小学六年级数学知识点:分数四则混合运算知识点
苏教版六年级数学上册第五单元《分数四则混合运算》(知识点、常考题、易错题、拓展题)名师详解与训练
苏教版六年级上册第五单元《分数四则混合运算》详解与训练——知识点、常考题、易错题、重点题、拓展题《解决问题的策略》知识点分数四则混合运算的顺序:分数四则混合运算的顺序与整数相同。
先算乘除法,后算加减法;有括号的先算括号里面的,后算括号外面的。
分数四则混合运算的运算律:加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)乘法的交换律:a×b=b×a乘法的结合律:(a×b)×c=a×(b×c)乗法的分配律:(a+b)×c=a×c+b×c稍复杂的分数乘、除法实际问题:“量率”对应:找准单位“1”、已知对应分量的对应分率, 以及正确的数量关系式。
1.甲占(是)乙的几分之几几分之几=甲÷乙;甲=乙×几分之几;乙=甲÷几分之几;2.甲占(是)总量的几分之几,求乙?乙=总量-甲×几分之几3.甲比乙多(增加、上升、提高)几分之几几分之几=(甲-乙)÷乙;甲=乙×(1+几分之几);(1)12()15171517+⨯⨯ (2) 63×(910710-)÷101(1) 179111315131220304256+-+-+- (2)12816413211618141211-------考点拓展延伸11.解:12()15171517+⨯⨯ = 151×15×17+172×15×17 =17+30=472.解:63×(910710-)÷101 =63×109106310710⨯⨯-⨯ =900-700 =200 考点拓展延伸21.解: 179111315131220304256+-+-+- =1+31-(31+41)+(41+51)-(51+61) +(61+71)-(71+81) =1-81 =872.解:12816413211618141211------- =)(21-11--)(4121--)(8141--)(16181--(321161-)-(641321-)-(1281641-)-(12812561) =2561(1)499494499÷5 (2)2005×200420031.一个人从县城骑车去乡办工厂上班。
新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结
新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结分数四则混合运算(一)知识梳理一、分数四则运算的运算法则和运算顺序1、运算法则1)加减:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,再分母不变,分子相加减。
2)乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母。
3)除法:除以一个数就等于乘这个数的倒数。
2、运算顺序1)如果是同一级运算,一般按从左往右依次进行计算。
2)如果既有加减、又有乘除法,先算乘除法,再算加减。
3)如果有括号,先算括号里面的。
4)如果符合运算定律,可以利用运算定律进行简算。
模块一分数四则混合运算例1:计算,能用简便方法的要用简便方法。
4÷(xxxxxxxx3311) - 4×(xxxxxxxxxxxxxxxxxxxxxxxx) ÷(24) + (xxxxxxxxxxxxxxxx1129) ÷(9×[2+(1-7)])×(xxxxxxxx5314)变式1:计算,能用简便方法的要用简便方法。
27-27×(xxxxxxxx1) +(xxxxxxxxxxxxxxxx1131) ÷[1-(3+3)]×(18)+(22) -[(xxxxxxxxxxxxxxxxxxx)÷(46)×(46)+(64×(76))÷(xxxxxxxx1810)]简便计算类型归纳:模块二分数四则混合运算实际运用例2:XXX六年级共有200人,其中六(1)班人数占全年级的$\frac{1}{6}$,六(1)班和六(2)班一共有多少人?例3:小马虎在计算一个数减去$\frac{1}{3}$时漏看了小括号,这样算出的结果比正确结果大,这个数是多少?例4:一袋大米,吃了$\frac{1}{8}$后,又买来15千克倒入袋中,结果比原来重了,这袋大米现在有多少千克?变式2:食堂有82吨大米,前2天每天吃掉$\frac{3}{13}$吨,剩下的要3天吃完,平均每天可以吃多少吨?变式3:环卫工叔叔在小区里清理建筑垃圾,第一组有8人,共清理55吨,第二组有10人,共清理31吨。
六年级数学上册2.分数混合运算(含详解)(北师大版)
北师大版小学六年级数学上册期末复习专题讲义分数混合运算【知识点归纳】一.分数四则复合应用题【典例分析】二.分数的四则混合运算分数四则混合运算的顺序与整数四则混合运算的顺序一致,先算括号内的数(按照小括号、中括号、大括号的顺序),同一括号内或括号外的数,要按照先算乘除、后算加减的顺序进行计算.如果是同级运算,要按照从左到右的顺序,依次进行.繁分数:在一个分数的分子和分母里,至少有一个又含有分数,这种形式的分数,叫做繁分数.繁分数中,把分子部分和分母部分分开的那条分数线,叫做繁分数的主分数线(也叫主分线),主分线比其他分数线要长一些.繁分数的化简:①先找出中主分线,确定分子部分和分母部分,然后,这两部分分别进行计算,每部分的计算结果能约分的要约分,最后,改成“分子部分÷分母部分”的形式,再求出结果.②根据分数的基本性质,把繁分数的分子部分和分母部分同时扩大相同的倍数(这个倍数必须是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后,通过计算,化为最简分数或整数.【典例分析】=251; ②731÷[141÷(432-21)],=731÷[141÷625],=731÷103,=2494点评:本题主要考查分数四则混合运算的计算顺序.同步测试一.选择题(共10小题)1.120的相当于96的( )A .B .C .D .2.一件商品原价200元,涨价后再降价,现价( )原价.A .高于B .低于C .等于3.有两根绳,第一根长48米,截去它的后,恰好是第二根的3倍,第二根绳长( ) A .10米 B .16米 C .4米 D .12米4.李庄有良田320公顷,它的种小麦,其中是无公害麦田,李庄共有无公害麦田( ) A .46公顷 B .80公顷 C .64公顷 D .74公顷5.六(1)班学生人数的等于六(2)班学生人数的,已知六(2)班有48人,六(1)班有( )A .64人B .45人C .36人D .35人6.50的比一个数少7,求这个数是多少,正确列式是( )A .(50﹣7)×B .50×﹣7C .50×+77.在下面的选项中,不能用等号连接的一组算式是( )A .×99和×100﹣1B.×(×)和(×)×C.×和×D.﹣﹣和﹣(+)8.粮店新运来一批面粉,第一天卖出总袋数的,第二天卖出总袋数的.已知第一天卖出40袋,第二天卖出()A.160袋B.64袋C.100袋D.46袋9.甲数的等于乙数的,已知乙数的是50,甲乙两数共()A.45 B.60 C.75 D.13510.40的相当于80的()A.B.C.D.二.填空题(共8小题)11.×﹣+×27=12.一个数的是20,这个数的是.20m的等于m的.13.160千克减少它的,再减少千克,结果是千克.14.一本200页的书,第一天看全书的,第二天看余下的,第二天看了页,第3天应从页看起.15.一辆公交车载满了人,到一个站后下了12人,上来9人,这时车人数是原来的,这辆公交车原来有人.16.一根绳子长4m,第一次剪去它的,第二次剪去m,还剩m.17.甲数是12,乙数是9,甲数的和乙数的相等.18.只列式不计算.少先队大队部买回360本儿童读物,其中科技书占,文艺书占,其余是连环画.(1)科技书有多少本?(2)科技书和文艺书一共有多少本?(3)连环画有多少本?三.判断题(共5小题)19.甲数比乙数多,则乙数比甲数少..(判断对错)20.某景区的门票先提价,再降价,门票的价格不变.(判断对错)21.如果男生比女生多,那么女生就比男生少.(判断对错)22.20千克减少后再增加,结果还是20千克..(判断对错)23.(判断对错)四.计算题(共4小题)24.计算下面各题,能用简便的要用简便方法.(+)×27(﹣)÷×84×+×25.脱式计算(能简算的要简算)×10+÷(4﹣﹣)+(﹣)÷103×26.列式计算①一个数的是36的,这个数是多少?(列方程解)②加上的和与一个数的相等,这个数是多少?27.口算.6÷0.06=0.5=0.6=72÷=÷=÷3+=÷=÷26==五.应用题(共5小题)28.工程队要新修一条长8千米的公路,已经修了4天,修了全路的.照这样计算,修完这条路一共需要多少天?29.王叔叔开车从甲地到乙地,已行了全程的,再行20km就行了全程的一半,甲地到乙地一共多少千米?30.养殖场有鸡4000只,第一周卖出总数的,第二周卖出总数的.两周一共卖出多少只?31.果园儿里有梨树180棵,桃树的棵数是梨树的,又是杏树的,杏树有多少棵?32.两根1米长的绳子,第一根剪去它的,第二根剪去米,哪根剩余得多?参考答案与试题解析一.选择题(共10小题)1.【分析】先用乘法算出120的是多少,再除以96即可解答.【解答】解:120×÷96=48÷96=;答:120的相当于96的.故选:C.【点评】此题考查了已知一个数,求它的几分之几是多少,用乘法计算;求一个数是另一个数的几分之几,用除法计算.2.【分析】先把原价看作单位“1”,涨价后的价格是原价的1+,再降价后的价格是涨价后的1﹣,即是原价的(1+)×(1﹣).【解答】解:(1+)×(1﹣)=1.25×0.75=93.75%即此时价格是原价的93.75%,93.75%<1,低于原价.故选:B.【点评】完成本题要注意前后两个的单位“1”是不同的.3.【分析】根据题意,把第一根绳长看作单位“1”,则剩余长度为:48×(1﹣)=36(米),则第二根长度为36÷3=12(米).【解答】解:48×(1﹣)÷3=48×=12(米)答:第二根绳长12米.故选:D.【点评】本题主要考查分数四则运算的应用,关键找对单位“1”.4.【分析】先把良田的总面积看成单位“1”,小麦的面积是总面积的,用总面积乘即可求出小麦的面积,再把小麦的面积看成单位“1”,其中是无公害麦田,再用乘法即可求出无公害麦田的面积.【解答】解:320××=80×=64(公顷)答:李庄共有无公害麦田64公顷.故选:C.【点评】解答此题的关键是分清两个不同的单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法求解.5.【分析】首先根据题意,把六(2)班的学生人数看作单位“1”,根据分数乘法的意义,用六(2)班的学生人数乘,求出六(1)班学生人数的是多少人;然后把六(1)班的学生人数看作单位“1”,根据分数除法的意义,用六(2)班学生人数的除以,求出六(1)班的学生人数是多少.【解答】解:48×÷=36÷=45(人)答:六(1)班有45人.故选:B.【点评】解答此类问题,首先找清单位“1”,进一步理清解答思路,列式的顺序,从而较好的解答问题.6.【分析】根据题意先求出50的即50×,再用50×加上7即可得解.【解答】解:50×+7=30+7=37答:这个数是37.故选:C.【点评】这类型的题目要分清楚数量之间的关系,先求什么再求什么,找清列式的顺序,列出算式即可.7.【分析】根据分数的四则混合运算的顺序及运算定律,逐项分析解答即可.【解答】解:A、×99=×(100﹣1)=×100﹣,所以×99和×100﹣1不能用等号连接;B、×(×)=(×)×,运用乘法的结合律进行简算,所以×(×)和(×)×能用等号连接;C、×=×,运用乘法的交换律进行简算;所以×和×能用等号连接;D、﹣﹣=﹣(+),运用减法的性质进行简算;所以﹣﹣和﹣(+)能用等号连接;即不能用等号连接的一组算式是选项A.故选:A.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.8.【分析】把这批面粉的袋数看作单位“1”,根据分数除法的意义,用总袋数除以就是这批面粉的袋数;根据分数乘法的意义,用总袋数乘就是第二天卖出的袋数.【解答】解:40÷×=160×=64(袋)答:第二天卖出64袋.故选:B.【点评】已知一个数的几分之几是多少,求这个数,用已知数除以它所对应的分率;求一个数的几分之几是多少,用这个数乘分率.9.【分析】已知乙数的是50,用50除以求出乙数,然后再乘上,就是甲数的,然后再除以,就可以求出甲数,然后再把甲乙两数相加即可.【解答】解:50÷=7575×÷+75=45÷+75=60+75=135答:甲乙两数共135.故选:D.【点评】根据题意,先弄清运算顺序,然后再列式进行解答.10.【分析】先把40看成单位“1”,用乘法求出它的,再把80看成单位“1”,用求出的积除以80即可解答.【解答】解:40×÷80=32÷80=答:40的相当于80的.故选:D.【点评】解决本题关键是分清楚不同的单位“1”,已知单位“1”的量求它的几分之几是多少用乘法;求一个数是另一个数的几分之几,用除法.二.填空题(共8小题)11.【分析】先算乘法和除法,再算减法,最后算加法.【解答】解:×﹣+×27=﹣+=+=11故答案为:11.【点评】考查了分数四则混合运算,注意运算顺序和运算法则,然后再进一步计算.12.【分析】(1)把这个数看作单位“1”,根据分数除法的意义,用20除以求出这个数是多少;然后根据分数乘法的意义,用这个数乘以,求出这个数的是多少即可;(2)先把20米看成单位“1”,用20米乘求出20米的是多少,再把要求的长度看成单位“1”,它的就是20米乘的积,再根据分数除法的意义求出这个长度.【解答】解:(1)20÷×=36×=24(2)20×÷=8÷=32(米)答:一个数的是20,这个数的是24.20m的等于32m的.故答案为:24,32.【点评】解答此类问题,首先找清单位“1”,进一步理清解答思路,列式的顺序,从而较好的解答问题.13.【分析】160千克减少它的,就是160的(1﹣),然后再减去千克即可.【解答】解:160×(1﹣)﹣=160×﹣=120﹣=119.75(千克)答:结果是119.75千克.故答案为:119.75.【点评】根据题意,先弄清运算顺序,然后再列式进行解答.14.【分析】把这本书的总页数看作单位“1”,第一天看了,根据分数乘法的意义,用这本书的总页数乘就是第一天看的页数;用总页数减第一天看的页数就是看完第一天余下的页数;再把余下的页数看作单位“1”,根据分数乘法的意义,用余下的页数乘就是第二天看的页数.用第一天、第二天看的页数加1页就是第三天开始看的页数.【解答】解:200×=100(页)(200﹣100)×=100×=50(页)100+50+1=151(页)答:第二天看了50页,第3天应从151页看起.故答案为:50,151.【点评】根据分数乘法的意义即可分别求出第一天、第二天看的页数.前两天看的页数之和加1页就是第三天开始看的页数.15.【分析】把车上原有的人数看作单位“1”.到一个站后下了12人,上来9人,这时车上的人数比原有人数少(12﹣9)人,这(12﹣9)人是原来车上人数的(1﹣).根据分数除法的意义,用(12﹣9)人除以(1﹣)就是车上原有人数.【解答】解:(12﹣9)÷(1﹣)=3÷=36(人)答:这辆公交车原来有36人.故答案为:36.【点评】已知一个数的几分之几是多少,求这个数,用已知数除以它所对应的分率.关键是求出这辆车上减少的人数及减少的人数所占的分率.16.【分析】把这条绳子的长度看作单位“1”,第一次剪去它的,还剩下它的(1﹣),根据分数乘法的意义,用这条绳子的长度乘(1﹣)就是第一次剪去后剩下的长度;再用第一次剪去后剩下的长度减第二次剪去的长度就是最后剩下的长度.【解答】解:4×(1﹣)﹣=4×﹣=2﹣=1(m)答:还剩1m.故答案为:1.【点评】关键明白两个所表示的意义.第一个,表示这条绳子,也就是这条绳子的一半,即2米,第二个是米.17.【分析】先用12乘求出甲数的是多少,然后再除以9即可.【解答】解:12×÷9=3÷9=答:甲数是12,乙数是9,甲数的和乙数的相等.故答案为:.【点评】根据题意,先弄清运算顺序,然后再列式解答.18.【分析】把买回的360本儿童读物看作单位“1”,科技书占,等量关系式是:总本数×=科技书的本数,文艺书占,等量关系式是:总本数×=文艺书的本数,因为其余是连环画,所以用总本数分别减去科技书的本数和文艺书的本数的总和就等于连环画的本数.【解答】解:(1)360×=90(本)答:科技书有90本.(2)360×=240(本)240+90=330(本)答:科技书和文艺书一共有330本.(3)360﹣330=30(本)答:连环画有30本.故答案为:360×=90(本),360×=240(本)240+90=330(本),360﹣330=30(本).【点评】本题考查了分数乘法问题的解答方法的应用.三.判断题(共5小题)19.【分析】“甲数比乙数多”,是把乙数看作单位“1”,平均分成5份,那么甲数就是5+1=6份;求乙数比甲数少几分之几,也就是求乙数比甲数少的占甲数的几分之几;据此解答即可.【解答】解:把乙数看作5份,那么甲数就是5+1=6份,那么:(6﹣5)÷6=1÷6=,答:乙数比甲数少.所以原题干说法错误;故答案为:×.【点评】解答此题关键是分清两个单位“1”的区别,前一句话是把乙数看作单位“1”,而后一句话是把甲数看作单位“1”.20.【分析】先把原价看作单位“1”,根据分数乘法的意义,用原价乘(1+)就是提价后的票价;再把提价后的票价看作单位“1”,根据分数乘法的意义,用提价后的票价乘(1﹣)就是再降价后的票价,即现价.再把原价与现价比较即可确定门票的价格是否变了.【解答】解:1×(1+)×(1﹣)=1××=<1即门票的价格比原价低了原题说法错误.故答案为:×.【点评】此类题为常考题.无论先提后降还先降后提,都比原价低.21.【分析】根据“男生比女生多,”,把女生人数看作单位“1”,则男生人数就是它的(1+),再用男女生人数差除以男生人数,即可求出女生比男生少几分之几,再与比较即可.【解答】解::÷(1+)=÷=女生就比男生少,而不是.故答案为:×.【点评】解决此题也可以通过判断单位“1”的量来解答,前一句话的单位“1”是女生人数,后一句话的单位“1”是男生人数,单位“1”的量不同,所以分率就不同.22.【分析】将原重量当作单位“1”,则先减少后的重量是原重量的1﹣,将减少后再增加,将减少后的重量当作单位“1”,则此时重量是减少后重量的1+,根据分数乘法的意义,此时重量是原来的(1﹣)×(1+).【解答】解:(1﹣)×(1+)=×=即此时重量是原来的,比原来轻了.故答案为:×.【点评】完成本题要注意前后两个分率的单位“1”是不同的.23.【分析】先算乘法,再算除法,再算加法,最后算减法,求出结果,然后再进一步解答.【解答】解:×÷÷+﹣=÷÷+﹣=÷+﹣=1+﹣=1﹣=1.故答案为:×.【点评】考查了分数四则混合运算,注意运算顺序和运算法则.四.计算题(共4小题)24.【分析】(1)运用乘法的分配律进行简算;(2)先算小括号里的减法,再算括号外的除法;(3)把84化成85﹣1,再运用乘法的分配律进行简算;(4)运用乘法的分配律进行简算.【解答】解:(1)(+)×27=×27+×27=15+5=20;(2)(﹣)÷=÷=;(3)×84=×(85﹣1)=×85﹣×1=3﹣=2;(4)×+×=(+)×=×=.【点评】此题考查的目的是理解掌握分数四则混合运算的顺序以及它们的计算法则,并且能够灵活运用乘法的运算定律进行简便计算.25.【分析】(1)运用乘法的分配律进行简算;(2)小括号里的运用减法的性质进行简算,再算括号外的除法;(3)先算小括号里的减法,再算括号外的除法,最后算加法;(4)把103化成102+1,再运用乘法的分配律进行简算.【解答】解:(1)×10+=×(10+1)=×11=7;(2)÷(4﹣﹣)=÷[4﹣(+)]=÷[4﹣1]=÷3=;(3)+(﹣)÷=+÷=+=;(4)103×=(102+1)×=102×+1×=101+=101.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.26.【分析】①设这个数是x,用x乘等于36乘,求出x即可;②先用加法算加上的和,再把一个数看作单位“1”,用算出的和除以即可.【解答】解:①设这个数是x,x=36×x÷=30x=50;答:这个数是50.②(+)÷==;答:这个数是.【点评】本题考查了混合运算的运算顺序,要明确先算什么再算什么.27.【分析】根据小数、分数四则混合运算的顺序,按照小数、分数四则运算的计算法则,直接进行口算即可.【解答】解:口算.6÷0.06=1000.5=1.250.6=0.4572÷=64÷=÷3+=÷=÷26==3【点评】此题考查的目的是理解掌握小数、分数四则混合运算的顺序以及它们的计算法则,并且能够正确熟练地进行口算,提高口算能力.五.应用题(共5小题)28.【分析】照这样计算,说明修的工作效率不变;工作效率一定工作时间和工作量成正比例;把用的总时间看成单位“1”,它的对应的数量是4天,由此用除法求出总时间即可.【解答】解:4÷=16(天)答:修完这条路需要16天.【点评】本题根据比例关系发现工作量的就是工作时间的,由此根据已知一个数的几分之几是多少,求这个数用除法解答.29.【分析】根据题意可得等量关系式:全程的﹣全程的=20千米,由此设甲地和乙地相距x千米,列方程解答即可.【解答】解:设甲地和乙地相距x千米,x﹣x=60x=60x=360答:甲地和乙地相距360千米.【点评】解答此题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.30.【分析】把总数看成单位“1”,用第一周卖出的分率加上第二周卖出的分率就是总数的几分之几;用总数的数量乘上一共卖出的分率就是一共卖出了多少只.【解答】解:4000×(+)=4000×=3100(只)答:两周一共卖出3100只.【点评】本题考查了分数乘法应用题,关键是确定单位“1”,解答依据是:求一个数的几分之几是多少用乘法计算.31.【分析】先把梨树棵数看作单位“1”,依据分数乘法意义,求出桃树的棵数,再把杏树的棵数看作单位“1”,依据分数除法意义即可解答.【解答】解:180×÷=270÷=324(棵)答:杏树有324棵.【点评】本题考查了分数乘除法应用题,关键是确定单位“1”,找到具体数量对应的分率;解答依据是:已知一个数的几分之几是多少,求这个数用除法计算.求一个数的几分之几是多少用乘法计算.32.【分析】把两根绳子的长度分别看作单位“1”,第一根剪去它的,还剩下这根绳子的(1),根据一个数乘分数的意义,用乘法求出第一根剩下多少米,第二根剪去米,根据减法的意义,直接用减法求出第二根剩下多少米,然后进行比较即可.【解答】解:1×(1)==(米);1=(米);米=米;答:剩余的一样多.【点评】此题考查的目的是理解掌握一个数乘分数的意义及应用,以及分数减法的意义及应用.。
小升初数学知识点精讲(分数的四则运算)
正 2x÷2=9.6÷2
解
x=4.8
归纳总结
方程的意义: 含有未知数的等式,叫做方程。
方程和等式的关系 方程都是等式,但等式不一定是方程。
方程的解和解方程的区别 使方程左右两边相等的未知数的值,叫做方程的解 求方程的解的过程叫做解方程。
解:6χ=30
χ+2=7
6χ÷6=30÷6
χ+2-2=7-2
χ=5
χ=5
6χ+12=42 解:6χ+1 2解-:126=χ=424-2-1212
6χ+2×6=42 解:6χ+12=42 6χ+12-12=6χ4=2-421-2 12
6χ=30 6χ÷6=χ=303÷06÷6
6χ=30
χ=5
6χ÷6=χ=303÷0÷6 6
题3
本题的单位 “1”是这本书
的全部页数,是未知的。全
部页数的
5 8
是45页。
解:
45
5 8
45
8 5
72 (页)
答:这本书共有72(页)。
题4 东方农场去年退耕还林630公顷,超过计划还林面积
的20%,去年计划退耕还林多少公顷?
分析:本题的单位“1”是去年计划 还林面积,是要求的问题。用除法: 方法:数量÷(1+n%)=单位“1” 。
解:630÷(1+20%) =630÷120% =525(公顷)
答:去年计划退耕还林525公顷 。
易错1
易错点拨
错解:
240
1 6
40
错因: 把梨树的棵数看作单位 “1”,而实际上是苹果树 的棵数为单位“1”的量。
对策: 帮助学生弄清题中被比较的 量(单位“1”的量)。单位 “1”的量,有时在题目中是 明显的,有时要从题意去理 解。
分数的四则混合运算知识点
分数的四则混合运算知识点分数是数学中常见的一种数形式,它由一个整数部分和一个分数部分组成。
分数可以表示部分整数,常见的分数形式包括真分数和假分数。
在数学中,我们经常需要对分数进行四则混合运算,即加法、减法、乘法和除法。
本文将介绍分数的四则混合运算的知识点和相关的运算规则。
一、分数的加法分数的加法是指两个分数相加的运算。
要将两个分数相加,首先要确保两个分数的分母相同,然后将分子相加,分母保持不变。
例如,计算1/4 + 1/3的结果,首先需要将两个分数的分母统一为12,然后相加分子,得到7/12。
如果两个分数的分母不相同,我们需要找到它们的最小公倍数,然后通过改变分数的形式,使它们的分母相同。
例如,计算1/4 + 2/3的结果,最小公倍数为12,我们可以将1/4改写为3/12,然后进行分数的加法,得到5/12。
二、分数的减法分数的减法是指两个分数相减的运算。
要将两个分数相减,和分数的加法类似,首先要确保两个分数的分母相同,然后将分子相减,分母保持不变。
例如,计算2/3 - 1/4的结果,首先需要将两个分数的分母统一为12,然后相减分子,得到5/12。
如果两个分数的分母不相同,我们需要找到它们的最小公倍数,然后通过改变分数的形式,使它们的分母相同。
例如,计算2/3 - 1/5的结果,最小公倍数为15,我们可以将2/3改写为10/15,然后进行分数的减法,得到7/15。
三、分数的乘法分数的乘法是指两个分数相乘的运算。
要将两个分数相乘,只需要将它们的分子相乘,分母相乘。
例如,计算3/4 * 2/5的结果,分子相乘得到6,分母相乘得到20,所以答案是6/20,可以进一步简化为3/10。
四、分数的除法分数的除法是指两个分数相除的运算。
要将一个分数除以另一个分数,只需要将它们的分子相除,分母相除。
例如,计算3/4 ÷ 1/2的结果,分子相除得到3,分母相除得到2,所以答案是3/2,可以进一步简化为1整又1/2。
青岛版小学数学六年级上册第六单元分数四则混合运算重点知识归纳
青岛版小学数学六年级上册第六单元分数四则混合运算重点知识归纳知识点1 分数四则混合运算的顺序与整数四则混合运算一样,没有括号的,先算乘除,后算加减,同级运算,从左往右依次计算。
有括号的,从内到外先算括号里面的。
【说明】同级运算:加减为一级运算,乘除为二级运算。
有加减乘除,先算乘除,后算加减。
知识点2 分数四则混合运算的运算律和运算性质同整数运算律和运算性质一样1.运算律(1)加法运算律:①交换律:a+b=b+a;②结合律:a+b+c=a+(b+c);(2)乘法运算律①交换律:a×b=b×a;②结合律:a×b×c=a×(b×c);③分配律: a×(b±c)=ab±ac【注意】分配律只适用于乘法,不适用于加减法和除法。
2.运算性质(1)减法的性质公式:a-b-c=a-(b+c)(2)除法的性质公式:a÷b÷c=a÷(b×c)知识点3 分数四则混合运算法则1.加减:同分母分数相加减,分母不变,分子相加减;2.乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母;3.除法:除以一个数等于乘这个数的倒数。
知识点4 分数四则混合运算的简便计算1.利用乘法的分配律及其逆运算;2.利用减法的性质。
【注意】运用乘法分配律简便计算时注意因数“1”的添加如:35-27×35=35×1-27×35=35×(1-27)=35×57=37知识点4 分数四则混合运算应用1.已知整体和一部分占整体的几分之几,求另一部分的量。
列式:a-a×cb 或a×(1−cb)【说明】整体就是那个单位“1”,a是单位“1”的量。
cb表示占整体的几分之几(即分率)。
2.已知一个数以及另一个数比它多几分之几,求另一个数。
列式:a+a×几几或a×(1+几几)【重点】找准分率和单位“1”的对应关系3. 已知一个数以及另一个数比它少几分之几,求另一个数。
新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结
分数四则混合运算(一)知识梳理一、分数四则运算的运算法则和运算顺序 1、运算法则(1)加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。
(2)乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母 (3)除法:除以一个数就等于乘这个数的倒数 2、运算顺序(1)如果是同一级运算,一般按从左往右依次进行计算 (2)如果既有加减、又有乘除法,先算乘除法、再算加减 (3)如果有括号,先算括号里面的(4)如果符合运算定律,可以利用运算定律进行简算。
模块一 分数四则混合运算例1 计算,能用简便方法的要用简便方法。
454544÷-÷784341187÷+⨯ 2011103231322-⨯-2412743⨯+)( 52424587⨯÷ 32753275⨯÷⨯5216514371⨯-÷ 9519154÷+⨯ 149)]321(2[⨯-+变式1 计算,能用简便方法的要用简便方法。
100992727⨯- 72767276+÷+ )4183(83+÷1352213518135-⨯+⨯ 361)9212721(÷-+ 41)]8341(1[÷+- 46944695⨯+⨯ 2120)768364(÷+⨯ 109185)2153(43⨯-+÷简便计算类型归纳:模块二 分数四则混合运算实际运用例2 英才小学六年级共有200人,其中六(1)班人数占全年级的41 ,六(2)班人数占全年级的4011,六(1)班和六(2)班一共有多少人?例3 小马虎在计算一个数减去53的差除以4时漏看了小括号,这样算出的结果比正确结果大109,这个数是多少?例4 一袋大米,吃了81后,又买来15千克倒入袋中,结果比原来重了21,这袋大米现在有多少千克?变式2 食堂有43吨大米,前2天每天吃掉81吨,剩下的要3天吃完,平均每天可以吃多少吨?变式3 环卫工叔叔在小区里清理建筑垃圾,第一组有8人,共清理59吨,第二组有10人,共清理513吨。
通用版小学6年级全册数学知识点汇总小六数学第1讲分小四则混合运算(教师版)
第一讲分小四则混合运算一、数的互化1.小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2.分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3.一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
4.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5.百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7.百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
二、数的整除1.把一个合数分解质因数,通常用短除法。
先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2.求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的最大公约数。
3.求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4.成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。
三、约分和通分1.约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
2.通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
四、性质和规律1.商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍数,商不变。
小学六年级数学知识点:分数四则混合运算知识点
第 1 1 页页小学六年级数学知识点:分数四则混合运算知识点数学是一门基础学科数学是一门基础学科, , , 被誉为科学的皇后。
被誉为科学的皇后。
对于我们的广大小学生来说的广大小学生来说, , , 数学水平的高低数学水平的高低数学水平的高低, , , 直接影响到以后的直接影响到以后的学习,特地为大家整理了分数四则混合运算知识点,希望对大家有用大家有用!!小学六年级数学知识点:分数乘法知识点一、运算顺序:分数四则混合运算的运算顺序和整数则混合运算的运算顺序相同:一个算式里,如果只含有两级运算,先算第一级运算,再算第二级运算。
在含有括号的算式里,先算小括号里面的,再算中括号里面的,最后算括号外面的。
二、计算法则:分数乘法的意义:分数乘以整数—×12 表示12个—是多少。
整数乘以真分数12×—表示12的—是多少。
分数乘以真分数—×——的—是多少。
一个数乘以带分数—×1—表示—的1—倍是多少。
分数加、减法的计算法则:同分母分数相加减,分母不变,分子相加减。
异分母分数相加减,先通分,再按同分母方法计算。
分数乘除法计算方法:分数乘法,分子相乘作分子,分母相乘作分母。
分数除法,乘以除数的倒数。
三、分数四则运算的意义::三、分数四则运算的意义加法::加法把两个数合并成一个数的运算把两个小数合并成一个小数把两个分数合并成一个分数的运算;;的运算把两个分数合并成一个分数的运算减法::减法已知两个加数的和与其中一个加数,求另一个加数的运算已知两个加数的和与其中一个加数,求另一个加数的运算 已知两个加数的和与其中一个加数,求另一个加数的运算求另一个加数的运算;;已知两个加数的和与其中一个加数,求另一个加数的运算乘法::乘法求几个相同加数的和的简便运算,,小数乘整数的意义与整数求几个相同加数的和的简便运算乘法意义相同;;乘法意义相同一个数乘纯小数就是求这个数的十分之几,百分之几……除法::除法已知两个因数的积与其中一个因数,求另一个因数的运算,,已知两个因数的积与其中一个因数,求另一个因数的运算与整数除法的意义相同页第 22 页第 3 3 页页 【练习题】1. 1. 解方程。
六上第五单元 分数四则混合运算知识点整理
第五单元分数四则混合运算知识点整理
1、分数四则混合运算的顺序
分数四则混合运算运算的顺序,和整数、小数四则混合运算顺序相同。
先算乘除法,后算加减法;有括号的先算小括号里面的,再算中括号,最后算括号外面的。
2、分数四则混合运算的运算律
(注:如果遇到除法,先转化为乘法,再使用运算律)
加法的交换律:a+b = b+a
加法的结合律:(a+b)+c = a+(b+c)
减法的性质:a-(b+c) = a-b-c
a-(b-c) = a-b+c
乘法的交换律:a×b = b×a
乘法的结合律:(a×b)×c = a×(b×c)
乘法的分配律:(a+b)×c = a×c+b×c
(a-b)×c = a×c-b×c
减法的性质:a÷(b×c) = a÷b÷c
a÷(b÷c) = a÷b×c
3、稍复杂的分数乘法实际问题
(1)总数与部分数相比较的问题:【分数乘法、减法】
一般解题方法:先求出未知的部分数,再用总数减部分数等于另一部分数。
(2)已知一个数量比另一个数量多(或少)几分之几,求这个数量是多少的问题:【分数乘法、加减法】
一般解题方法:先求出多(或少)的部分,再用加法或减法求出结果。
(注:1、对于题中出现的带单位与不带单位的分数,要注意它们的意义不一样。
2、看清单位“1”,看清已知分率对应的是什么量。
)。
分数混合运算六年级知识点
分数混合运算六年级知识点分数混合运算是六年级数学中的重要知识点之一。
掌握好这个知识点,对于学生来说是非常关键的。
本文将对分数混合运算的相关概念、运算规则以及解题方法进行详细介绍,以帮助学生更好地理解和掌握这一知识点。
一、分数混合运算的概念分数混合运算指的是整数与分数之间的四则运算。
在分数混合运算中,我们需要掌握以下几个概念:1. 整数:数学中表示没有小数部分的数,可以是正数、负数或零。
2. 分数:数学中表示两个整数之间的比值关系的表示形式,由一个分子和一个分母组成。
3. 分数的加减乘除运算:分数之间可以进行加、减、乘、除四则运算。
二、分数混合运算的运算规则在进行分数混合运算时,需要遵循以下运算规则:1. 加法规则:对于两个有相同分母的分数,可以直接将分子相加,分母保持不变。
2. 减法规则:对于两个有相同分母的分数,可以直接将分子相减,分母保持不变。
3. 乘法规则:将两个分数的分子相乘,分母相乘,得到的结果即为乘积的分数形式。
4. 除法规则:将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘,得到的结果即为商的分数形式。
三、解题方法与实例分析1. 加法和减法运算的解题方法:对于分数的加法和减法运算,首先需要将分数的分母化为相同的数,然后进行分子的加减运算。
最后将结果化简为最简分数形式。
例如,计算1/2 + 3/4的结果:将两个分数的分母化为相同的数,这里可以取4作为公共分母,得到:1/2 + 3/4 = 2/4 + 3/4 = 5/4将结果化简为最简分数形式,5/4可以化简为1整1/4的形式,即1 1/4。
对于减法运算,解题方法与加法类似。
2. 乘法和除法运算的解题方法:对于分数的乘法和除法运算,直接将分子相乘或相除,分母相乘或相除即可。
最后将结果化简为最简分数形式。
例如,计算2/3 × 4/5的结果:直接将分子相乘,分母相乘,得到:2/3 × 4/5 = 8/15将结果化简为最简分数形式,8/15即为最终结果。
苏教版数学六年级上册《分数四则混合运算和应用题》单元知识整理
《分数四则混合运算和应用题》单元知识整理一、分数四则混合运算 1、运算顺序:(1) 同级运算,从左到右。
小技巧:可以随便调换位置,但要连同数字前面的运算符号一起调换。
对于 二级运算,遇“÷”先变“ ×”,除数变倒数,“一线到底”约分到最简分数。
所谓“一线到底”,在加减法中,编一通分再计算,在乘除法中,遇“除” 变“乘”, 一次过约分,约到不能再约分为主。
(在第一级运算中,某两分数直接加或减得 整数的情况除外。
)(2) 异级运算,先乘除,后加减。
(3) 有括号,要先算小( )里面的,再算[ ]。
2、 简便运算简便运算就更是千变万化了,在此不再最赘述了,但有一点我认为别太难为学 习有困难的学生,只要他能用一般的方法算出来已是很了不起的了! 3、 文字题文字题是比较能体现学生四则混合运算顺序是否掌握的一种题型,学生大多 会用“直译”的方法,但遇到要改变运算顺序时,有相当部分的学生不会加小括 号或中括号等,教学中,我常用如下的方法:1、“直译” + “缩句”,如:2 3 1 3 1加上 除以 的商,所得的和乘 ,积是多少?4 4 4 2 1 3 1第一步:“直译” + ÷ × 3 4 4 41第二步:“缩句”:和× =积(据最后的问题缩句),“和”与“×”表示有二 42 13 级运算,第一级运算要加( ),因此:( + ÷ )× 143 4 4 提醒:文字题中有“和”、“差”、“积”、“商”等字时,一般“和”、“差”的 部分要加上( ),当然这是有根据的,在没有括号的算式里,要“先乘除、后 加减”,现在要先算“和”、“差”,当然先考虑是否要加( )。
2、分数乘法的意义在文字题中是个“陷井”,如: 4比5 吨多 是多少吨?54这道题中的“比 5 吨多 ”不是“差比”,而是“倍比”,一不小心就会列成: 5 4 5+ 5 令人懊悔不已!正确的列式为: 4 5+5×54当然,“比 5 多 的数是多少?”这道题一直是个有争议的文字题,原因有 5 二:4 一是分数既可以表示一个数,在这种情况下,可列为:5+ 。
六年级上册数学分数四则混合运算
六年级上册数学分数四则混合运算摘要:一、分数四则混合运算的概念与意义二、分数四则混合运算的运算顺序三、分数四则混合运算的计算方法四、分数四则混合运算的实用案例解析五、易错题解析与巩固练习正文:一、分数四则混合运算的概念与意义分数四则混合运算是指在数学计算中,涉及到分数、整数、小数等多种数的四则运算。
在小学六年级上册的数学课程中,学生们将学习如何进行分数四则混合运算。
这部分知识不仅能为学生们打下扎实的数学基础,还能培养他们的逻辑思维能力。
二、分数四则混合运算的运算顺序1.先乘除后加减:在一个算式中,如果既有乘除法,又有加减法,那么要先计算乘除法,再计算加减法。
2.同级运算从左到右:在同一级别的运算中,要按照从左到右的顺序进行计算。
3.分数与整数、小数的运算顺序:遇到分数与整数、小数相乘除时,可以先将整数、小数转化为分数,然后按照分数四则运算的顺序进行计算。
三、分数四则混合运算的计算方法1.分数的加减法:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,再按照同分母分数加减法的方法计算。
2.分数的乘除法:分数乘法,将分子相乘,分母相乘;分数除法,将分子相除,分母相除。
3.整数与分数的运算:将整数视为分数的特殊情况,分母为1,然后按照分数四则运算的方法进行计算。
四、分数四则混合运算的实用案例解析1.案例一:计算3/4 + 2/3 - 1/22.案例二:计算(2/3) × 3/2 + 1/2 × (4/5)五、易错题解析与巩固练习1.易错题一:计算1/2 ÷ 1/4 × 3/22.易错题二:计算5/6 + 1/6 - 1/3通过以上内容的学习,学生们可以更好地掌握分数四则混合运算的方法和技巧,提高自己的数学运算能力。
分数混合运算知识点
04 分数四则混合运算
分数四则混合运算的法则
加法法则
同分母分数相加,分母不变,分子相加;异分母分数相加 ,先通分,再按同分母分数相加法则进行计算。
减法法则
同分母分数相减,分母不变,分子相减;异分母分数相减 ,先通分,再按同分母分数相减法则进行计算。
乘法法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母 不变;分数乘分数,用分子相乘的积作分子,分母相乘的 积作分母。
Hale Waihona Puke 注意问题在乘除混合运算中,需要 注意运算顺序和运算符号 的处理,以及结果的化简 和准确性。
06 分数混合运算在生活中的 应用
在数学中的应用
解决复杂数学问题
分数混合运算在数学中广泛应用于解决各种复杂问题,如代数、几何和三角学等 领域。通过分数的加减乘除,可以简化问题并找到解决方案。
数学建模
在数学建模中,分数混合运算用于描述和解决实际问题。例如,在经济学中,可 以使用分数来表示不同商品的价格比率,并通过混合运算来计算总价格。
分数可以表示为一个整数除以另一个非 零整数。
性质
分数具有分子和分母,分子表示被分的 部分,分母表示总的部分。
分数混合运算的意义
数学意义
分数混合运算是数学中基本的运 算之一,对于理解分数的性质和 进行复杂计算具有重要意义。
实际意义
在日常生活中,很多情况下需要 处理涉及分数的计算,如分配、 比较大小等。掌握分数混合运算 有助于解决这些问题。
感谢您的观看
结果能约分的要约分。
异分母分数加减混合运算
运算规则
异分母分数相加减,先通分,然 后按照同分母分数加减法的法则
进行计算。
示例
$frac{2}{5} + frac{3}{7} = frac{2 times 7 + 3 times 5}{5 times 7} = frac{14 + 15}{35} = frac{29}{35}$
【免费】小学六年级数学上册四则混合运算4大知识点汇总(全)
小学六年级数学上册四则混合运算4大知识点汇总(全)知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
人教版小学数学六年级上册《分数四则混合运算》相关资料
人教版小学数学六年级上册《分数四则混淆运算》有关资料知识梳理:1.分数四则混淆运算运算的次序,与我们已经学过的整数四则混淆运算次序相同。
2.整数运算定律和性质相同合用于分数四则混淆运算。
分数四则混淆运算的次序,与我们已经学过的整数四则混淆运算的次序相同。
在计算过程中,能简易计算的要简易计算。
前一题依据四则运算的计算次序进行计算。
先算小括号里面的,最后算除法;后一题先算乘法,一个数连续减去两个数等于减去这两个数的和。
计算的过程中只需依据计算次序仔细计算就能够了。
要注意在计算的过程中,分数加、减法和分数乘除法差别较大,一定分清什么时候需要通分,什么时候需要直接约分。
3.比一个数的几分之若干(少)几,有时列方程解,有时用算术方法解;假如单位 1 已经知道,就用算术方法 `,假如单位 1 不知道,就设单位 1 为ⅹ,列方程解。
我国古代的念书人 ,从上学之日起 ,就日诵不辍 ,一般在几年内就能识记几千个汉字 ,熟记几百篇文章 ,写出的诗文也是字斟句酌 ,琅琅上口 ,成为博学多才的文人。
为何在现代化教课的今日 ,我们念了十几年书的高中毕业生甚至大学生 ,竟提起作文就头疼 ,写不出像样的文章呢 ?吕叔湘先生早在 1978 年就尖地提出 : “中小学文教课成效差,中学文生文水平低 , ⋯⋯十几年上数是9160,文是 2749 ,恰巧是 30%,十年的 ,二千七百多 ,用来学本国文,倒是大部分不关 ,非咄咄怪事 ! ” 根究底 ,其主要原由就是腹中无物。
特是写文 ,初中水平以上的学生都知道文的“三因素”是点、据、 ,也通文的基本构 :提出――剖析――解决 ,但真实起笔来就犯了。
知道“是”,就是不出“ 什么”。
根来源因是无“米”下“ ”。
于是便打开作文集之的大段抄起来,抄人家的名言警语 ,抄人家的案例 ,不参照作文就很写出像的文章。
因此 ,乏、内容空洞、一模一样便成了中学生作文的通病。
要解决个 ,不可以在布局篇等写作技方面下功夫 ,必到“死硬背”的重要性 ,学生累足的“米”。
六年级上册数学分数四则混合运算
六年级上册数学分数四则混合运算摘要:一、分数四则混合运算基本概念1.分数的概念与性质2.四则混合运算的定义二、分数四则混合运算的运算顺序1.先乘除后加减2.同级运算从左到右三、分数四则混合运算的运算方法1.分数加减法2.分数乘法3.分数除法四、分数四则混合运算的例题解析1.分数加减法例题2.分数乘法例题3.分数除法例题五、分数四则混合运算的注意事项1.注意运算顺序2.注意运算符号3.注意结果的约分正文:分数四则混合运算在六年级上册数学中是一个重要的学习内容。
分数是数学中的一种基本概念,它表示部分与整体的关系。
分数有分子和分母,分子表示部分的数量,分母表示整体被分成的份数。
分数具有很多性质,如通分、约分等。
四则混合运算是指在一个算式中同时出现加法、减法、乘法和除法这四种运算。
在进行分数四则混合运算时,需要遵循一定的运算顺序。
首先,按照先乘除后加减的顺序进行运算;其次,在同一级别的运算中,从左到右依次进行。
分数四则混合运算的运算方法包括分数加减法、分数乘法和分数除法。
分数加减法是将两个分数的分子和分母分别相加或相减,注意要保证分母不变。
分数乘法是将两个分数的分子相乘,分母相乘,注意要保证分子与分母的乘积相等。
分数除法是将一个分数的分子除以另一个分数的分子,分母除以另一个分数的分母,注意要保证分母不变。
为了更好地理解分数四则混合运算,我们通过例题来进行解析。
例如,对于分数加减法,我们有如下的例题:3/4 + 1/2。
首先将两个分数通分,得到6/8 + 4/8,然后将分子相加,得到10/8,最后约分得到1 1/4。
对于分数乘法,我们有如下的例题:2/3 × 4/5。
将分子相乘,得到8/15,分母相乘,得到15,最后得到8/15。
对于分数除法,我们有如下的例题:5/6 ÷ 1/3。
将除法转化为乘法,即5/6 × 3/1,分子相乘得到15/6,分母相乘得到6,最后约分得到5/2。
分数的四则混合运算知识点
分数的四则混合运算知识点分数是数学中常见的数形式,它由一个整数部分和一个分数部分组成。
在数学中,我们常常需要进行分数的四则混合运算,即加减乘除四种基本运算的组合。
本文将介绍分数的四则混合运算的知识点和相关规则。
一、分数的加法运算分数加法是指两个分数的相加操作。
当两个分数的分母相同时,只需将它们的分子相加即可,分母保持不变。
例如:1/4 + 1/4 = 2/4 = 1/2当两个分数的分母不相同时,需要找到它们的最小公倍数,将两个分数的分子与最小公倍数的乘积作为新的分子,然后将最小公倍数作为新的分母。
最后,将新的分数进行简化。
例如:1/4 + 1/3 = (1×3+1×4)/ (4×3) = 7/12二、分数的减法运算分数减法是指两个分数的相减操作。
与分数加法类似,当两个分数的分母相同时,只需将它们的分子相减即可,分母保持不变。
例如:1/2 - 1/4 = 2/4 - 1/4 = 1/4当两个分数的分母不相同时,需要找到它们的最小公倍数,将两个分数的分子与最小公倍数的乘积作为新的分子,然后将最小公倍数作为新的分母。
最后,将新的分数进行简化。
例如:1/2 - 1/3 = (1×3-1×2)/ (2×3) = 1/6三、分数的乘法运算分数乘法是指两个分数的相乘操作,即将两个分数的分子相乘作为新的分子,两个分数的分母相乘作为新的分母。
最后,将新的分数进行简化。
例如:1/2 × 3/4 = (1×3)/ (2×4) = 3/8四、分数的除法运算分数除法是指一个分数除以另一个分数的操作。
为了将除法运算转化为乘法运算,我们需要将除数的倒数作为新的分数,然后再进行分数乘法运算。
例如:1/2 ÷ 3/4 = 1/2 × 4/3 = (1×4)/ (2×3) = 4/6五、混合运算的顺序在进行分数的四则混合运算时,我们需要按照一定的顺序进行计算。
苏教版小学数学六年级上册 第7单元 整理与复习 1 分数乘除法及四则混合运算
方法一:
解:
根据混合运算的顺序。
方法二:
解:
根据乘法分配律。
巩固练习
直接写得数。
分数除法:
根据分数除法的计算方法
计算时,能约分的要先约分。
1
1
1
3
4.比
比:两个数相除又叫做两数的比。 比值:比的前项除以比的后项所得的商叫作比值。
商
比
前项
后项
比值
分数
分子
分母
分数值
除法
被除数
除数
商
a:b=a÷b= (b≠0)
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
分数乘法:
根据分数乘法的计算方法:
计算分数乘法时,能约分的要先约分。
1
1
2.倒 数
倒数:乘积为1的两个数互为倒数。 1的倒数是1。 0没有倒数。
填一填:
×( )=1
0.125×( )=1
8
3.分数除法
分数除法
分数÷整数
整数÷分数
分数÷分数
计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。
化简整数比:同时除以前后两项的最大公因数。 化简分数比:同时乘前后项分母的最小公倍数; 变成整数比,再按整数比的方法化简。 化简小数比:前后项先变成整数,再按整数比的方 法化简。
5.分数四则混合运算
分数四则混合运算的顺序: 同级运算从左往右。 不同级运算先算乘除,再算加减,有括号的先算括号里的,在算括号外的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学知识点:分数四则混合运算知识点
数学是一门基础学科, 被誉为科学的皇后。
对于我们的广大小学生来说, 数学水平的高低, 直接影响到以后的学习,特地为大家整理了分数四则混合运算知识点,希望对大家有用!
小学六年级数学知识点:分数乘法知识点
一、运算顺序:
分数四则混合运算的运算顺序和整数则混合运算的运算顺序相同:
一个算式里,如果只含有两级运算,先算第一级运算,再算第二级运算。
在含有括号的算式里,先算小括号里面的,再算中括号里面的,最后算括号外面的。
二、计算法则:
分数乘法的意义:
分数乘以整数—×12 表示12个—是多少。
整数乘以真分数 12×—表示12的—是多少。
分数乘以真分数—×——的—是多少。
一个数乘以带分数—×1—表示—的1—倍是多少。
分数加、减法的计算法则:
同分母分数相加减,分母不变,分子相加减。
异分母分数相加减,先通分,再按同分母方法计算。
分数乘除法计算方法:
分数乘法,分子相乘作分子,分母相乘作分母。
分数除法,乘以除数的倒数。
三、分数四则运算的意义:
加法:
把两个数合并成一个数的运算把两个小数合并成一个小数的运算把两个分数合并成一个分数的运算;
减法:
已知两个加数的和与其中一个加数,求另一个加数的运算已知两个加数的和与其中一个加数,求另一个加数的运算已知两个加数的和与其中一个加数,求另一个加数的运算;
乘法:
求几个相同加数的和的简便运算,小数乘整数的意义与整数乘法意义相同;
一个数乘纯小数就是求这个数的十分之几,百分之几……
除法:
已知两个因数的积与其中一个因数,求另一个因数的运算,与整数除法的意义相同.
【练习题】
1. 解方程。
x×1+14=250 x-25x=110
37x+14x=195 5x+4x=910
2. 计算下面各题,怎样算简便就怎样算。
512÷8+18×712 310×53+310÷3
34×8÷34×8 34-15+13×98
3. 油漆440米长的桥栏杆,小王每小时能油漆58米,小李每小时能油漆34米,两人同时开始油漆多少小时能完成任务。