了。
卷积经典例子比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱贱地)鼓起来一个包,你的脸就是一个系统,而鼓起来的包就是你的脸对巴掌的响应,好,这样就和信号系统建立起来意义对应的联系。
下面还需要一些假设来保证论证的严谨:假定你的脸是线性时不变系统,也就是说,无论什么时候老板打你一巴掌,打在你脸的同一位置(这似乎要求你的脸足够光滑,如果你说你长了很多青春痘,甚至整个脸皮处处连续处处不可导,那难度太大了,我就无话可说了哈哈),你的脸上总是会在相同的时间间隔内鼓起来一个相同高度的包来,并且假定以鼓起来的包的大小作为系统输出。
卷积的本质及物理意义(整理)

卷积的本质及物理意义分三个部分来理解:1.信号的角度2.数学家的理解(外行)3.与多项式的关系卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。
因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?卷积表示为y(n) = x(n)*h(n)使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来的信号。
同理,x(n)的对应时刻的序列为x(0),x(1),x(2)...and so on;其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。
假设0时刻系统的响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。
但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(n-m),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。
再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(n-m)中的m的范围来约束的。
详解卷积公式的物理意义

详解卷积公式的物理意义作者:Uncle Jack日期:2020/03/15分解思维1. 人类科学有一个特点是喜欢使用分解的思维去理解分析很多复杂的事物,比如傅里叶级数把很多奇形怪状的函数分解成无穷多个三角函数,又比如力学分析中把单个力分解成直角坐标系中的的xy分量等等。
如果要研究以时间为自变量的函数x[t]经过系统H后会输出什么这样的问题,也可以用分解的方法去看待2. 从能量的角度看,任何信号都是由一份一份的基本能量所构成的,它们在时间轴上紧密排列,最后形成一条曲线,我们把它叫做x (t),纵轴为x(t),横轴为t,离散化之后叫x[n],因此信号一定是时间的函数。
和我们平时经验积累起来的函数不同,平时做数学题的函数多为静态函数,也就是一个输入值对应一个输出值,这种函数当前的输出和历史的输入好像没什么关系。
3. 利用分解思维,我们也可以定义出最基本的能量单元,或者取名叫单位1能量,这样一来所有的信号都可以由这个单位1能量组成,这个单位1能量就是冲击函数δ(t),离散世界中叫做δ[n],这个函数将用来表示单位1的能量,甚至它生成的时间位置都有做归一化处理,即在时刻0(注意这里说的是时刻)上出现单位1的能量,其余任意时刻能量都为0,为了表述方便,这里用离散函数分析通用意义。
用冲击函数表示任意函数x[n]为:因为只有当n=k时,δ[n-k]才为1,其余值都是0,所以等式是成立的。
这个公式的分析:时刻上看:在任意时刻k,信号的能量值x[k]等于x[k]乘以1,看起来像是废话,但这里面透露的深层次信息为:信号x[k]已经被分解,改用单位1能量的倍数来表示总时间上看:用单位1能量描绘了信号x[n]在时间轴上各个时刻的能量值大小现在假设x[n]经过一个线性移不变系统H,输出为y[n],因为线性,所以下面等式成立:又因为移不变性,所以下面等式成立:其中h[n]是系统H的冲击响应函数,h[n-k]是第n-k时刻对应的冲击响应值第一个关键的东西来了,冲击响应是什么?直观理解就是冲击信号通过系统之后的输出,这个输出函数同输入函数一样,也是带着一个时间自变量的信号。
卷积的本质及物理意义,解释的真幽默!

卷积的本质及物理意义,解释的真幽默!重磅干货,第一时间送达卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。
因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?本文分三个部分来理解:1.信号的角度2.数学家的理解(外行)3.与多项式的关系卷积表示为y(n) = x(n)*h(n)使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来的信号。
同理,x(n)的对应时刻的序列为x(0),x(1),x(2)...and so on;其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。
假设0时刻系统的响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。
但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(n-m),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。
再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(n-m)中的m的范围来约束的。
卷积积分的物理意义实验心得

卷积积分的物理意义实验心得卷积表示为y(n) = x(n)*h(n)使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来的信号。
同理,x(n)的对应时刻的序列为x(0),x(1),x(2)...and so on;其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。
假设0时刻系统的响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。
但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(n-m),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。
再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(n-m)中的m的范围来约束的。
即说白了,就是当前时刻的系统响应与多少个之前时刻的响应的“残留影响”有关。
当考虑这些因素后,就可以描述成一个系统响应了,而这些因素通过一个表达式(卷积)即描述出来不得不说是数学的巧妙和迷人之处了。
卷积是人为定义的一种运算,就是为了计算的方便规定的一种算法。
卷积在研究物理系统响应中的应用

卷积在研究物理系统响应中的应用一、概述卷积是一种重要的数学运算,它在物理学中有着广泛的应用。
物理系统的响应可以通过卷积来描述,这在研究信号处理、线性系统等领域中都有着重要意义。
本文将从卷积的基本概念入手,探讨在物理系统响应研究中的应用。
二、卷积的基本概念1.1 卷积的定义卷积是一种在数学和物理学中广泛应用的运算,它描述了两个函数之间的关系。
对于两个函数f(x)和g(x),它们的卷积记作f∗g,定义为:(f∗g)(x) = ∫f(t)g(x-t)dt其中,积分的上下限应根据具体问题来确定。
1.2 卷积的性质卷积具有一些重要的性质,例如线性性、交换律、结合律等。
这些性质使得卷积成为在物理系统响应描述中的重要工具。
三、物理系统的响应与卷积2.1 线性系统在物理学中,线性系统是一种重要的系统模型。
线性系统有着简单的特性,它的响应可以通过输入信号与系统的冲激响应进行卷积来描述。
这一过程被称为线性系统的卷积描述,它在物理系统分析中有着重要的应用。
2.2 信号处理信号处理是卷积在物理学中的另一重要应用领域。
在信号处理中,卷积用于描述系统的响应,并且可以用于滤波、降噪等操作。
卷积在信号处理中的应用既有理论意义,也有实际应用价值。
2.3 微分方程微分方程描述了物理系统中的变化规律,它们可以通过卷积来求解。
对于线性时不变系统,微分方程的解可以用系统的冲激响应和输入信号的卷积来表示。
这一方法在物理系统响应研究中有着重要的应用。
四、卷积在物理系统响应研究中的应用举例3.1 卷积在声学中的应用声学是物理学的一个重要分支,它研究声音在空间中的传播和响应规律。
卷积在声学中有着广泛的应用,例如描述声音在不同介质中的传播、声波在空间中的叠加等。
3.2 卷积在光学中的应用光学是物理学的另一个重要领域,它研究光的传播和吸收规律。
卷积在光学中也有着重要的应用,例如描述光波在空间中的干涉、衍射等现象。
3.3 卷积在电磁场中的应用电磁场是物理学中的经典问题之一,它描述了电荷在空间中的分布和移动规律。
幽默的卷积解释

最幽默的解释卷积的物理意义(2012-04-11 20:28:35)转载▼分类:模拟电路标签:杂谈最幽默的解释卷积的物理意义谈起卷积分当然要先说说冲击函数—-这个倒立的小蝌蚪,卷积其实就是为它诞生的。
”冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。
古人曰:”说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明”冲击函数”。
在t时间内对一物体作用F的力,我们可以让作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。
于是在用t做横坐标、F做纵坐标的坐标系中,就如同一个面积不变的长方形,底边被挤的窄窄的,高度被挤的高高的,在数学中它可以被挤到无限高,但即使它无限瘦、无限高、但它仍然保持面积不变(它没有被挤没!),为了证实它的存在,可以对它进行积分,积分就是求面积嘛!于是”卷积”这个数学怪物就这样诞生了。
说它是数学怪物是因为追求完美的数学家始终在头脑中转不过来弯,一个能瘦到无限小的家伙,竟能在积分中占有一席之地,必须将这个细高挑清除数学界。
但物理学家、工程师们确非常喜欢它,因为它解决了很多当时数学家解决不了的实际问题。
最终追求完美的数学家终于想通了,数学是来源于实际的,并最终服务于实际才是真。
于是,他们为它量身定做了一套运作规律。
于是,妈呀!你我都感觉眩晕的卷积分产生了。
例子:有一个七品县令,喜欢用打板子来惩戒那些市井无赖,而且有个惯例:如果没犯大罪,只打一板,释放回家,以示爱民如子。
有一个无赖,想出人头地却没啥指望,心想:既然扬不了善名,出恶名也成啊。
怎么出恶名?炒作呗!怎么炒作?找名人呀!他自然想到了他的行政长官——县令。
无赖于是光天化日之下,站在县衙门前撒了一泡尿,后果是可想而知地,自然被请进大堂挨了一板子,然后昂首挺胸回家,躺了一天,嘿!身上啥事也没有!第二天如法炮制,全然不顾行政长管的仁慈和衙门的体面,第三天、第四天……每天去县衙门领一个板子回来,还喜气洋洋地,坚持一个月之久!这无赖的名气已经和衙门口的臭气一样,传遍八方了!县令大人噤着鼻子,呆呆地盯着案子上的惊堂木,拧着眉头思考一个问题:这三十个大板子怎么不好使捏?……想当初,本老爷金榜题名时,数学可是得了满分,今天好歹要解决这个问题:——人(系统!)挨板子(脉冲!)以后,会有什么表现(输出!)?——费话,疼呗!——我问的是:会有什么表现?——看疼到啥程度。
最幽默的解释 卷积的物理意义

最幽默的解释卷积的物理意义
谈起卷积分当然要先说说冲击函数----这个倒立的小蝌蚪,卷积其实就是为它诞生的。
“冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。
古人曰:“说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明“冲击函数”。
在t时间内对一物体作用F的力,我们可以让作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。
于是在用t做横坐标、F做纵坐标的坐标系中,就如同一个面积不变的长方形,底边被挤的窄窄的,高度被挤的高高的,在数学中它可以被挤到无限高,但即使它无限瘦、无限高、但它仍然保持面积不变(它没有被挤没!),为了证实它的存在,可以对它进行积分,积分就是求面积嘛!于是“卷积” 这个数学怪物就这样诞生了。
说它是数学怪物是因为追求完美的数学家始终在头脑中转不过
来弯,一个能瘦到无限小的家伙,竟能在积分中占有一席之地,必须将这个细高挑清除数学界。
但物理学家、工程师们确非常喜欢它,因为它解决了很多当时数学家解决不了的实际问题。
最终追求完美的数学家终于想通了,数学是来源于实际的,并最终服务于实际才是真。
于是,他们为它量身定做了一套运作规律。
于是,妈呀!你我都感觉眩晕的卷积分产生了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卷积的物理意义
卷积的物理意义:卷积可代表某种系统对某个物理量或输入的调制或污染。
在泛函分析中,卷积、旋积或褶积(英语:Convolution)是
通过两个函数f和g生成第三个函数的一种数学算子,表征函数
f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。
如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。
卷积定理
卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。
即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。
这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。
在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。
利用卷积定理可以简化卷积的运算量。
对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算
复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。
这一结果可以在快速乘法计算中得到应用。